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In this paper, we consider unitary representations of clas-
sical groups of equal rank (rankG = rankK) except type CI
with regular lambda-lowest K-type and get the necessary and
sufficient condition such that those unitary representations
considered have nonzero Dirac cohomology.

1. Introduction.

In the past twenty years, people are interested in unitary representations
with nonzero cohomologies, that is, (g,K)-cohomology and Dirac cohomol-
ogy. The former was studied by Vogan and Zuckerman in [10]. Since every
representation with nonzero (g,K)-cohomology has nonzero Dirac cohomol-
ogy, maybe it is this fact that motivates people to pay more attention to
Dirac cohomology.

In 1997, Vogan explained a conjecture on Dirac cohomology at MIT Lie
groups seminar. The conjecture can be stated as follows: Let G be a con-
nected semisimple Lie group with Lie algebra g0 and let K be the maximal
compact subgroup of G corresponding to the Cartan involution θ. Suppose
X is an irreducible unitarizable (g,K)-module and (γ, S) is a space of spinors
for p0. Here g0 = k0 + p0 is the Cartan decomposition of g0. Let x1, . . . , xn

be an orthonormal basis of p0, then the Dirac operator D =
∑

π(xi)⊗γ(xi)
acts on X ⊗ S. Vogan’s conjecture says that if D has nonzero Dirac coho-
mology, which by definition is just KerD, then the infinitesimal character
of X can be expressed in terms of the highest weight of a K-type of X.

The conjecture was proved by Huang and Pandžić [2]. Furthermore, they
get that an irreducible unitarizable (g,K)-module X has nonzero Dirac co-
homology, say γ ⊆ Ker D, if and only if the infinitesimal character Λ of X
is given by γ + ρc. To be precise, γ has highest weight ω(µ − ρn), where
µ is a K-type of X, ω ∈ W (K) such that ω(µ − ρn) is dominant and
Λ = ω(µ − ρn) + ρc. One could ask: For what kinds of K-types does the
expression ‖ω(µ − ρn) + ρc‖ reach the minimum? For what cases is µ a
lambda-lowest K-type of X when ω(µ− ρn) ⊂ Ker D?

285

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2004.214-2


286 HOU ZIXIN, LIANG KE, AND ZHU FUHAI

In this paper, we will answer the above problems partially. We study
the representations of classical group G of equal rank except type CI , with
regular lambda-lowest K-type. First we recall the definition of θ-stable data.

Definition 1.1 (Vogan [8], Definition 6.5.1). A set of θ-stable data for
G is a quadruple (q,H, δ, ν), such that:

a) q = l+u is a θ-stable parabolic subalgebra of g. Let L be the normalizer
of q in G.

b) L is quasisplit, and H = TA ⊆ L is a maximally split θ-stable Cartan
subgroup of L.

c) δ ∈ T̂ is fine with respect to L.
d) ν ∈ Â.
e) Write λL ∈ t∗ for the differential of δ, and λ = λL+ρ(∆(u, t)) ∈ t∗ ⊆ h∗.

Then λ is strictly dominant for ∆(u, h).

There is a surjective map from the set of equivalence classes of irreducible
(g,K)-module to K conjugacy classes of set of θ-stable data for G ([8],
Corollary 6.5.13). And following Vogan’s method ([8], Chapter 5), one can
construct θ-stable data from any given irreducible (g,K)-module X.

Now we can state our main theorem.

Theorem 1.2. Let X be an irreducible (g,K)-module with regular lambda-
lowest K-type µ. Then X is unitary and has nonzero Dirac cohomology if
and only if the parameter ν in the θ-stable data (q,H, δ, ν) corresponding to
X is just 1

2

∑
βi∈Γ1

βi under G-conjugation. Here, Γ1 is a set of roots defined
by the lambda-lowest K-type µ during the construction of θ-stable data (see
Section 3.1 for details).

The paper is organized as follows: We first collected some notations and
results on Dirac operator and Dirac cohomology in Section 2. Then we
followed Vogan’s method to construct θ-stable data (q,H, δ, ν) for corre-
sponding (g,K)-module X. Actually, we found that the quasisplit subgroup
L is simple enough under our assumption. Locally L is a product of copies
of SL(2, R) and Euclidean space. In Section 4, we find out that if a lambda-
lowest K-type µ of X is regular, then µ− ρn is dominant (Proposition 4.2)
and ‖µ−ρn+ρc‖ ≤ ‖ω(µ′−ρ′n)+ρc‖. Then X has nonzero Dirac cohomology
only if ‖Λ‖ = ‖µ− ρn + ρc‖. Fortunately, in this case, Λ is dominant. Then
Vogan’s result, Theorem 1.3 [9], implies that X is unitary, hence X has
nonzero Dirac cohomology by Huang and Pandžić’s result (Proposition 2.4)
since ‖Λ‖ = ‖µ− ρn + ρc‖. Thus we get the main theorem.

