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We consider an orbifold X obtained by a Kähler reduction
of Cn, and we define its “hyperkähler analogue” M as a hy-
perkähler reduction of T ∗Cn ∼= Hn by the same group. In the
case where the group is abelian and X is a toric variety, M is a
toric hyperkähler orbifold, as defined in Bielawski and Dancer,
2000, and further studied by Konno and by Hausel and Sturm-
fels. The variety M carries a natural action of S1, induced by
the scalar action of S1 on the fibers of T ∗Cn. In this paper we
study this action, computing its fixed points and its equivari-
ant cohomology. As an application, we use the associated Z2

action on the real locus of M to compute a deformation of the
Orlik-Solomon algebra of a smooth, real hyperplane arrange-
ment H, depending nontrivially on the affine structure of the
arrangement. This deformation is given by the Z2-equivariant
cohomology of the complement of the complexification of H,
where Z2 acts by complex conjugation.

In order to construct a toric variety as a Kähler quotient of Cn by a
torus, one begins with the combinatorial data of an arrangement H of n
cooriented, rational, affine hyperplanes in Rd. The normal vectors to these
hyperplanes determine a subtorus T k ⊆ Tn (k = n − d), and the affine
structure determines a value α ∈ (tk)∗ at which to reduce, so that we may
define X = Cn//αT

k. Using the same combinatorial data, one can also con-
struct a hypertoric variety,1 which is defined as the hyperkähler quotient
M = Hn////(α,0)T

k of Hn ∼= T ∗Cn by the induced action of the same subtorus
T k ⊆ Tn [BD]. It is well-known that the toric variety X does not retain
all of the information of H; indeed, it depends only on the polyhedron ∆
obtained by intersecting the half-spaces associated to each of the cooriented
hyperplanes. Thus it is always possible to add an extra hyperplane to H
without changing X. In contrast, the hypertoric variety M remembers the
number of hyperplanes in H, but its equivariant diffeomorphism type de-
pends neither on the coorientations nor on the affine structure of H (see
Theorem 4.1, and Lemmas 2.1 and 2.2).

1In [BD, K1, K2] and [HS] M is called a “toric hyperkähler” variety, but as it is a
complex variety that is not toric in the standard sense, we prefer the term “hypertoric.”
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The purpose of this paper is to study the hamiltonian S1 action on M
descending from the scalar action of S1 on the fibers of T ∗Cn. This action
is sensitive to both the coorientations and the affine structure of H, even on
the level of equivariant cohomology (Section 4). One can recover the toric
variety X as the minimum of the S1 moment map, hence the geometric
structure of M along with its circle action carries strictly more information
than either X or M alone. In Section 3 we give an explicit description of
this action when restricted to the core C, a deformation retract of M which
is a union of projective subvarieties. In Section 4 we compute the S1 and
T d×S1-equivariant cohomologies of M , using the full combinatorial data of
H.

In Section 5, we examine the real locus MR ⊆ M , i.e., the fixed point
set of an involution of M that is anti-holomorphic with respect to the first
complex structure. By studying the topology of MR, we interpret the results
of Section 4 in terms of the Orlik-Solomon algebra OS = H∗(M(H)), where
M(H) is the complement of the complexification of H. We show how to
interpret Theorem 4.4 as a computation of H∗

Z2
(M(H); Z2), a deformation

of the Orlik-Solomon algebra of a smooth, real arrangement that depends
nontrivially on the affine structure.2

1. Hyperkähler reductions.

A hyperkähler manifold is a smooth manifold, necessarily of real dimension
4n, which admits three complex structures J1, J2, J3 satisfying the usual
quaternionic relations, in a manner compatible with a metric. Just as in the
Kähler case, we can define three different symplectic forms on N as follows:

ω1(v, w) = g(J1v, w), ω2(v, w) = g(J2v, w), ω3(v, w) = g(J3v, w).

Note that the complex-valued two-form ω2 + iω3 is nondegenerate and co-
variant constant, hence closed and holomorphic with respect to the complex
structure J1. Any hyperkäher manifold can therefore be considered as a
holomorphic symplectic manifold with complex structure J1, real symplec-
tic form ωR := ω1, and holomorphic symplectic form ωC := ω2 + iω3. This
is the point of view that we will adopt in this paper.

We will refer to an action ofG on a hyperkähler manifoldN as hyperhamil-
tonian if it is hamiltonian with respect to ωR and holomorphic hamiltonian
with respect to ωC, with G-equivariant moment map

µHK := µR ⊕ µC : N → g∗ ⊕ g∗C.

Theorem 1.1 ([HKLR]). Let (N4n, g) be a hyperkähler manifold with real
symplectic form ωR and holomorphic symplectic form ωC. Suppose that N

2A more general computation of H∗
Z2(M(H); Z2), in which H is not assumed to be

simple, rational, or smooth, will appear in [Pr].
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is equipped with a hyperhamiltonian action of a compact Lie group G, with
moment map µHK = µR⊕µC. Suppose ξ = ξR⊕ ξC is a central regular value
of µHK. Then there is a unique hyperkähler structure on the hyperkähler
quotient M = N////ξG := µ−1

HK(ξ)/G, with associated symplectic and holo-
morphic symplectic forms ωξR and ωξC, such that ωξR and ωξC pull back to the
restrictions of ωR and ωC to µ−1

HK(ξ).

If ξ ∈ g∗ ⊕ g∗C is fixed by the coadjoint action of G, the inverse image
µ−1

C (ξC) is preserved by G, and is a (singular) Kähler subvariety with respect
to ωR. Then by [HL] (see also [Na, 3.2] and [Sj, 2.5]), we have

N////ξG = µ−1
C (ξC)//ξR

G = µ−1
C (ξC)ss/GC,

where
µ−1

C (ξC)ss = {x ∈ µ−1
C (ξC) | Gx ∩ µ−1

R (ξR) 6= ∅}.
We now specialize to the case where G is a compact Lie group acting

linearly on Cn with moment map µ : Cn → g∗, taking 0 ∈ Cn to 0 ∈ g∗.
This action induces an action of G on the holomorphic cotangent bundle
T ∗Cn ∼= Cn × (Cn)∗. If we choose a bilinear inner product on Cn, we
can coordinatize this representation as {(z, w) | z, w ∈ Cn} with g(z, w) =
(gz, g−1w). Choose an identification of Hn with T ∗Cn such that the complex
structure J1 on Hn given by right multiplication by i corresponds to the
natural complex structure on T ∗Cn. Then T ∗Cn inherits a hyperkähler, and
therefore also a holomorphic symplectic, structure, with ωR given by adding
the standard symplectic structures on Cn and (Cn)∗ ∼= Cn, and ωC = dη,
where η is the canonical holomorphic 1-form on T ∗Cn.

