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Some non-existence result is established for bounded solu-
tions of a Neumann problem on the upper half space. Based
on this non-existence result, precise asymptotic behavior is
given for the principal eigenvalue of some linear eigenvalue
problem in bounded C1 domains, and this answers a question
that appeared in Lacey et al, 1998.

1. Introduction.

For any γ > 0, set

Λ(γ) = sup
u∈H1(Ω)\{0}

γ
∫
∂Ω u

2 −
∫
Ω |∇u|

2∫
Ω u

2
,(1)

where Ω is a bounded domain in Rn with boundary ∂Ω. It is straightforward
to show that the supremum of (1) is attained by some positive function
uγ ∈ H1(Ω), which is a weak solution of

∆u = Λ(γ)u in Ω,
∂u

∂ν
= γu on ∂Ω,(2)

where ν is the outward unit normal vector on ∂Ω; ν exists a.e. for Lipschitz
domains. The goal of this paper is to understand the asymptotic behavior
of Λ(γ) as γ → ∞ when ∂Ω ∈ C1. Since Λ(γ) → ∞ when γ → ∞, (2) can
be viewed as a singularly perturbed linear eigenvalue problem.

The asymptotic behavior of Λ(γ) was first studied by Lacey, Ockendon
and Sabina in [3], where they investigated some reaction-diffusion model in
which distributed nonlinear absorption mechanisms compete with nonlinear
boundary sources. In order to describe the long time behaviors of solutions
to this reaction-diffusion model, it is important to understand the asymp-
totic behavior of Λ(γ) as γ →∞ (see [3] and the references therein). Among
other things, Lacey, Ockendon and Sabina showed in [3] that

lim
γ→∞

Λ(γ)
γ2

= 1(3)
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if ∂Ω is C2 and is differentially equivalent to the unit sphere. On the other
hand, when Ω is a planar domain and ∂Ω is piecewise C1, they proved that

lim inf
γ→∞

Λ(γ)
γ2

≥ cosec2α ≥ 1,

where α is the smallest interior semiangle on ∂Ω. These considerations
indicate that the asymptotic behavior of Λ(γ) is strongly affected by the
smoothness of the boundary. In this connection, we prove:

Theorem 1.1. (3) holds for any bounded C1 domain.

Remark 1.1. Similar result can be established for the problem

∆u = Λ(γ)u in Ω,
∂u

∂ν
= γb(x)u on ∂Ω.

More precisely, if b(x) ∈ C(∂Ω) is positive somewhere, then

lim
r→∞

Λ(γ)
γ2

= max
∂Ω

(b+)2.

In the following we briefly sketch our approach: Since (2) is a singularly
perturbed problem, it is natural to “blow up” uγ , the solution of (2), near
its maximum which must be attained on ∂Ω (via the Maximum Principle).
That is, straightening out the boundary and rescaling uγ suitably, by passing
to the limit we are led to the following Neumann problem on the upper half
space:

∆u = au in Rn
+,

∂u

∂xn
= −u on ∂Rn

+,(4)

where a is the limit of Λ(γ)/γ2 (subject to a subsequence) as γ → ∞. By
adequate choice of test function in (1), one can show that a ≥ 1. On the
other hand, using some similar ideas as the sliding method developed in [1],
we are able to show:

Theorem 1.2. If a > 1, (4) has no bounded nontrivial solutions.

By some non-degeneracy result in Section 3, the solution of (4) obtained
via the blowup process is indeed nontrivial. Hence, Theorem 1.2 ensures
that a = 1, which in turn yields Theorem 1.1.

Remark 1.2. It turns out that Theorem 1.2 is sharp: For every a ≤ 1, (4)
has bounded nontrivial solutions of the form w(x′)e−xn , where x = (x′, xn)
and w is a solution of

∆w = (a− 1)w in Rn−1;(5)

Theorem 1.2 also fails without the boundedness condition: (4) has positive
(unbounded) solutions of the form w(x′)e−xn , where w is a positive solution
of (5) for a > 1. We refer to [2] for the classification of positive solutions to
(5).
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The plan of this paper is as follows: Theorem 1.2 is established in Sec-
tion 2. In Section 3, we first derive the relation between limγ→∞ Λ(γ)/γ2

and (4), and then use it to complete the proof of Theorem 1.1.