2. Preliminary.

Let G be a real semisimple group with Lie algebra g0 and let K be the
maximal compact subgroup of G corresponding to Cartan involution θ. Let
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g0 = k0 ⊕ p0 be the corresponding Cartan decomposition of g0. Fix a maxi-
mally compact Cartan subalgebra hc

0 of g0 with decomposition hc
0 = tc0 + ac

0.
Denote by be g, k, p, hc, tc and ac the complexifications of g0, k0, p0, hc

0,
tc0 and ac

0, respectively. Let ∆(g, hc) be the root system of g with respect
to hc. Fix a system of positive roots, ∆+(k, tc), for ∆(k, tc) and choose a
compatible system of positive roots, ∆+(g, hc), for ∆(g, hc) with the set of
simple roots Π = {α1, . . . , αl}. Let G0 be the identity component of G.

Definition 2.1 ([11]). Let (π,X) be a (g,K)-module, set S = S(p0), a
space of spinors of p0. Let x1, . . . , xn be an orthonormal basis of p0, then
the Dirac operator

D : X
⊗

S → X
⊗

S

is defined by
D =

∑
π(xi)⊗ γ(xi),

which is a K-module homomorphism (sometime K̃-module homomorphism,
where K̃ is a two-fold spin cover of K).

The Dirac cohomology of X is defined by

Ker D/(KerD ∩ Im D).

When X is unitary, then Dirac operator is self-dual, then we can see that
the Dirac cohomology of X is just KerD.

The following result of Pathasarathy is well-known. It can be found in
many papers.

Proposition 2.2 (Pathasarathy’s Dirac Inequality). Let X be an irreduc-
ible unitary (g,K)-module with infinitesimal character Λ. Fix a represen-
tation of K occurring in X of highest weight µ ∈ (tc)∗, and a positive root
system ∆+(g, tc) for tc in g. Here tc is Cartan subalgebra of k. Write

ρc = ρ(∆+(k, t)), ρn = ρ(∆+(p, t)).

Fix an element ω ∈ WK such that ω(µ−ρn) is dominant for ∆+(k, t). Then

(ω(µ− ρn) + ρc, ω(µ− ρn) + ρc) ≥ (Λ,Λ).

The equality holds if and only if

Λ = ω(µ− ρn) + ρc.

The last assertion was obtained by Huang and Pandžić [2].
We also have another similar inequality.

Proposition 2.3. Let V be an irreducible unitary (g,K)-module with Her-
mitian form 〈, 〉 and infinitesimal character Λ. Assume µ ∈ K̂ occurs in V .
Then

‖Λ‖2 ≤ ‖µ + ρc‖2 − ‖ρc‖2 + ‖ρ‖2.



288 HOU ZIXIN, LIANG KE, AND ZHU FUHAI

Proof. Let {xi} be a orthonormal basis of p with respect to the Killing form.
For v ∈ Vµ we have

〈xiv, xiv〉 ≥ 0 ⇒ 〈x2
i v, v〉 ≤ 0 ⇒ 〈(c− ck)v, v〉 ≤ 0.

Then the assertion follows easily. �

In 1997, Vogan explained a conjecture on Dirac cohomology, which was
proved by Huang and Pandžić [2]. We summarize their results as follows:

Proposition 2.4 ([2]). Let X be an irreducible unitarizable (g,K)-module
with infinitesimal character Λ. Assume X ⊗ S contains a K̃-type γ, i.e.,
(X ⊗ S)(γ) 6= 0. Then the Dirac cohomology of X, Ker D, contains (X ⊗
S)(γ) if and only if Λ = γ + ρc. Here γ must be of the form ω(µ − ρn) for
some ρn and K-type µ contained in X.

3. Construction of θ-stable data.

In this section, we will make the following assumption:

Assumption 3.1. G is a classical group with rank G = rankK, i.e., θ is an
inner automorphism of g0. Consequently hc

0 = tc0.

We will follow Vogan’s method to construct θ-stable data, actually, the
main work is to determine the structure of the quasisplit subgroup L.

3.1. Basic facts. First, we rewrite Proposition 5.3.3 [8], since we assume
rank G = rankK and h = tc.

Proposition 3.2 ([8]). For each ∆+(k, tc)-dominant weight µ ∈ T̂ , there is
a unique element λ ∈ (tc)∗ having the following properties: Fix a θ-invariant
positive root system ∆+(g, tc) for tc in g, making µ+2ρc dominant; and write
ρ = ρ(∆+(g, tc)). Then λ is dominant for ∆+(g, tc), and there is a set

Γ = {β1, . . . , βr} ⊆ ∆+(g, tc)

satisfying:
a) If we put

λ̃ = µ + 2ρc − ρ,

ci = −(λ̃, β∨i ),

then
0 ≤ ci ≤ 1,

and
λ = λ̃ +

1
2

∑
ciβi.

b) If (λ, α) = 0 for α ∈ ∆(g, tc), then (α, βi) 6= 0 for some i.
c) The root β1 is noncompact and simple.
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d) Write
g1 = gβ1 , h1 = (tc)β1 .

Then the positive system ∆+(g, tc)∩β⊥1 and its subset {β2, . . . , βr} for
∆(g1, h1) satisfy these same conditions for g1 and the weight µ|g1∩tc.

e) If ci 6= 0 and cj = 0, then i < j.

Under Assumption 3.1, we can get a stronger result.