Note that G acts H-linearly on T ∗Cn ∼= Hn (where n× n matrices act on
the left on Hn, and scalar multiplication by H is on the right), and does so
hyperhamiltonianly with moment map µHK = µC ⊕ µR, where

µR(z, w) = µ(z)− µ(w) and µC(z, w)(v) = w(v̂z)

for w ∈ T ∗z Cn, v ∈ gC, and v̂z the element of TzCn induced by v. Consider
a central regular value α ∈ g∗ for µ, and suppose that (α, 0) ∈ g∗ ⊕ g∗C
is a central regular value for µHK. We refer to the hyperkähler reduction
M = Hn////(α,0)G as the hyperkähler analogue of the corresponding Kähler
reduction X = Cn//αG. The following proposition is proven for the case
where G is a torus in [BD, 7.1]:

Proposition 1.2. The cotangent bundle T ∗X is isomorphic to an open sub-
set of M .

Proof. Let Y = {(z, w) ∈ µ−1
C (0)ss | z ∈ (Cn)ss}, where we ask z to be

semistable with respect to α for the action of GC on Cn, so that X ∼=
(Cn)ss/GC. Let [z] denote the element of X represented by z. The tangent
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space T[z]X is equal to the quotient of TzCn by the tangent space to the GC
orbit through z, hence

T ∗[z]X
∼= {w ∈ T ∗[z]C

n | w(v̂z) = 0 for all v ∈ gC}
= {w ∈ (Cn)∗ | µC(z, w) = 0}.

Then

T ∗X ∼= {(z, w) | z ∈ (Cn)ss and µC(z, w) = 0}/GC = Y/GC

is an open subset of M . �

Consider the action of S1 on Hn ∼= T ∗Cn given by “rotating the fibers” of
the cotangent bundle, given explicitly by τ(z, w) = (z, τw). This action is
hamiltonian with respect to the real symplectic structure ωR with moment
map Φ(z, w) = 1

2 |w|
2. Because it commutes with the action of G, the action

descends to a hamiltonian action on M , where we will still denote the mo-
ment map by Φ. Since S1 acts trivially on z, and by scalars on w, it does
not preserve the complex symplectic form ωC(z, w) = dw∧ dz, and does not
act H-linearly.

Proposition 1.3. If the original moment map µ : Cn → g∗ is proper, then
so is Φ : M → R.

Proof. We would like to show that Φ−1[0, R] is compact for any R. Since

Φ−1[0, R] = {(z, w) | µR(z, w) = α, µC(z, w) = 0, Φ(z, w) ≤ R}
/
G

and G is compact, it is sufficient to show that the set {(z, w) | µR(z, w) =
α, Φ(z, w) ≤ R} is compact. Since µR(z, w) = µ(z) − µ(w), this set is a
closed subset of

µ−1

{
α+ µ(w)

∣∣ 1
2
|w|2 ≤ R

}
×
{
w
∣∣ 1
2
|w|2 ≤ R

}
,

which is compact by the properness of µ. �

In the case where G is abelian and X is a nonempty toric variety, proper-
ness of µ (and therefore of Φ) is equivalent to compactness of X.

2. Hypertoric varieties.

In this section we restrict our attention to hypertoric varieties, which are the
hyperkähler analogues of toric varieties in the sense of Section 1. We begin
with the full n-dimensional torus Tn acting on Cn, and the induced action
on Hn ∼= T ∗Cn given by t(z, w) = (tz, t−1w). Let {ai}1≤i≤n be nonzero
primitive integer vectors in td ∼= Rd defining a map β : tn −→ td by εi 7→ ai,
where {εi} is the standard basis for tn ∼= Rn, dual to {ui}. This map fits
into an exact sequence

0 −→ tk
ι−→ tn

β−→ td −→ 0,
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where tk := ker(β). Exponentiating, we get the exact sequence

0 −→ T k
ι−→ Tn

β−→ T d −→ 0,

whereas by dualizing, we get

0 −→ (td)∗
β∗−→ (tn)∗ ι∗−→ (tk)∗ −→ 0,

where we abuse notation by using ι and β to denote maps on the level of
groups as well as on the level of algebras. Note that T k is connected if and
only if the vectors {a1, . . . , an} span td over the integers.

Consider the restriction of the action of Tn on Hn to the subgroup T k.
This action is hyperhamiltonian with hyperkähler moment map

µR(z, w) = ι∗

(
1
2

n∑
i=1

(|zi|2 − |wi|2)ui

)
and

µC(z, w) = ι∗

(
n∑
i=1

(ziwi)ui

)
,

where {ui} is the standard basis in (tn)∗ ∼= Rn. In contrast with the Kähler
situation, the hyperkähler moment map is surjective onto (tn)∗ ⊕ (tnC)∗.

We denote by M the hyperkähler reduction of Hn by the subtorus T k at
(α, 0) ∈ (tk)∗ ⊕ (tkC)∗, which is the hyperkähler analogue of the Kähler toric
variety X = Cn//αT

k. Choose a lift α̃ ∈ (tn)∗ of α along ι∗. Then M has a
natural residual action of T d with hyperkähler moment map µHK = µR⊕µC.
Note that the choice of subtorus T k ⊆ Tn is equivalent to choosing a central
arrangement of cooriented hyperplanes in (td)∗, where the ith hyperplane is
the annihilator of ai ∈ td. (The coorientation comes from the fact that we
know for which x we have 〈x, ai〉 > 0.) The choice of α̃ corresponds to an
affinization H of this arrangement, where the ith hyperplane is

Hi = {x ∈ (td)∗ | 〈x, ai〉 = 〈−α̃, εi〉}.

Changing α̃ by an element c ∈ (td)∗ has the effect of translating H by c, and
adding c to the residual moment map µR. In order to record the information
about coorientations, we define the half-spaces

Fi = {x ∈ (td)∗ | 〈x, ai〉 ≥ 〈−α̃, εi〉} and(1)

Gi = {x ∈ (td)∗ | 〈x, ai〉 ≤ 〈−α̃, εi〉},

which intersect in the hyperplane Hi. Our convention will be to draw pic-
tures, as in Figure 1, in which we specify the coorientations of the hyper-
planes by shading the polyhedron ∆ = ∩ni=1Fi (which works as long as
∆ 6= ∅). Note that the Kähler variety X is precisely the Kähler toric variety
determined by ∆.
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Figure 1. A hypertoric variety of real dimension 8 obtained
by reducing H4 by T 2.