2. The proof of Theorem 1.2.

We prove Theorem 1.2 in this section. Our idea is to construct some super-
solution of (4), by employing some similar ideas as the sliding method of
Berestycki, Caffarelli and Nirenberg (see, e.g., [1]).

Throughout this section, we assume that u(x) is a bounded solution to
(4) and a > 0; without loss of generality, we may assume that supRn

+
u > 0.

Lemma 2.1. supRn
+
u = sup∂Rn

+
u.

Proof. Let {xj}∞j=1 be a sequence of points with u(xj) → supRn
+
u. Denote

xjn the last component of xj . We first show that xjn → 0 as j →∞. If not,
then there is a δ > 0, such that xjn > δ (after passing to some subsequence).
We consider uj(x) = u(x + xj) for |x| ≤ δ. Notice that uj is bounded in
|x| ≤ δ. By standard elliptic estimates, we know that after passing to some
subsequence, uj → u0 in C2(Bδ/2(0)), where u0 satisfies

∆u0 = au0 in Bδ/2(0),

and u0 assumes its positive maximum at the origin. This is clearly impossi-
ble.

Again, standard elliptic estimates yield that |∇u| ≤ C for some positive
constant C. Therefore, supRn

+
u = sup∂Rn

+
u.

We normalize u(x) so that supRn
+
u = 1. By Lemma 2.1,

sup
∂Rn

+

u = 1.(6)

Define

Ωh = {(x′, xn) | x′ ∈ Rn−1, 0 < xn < h},
Ωh,r = {(x′, xn) | |x′| < r, 0 < xn < h},
Γ1,h,r = ∂Ωh,r ∩ {xn > 0},
Γ2,h,r = ∂Ωh,r ∩ {xn = 0}.

We first state a lemma concerning the sub- and super-solution method.
Consider

−∆u = f(x, u) in Ωh,r,

u = g(x) on Γ1,h,r,

∂u
∂ν = h(x, u) on Γ2,h,r,

(7)
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where f(x, u), h(x, u) are Carathéodory functions, g(x) is continuous.
A function u ∈ H1(Ωh,r) is called a sub-solution to (7) if u ≤ g(x) on

Γ1,h,r and ∫
Ωh,r

[
∇u∇η − f(x, u)η

]
−
∫

Γ2,h,r

h(x, u)η ≤ 0,

for all η ∈ C∞(Ωh,r), η ≥ 0, and η = 0 on Γ1,h,r. Similarly u ∈ H1(Ωh,r) is
called a super-solution to (7) if the above inequalities are reversed. We refer
the proof of the following result to [5]:

Lemma 2.2. Suppose that u, u ∈ H1(Ωh,r) are both bounded, u ≥ u, and
they are super-solution, sub-solution of (7), respectively. Then there is a
solution u ∈ H1(Ωh,r) to (7) such that u ≤ u ≤ u holds a.e. in Ωh,r.

We now apply Lemma 2.2 to construct a super-solution of (4).

Lemma 2.3. For any fixed h, r > 0, there is a unique solution to

∆ψ = aψ in Ωh,r,

ψ = 1 on Γ1,h,r,

∂ψ
∂ν = 1 on Γ2,h,r.

(8)

Proof. It is easy to check that u = 0 is a sub-solution and u = 1 + h − xn
is a super-solution to (8). The existence follows from Lemma 2.2, whereas
the uniqueness follows from the Maximum Principle.

Lemma 2.4. Let u(x) be a solution to (4) and ψh,r be the unique solution
to (8). Then ψh,r ≥ u in Ωh,r.

Proof. Set w = ψh,r − u. Then w satisfies

∆w = aw in Ωh,r,

w ≥ 0 on Γ1,h,r,

∂w
∂ν = 1− u on Γ2,h,r.