Lemma 3.3. Let the notation be as above. Then

ci = 0 or 1.

Proof. By Lemma 7.7.6 [1], we have

exp(2π
√
−1 α∨) = e,

where e is the unit of G. Then (µ, α∨) is an integer. �

For convenience, we denote

Γ1 = {βi ∈ Γ|ci = 1},
Γ0 = {βi ∈ Γ|ci = 0}.

Let Π be the system of simple roots of ∆+(g, tc). Set

Σ1 = {α ∈ Π|(λ̃, α∨) = −1},

Σ0 = {α ∈ Π|(λ̃, α∨) = 0}.
Now we can define l by

∆(l, tc) = {α ∈ ∆(g, tc)|(λ, α∨) = 0}.
Obviously, the Dynkin diagram of l is a subdiagram of that of g if we choose
compatible orderings, i.e.,

∆+(l, tc) ⊆ ∆+(g, tc).

Denote by Πl the system of simple roots of l.
First we establish some lemmas.

Lemma 3.4. Let α and β be adjacent simple roots of the same length. Then

(λ̃, (α + β)∨) ≥ 0.

Proof. If both α and β are compact or noncompact, then α + β is compact,
so

(λ̃, (α + β)∨) ≥ (µ, (α + β)∨) ≥ 0.

Thus we can assume α is compact and β is noncompact. Then

(λ̃, β∨) ≥ −1

and
(λ̃, α∨) = (µ, α∨) + 1.
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So
(λ̃, (α + β)∨) ≥ (µ, α∨) ≥ 0.

�

Lemma 3.5. Let α, β and α+β ∈ ∆(g, tc). If (λ̃, α∨) ≥ 0 and (λ̃, β∨) ≥ 0,
then

(λ̃, (α + β)∨) ≥ 0.

Proof. (α + β)∨ = aα∨ + bβ∨, where a and b are positive. �

Lemma 3.6. Assume µ is regular, i.e., (µ, γ∨) ≥ 1, for all γ ∈ ∆+(k, tc).
Let α and β be adjacent simple roots. If (α, α) = 2(β, β), then

(λ̃, (α + β)∨) ≥ 0.

If α and β have the same length, then

(λ̃, (α + β)∨) ≥ 1.

Proof. Only the first assertion needs to prove. We treat it case by case.

Case I. Both α and β are noncompact.

(λ̃, (α + β)∨) = (µ, (α + β)∨) + 2− (ρ, 2α∨ + β∨) ≥ 1 + 2− 3 ≥ 0.

Case II. α is compact while β is noncompact.

(λ̃, (α + β)∨) = (λ̃, 2α∨ + β∨) ≥ 4− 1 ≥ 3.

Case III. α is noncompact while β is compact.

(λ̃, (α + β)∨) = (λ̃, 2α∨ + β∨) ≥ −2 + 2 ≥ 0.

�

Corollary 3.7. Let α ∈ Σ1, β ∈ Σ1 ∪ Σ0. Then (α, β) = 0 for types
AIII and Dl. If µ is regular for ∆+(k, tc), then it is true for any type.

Lemma 3.8. Assume µ is regular for ∆(k, tc) and Γ consists of simple roots
of ∆(g, tc). Then the simple roots of l are noncompact.

Proof. If α ∈ Π is compact, then

(λ, α∨) = (λ̃, α∨) +
1
2

∑
ci(βi, α

∨) ≥ 2− 3
2

> 0.

The first inequality holds because α is adjacent to at most three simple roots
of the same length or two simple roots of different length. So α /∈ Πl. �
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3.2. Main theorem. Now we can study the structure of l. Our purpose is
to prove the following theorem:

Theorem 3.9. Let µ be a K-type of a (g,K)-module. Assume µ is regular
for ∆(k, tc). Then:

1) For types AIII , CII and Dl, the Dynkin diagram of l is discrete.
2) For types Bl and CI , the Dynkin diagram of l is either discrete or of

the form
A1 × · · · ×A1︸ ︷︷ ︸

r−2

×B2.

3) For type Bl. If µ is regular for ∆(g, tc), then the Dynkin diagram of l
is discrete.

Let’s deal with the problem case by case.

3.2.1. Type AIII . In this subsection, we assume that the Lie algebra g0

is of type AIII .

Proposition 3.10.
1) Let α ∈ ∆+(g, tc). If (α, β) = 0 for any β ∈ Σ1, then

(λ̃, α∨) ≥ 0.

2) Those βi in Proposition 3.2 can be chosen to be simple.
3) If µ is regular for ∆(k, tc), then

Πl = Γ.

Proof.
1) Let α = αi + · · · + αk. If α is not adjacent to any β ∈ Σ1, then αi,
αk /∈ Σ1, so (λ̃, α∨) ≥ 0 by Lemma 3.4.
2) Choose a maximal subset Σ′

0 of Σ0 such that the elements of Σ′
0 are

orthogonal to each other. Then we claim that the set Γ = Σ1 ∪ Σ′
0 satisfies

the condition of Proposition 3.2.
Firstly, we choose Γ1 containing Σ1. By 1) we have

Γ1 = Σ1.