The variety M is an orbifold if and only if H is simple, i.e., if and only if
every subset of m hyperplanes intersect in codimension m [BD, 3.2]. Fur-
thermore, M is smooth if and only if whenever some subset of d hyperplanes
{Hi} has nonempty intersection, the corresponding vectors {ai} form a Z-
basis for Zd ⊆ td. In this case we will refer to the arrangement itself as
smooth. We will always assume that H is simple, and at times we will also
assume that it is smooth.

The hyperplanes {Hi} divide (td)∗ ∼= Rd into a finite family of closed,
convex polyhedra

∆A = (∩i∈AFi) ∩ (∩i/∈AGi),
indexed by subsets A ⊆ {1, . . . , n}. Consider the subset

I = {A ⊆ {1, . . . , n} | ∆A bounded}

of the power set of {1, . . . , n}. For each A ⊆ {1, . . . , n}, let

MA = µ−1
R (∆A) ∩ µ−1

C (0).

The Kähler submanifold (MA, ωR|MA
) of (M,ωR) is d-dimensional and in-

variant under the action of T d, and is therefore T d-equivariantly isomorphic
to the Kähler toric variety determined by ∆A [BD, 6.5]. We define the core
C and extended core D of a hypertoric variety by setting

C = ∪A∈IMA and D = ∪AMA = µ−1
C (0) = {[z, w] | ziwi = 0 for all i},

where [z, w] denotes the T k-equivalence class in M of the element (z, w) ∈
µ−1

HK(α, 0). Bielawski and Dancer [BD] show that C and D are each T d-
equivariant deformation retracts of M . See Corollary 3.6 for a Morse theo-
retic proof.

We take a minute to discuss the differences between the combinatorial
data determining a toric variety X = Cn//αT

k and its hypertoric analogue
M = Hn////(α,0)T

k. Each is determined by H, a simple, cooriented, affine
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arrangement of n hyperplanes in (td)∗, defined up to simultaneous trans-
lation. The toric variety X is in fact determined by less information than
this; it depends only on the polyhedron ∆ = ∩ni=1Fi. Thus if the last hy-
perplane Hn has the property that ∩n−1

i=1 Fi ⊆ Fn, then this hyperplane is
superfluous to X. This is not the case for M , which means that it is slightly
misleading to call M the hyperkähler analogue of X; more precisely, it is the
hyperkähler analogue of a given presentation of X as a Kähler reduction of
Cn. On the other hand, the T d-equivariant diffeomorphism type of M also
does not depend on all of the information of H, as evidenced by the two
following results:

Lemma 2.1. The hypertoric varieties Mα = Hn ////(α,0) T
k and Mα′ =

Hn////(α′,0)T
k are T d-equivariantly diffeomorphic, and their cohomology rings

can be naturally identified.

Lemma 2.2. The hypertoric variety M does not depend on the coorienta-
tions of the hyperplanes {Hi}.

This means that, unlike that of X, the T d-equivariant diffeomorphism
type of M depends only on the unoriented central arrangement underlying
H. A weaker version of Lemma 2.1, involving the (nonequivariant) homeo-
morphism type of M , appears in [BD].

Proof of 2.1. The set of nonregular values for µHK has codimension 3 inside
of (td)∗⊕(tdC)∗. This tells us that the set of regular values is simply connected,
and we can choose a path connecting any two regular values (α, 0) and (α′, 0),
unique up to homotopy.

Since the moment map µHK is not proper, we must take some care in
showing that two fibers are diffeomorphic. To this end, we note that the
norm-square function ψ(z, w) = ‖z‖2 + ‖w‖2 is Tn-invariant and proper on
Hn. Let Hn

reg denote the open submanifold of Hn consisting of the preimages
of the regular values of µHK. By a direct computation, it is easy to see that
the kernels of dψ and d(µHK) intersect transversely at any point p ∈ Hn

reg.
Using the standard Tn-invariant metric on Hn, we define an Ehresmann
connection on Hn

reg with respect to µHK such that the horizontal subspaces
are contained in the kernel of dψ.

This connection allows us to lift a path connecting the two regular values
to a horizontal vector field on its preimage in Hn

reg. Since the horizontal
subspaces are tangent to the kernel of dψ, the flow preserves level sets of ψ.
Note that the function

µHK ⊕ ψ : Hn → (td)∗ ⊕ (tdC)∗ ⊕ R
is proper. By a theorem of Ehresmann [BJ, 8.12], the properness of this
map implies that the flow of this vector field exists for all time, and identifies
the inverse image of (α, 0) with that of (α′, 0). Since the metric, ψ, and
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µHK are all Tn-invariant, the Ehresmann connection is also Tn-invariant,
therefore the diffeomorphism identifying the fibers is Tn-equivariant, making
the reduced spaces are T d-equivariantly diffeomorphic. �

Proof of 2.2. It suffices to consider the case when we change the orientation
of a single hyperplane within the arrangement. Changing the coorientation
of a hyperplane Hl is equivalent to defining a new map β′ : tn → td, with
β′(εi) = ai for i 6= l, and −ai for i = l. This map exponentiates to a map
β′ : Tn → T d, and we want to show that the hyperkähler variety obtained
by reducing Hn by the torus ker(β′) is isomorphic to M , which is obtained
by reducing Hn by the torus T k = ker(β). To see this, note that ker(β′) and
ker(β) are conjugate inside of M(n,H) by the element (1, . . . , 1, j, 1, . . . , 1) ∈
M(1,H)n ⊆ M(n,H), where the j appears in the lth slot. �

Example 2.3. The three cooriented arrangements of Figure 2 all specify
the same hyperkähler variety M up to equivariant diffeomorphism. The
first has X ∼= F1 (the first Hirzebruch surface) and the second and the third
haveX ∼= CP 2. Note that if we flipped the coorientation ofH3 in Figure 2(a)
or 2(c), then we would get a noncompact X ∼= C̃2, the blow-up of C2 at a
point. If we flipped the coorientation of H3 in Figure 2(b), then X would
be empty. We make no assumptions about X in this section.

1

2

3

4

1 1

2 2

3 3

4
( a ) ( b ) ( c )

4

Figure 2. Three arrangements related by flipping coorien-
tations and translating hyperplanes.