If w(x0) = minΩh,r
w(x) < 0, then x0 ∈ Γ2,h,r \ {|x′| = r}. By the Hopf

Boundary Lemma, we know that ∂w/∂ν(x0) < 0, which contradicts

∂w/∂ν(x0) = 1− u(x0) ≥ 0.

This proves Lemma 2.4.

Now consider
∆ψ = aψ in Ωh,r,

ψ = 1 on Γ1,h,r,

∂ψ
∂ν = 0 on Γ2,h,r.

(9)
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It is easy to see that u = 0 and u = 1 are sub- and super-solutions to (9),
respectively. Thus there is a unique solution to (9). We denote it by ψ1,h,r.
Decompose ψh,r as

ψh,r = ψ1,h,r + ψ2,h,r,

where ψ2,h,r is the unique solution to

∆ψ = aψ in Ωh,r,

ψ = 0 on Γ1,h,r,

∂ψ
∂ν = 1 on Γ2,h,r.

It again follows from the Maximum Principle that

0 < ψ1,h,r < 1, 0 < ψ2,h,r < 1 + h, ∀x ∈ Ωh,r.

Furthermore, we can show:

Lemma 2.5.
a) ψ1,h,r is non-increasing in r. For any fixed h > 0, as r → ∞, ψ1,h,r

converges monotonically to ψ1,h, where ψ1,h(x) is a function of xn
alone and satisfies

∆ψ = aψ in Ωh,

ψ = 1 on {xn = h},
∂ψ
∂ν = 0 on {xn = 0}.

(10)

b) ψ2,h,r is non-decreasing in r. For any fixed h > 0, as r → ∞, ψ2,h,r

converges monotonically to ψ2,h, where ψ2,h(x) is a function of xn
alone and satisfies

∆ψ = aψ in Ωh,

ψ = 0 on {xn = h},
∂ψ
∂ν = 1 on {xn = 0}.

(11)

Proof. We only give the proof of Part (a) since Part (b) can be established
in the same spirit. For any r′ > r, set w = ψ1,h,r′ − ψ1,h,r in Ωh,r. Then w
satisfies

∆w = aw in Ωh,r,

w ≤ 0 on Γ1,h,r,

∂w
∂ν = 0 on Γ2,h,r.

(12)

It follows from the Maximum Principle and the Hopf Boundary Lemma that
w ≤ 0 in Ωh,r. This proves the monotonicity of ψ1,h,r.

Therefore, for any fixed h > 0, as r →∞, ψ1,h,r monotonically converges
to ψ1,h in Rn

+ and ψ1,h satisfies (10).



328 YUAN LOU AND MEIJUN ZHU

We still need to show that ψ1,h is a function of xn only. For any P ∈ Rn−1

and r′, r > 0 with r′ − r > |P |, consider the difference w1 = ψ1,h,r′(x′ +
P, xn) − ψ1,h,r(x′, xn) in Ωh,r. It is easy to see that w1 satisfies (12), thus
w1 ≤ 0 in Ωh,r. That is,

ψ1,h,r′(x′ + P, xn) ≤ ψ1,h,r(x′, xn), ∀x ∈ Ωh,r, ∀P ∈ Rn−1.

Sending r, r′ →∞, we have

ψ1,h(x′ + P, xn) ≤ ψ1,h(x), ∀x ∈ Ωh.

Hence ψ1,h(x) = ψ1,h(xn).

Proof of Theorem 1.2. Denote ψh = ψ1,h + ψ2,h. Then by Lemmas 2.4 and
2.5, ψh(x) ≥ u(x) in Ωh and ψh satisfies

ψ′′ − aψ = 0 in (0, h),

ψ′(0) = −1, ψ(h) = 1.

Direct calculation shows that

ψh(xn) = c1e
√
axn + c2e

−
√
axn ,

where

c1 =
1− 1√

a
e−

√
ah

e
√
ah + e−

√
ah
,

c2 =
1 + 1√

a
e
√
ah

e
√
ah + e−

√
ah
.

Sending h→∞, we have ψh(xn) → 1√
a
e−

√
axn . Thus by Lemma 2.4,

u(x) ≤ 1√
a
e−

√
axn , ∀x ∈ Rn

+.