Secondly, we choose Γ0 containing Σ′
0. If α = αi + · · ·+ αk is orthogonal

to Σ1 ∪ Σ′
0 and

(λ̃, α∨) = 0,(1)

then αi, αk /∈ Σ1 ∪ Σ′
0. We claim that αi, . . . , αk ∈ Σ0. By Lemma 3.4,

we have (λ̃, (αi+1 + · · · + αk)∨) ≥ 0. The equality holds and αi ∈ Σ0 by
Equation (1). Furthermore, for the same reason we have (λ̃, (αi +αi+1)∨) =
0, that is αi+1 ∈ Σ0. Then our claim follows. But one can easily see that
the claim contradicts the fact that Σ′

0 is maximal.
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3) Obviously, Γ ⊆ Πl. Let α ∈ Πl\Γ. By Lemma 3.8, α is noncompact.
Then α must be adjacent to some β ∈ Γ, so (λ̃, (α + β)∨) ≥ 1. Hence
(λ, α∨) > 0. Contradiction. �

Corollary 3.11. If µ is regular for ∆(g, tc), then λ̃ is strictly dominant for
∆(u), that is,

(λ̃, α∨) > 0
for any α ∈ ∆(u).

Proof. Just follow the proof of the above proposition. �

3.2.2. Types Bl and Cl.

Proposition 3.12. Assume µ is regular for ∆(k, tc). If (α, β) = 0 for any
β ∈ Σ1, then

(λ̃, α∨) ≥ 0.

Proof. First assume g is of type Bl. Let α ∈ ∆(g, tc). Assume (α, β) = 0 for
any β ∈ Σ1. If α = αi + αi+1 + · · ·+ αk, then αi /∈ Σ1. Similar to the proof
of type AIII , one can get (λ̃, α∨) ≥ 0.

Now we assume α = αi + · · · + αk−1 + 2αk + · · · + 2αl, so αk /∈ Σ1. If
αl /∈ Σ1, then we have

(λ̃, (αi + · · ·+ αl)∨) ≥ 0

and
(λ̃, (αk + · · ·+ αl)∨) ≥ 0

by Lemmas 3.5 and 3.6. Hence (λ̃, α∨) ≥ 0.
If αi /∈ Σ1, the proof is similar. So we just need to check the case that αi,

αl ∈ Σ1. Obviously i + 1 = k < l and αl−1 /∈ Σ1. We have

(λ̃, α∨) = (λ̃, (αi + · · ·+ αl−1)∨ + α∨l ) ≥ 0.

This completes the proof for type Bl. And the proof for type Cl is similar.
�

This Proposition tells us that those βi, which satisfy (λ̃, β∨i ) < 0, can
be chosen to be simple, that is, Γ1 = Σ1. Then we get the element λ =
λ̃ + 1

2

∑
βi∈Γ1

βi.

Lemma 3.13. The simple roots of l are noncompact simple roots of ∆(g, tc).

Proof. If α is compact simple, then

(λ, α∨) = (λ̃, α∨) +
1
2

∑
ci(βi, α

∨) ≥ 2− 3
2

> 0.

The first inequality follows from that α is adjacent to at most three simple
roots of the same length or two simple roots. So α /∈ Πl. �
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α1, . . . , αl−1 generate a subsystem of type Al−1. Let Π′
l = ∆(l, tc) ∩

{α1, . . . , αl−1}. Then we have:

Lemma 3.14. Let βj ∈ Π′
l ∩ Σ1 and α ∈ Π′

l. Then (βj , α
∨) = 0.

Proof. If α is adjacent to β, then α + β is compact and we have

(λ, (α + βj)∨) = (λ̃, (α + βj)∨) +
1
2

∑
ci(βi, β

∨
j ) +

1
2

∑
ci(βi, α

∨)

≥ 1 + cj −
1
2
cj − 1 =

1
2
.

This leads to a contradiction. �

Corollary 3.15. The Dynkin diagram of Π′
l is discrete.

Proof. If it is not true, then there exist two adjacent noncompact simple
roots α, β ∈ Π′

l. By the above Lemma, neither of them is adjacent to some
βi ∈ Π′

l ∩ Σ1. Then α + β is compact.

Case I. αl /∈ Σ1.

(λ, (α + β)∨) = (λ̃, (α + β)∨) ≥ 1 + 2− 2 = 1.(2)

Case II. αl ∈ Σ1.
1) If g is of type Cl, then αl−1 /∈ Πl by the following Lemma 3.16. The

inequality (2) is also correct.
2) If g is of type Bl, then

(λ, (α + β)∨) ≥ (λ̃, (α + β)∨) +
1
2
(αl, (α + β)∨) ≥ 1 + 2− 2− 1

2
=

1
2
.

Thus for all the cases, we have (λ, (α + β)∨) > 0. Contradiction. �

αl−1 and αl generate a subsystem of type B2 = 〈α, β〉, where α is the
long root.

Lemma 3.16. Let the notation be as above.
1) If α ∈ Σ1, then (λ, β∨) > 0, i.e., β /∈ Πl.
2) If β ∈ Σ1, then (λ, α∨) > 0, i.e., β /∈ Πl.