The purpose of this paper is to study not just the topology of M , but
the topology of M along with the natural hamiltonian S1 action defined in
Section 1. In order to define this S1 action, it is necessary that we reduce
at a regular value of the form (α, 0) ∈ (td)∗ ⊕ (tdC)∗, and although the set
of regular values of µHK is simply connected, the set of regular values of
the form (α, 0) is not even connected. Furthermore, left multiplication by
the diagonal matrix (1, . . . , 1, j, 1, . . . , 1) ∈ U(n,H) is not an S1-equivariant
automorphism of Hn, therefore the geometric structure of M along with
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a circle action may depend nontrivially both on the affine structure and
the coorientations of the arrangement H. Indeed it must, because we can
recover X from M by taking the minimum Φ−1(0) of the S1 moment map
Φ : M → R. In this sense, the structure of a hypertoric variety M along
with a circle action is the universal geometric object from which both M
and X can be recovered.

3. Gradient flow on the core.

Although S1 does not act on M as a subtorus of T d, we show below that
when restricted to any single component MA of the extended core, S1 does
act as a subtorus of T d, with the subtorus depending combinatorially on A.
This will allow us to give a combinatorial analysis of the gradient flow of Φ
on the extended core.

Lemma 3.1. Let x be an element of (td)∗, and consider a point [z, w] ∈
µ−1

R (x) ∩D. We have x ∈ Fi if and only if wi = 0, and x ∈ Gi if and only
if zi = 0.

Proof. The fact that [z, w] ∈ D tells us that ziwi = 0. Then

x ∈ Fi ⇔ 〈−α̃, εi〉 ≤ 〈µR[z, w], ai〉 = 〈µR(z, w)− α̃, εi〉

⇔ 1
2
|zi|2 −

1
2
|wi|2 = 〈µR(z, w), εi〉 ≥ 0.

Since ziwi = 0, this is equivalent to the condition wi = 0. The second half
of the lemma follows similarly. �

On the suborbifold MA ⊆ D ⊆M we have zi = 0 for all i ∈ A and wi = 0
for all i /∈ A, therefore for τ ∈ S1 and [z, w] ∈MA,

τ [z, w] = [z, τw] = [τ1z1, . . . , τnzn, τ−1
1 w1, . . . , τ

−1
n wn],

where τi =

{
τ−1 if i ∈ A,
1 if i /∈ A.

In other words, the S1 action onMA is given by the one dimensional subtorus
(τ1, . . . , τn) of the original torus Tn, hence the moment map Φ|MA

is given
(up to an additive constant) by

Φ[z, w] =

〈
µR[z, w],

∑
i∈A

ai

〉
.

This formula allows us to compute the fixed point sets of the S1 action.
Since S1 acts freely on (tdC)∗\{0} and µC : M → (tdC)∗ is S1-equivariant,
we must have MS1 ⊆ µ−1

C (0) = D. For any subset B ⊆ {1, . . . , n}, let
MB
A be the toric subvariety of MA defined by the conditions zi = wi = 0
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for all i ∈ B. Geometrically, MB
A is defined by the (possibly empty) face

∩i∈BHi ∩∆A of the polyhedron ∆A.

Proposition 3.2. The fixed point set of the action of S1 on MA is the union
of those toric subvarieties MB

A such that
∑

i∈A ai ∈ tdB := Spanj∈B aj.

Proof. The moment map Φ|MB
A

will be constant if and only if
∑

i∈A ai is
perpendicular to ker

(
(td)∗�(tdB)∗

)
, i.e., if

∑
i∈A ai lies in the kernel of the

projection td�td/tdB. �

Corollary 3.3. Every vertex v ∈ (td)∗ of the polyhedral complex defined by
H is the image of an S1-fixed point in M . Every component of MS1

has
dimension less than or equal to d, and the only component of dimension d
is M∅ = X = Φ−1(0).

For any point p ∈ MS1
, the stable orbifold S(p) at p is defined to be the

set of x ∈ M such that x approaches p when flowing along the vector field
− grad(Φ), and the unstable orbifold U(p) at p is defined to be the stable
orbifold with respect to the function −Φ. For any suborbifold Y ⊆MS1

, the
unstable orbifold U(Y ) at Y is defined to be the union of U(y) for all y ∈ Y .
In general, for y ∈ Y , we have the identity dimR U(Y ) + dimR S(y) = 4d.

Let Y ⊆ MS1
be a component of the fixed point set of M . Let v ∈ (td)∗

be a vertex in the polehedron µR(Y ), and let y be the unique preimage of v
in Y .

Proposition 3.4. The unstable orbifold U(Y ) is a complex suborbifold of
complex dimension at most d, contained in the core C ⊆M . If H is smooth
at y, then dimC U(Y ) = d, and the closure of U(Y ) is an irreducible compo-
nent of C.

Proof. For simplicity, we will assume that v=∩dj=1Hj . For all l∈{1, . . . , d},
let bl ∈ tdZ be the smallest integer vector such that 〈aj , bl〉 = 0 for j 6= l
and 〈al, bl〉 > 0. Geometrically, bl is the primitive integer vector on the
line ∩j 6=lHj pointing in the direction of ∆. Note that M is smooth at the
T d-fixed point above v if and only if 〈al, bl〉 = 1 for all l ∈ {1, . . . , d}. Let
Rl ⊆ (td)∗ be the ray eminating from v in the direction of bl, and ending
before it hits another vertex. Let Ql be the analogous ray in the opposite
direction.

Let ∆A be a region (not necessarily bounded) of the polyhedral complex
defined by H adjacent to Rl. The preimage µ−1

R (Rl) ∩ D of Rl in D is a
complex line, and it is contained in the unstable orbifold at U(Y ) if and only
if
〈
bl,
∑

i∈A ai
〉
≥ 0. If

〈
bl,
∑

i∈A ai
〉
< 0, it is contained in the stable orbifold

S(y). The preimage µ−1
R (Ql)∩D of Ql in D is also a complex line, contained

in the unstable orbifold U(Y ) if and only if
〈
−bl, al +

∑
i∈A ai

〉
≥ 0, and

otherwise in S(y). Since
〈
bl,
∑

i∈A ai
〉
+
〈
−bl, al +

∑
i∈A ai

〉
= −〈al, bl〉 < 0,
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at most one of these two directions can be unstable. In the smooth case,
〈al, bl〉 = 1 for all l, and exactly one of the two directions is unstable.

Consider the polytope ∆v incident to v and characterized by the property
that its edges at the vertex v are exactly the unstable directions. The toric
variety X∆v ⊆ D is contained in the closure of U(Y ), and a dimension
count tells us that this containment is an equality. In the smooth case, ∆v

is d-dimensional, and X∆v is a component of the core. �

Note that, even in the smooth case, it is not necessarily the case that the
Rl direction is stable and the Ql direction is unstable. See, for example, the
vertex v = H1 ∩H2 in Figure 2(c).