It follows from (6) that

1 = sup
∂Rn

+

u(x) ≤ 1√
a
,

i.e., a ≤ 1. This proves Theorem 1.2.

3. Asymptotic behaviors of eigenvalues.

We prove Theorem 1.1 in this section. For every piecewise smooth domain
Ω, it was proved in [3] that

limγ→∞
Λ(γ)
γ2

≥ 1.

To prove Theorem 1.1, we need to show that when ∂Ω is C1,

limγ→∞
Λ(γ)
γ2

≤ 1.(13)
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Proof of Theorem 1.1. For any γ > 1, let uγ be a positive solution of (2)
and uγ attains its maximum at xγ . By the Maximum Principle, we know
that xγ ∈ ∂Ω. After normalization we can assume that maxΩ uγ = 1 and
xγ → 0 ∈ ∂Ω. Further, we can assume that there is a C1 function φ such
that ∂Ω∩B2(0) can be represented by xn = φ(x′) for |x′| ≤ 2 with φ(0) = 0
and ∂φ/∂xi(0) = 0 for i = 1, . . . , n− 1.

For any η ∈ C∞
0 (B2(0)), uγ satisfies∫
Ω
∇uγ · ∇η + Λ(γ)

∫
Ω
uγη − γ

∫
∂Ω
uγη = 0.(14)

Now we flatten ∂Ω near the origin. Let y = Φ(x) : Ω ∩ B2(0) → ΩΦ ≡
Φ(Ω ∩B2(0)), be such that

Φi(x) = xi, i = 1, 2, . . . , n− 1,

Φn(x) = xn − φ(x′).

Denote the inverse of y = Φ(x) by x = Ψ(y). Then (14) can be rewritten as

n∑
k,l=1

∫
ΩΦ

∂uγ
∂yk

∂η

∂yl

∂Φk

∂xi
(Ψ(y))

∂Φl

∂xi
(Ψ(y))|DΨ|dy

+ Λ(γ)
∫

ΩΦ

uγη|DΨ|dy − γ

∫
∂ΩΦ

uγη
√

1 + |∇φ(y′)|2dy′ = 0,

where |DΨ| is the derterminant of DΨ. Notice that |∇φ| = o(1) as x′ → 0.
Thus DΨ → I as |y| → 0, where I is the n × n identity matrix. We now
consider two different cases.

Case 1.

limγ→∞
Λ(γ)
γ2

= a < +∞.

Without loss of generality, we may assume that

γ
∫
∂Ω u

2
γ −

∫
Ω |∇uγ |

2

γ2
∫
Ω u

2
γ

= sup
u∈H1(Ω)\{0}

γ
∫
∂Ω u

2 −
∫
Ω |∇u|

2

γ2
∫
Ω u

2
→ a,

and uγ(xγ) = maxΩ uγ(x) = 1, xγ → 0. We let z = γ(y − yγ), where
yγ = (x′γ , 0), and set vγ(z) = uγ(y). Then for any R > 0 and η with
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compact support in B2R, as γ becomes sufficiently large, vγ satisfies
n∑

k,l=1

∫
B+

2R

∂vγ
∂zk

∂η

∂zl
(15)

· ∂Φk

∂xi

(
Ψ
(
yγ +

z

γ

))
∂Φl

∂xi

(
Ψ
(
yγ +

z

γ

))
|DΨ|

(
yγ +

z

γ

)
dz

+
Λ(γ)
γ2

∫
B+

2R

vγη|DΨ|
(
yγ +

z

γ

)
dz

−
∫
zn=0

vγη
√

1 + |∇φ(y′γ + z′/γ)|2dz′ = 0.

Since for z ∈ B+
2R, yγ + z/γ → 0 as γ →∞, we know that for sufficiently

large γ, (
n∑
i=1

∂Φk

∂xi

(
Ψ
(
yγ +

z

γ

))
∂Φl

∂xi

(
Ψ
(
yγ +

z

γ

)))
kl

>
I

2
.