Proof. Thanks to Lemma 3.13, we can assume that β is noncompact. Then
α + β is compact and

(λ̃, (α + β)∨) ≥ 1 + 2− (ρ, 2α∨ + β∨) = 0.

1) α ∈ Σ1. Then (λ̃, β∨) ≥ 2c. For type Bl,

(λ, β∨) ≥ 2 +
1
2
(α, β∨) = 1.

For type Cl,

(λ, β∨) ≥ 2 +
1
2
(α, β∨) +

1
2
(αl−2, β

∨) =
1
2
.
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2) β ∈ Σ1. Then (λ̃, β∨) = −1. Since

(λ̃, (α + β)∨) ≥ 0,

then

(λ̃, α∨) ≥ 1
2
.

Consequently
(λ̃, α∨) ≥ 1

since (λ̃, α∨) is an integer. Then

(λ, α∨) = (λ̃, α∨) +
1
2
(β, α∨) ≥ 1

2
,

namely, α /∈ πl. �

If αl−1, αl /∈ Σ1, that is,

(λ̃, α∨l−1) ≥ 0, (λ̃, α∨l ) ≥ 0,

then
(λ̃, (αl−1 + αl)∨) = 2(λ̃, α∨l−1) + (λ̃, α∨l ) ≥ 0.

Here the equality holds if and only if

(λ̃, α∨l−1) = (λ̃, α∨l ) = 0.

Now we assume g is of type Bl. First we prove a lemma.

Lemma 3.17. Assume g is of type Bl. If αl is noncompact, then (ρc, αl) =
0.

Proof. The compact root α which is adjacent to αl must have one of the two
forms: 1) α = αi + · · ·+ αl−1, 2) α = αi + · · ·+ αl−1 + 2αl. Two such forms
occur in a pair. A simple calculation leads to the lemma. �

If αl−1 /∈ Σ1 and µ is regular for ∆(g, tc), that is, (µ, α) 6= 0 for any
α ∈ ∆(g, tc), then (µ + 2ρc, α

∨
l ) ≥ 1 since (µ + 2ρc, α

∨
l ) is an integer. Then

αl /∈ Σ1. If αl−1, αl ∈ Πl, then we have (λ̃, α∨l−1) = (λ̃, α∨l ) = 0, that
is, (µ + 2ρc, α

∨
l−1) = (µ + 2ρc, α

∨
l ) = 1. Then (µ + 2ρc, (αl−1 + αl)∨) =

(µ, (αl−1 +αl)∨)+ (2ρc, (αl−1 +αl)∨) = (µ, (αl−1 +αl)∨)+ 2 = 3. So we get
(µ, α∨l−1) = 0, which contradicts the assumption that µ is regular. Actually,
we have proved:

Theorem 3.18. Assume g is of type Bl and µ is regular for ∆(g, tc). Then
the Dynkin diagram of l is discrete. Consequently,

Γ = Πl.
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3.2.3. Type Dl. Since all roots of Dl have the same length, some results
on AIII can be applied and we can get some similar results.

Proposition 3.19. Assume µ is regular for ∆(k, tc).
1) Let α ∈ ∆+(g, tc). If (α, β) = 0 for any β ∈ Σ1, then

(λ̃, α∨) ≥ 0.

2) Πl = Γ. Consequently, Γ consists of simple roots.

Proof. 1) Let {α1, . . . , αl} be the simple roots. If α = αi + αi+1 + · · ·+ αk,
similar to the proof of Proposition 3.10, one can easily get (λ̃, α∨) ≥ 0. Now
we assume α = αi + · · ·+ αk−1 + 2αk + · · ·+ 2αl−2 + αl−1 + αl.

If k > i + 1, then αi, αk /∈ Σ1. So we have

(λ̃, (αi + · · ·+ αl−1)∨) ≥ 0

and
(λ̃, (αk + · · ·+ αl−2 + αl)∨) ≥ 0.

Hence (λ̃, α∨) ≥ 0.
If k = i+1, that is, α = αi +2αi+1 + · · ·+2αl−2 +αl−1 +αl, then we have

αi+1 /∈ Σ1. In this case we may have αi ∈ Σ1. If αl−1 /∈ Σ1 or αl /∈ Σ1, the
proof is similar to the above. Now we assume αl−1, αl ∈ Σ1, then αl−2 /∈ Σ1.
If αl−3 /∈ Σ1, then we write

α = (αi + · · ·+ αl−3) + (αi+1 + · · ·+ αl−1) + (αl−2 + αl).

If αl−3 ∈ Σ1, then αl−4 /∈ Σ1, then write

α = (αi + · · ·+ αl−4) + (αi+1 + · · ·+ αl−3) + (αl−3 + 2αl−2 + αl−1 + αl).

So we need only to show

(λ̃, (αl−3 + 2αl−2 + αl−1 + αl)∨) ≥ 0,(3)

where αl−3, αl−1, αl ∈ Σ1. If αl−2 is compact, then (λ̃, α∨l−2) ≥ 2. (3) holds.
If αl−2 is noncompact, then αl−3 +αl−2 and αl−1 +αl−2 are compact, hence

(λ̃, α∨) = (λ̃, (αl−3 + αl−2)∨ + (αl−1 + αl−2)∨ + α∨l ) ≥ 1.