Corollary 3.5. There is a natural injection from the set of bounded regions
{∆A | A ∈ I} to the set of connected components of MS1

. If H is smooth,
this map is a bijection.

Proof. To each A ∈ I, we associate the fixed subvariety MB
A corresponding

to the face of ∆A on which the linear functional
∑

i∈A ai is minimized, so
that MA is the closure of U(MB

A ). If H is smooth, then every connected
component of the fixed point set will have a component of the core as its
closed unstable orbifold. �

Corollary 3.6. The core of M is equal to the union of the unstable orbifolds
of the connected components of MS1

, hence C is a T d × S1-equivariant
deformation retract of M .

Example 3.7. In Figure 3, representing a reduction of H5 by T 3, we choose
a metric on (t2)∗ in order to draw the linear functional

∑
i∈A ai as a vector

in each region ∆A. We see that MS1
has three components, one of them

X ∼= F1, one of them a projective line, with another F1 as its unstable
manifold, and one of them a point, with a CP 2 as its unstable manifold.

Example 3.8. The hypertoric variety represented by Figure 4 has a fixed
point set with four connected components (three points and a CP 2), but
only three components in its core. This phenomenon can be blamed on the
orbifold point represented by the intersection of H3 and H4, which has a
one-dimensional unstable orbifold.

4. Equivariant cohomology.

In this section we extend Konno’s computations of the ordinary and T d-
equivariant cohomologies of M to the S1-equivariant setting. We follow
Konno’s approach of restricting to the smooth case to simplify arguments
involving line bundles onM . Hausel and Sturmfels, however, prove theorems
analogous to 4.1 and 4.3 with rational coefficients in the orbifold case, and
Theorems 4.4 and 4.5 extend to this setting as well (see Remark 4.12).
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Figure 3. The gradient flow of Φ : M → R.

1

3

4

2

Figure 4. A singular example.

Theorem 4.1 ([K2]). The T d-equivariant cohomology ring of a smooth hy-
pertoric variety M is given by

H∗
T d(M) = Z[u1, . . . , un]

/〈∏
i∈S

ui

∣∣∣∣ ⋂
i∈S

Hi = ∅

〉
.

Remark 4.2. This is precisely the Stanley-Reisner ring of the unoriented
matroid determined by the arrangement H [HS].

Just as the cohomology of a toric variety is obtained from the equivariant
cohomology by introducing linear relations that generate ker ι∗ = (kerβ)⊥,
the same is true for hypertoric varieties:

Theorem 4.3 ([K1]). The ordinary cohomology ring of a smooth hyper-
toric variety M is given by

H∗(M) = H∗
T d(M)

/
〈Σaiui ∈ ker ι∗〉 .

The rest of this section will be devoted to the proof of the following two
theorems:
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Theorem 4.4. Let M be the hypertoric variety corresponding to a smooth,
cooriented arrangement H. Given any minimal set S ⊆ {1, . . . , n} such
that ∩i∈SHi = ∅, let S = S1 t S2 be the unique splitting of S such that(
∩i∈S1 Gi

)
∩
(
∩j∈S2 Fj

)
= ∅ (see (1)). Then the T d × S1-equivariant

cohomology of M is given by

H∗
T d×S1(M) ∼= Z[u1, . . . , un, x]

/〈∏
i∈S1

ui ×
∏
j∈S2

(x− uj)
∣∣∣∣ ⋂
i∈S

Hi = ∅

〉
.

Theorem 4.5. In the notation of Theorem 4.4, the S1-equivariant coho-
mology ring of M is given by

H∗
S1(M) ∼= H∗

T d×S1(M)
/
〈Σaiui ∈ ker ι∗〉 .

Remark 4.6. Konno observes that the quotient map from the abstract
polynomial ring Z[u1, . . . , un] → H∗

T d(M) is precisely the T d-equivariant
Kirwan map

κT d : H∗
Tn(T ∗Cn) → H∗

T d(M)

which is induced by the inclusion µ−1(α, 0)↪→T ∗Cn. Likewise, the map from
Z[u1, . . . , un]/ ker ι∗ to H∗(M) is the ordinary Kirwan map

κ : H∗
Tk(T ∗Cn) → H∗(M).

The analogous maps for Kähler reductions are known to always be surjective
[Ki, 5.4], but the hyperkähler case remains open. Thus Theorems 4.1 and 4.3
can be interpreted as saying that the Kirwan maps for hypertoric varieties
are surjective, and computing the kernel. Likewise, Theorems 4.4 and 4.5
assert that the S1-equivariant Kirwan maps

κT d×S1 : H∗
Tn×S1(T ∗Cn) → H∗

T d×S1(M)

and
κS1 : H∗

Tk×S1(T ∗Cn) → H∗
S1(M)

are surjective, and provide computations of their kernels.

In order to apply Konno’s results, we will make use of the principle of
equivariant formality, proven for compact manifolds in [Ki], which we adapt
to our situation in Proposition 4.7. For the sake of simplicity, we will restrict
our attention to the case where X is compact and nonempty. This condition
will be necessary for the application of Proposition 4.7 and the proof of
Theorem 5.1, both of which require a proper Morse function, which we get
from Proposition 1.3. We note, however, that both Proposition 4.7 and
Theorem 5.1 can be extended to the case of a general hypertoric variety by
a Mayer-Vietoris argument, using the fact that the core C ⊆M is a compact
T d×S1-equivariant deformation retract. We present the slightly less general
Morse theoretic proofs only because we find them more pleasant.
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Proposition 4.7. Let M be a symplectic orbifold, possibly noncompact but
of finite topological type. Suppose that M admits a hamiltonian action of a
torus T ×S1, and that the S1-component Φ : M → R of the moment map is
proper and bounded below. Then H∗

T×S1(M) is a free module over H∗
S1(pt).

Proof. Because Φ is a moment map, it is a Morse-Bott function such that
all of the critical suborbifold and their normal bundles carry almost com-
plex structures. Thus we get a Morse-Bott stratification of M into even-
dimensional T -invariant suborbifolds. This tells us, as in [Ki, 5.8], that the
spectral sequence associated to the fibrationM↪→EG×GM → BG collapses,
and we get the desired result. �

Consider the following commuting square of maps, where φ and ψ are
each given by setting x to zero:

H∗
Tn×S1(T ∗Cn)

κ
Td×S1

−−−−−→ H∗
T d×S1(M)

φ

y yψ
H∗
Tn(T ∗Cn)

κ
Td−−−→ H∗

T d(M)
Proposition 4.7 has the following consequence:

Corollary 4.8. Let I ⊆ kerκT d×S1 be an ideal with φ(I) = kerκT d. Then
I = kerκT d×S1.