Let ηR be a cutoff function satisfying ηR = 1 in BR with compact support
in B2R and |∇ηR| ≤ C. Choosing η = u · ηR in (15), we have,

‖∇vγ‖L2(BR) ≤ C‖vγ‖L∞ = C.

Therefore, after passing to a subsequence, vγ → v0 weakly in H1
loc(Rn

+) as
γ →∞, where v0 ∈ H1

loc(Rn
+) satisfies

∆v0 = av0 in Rn
+,

∂v0
∂ν = v0 on ∂Rn

+,

0 ≤ v0 ≤ 1 in Rn
+.

To show that v0 is nontrivial, we claim that there is a constant C > 0
such that

1 = ‖vγ‖L∞(B+
1 ) ≤ C

(
‖vγ‖L2(∂Rn

+∩{|x′|<2}) + ‖vγ‖
L

2n
n−1 (B+

2 (0))

)
.(16)

Since the embeddings from W 1,2(B+
2 (0)) to L

2n
n−1 (B+

2 (0)) and L2(∂Rn
+ ∩

{|x′| < 2}) are both compact, we know that

1 ≤ C

(
‖v0‖L2(∂Rn

+∩{|x′|<1}) + ‖v0‖
L

2n
n−1 (B+

1 (0))

)
,

from which it follows that v0 6= 0. From Theorem 1.2 we see that a ≤ 1.
Hence it suffices to establish (16).

Inequality (16) can be obtained via Moser iteration. Though it seems to be
a standard result (see, e.g., [4]), we include a proof here for the completeness.
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Direct calculation shows that∫
B+

2

∇vγ · ∇(vkγξ
2)

=
4k

(k + 1)2

∫
B+

2

∣∣∣∣∇(v k+1
2

γ ξ

)∣∣∣∣2 +
k − 1

(k + 1)2

∫
B+

2

vk+1
γ ∆ξ2

− 4k
(k + 1)2

∫
B+

2

vk+1
γ |∇ξ|2 − k − 1

(k + 1)2

∫
{xn=0, |x′|≤2}

vk+1
γ ∇ξ2 · ν.

Choosing η = vkγξ
2 in (15) with k > 1 and ξ having compact support in

B+
2 , we have

∫
B+

2

∣∣∣∣∇(v k+1
2

γ ξ

)∣∣∣∣2
(17)

≤ k − 1
4k

∫
B+

2

vk+1
γ ∆ξ2 +

∫
B+

2

vk+1
γ |∇ξ|2 +

k − 1
4k

∫
{xn=0, |x′|≤2}

vk+1
γ ∇ξ2 · ν

+
(k + 1)2C

4k

∫
{xn=0, |x′|≤2}

vk+1
γ ξ +

(k + 1)2C
4k

∫
B+

2

vk+1
γ ξ.

Let

ri = 1 +
1

2i−1
, i = 1, 2, . . . ,

and choose ξi satisfying

ξi = 1, |x| ≤ ri+1;

ξi = 0, |x| > ri;

|∇ξi| ≤ 2 · 2i, |∇2ξi| ≤ 4 · 4i.

Replacing ξ by ξi in (17) and using the Sobolev inequality and the trace
inequality, we have, for n ≥ 3,(∫

B+
ri

(
v

k+1
2

γ ξi

) 2n
n−2

)n−2
n

+
∫
∂B+

ri
∩{xn=0}

(
v

k+1
2

γ ξi

) 2(n−1)
n−2

≤ C ·
(

4i +
(k + 1)2

4k

)∫
B+

ri

vk+1
γ + C ·

(
4i +

(k + 1)2

4k

)∫
∂B+

ri
∩{xn=0}

vk+1
γ ,

where C is some universal constant. By∫
B+

ri

vk+1
γ ≤ C

(∫
B+

ri

v
(k+1)· n

n−1
γ

)n−1
n

,
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we arrive at(∫
B+

ri

(
v

k+1
2

γ ξi

) 2n
n−2

)n−2
n

+
∫
∂B+

ri
∩{xn=0}

(
v

k+1
2

γ ξi

) 2(n−1)
n−2

(18)

≤ C ·
(

4i +
(k + 1)2

4k

)(∫
B+

ri

v
(k+1)· n

n−1
γ

)n−1
n

+ C ·
(

4i +
(k + 1)2

4k

)∫
∂B+

ri
∩{xn=0}

vk+1
γ .