(3) holds.
2) Let α ∈ Πl. If α is adjacent to βj ∈ Σ1, then α + βj is compact. Then

(λ, (α + β)∨) = (λ̃, (α + β)∨) +
1
2

∑
ci(βi, β

∨) +
1
2

∑
ci(βi, α

∨)

≥ 1 + cj −
1
2
cj − 1 =

1
2
.

For the first inequality, we use the assumption that µ is regular. But it
contradicts the fact that α ∈ Πl.



296 HOU ZIXIN, LIANG KE, AND ZHU FUHAI

Now let α, β ∈ Πl be adjacent. Then neither α nor β is adjacent to
elements in Σ1. Again the fact that α+β is compact implies it is impossible.
So the Dynkin diagram of l is discrete. We must have

Πl = Γ.

�

Combining the above results, Theorem 3.9 follows.

4. Dirac cohomology of unitary representations with regular
lambda-lowest K-types.

In this section, we will consider the simple group G of types AIII (SU(p, q)),
BI (BII ) (SO0(p, q), p+q odd), CII (Sp(p, q)), DI (SO0(p, q), p and q even),
DIII (SO∗(2n)), that is all the classical groups except CI (Sp(n, R)) with
rank G = rankK. Also we will make the following assumption:

Assumption 4.1. µ is regular for ∆(g, tc).

4.1. The dominance of µ−ρn. Since we assume µ is regular for ∆(g, tc),
we can choose the following positive root system for ∆(g, tc): α ∈ ∆+(g, tc)
if (µ + 2ρc, α

∨) > 0 or (µ + 2ρc, α
∨) = 0 and (µ, α∨) > 0. Set ρn = ρ− ρc.

Since µ ∈ K̂ is a lambda-lowest K-type, then the associate fine L ∩ K-
type with respect to L is µL = µ− 2ρ(u ∩ p). Since ∆+(l, tc) = Πl consists
of noncompact imaginary roots, we have ∆+(l, tc) ⊂ ∆+(p, tc), hence

∆+(p, tc) = ∆+(l, tc) ∪∆(u, tc).

So ρ(u ∩ p) = ρn − ρl = ρ− ρc − ρl. Consequently,

µL = µ− 2ρ(u ∩ p)

= µ + 2ρc − 2(ρ− ρl).

So
(µL, β∨i ) = 1− ci

for βi ∈ Πl.

Proposition 4.2. µ− ρn is dominant for ∆+(k, tc).

We have to deal with it case by case.

Proof of the case AIII . We just need to prove λ̃ is strictly dominant for
∆(k, tc), that is,

(λ̃, α∨) ≥ 1
for any α compact. Let Π = {α1, . . . , αl} be the simple roots of ∆+(g, tc).
Then the system of simple roots Πk of ∆+(k, tc) consists of two kinds of
elements

Πk = Πc ∪Πn.
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Πc consists of those compact simple roots of Π. Elements of Πn are of the
form

α = αi + · · ·+ αk,

where αi and αk are noncompact and αi+1, . . . , αk−1 are compact. If α ∈ Πc

then
(λ̃, α∨) ≥ 2.

If α ∈ Πn, we treat it case by case.

Case I. α = αi + αi+1, where αi, αi+1 are noncompact. Then

(λ̃, α∨) ≥ 1 + 2− 2 = 1.

Case II. α = αi + · · ·+ αk, where k − i > 2. In this case αi+1 and αi+2 are
compact. Then

(λ̃, α∨) = (λ̃, (αi + αk)∨) + (λ̃, (αi+1 + · · ·+ αk−1)∨) ≥ 1.

Case III. α = αi + αi+1 + αi+2. Here αi+1 is compact. Then (λ̃, α∨) ≥ 0.
If (λ̃, α∨) = 0, then

(λ̃, αi) = (λ̃, αi+2) = −1, (λ̃, αi+1) = 2.

Thus both (µ, αi) and (µ, αi+2) are integers. (ρc, α
∨
i + α∨i+2) = (ρc, α

∨) −
(ρc, α

∨
i+1) = 0 implies that (µ, α∨i + α∨i+2) = 0, which contradicts the choice

of positive roots. �

Proof of the case Bl. Let α ∈ Πk be simple. Then α must be one of the
forms in the following cases:

Case I. α = αi ∈ Π. Then (µ− ρn, α∨) ≥ 1.

Case II. α = αi + · · ·+αk, where αi and αk are noncompact and others are
compact.

If k < l, the proof is similar to that of AIII .
If k = l, that is, αl is noncompact, then (λ̃, α∨) = (λ̃, 2(α∨i + · · ·+α∨l−1)+

α∨l ). If i < l− 1, we can get the result easily. If i = l − 1, then (ρc, α
∨
l ) = 0

implies 2(ρc, α
∨
l−1) = 1 and (µ, α∨l ) ≥ 1. Since µ is an integral weight and

the choice of positive root system depends on µ, we have

(µ, α∨l−1) ≥ 0.(4)

Since

(µ, α∨l ) ≥ 0,(5)

and the equalities (4) and (5) can’t hold at the same time, we have

(λ̃, (αl−1 + αl)∨) ≥ 1.