Proof. Suppose that a ∈ kerκT d×S1 r I is a homogeneous class of minimal
degree, and choose b ∈ I such that φ(a− b) = 0. Then a− b = cx for some
c ∈ H∗

Tn×S1(T ∗Cn). By Proposition 4.7, cx ∈ kerκT d×S1 ⇒ c ∈ kerκT d×S1 ,
hence c ∈ kerκT d×S1 r I is a class of lower degree than a. �

Lemma 4.9. The equivariant Kirwan map κT d×S1 is surjective.

Proof. Suppose that γ ∈ H∗
T d×S1(M) is a homogeneous class of minimal

degree that is not in the image of κT d×S1 . By Theorem 4.1 κT d is surjective,
hence we may choose a class η ∈ φ−1κ−1

T dψ(γ). Then κT d×S1(η)− γ = xδ for
some δ ∈ H∗

T d×S1(M), and therefore δ is a class of lower degree that is not
in the image of κT d×S1 . �

Proof of 4.4. For any element h ∈ H2
Tn×S1(Hn; Z), let L̃h = Hn × Ch be

the Tn × S1-equivariant line bundle on Hn with equivariant Euler class h.
This gives L̃h, as well as its dual L̃∗h, the structure of a Tn × S1-equivariant
bundle. Let

Lh = L̃h|µ−1
C (0)ss/T

k
C

be the quotient T d × S1-equivariant line bundle on M . Let {ui} be the
standard basis of (tnZ)∗. Identifying H2

Tn×S1(Hn; Z) with (tnZ)∗ ⊕ Zx, we
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will use L̃i to denote the bundle L̃ui⊕0, and K̃ to denote the bundle L̃0⊕x,
with quotients Li and K. Since the T d × S1-equivariant Euler class e(Li)
is the image of ui ⊕ 0 under the hyperkähler Kirwan map H∗

Tn×S1(Hn) →
H∗
T d×S1(M), we will abuse notation and denote it by ui. Similarly, we will

denote e(K) by x. Corollary 4.9 tells us that H∗
T d×S1(M) is generated by

u1, . . . , un, x.
Consider the Tn × S1-equivariant section s̃i of L̃i given by the function

s̃i(z, w) = zi. This descends to a T d × S1-equivariant section si of Li with
zero-set

Zi := {[z, w] ∈M | zi = 0}.

Similarly, the function t̃i(z, w) = wi defines a T d×S1-equivariant section of
L∗i ⊗K with zero set

Wi := {[z, w] ∈M | wi = 0}.
Thus the divisor Zi represents the cohomology class ui, and Wi represents
x−ui. Note, by the proof of Lemma 3.1, that µR(Zi) = Gi and µR(Wi) = Fi
for all 1 ≤ i ≤ n.

Let S = S1 t S2 be a subset of {1, . . . , n} such that(
∩i∈S1 Gi

)
∩
(
∩j∈S2 Fj

)
= ∅,

and hence(
∩i∈S1 Zi

)
∩
(
∩j∈S2 Wj

)
⊆ µ−1

R

((
∩i∈S1 Gi

)
∩
(
∩j∈S2 Fj

))
= ∅.

Now consider the vector bundle ES = (⊕i∈S1Li) ⊕
(
⊕j∈S2L

∗
j ⊗K

)
with

equivariant Euler class

e(ES) =
∏
i∈S1

ui ×
∏
j∈S2

(x− uj).

The section (⊕i∈S1si)⊕(⊕i∈S2ti) is a nonvanishing equivariant global section
of ES , hence for any such S, e(ES) is trivial in H∗

T d×S1(M).
The fact that u1, . . . , un, x generate H∗

T d×S1(M) is proven in Lemma 4.9,
and the fact that we have found all of the relations follows from Theorem 4.1
and Corollary 4.8. �

Proof of 4.5. The proof of this theorem is identical to the proof of Theo-
rem 4.4, making use of Theorem 4.3 rather than Theorem 4.1. �

How sensitive are the invariants H∗
T d×S1(M) and H∗

S1(M)? We can re-
coverH∗

T d(M) andH∗(M) by setting x to zero, hence they are at least as fine
as the ordinary or T d-equivariant cohomology rings. The ring H∗

T d×S1(M)
does not depend on coorientations, for if M ′ is related to M by flipping the
coorientation of the lth hyperplane Hk, then the map taking ui to ui for i 6= l
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and ul to x − ul is an isomorphism between H∗
T d×S1(M) and H∗

T d×S1(M ′).
It is, however, dependent on the affine structure of the arrangement H.

Example 4.10. We compute the equivariant cohomology ring H∗
T d×S1(M)

for the hypertoric varieties Ma, Mb, and Mc defined by the arrangements in
Figure 2(a), (b), and (c), respectively.

H∗
T d×S1(Ma) = Z[u1, . . . , u4, x]

/
〈u2u3, u1(x− u2)u4, u1u3u4〉 ,

H∗
T d×S1(Mb) = Z[u1, . . . , u4, x]

/
〈(x− u2)u3, u1u2u4, u1u3u4〉 ,

H∗
T d×S1(Mc) = Z[u1, . . . , u4, x]

/
〈u2u3, (x− u1)u2(x− u4), u1u3u4〉 .

As we have already observed, H∗
T d×S1(Ma) and H∗

T d×S1(Mb) are isomorphic
by interchanging u2 with x − u2. One can check that the annihilator of
u2 in H∗

T d×S1(Ma) is the principal ideal generated by u3, while the ring
H∗
T d×S1(Mc) has no degree 2 element whose annihilator is generated by a

single element of degree 2. Hence H∗
T d×S1(Mc) is not isomorphic to the other

two rings.

The ring H∗
S1(M), on the other hand, is sensitive to coorientations as well

as the affine structure of H.

Example 4.11. We now compute the ring H∗
S1(M) for Ma, Mb, and Mc

of Figure 2. Theorem 4.5 tells us that we need only to quotient the ring
H∗
T d×S1(M) by ker(ι∗). For Ma, the kernel of ι∗a is generated by u1 +u2−u3

and u1 − u4, hence we have

H∗
S1(Ma) = Z[u2, u3, x]

/ 〈
u2u3, (u3 − u2)2(x− u2), (u3 − u2)2u3

〉
∼= Z[u2, u3, x]

/ 〈
u2u3, (u3 − u2)2(x− u2), u3

3

〉
.