Define β = (n − 1)/(n − 2), q0 = 2, qi+1 = βqi and pi = nqi/(n − 1) for
i = 0, 1, . . . ; choosing k = qi − 1 in (18), we have

‖vγ‖qiLpi+1 (B+
ri+1

)
+ ‖vγ‖qiLqi+1 (Γi+1)

≤ C ·
(

4i +
q2i

qi − 1

)
·
(
‖vγ‖qiLpi (B+

ri
)
+ ‖vγ‖qiLqi (Γi)

)
,

where Γi = ∂B+
ri∩{xn = 0} for i = 0, 1, . . . ; since β > 1, (aβ+bβ)1/β ≤ a+b.

It follows that(
‖vγ‖qi+1

Lpi+1 (B+
ri+1

)
+ ‖vγ‖qi+1

Lqi+1 (Γi+1)

)1/qi+1

(19)

≤
(
C ·
(

4i +
q2i

qi − 1

))1/qi (
‖vγ‖qiLpi (B+

ri
)
+ ‖vγ‖qiLqi (Γi)

)1/qi

.

Since qi = 2βi, it is easy to see that(
C4i +

Cq2i
qi − 1

)1/pi

≤
[
C(4i + 2βi)

]1/(2βi) ≤ C1/(2βi)(4 + β)i/(2β
i).

Thus
∞∏
i=1

(
4iC +

q2iC

qi − 1

)1/qi

≤ C <∞.

It follows that

‖vγ‖Lpi+1 (B+
ri+1

) ≤ C

(
‖vγ‖L2(∂Rn

+∩{|x′|<2}) + ‖vγ‖
L

2n
n−1 (B+

2 (0))

)
.

Sending i→∞, we obtain (16). For n = 2, we can obtain (16) in the same
spirit. We thereby complete the proof of Theorem 1.1 in Case 1.

Case 2.

limγ→∞
Λ(γ)
γ2

= ∞.
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We will also rule out this possibility. Let uγ be the sequence of positive
functions such that

γ
∫
∂Ω u

2
γ −

∫
Ω |∇uγ |

2

γ2
∫
Ω u

2
γ

= sup
u∈H1(Ω)\{0}

γ
∫
∂Ω u

2 −
∫
Ω |∇u|

2

γ2
∫
Ω u

2
= a(γ) →∞

as γ → ∞, and uγ(xγ) = maxΩ u(x) = 1. Define z =
√
a(γ)γ(y − yγ) and

vγ(z) = uγ(y). Then for any R > 0 and η with compact support in B+
2R, as

γ becomes sufficiently large, vγ satisfies
n∑

k,l=1

∫
B+

2R

∂vγ
∂zk

∂η

∂zl

∂Φk

∂xi

(
Ψ
(
yγ +

z

γ

))

· ∂Φl

∂xi

(
Ψ
(
yγ +

z

γ

))
|DΨ|

(
yγ +

z

γ

)
dz

+
Λ(γ)
a(γ)γ2

∫
B+

2R

vγη|DΨ|
(
yγ +

z

γ

)
dz

− 1√
a(γ)

∫
zn=0

vγη
√

1 + |∇φ(y′γ + z′/γ)|2 dz′ = 0.

Similarly as in Case 1, we can show that vγ → v0 weakly in H1
loc(B

+
R), where

0 ≤ v0 ≤ 1, v0 6= 0, and v0 ∈ H1
loc(Rn

+) is a weak solution of

∆v0 = v0 in Rn
+,

∂v0
∂ν = 0 on ∂Rn

+.
(20)

Using even reflection, from (20) we know that there is a positive bounded
function satisfying

∆v0 = v0 in Rn.

On the other hand, it is well-known that there is no nontrivial positive
solution to the above equation. This finishes the proof of Theorem 1.1.
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