Case III. α = αi + · · ·+ αk + 2(αk+1 + · · ·+ αl), where αi, αk and αk+1 are
noncompact and the others are compact.
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Since αi + · · ·+ αk ∈ Πk, we need only to prove

(λ̃, (αk+1 + · · ·+ αl)∨) ≥ 0,

which is obvious thanks to Lemma 3.17. �

Proof of the case CII . Since g is of type CII , k has no center and αl must
be a compact root. Let α ∈ Πk be simple. Then α must be one of the forms
in the following cases:

Case I. Similar to type Bl.

Case II. α = αi + · · ·+ αk, where k < l. Similar to type Bl.

Case III. α = 2(αi + · · ·+ αl−1) + αl, where only αi is noncompact.
Since (λ̃, α∨) = (λ̃, α∨i + · · ·+ α∨l ), the conclusion is clear. �

Proof of the case Dl. Let α ∈ Πk be simple. Then α must be one of the
forms in the following cases:

Case I. Similar to type Bl.

Case II. α = αi + · · · + αk (k ≤ l − 2), α = αi + · · · + αl−1 or α =
αi + · · ·+ αl−2 + αl or αl−1 + αl−2 + αl. Still similar to type Bl.

Case III. α = αi + · · ·+αl, where αi, αl−1, αi−1 and αl are noncompact and
others are compact.

The only hard case is that i = l − 3. Since at least one of αl−3, αl−1 and
αl is not in Σ1, all the simple root of k is one of the three forms:

1) αi ∈ Π, i < l − 3.

2) αi + · · ·+ αk, k < l − 2.

3) αl−3 + αl−2, αl−2 + αl−1, αl−2 + αl or αl−3 + αl−2 + αl−1 + αl.
In this case k is a sum of two simple Lie algebras of type Dl, say k = k1⊕k2

and Πk = Πk1∪Πk2 . One can easily see αl−3+αl−2 and αl−3+αl−2+αl−1+αl

belong to the same subsystem, say Πk1 , while αl−2 + αl−1, αl−2 + αl ∈ Πk2 .
And they play the role of αl−1 and αl. One can easily see that

(ρc, α
∨
l−1) = (ρc, α

∨
l ) = 0.

Then (µ, α∨l−1) > 0 and (µ, α∨l ) > 0 and (ρc, α
∨
l−2) = 1. If µ is an integral

weight, then αl−1, αl /∈ Σ1. The assertion follows.

Case IV. α = αi + · · · + αk + 2(αk+1 + · · · + αl−2) + αl−1 + αl, where
αi + · · ·+ αk (k ≤ l− 2) is a compact root in case II and αk+1, αl−1 and αl

are noncompact. We can easily get the (µ− ρn, α∨) ≤ 0. �
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4.2. The dominance of Λ. Let Λ = λ + 1
2

∑
ciβi = λ̃ +

∑
ciβi. Then we

have:

Proposition 4.3. Λ is dominant for ∆+(g, tc).

Proof. Let σi ∈ W (g, tc) be the reflection with respect to βi ∈ Γ. Set
∆′ = {α ∈ ∆+(g, tc)|α /∈ Γ}. Then ∆′ is stable under each σi and their
product σ = σ1 . . . σr.

Λ = σ(λ̃) is dominant for ∆′ if and only if λ̃ is dominant for ∆′. The
assertion follows by the following lemma. �

Lemma 4.4. λ̃ is dominant for ∆′.

Proof. In the above subsection, we have proved that λ̃ is strictly dominant
for ∆+(k, tc), so the only left is to check our assertion for noncompact roots
in ∆′.

Let α ∈ ∆′ be noncompact. If α is not adjacent to any element in Σ1,
then

(λ̃, α∨) = (λ, α∨) > 0.

Now assume α is adjacent to β ∈ Σ1. If α+β is a root, then it is compact.
So we have

(λ̃, (α + β)∨) ≥ 1.

One can easily get (λ̃, α∨) > 0. If γ = α− β is a root then

(λ̃, α∨) = (λ̃, (γ + β)∨).

Also we have (λ̃, α∨) ≥ 0 if (γ, γ) ≥ (β, β) or γ is not a simple compact root.
So we just need to consider the case that (γ, γ) < (β, β) and γ is a simple
compact root. Obviously, g is of type Bl and γ = αi + · · · + αl. According
to the proof in Chapter 3, the assertion follows. �

4.3. The representations of L. Let L1 be the commutator subgroup of
L. It is a connected semisimple Lie group by [8, Lemma 4.3.4]. Then
L = TL1 (see [8, Lemma 0.4.2]) and T1 = T ∩ L1 is a finite product of Z2.
Let (δ, V ) ∈ T̂ and δ1 = δ|T1 . Then (δ1, V ) ∈ T̂ . Define (π,H) = π(P, δ⊗ ν)
and (π1,H1) = π1(P1, δ ⊗ ν), where P = TAN , P1 = T1AN and ν ∈ Â.

Lemma 4.5. π|L1
∼= π1 as representations of L1. Consequently, π is irre-

ducible (resp. unitary) if and only if π1 is irreducible (resp. unitary).