Since the hyperplanes of 2(c) have the same coorientations as those of 2(a),
we have ker ι∗b = ker ι∗a, hence

H∗
S1(Mc) = Z[u2, u3, x]

/ 〈
u2u3, (x− u3 + u2)2u2, (u3 − u2)2u3

〉
∼= Z[u2, u3, x]

/ 〈
u2u3, (x− u3 + u2)2u2, u

3
3

〉
.

Finally, since Figure 2(b) is obtained from 2(a) by flipping the coorientation
of H2, we find that ker(ι∗b) is generated by u1−u2−u3 and u1−u4, therefore

H∗
S1(Mb) = Z[u2, u3, x]

/ 〈
(x− u2)u3, (u2 + u3)2u2, (u2 + u3)2u3

〉
.

As in Example 4.10, H∗
S1(Ma) and H∗

S1(Mc) can be distinguished by the
fact that the annihilator of u2 ∈ H∗

S1(Ma) is generated by a single element
of degree 2, and no element of H∗

S1(Mc) has this property. On the other
hand, H∗

S1(Mb) is distinguished from H∗
S1(Ma) and H∗

S1(Mc) by the fact
that neither x− u2 nor u3 cubes to zero.
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Remark 4.12. Theorems 4.4 and 4.5 can be interpreted in light of the
recent work of Hausel and Sturmfels [HS] on Lawrence toric varieties. The
Lawrence toric variety N associated to the arrangement H is the Kähler
reduction T ∗Cn//T k, so that M sits inside of N as the complete intersection
cut out by the equation µC(z, w) = 0. The residual torus acting on N
has dimension d + n, and includes the (d + 1)-dimensional torus T d × S1

acting on M , and the inclusion of M into N induces an isomorphism on
T d × S1-equivariant cohomology. One can use geometric arguments similar
to those that were applied to prove Theorem 4.4, or the purely combinatorial
approach of [HS], to show that

H∗
T d+n(N) = Q[u1, . . . , un, v1, . . . , vn]

/〈∏
i∈S1

ui ×
∏
j∈S2

vj

∣∣∣∣ ⋂
i∈S

Hi = ∅

〉
.

From here we can recover H∗
T d×S1(M) = H∗

T d×S1(N) by setting ui + vi =
uj + vj for all i, j ≤ n. Note that Hausel and Sturmfels’ work applies to the
general orbifold case.

5. A deformation of the Orlik-Solomon algebra of H.

Let MR ⊆ M be the real locus {[z, w] ∈ M | z, w real} of M with respect
to the complex structure J1. The full group T d × S1 does not act on MR,
but the subgroup T dR × Z2 does act, where T dR := Zd2 ⊆ T d is the fixed point
set of the involution of T d given by complex conjugation.3 In this section
we will study the geometry of the real locus, focusing in particular on the
properties of the residual Z2 action.

A proof of a more general statement of the following theorem is forthcom-
ing in [HH]:

Theorem 5.1. Let G = T d×S1 or T d, and GR = T dR×Z2 or T dR. Then we
have H2∗

G (M ; Z2) ∼= H∗
GR

(MR; Z2), i.e., the rings are isomorphic by an iso-
morphism that halves the grading. Furthermore, this isomorphism identifies
the class ui ∈ H∗

G(M ; Z2), represented by the divisor Zi, with the class in
H∗
GR

(MR; Z2) represented by the divisor Zi ∩MR, and likewise takes x− ui
(if G = T d × S1) or −ui (if G = T d) to the class represented by Wi ∩MR.

Sketch of proof. Consider the injection H∗
G(M ; Z2)↪→H∗

G(MG; Z2) given by
the inclusion of the fixed point set into M . The essential idea is to show
that a class in H∗

G(MG; Z2) extends over M if and only if it extends to the
set of points on which G acts with a stabilizer of codimension at most 1, and

3It is interesting to note that the real locus with respect to the complex structure J1 is
in fact a complex submanifold with respect to the one of the other complex structures on
M . The action of T d

R is holomorphic because T d
R is a subgroup of T d, which preserves all

of the complex structures on M . The action of Z2, on the other hand, is anti-holomorphic,
i.e., it can be thought of as complex conjugation.
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then to show that a similar statement in GR-equivariant cohomology also
holds for the real locus MR with its GR action. One then uses a canonical
isomorphism H2

G(pt,Z2) ∼= H1
GR

(pt,Z2) to give the result.
The key to the proof is a noncompact GR version of the proposition in

[TW] stating that the GR-equivariant Euler class of the negative normal
bundle of a critical point p is not a zero divisor, which can be shown explicitly
using a local normal form for the actions of G and GR. The proposition
then follows from standard GR versions of the Thom isomorphism theorem
with coefficients in Z2. Since a component of the moment map is proper,
bounded below, and has finitely many fixed points, one can then check that
the inductive argument, given in Section 3 of [TW] to complete the proof
of [TW, Thm 1] also holds in this case. �

Let us consider the restriction of the hyperkähler moment map µHK =
µR ⊕ µC to MR. Since z and w are real for every [z, w] ∈ MR, the map
µC takes values in tdR ⊆ tdC, which we will identify with iRn, so that f =
µR|MR⊕µC|MR takes values in Rn⊕iRn ∼= Cn. Note that f is Z2-equivariant,
with Z2 acting on Cn by complex conjugation.

Lemma 5.2. The map f : MR → Cn is surjective, and the fibers are the
orbits of T dR. The stabilizer of a point x ∈ MR has order 2r, where r is the
number of hyperplanes in the complexified arrangement HC containing the
point f(x).

Proof. For any point p = a + bi ∈ Cn, choose a point [z, w] ∈ M such
that µR[z, w] = a and µC[z, w] = b. We can hit [z, w] with an element of
T d = Tn/T k to make z real, and the fact that µC[z, w] ∈ Rn forces w to
be real as well, hence we may assume that [z, w] ∈ MR. Then f−1(p) =
µ−1

HK (a, b) ∩MR = T d[z, w] ∩MR = T dR[z, w]. The second statement follows
easily from [BD, 3.1]. �

Let Y ⊆ MR be the locus of points on which T dR acts freely, i.e., the
preimage under f of the space M(H) := Cn \ ∪ni=1H

C
i . The inclusion map

Y ↪→MR induces maps backward on cohomology, which we will denote

φ : H∗
T d

R
(MR; Z2) → H∗

T d
R
(Y ; Z2) ∼= H∗(M(H); Z2)

and
φ2 : H∗

T d
R×Z2

(MR; Z2) → H∗
T d

R×Z2
(Y ; Z2) ∼= H∗

Z2
(M(H); Z2).