Locally, L1 is a product of some copies of SL(2, R), i.e., there exists a
canonical covering map:

p : L̃1 = SL(2, R)× · · · × SL(2, R) → L1

with finite kernel Z. Then π1 can be regarded as a representation of L̃

with Z acting trivially. Let T̃ = p−1(T1). Then δ1 can be regarded as a
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representation of T̃1. Let π̃ = π(P̃ , δ1 ⊗ ν), which is equivalent with π1 as
representations of L̃1. Obviously, π1 is a tensor product of representations
of SL(2, R). Then π1 is unitary (irreducible, resp.) if and only if every
component of the tensor product is unitary (irreducible, resp.). We can
easily get the unitaribility and irreducibiliby of representations of L1 since
the representations of SL(2, R) is so clear. Let us recall the following:

Theorem 4.6 ([4], Theorem 16.3). The only irreducible unitary represen-
tations of SL(2, R) up to unitary equivalence are:

a) The trivial representation;
b) the discrete series D±

n , n ≥ 2, and the limits of discrete series D±
1 ,

c) the irreducible members of the unitary principal series, P+,iy with y
real and P−,iy with y nonzero real,

d) the complementary series ℘x with 0 < x < 1.

Moreover the only equivalences among these representations are P+,iy ∼=
P+,−iy and P−,iy ∼= P−,−iy.

The fine representation µ0 (see [8], Corollary 5.4.7) corresponding to µ is
just µ0 = µ− 2ρ(u ∩ p) = µ− 2ρ(p) + 2ρ(l) = (µ + 2ρc)− 2(ρ− ρ(l)). Then
we have

(µ0, β∨i ) = 1− ci,

that is, µ0 is weight 0 of those l(βi) for βi ∈ Γ1 (Here l(βi) is the TDS
generated by βi) and weight 1 of those l(βi) for βi ∈ Γ0. Consequently
L(βi) ∼= SL(2, R) since L(βi) is either SL(2, R) or PSL(2, R), but the rep-
resentations of the latter has no odd weight.

4.4. Proof of Theorem 1.2. Let X be an irreducible (g,K)-module with
lambda-lowest K-type µ satisfying µ is regular for ∆(g, tc). By the discussion
above, we have known the following facts:

1) λ = µ + 2ρc − ρ + 1
2

∑
βi∈Γ1

βi. Let q = l + u be the parabolic associated
to µ. Then the Dynkin diagram of l is discrete.

2) µ− ρn is dominant for ∆+(k, tc).

3) Λ = (λ, 1
2

∑
βi∈Γ1

βi) is dominant for ∆+(g, tc).
Now we assume the θ-stable data corresponding to X is (q,H, δ, ν), where

ν = 1
2

∑
βi∈Γ1

βi. Consider the standard (g,K)-module:

RS(XL(P, δ ⊗ ν)).

By Theorem 6.5.12 [8], X ∼= RS(XL(P, δ⊗ ν))(µ) and a canonical cohomol-
ogy class is Y = XL(P, δ ⊗ ν)(µ − 2ρ(u ∩ p)), which is unitary as one can
easily see. RS(Y ) is a submodule of RS(XL(P, δ⊗ν)). We have X ⊆ RS(Y )
since they have the same lambda-lowest K-type µ. Since (Λ, α∨) ≥ 0, then
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RS(Y ) is unitary and irreducible (it is nonzero since it contains X), hence
X = RS(Y ) is unitary. By Dirac inequality, we have

(ω(µ′ − ρ′n) + ρc, ω(µ′ − ρ′n) + ρc) ≥ (Λ,Λ),

for all K-type µ′ of X, all ρ′n and for some ω ∈ WK . Note that µ − ρn is
dominant for ∆+(k, tc) and

µ− ρn + ρc = Λ,

we have the equality holds. Using tν, 0 < t < 1, instead of ν, one can see
that XL(δ ⊗ tν) is unitary since it is a tensor product of complementary
series and discrete series of SL(2, R). Let Λt = (λ, tν). Then Λ0 = λ and
Λt = (1− t)Λ0 + tΛ1. Hence (Λt, α

∨) = (1− t)(λ, α∨) + t(λ̃, α∨) > 0, for all
α ∈ ∆(u). Then by Theorem 1.3 [9], we have

RS(XL(δ ⊗ tν))

is unitary. So we have

(ω(µ′ − ρ′n) + ρc, ω(µ′ − ρ′n) + ρc) ≥ (Λt,Λt),

for all t ∈ (0, 1) by Dirac inequality. Since all the K types of XG(q,H, δ, ν)
are independent of the choice of ν, when t tends to 1, we get

(ω(µ′ − ρ′n) + ρc, ω(µ′ − ρ′n) + ρc) ≥ (Λ,Λ)

which implies (µ−ρn +ρc, µ−ρn +ρc) = (Λ,Λ), hence X has nonzero Dirac
cohomology.

Conversely, if X has nonzero Dirac cohomology, then the infinitesimal
character of X is µ−ρn +ρc = (λ, ν) by the same argument. One can easily
show that ν = 1

2

∑
βi∈Γ1

βi.
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