The ring H∗(M(H); Z) has been studied extensively, and is called the Orlik-
Solomon algebra [OT], which we will denote by OS. A remarkable fact
about the Orlik-Solomon algebra is that it depends only on the combinatorial
structure of H; the following is a presentation in terms of anticommuting
generators e1, . . . , en [OS]:

OS ∼= H∗(M(H); Z) ∼= Z[e1, . . . , en]
/
〈Πi∈Sei | ∩i∈SHi = ∅〉 .
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Rather than working with anticommuting generators, we can work over the
ground field Z2, in which case commutativity and anticommutativity are the
same. Because OS is torsion-free [OT, 3.74], we have

OS ⊗ Z2
∼= H∗(M(H); Z2)
∼= Z2[e1, . . . , en]

/
〈Πi∈Sei | ∩i∈SHi = ∅〉+

〈
e2i | i ≤ n

〉
,

where deg(ei) = 1.

Claim 5.3. The map φ : H∗
T d

R
(MR; Z2) → OS ⊗ Z2 takes ui to ei, hence

kerφ is generated by the set {u2
i | i ≤ n}.

Proof. Recall from Section 2 that the hyperplane Hi ⊆ (td)∗ is defined by
the equation 〈x, ai〉 = 〈−α̃, εi〉. Let ηi : Cn → C be the affine map taking x
to 〈x, ai〉 + 〈α̃, εi〉, so that HC

i is cut out of Cn by ηi. Then ηi restricts to
a map M(H) → C∗, and Orlik and Terao identify ei with the cohomology
class represented by the pull-back of the submanifold R− (the negative reals)
along ηi [OT, 5.90]. Theorem 5.1 tells us that the cohomology class ui is
represented by the divisor Zi ∩MR. By Lemma 3.1, f(Zi ∩MR) = Gi ∩Rn,
hence φ(ui) is the class represented by the submanifold Gi ∩Rn ∩M(H) =
η−1
i (R−). �

Remark 5.4. The fact that the classes u2
i lie in the kernel of φ can be seen

by noting that ui is represented both by the divisor

Zi = {[z, w] ∈MR | zi = 0},

and, since ui = −ui over Z2, also by the divisor

Wi = {[z, w] ∈MR | wi = 0}.

The condition x ∈ Zi ∩ Wi says exactly that µR(x) ∈ Hi, therefore the
intersection Zi ∩Wi ∩ Y is empty.

In some sense we have cheated here; we have concluded that we can
recover a presentation of OS ⊗ Z2 from a presentation of H∗

T d(M), but we
used the fact that we already have a presentation of OS ⊗ Z2. In the Z2-
equivariant picture, however, our trivial observation turns magically into
new information, giving us a presentation of the equivariant cohomology
ring H∗

Z2
(M(H); Z2).

Theorem 5.5. The map φ2 is surjective, with kernel generated by {ui(x−
ui) | i ≤ n}. Hence

H∗
Z2

(M(H); Z2) ∼= H∗
T d

R×Z2
(MR; Z2)

/
kerφ2

∼=
Z2[u1, . . . , un, x]

〈Πi∈S1ui ×Πj∈S2(x− uj) | ∩i∈SHi = ∅〉+ 〈ui(x− ui) | i ≤ n〉
.
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Proof. The fact that HC is the complexification of a real arrangement tells
us that the linear forms ηi have real coefficients, therefore the generators
ei of H∗(M(H); Z2) are Z2-invariant. This implies, by [Bo, 3.5], that
H∗

Z2
(M(H); Z2) is a free module over H∗

Z2
(pt). Then surjectivity of φ2 fol-

lows from surjectivity of φ using a formal argument identical to that of
Corollary 4.9. By Theorem 5.1 and Proposition 4.7, H∗

T d
R×Z2

(MR; Z2) is a

free module overH∗
Z2

(pt), therefore kerφ2 is a freeH∗
Z2

(pt)-module of rank n.
The fact that ui(x− ui) ∈ kerφ2 follows from the argument of Remark 5.4,
hence we are done. �

The ring H∗
Z2

(M(H); Z2) is therefore a deformation of OS ⊗ Z2 (over
the base Spec Z2[x]) that depends nontrivially on the affine structure of H,
rather than simply on the underlying matroid.

Example 5.6. Consider the arrangements Ha and Hc in Figure 2(a) and
2(c). By Theorem 5.5 and Example 4.10 we have

H∗
Z2(M(Ha); Z2) ∼= Z2[u1, . . . , u4, x]

ffi fi
u1(x− u1), u2(x− u2), u3(x− u3), u4(x− u4),

u2u3, u1(x− u2)u4, u1u3u4

fl
and

H∗
Z2(M(Hc); Z2) ∼= Z2[u1, . . . , u4, x]

ffi fi
u1(x− u1), u2(x− u2), u3(x− u3), u4(x− u4),

u2u3, (x− u1)u2(x− u4), u1u3u4

fl
.

The map f : H∗
Z2

(M(Ha); Z2) → H∗
Z2

(M(Hb); Z2) given by

f(u1) = u1 + u2, f(u2) = u2 + u3 + x,

f(u3) = u3, f(u4) = u2 + u4, and f(x) = x

is an isomorphism of graded Z2[x]-algebras, hence the ring H∗
Z2

(M(H); Z2)
is not a complete invariant of smooth, rational, affine arrangements up to
combinatorial equivalence.4

Example 5.7. Now consider the arrangements H′
a and H′

c obtained from
Ha and Hc by adding a vertical line on the far left, as shown below.
Again by Theorem 5.5, we have

H∗
Z2(M(H′

a); Z2) ∼= Z2[~u, x]

ffi *u1(x− u1), u2(x− u2), u3(x− u3), u4(x− u4),
u5(x− u5), u2u3, (x− u1)u5, u1(x− u2)u4,

u1u3u4, (x− u2)u4u5, u3u4u5

+

and

H∗
Z2(M(H′

c); Z2) ∼= Z2[~u, x]

ffi * u1(x− u1), u2(x− u2), u3(x− u3), u4(x− u4),
u5(x− u5), u2u3, (x− u1)u5, (x− u1)u2(x− u4),

u1u3u4, (x− u2)u4u5, u3u4u5

+
.

We have used Macaulay 2 to check that the annihilator of the element
u2 ∈ H∗

Z2
(M(H′

a); Z2) is generated by two linear elements (namely u3 and
x−u2) and nothing else, while there is no element of H∗

Z2
(M(H′

c); Z2) with
this property. Hence the two rings are not isomorphic.

4We thank Graham Denham for finding this isomorphism.
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H′
a H′

c
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