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In this paper we study a class of generalized Fock spaces
associated with the Dunkl operators. Next we introduce the
commutator relations between the Dunkl operators and mul-
tiplication operators which lead to a generalized class of Weyl
commutation relations for the Dunkl kernel.

1. Introduction.

Fock space (called also Segal-Bargmann space [5]) is the Hilbert space of
entire functions of C¢ with inner product given by

) ° 7Td/ f | ‘ dl’dy, Z:x+iy7
where

|z = Zx + 92, dedy = Hdm dy;.
=1 =1
This space which associated with Fock’s [12] realization of the creation and
annihilation operators of Bose particles is studied by Bargmann [4]. Next,
the ordinary Fock space A is the subject of many works ([5, 7] and [8]).
In 2001, M. Sifi and F. Soltani [21] introduced a Hilbert space A, of entire
functions where the inner product is weighted by a generalized Gaussian
distribution. On A, the Dunkl operator on the real line:

1) = g f+ 2 | IS

and the multiplication by z are adjoints and satisfy the commutation rule
[T, 2] = I +2yB, where Bf(z) = f(—z).

This commutator rule leads to a generalized class of Weyl commutation
relations for the Dunkl kernel in the one dimensional.

In this paper we consider the differential-difference operators Tj, j =

.,d, on R% introduced by C.F. Dunkl in [9] and called Dunkl operators

in the literature. These operators are very important in pure Mathematics

and in Physics. They provide a useful tool in the study of special func-

tions associated with root systems [10]. They are closely related to certain

]7 v >0,
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representations of degenerated affine Hecke algebras ([6] and [16]). More-
over the commutative algebra generated by these operators has been used in
the study of certain exactly solvable models of quantum Mechanics, namely
the Calogero-Sutherland-Moser models, which deal with systems of identical
particles in the one dimensional space (]2, 3] and [14]).

The Dunkl kernel Ej(x,y) is the unique solution of the initial problem

Tiu(z,y) = yju(z,y); u0,y)=1 j=1,....d,

see [10, 17] and [18]. This kernel has a unique holomorphic extension to C%x
C?. Furthermore, the Dunkl kernel Ex(z,w); z,w € C? can be expanded in

a power series in the form
w) = Z Pu(2)pu(w
veNd

with some homogeneous orthonormal basis {¢,},cne of polynomials ([17]
and [19]).

We introduce in this paper the generalized Fock space Ay associated with
the Dunkl operators. This is a Hilbert space of functions f on C* which can

be written f(2) = >, cne Gwpu(2) With
I£17 = (s Fr o= lav]* < oo,

veNd

If f,g € Ap, having series expansions f(z) = Y, cna avr(2) and g(z) =
> vend by (2). Then the inner product is given by the generalized spherical
harmonics

(.90 = (£(1)7)(0),

where f(T) = f(Th,...,Ty) and g(2) = ZueNd Ecp,,(z).
The generalized Fock space Ay, , has also a reproducing kernel I given by
K(z,w) = Ex(z,@); z,w € C% If f € Ay, then we have

f(’ll)) - (f7 Ek(aﬁ))lﬁ w e Cd-
Thus the Dunkl kernel serves as the generalized Dirac delta function in Ay.
The associated operators for the generalized Fock space Aj, are T; and
the multiplication operator by z;. They are adjoints in A4; and satisfy a
commutation rule:

[Ti, Zj] = 52',j[ + Z k(a)a,;ajBa; i,j = 1, ce ,d,

aERL

where B, a reflection operator, k(«) a multiplicity function and R, is a
positive root system.

These commutators rule lead to a generalized class of Weyl commutation
relations for the Dunkl kernel.

These relations are studied in the classical case (k = 0) in [13].
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Throughout this paper we shall use the standard multi-index notations.
This for multi-indices v,s € N9, we write |v| = Zle v, vl = H‘j:l v;l,

v d V; d d i
(8)z]_[i:1<8:)asvvellasz”:]_[Z1Z DY = 1[;_, D, for z =
(21,...,2q4) € C? and any family D = (Dy, ..., D4) of commuting operators.
Finally, we will need the partial ordering < on N¢ which is defined by
s<ves; <y, i=1,....,d.

2. Preliminaries.

In this section we collect some notations and results on Dunkl operators and
Dunkl kernel that will be important later on. General references here are
9, 17, 18, 19] and [20].

We consider R? with the Euclidean scalar (.,.) and |z| = /{z,x). On
C4, |.| denotes also the standard Hermitian norm, while (z, w) = ZJ 1 ZWj
and £(z) = (z, 2).

For a € R4\ {0}, let o, be the reflection in the hyperplane H, C R?
orthogonal to «,

A finite set R € R\ {0} is called a root system if RN R.a = {—a,a} and
oo R = R for all @ € R. We assume that it is normalized by |a|? = 2 for all
a € R. For a given root system R the reflections o,, a € R generated a finite
group G C O(d), the reflection group associated with R. All reﬂections in
G correspond to suitable pairs of roots. For a given 3 € H = R\ | J acr H.

we fix the positive subsystem Ry = {a € R / (o, 3) > 0}, then for each
a € R either a« € Ry or —a € R;. The Connected components of H are
called the Weyl chambers of G.

A function k£ : R — C on a root system R is called a multiplicity function
if it is invariant under the action of the associated reflection group G. If one
regards k as a function on the corresponding reflections, this means that k
is constant on the conjugacy classes of reflections in GG. For abbreviation,

we introduce the index
= > k)

acER

Moreover, let wy denotes the weight function:

[T Kewa)PM), wer?,

acER,

which is G-invariant and homogeneous of degree 2+.
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For d =1 and G = Zy, the multiplicity function k is a simple parameter
denoted v > 0 and
wi(z) = |z|*7, xR,
The Dunkl operators Tj; 7 = 1,...,d, on R? associated with the finite

reflection group G and multiplicity function k are given for a function f of
class C' on RY, by

Tif(x) = aijf(x)Jr 3 k(a)aij_

acER,

In the case £ = 0, the Tj; j = 1...,d, reduce to the corresponding partial
derivatives. In this paper we will assume throughout that k£ > 0.
For y € R%, the initial problem

T‘un(ﬂf,y) :yju(x>y)a ]:Lvda
u(0,y) =1,

admits a unique analytic solution on R?, which will be denoted E, (z,y) and
called the Dunkl kernel ([17, 18, 19] and [20]). This kernel has a unique
holomorphic extension to C* x C¢.
Examples.

1) If k = 0, then Ej(z,w) = e!*¥) for z,w € C% (Recall that (.,.) was

defined to be bilinear on C? x C.)

2) If d =1 and G = Zgy, the Dunkl kernel is given by
zw

E,(z,w) = gwfé(zw) + m%,wr%(zw),
where

S a(zw) =T [+ 1 i 1 (zw)%
S ZW) = — - ,
13 TT2) T+ ) \ 2

n=0

is the modified Bessel function of order v — 3 [21].

Let P = C[RY] denotes the C- Algebra of polynomial functions on R* and
Pn, n € N, the subspace of homogeneous polynomials of degree n. In the
context of generalized spherical harmonics, C.F. Dunkl in [9] introduced on
‘P the following bilinear form:

(1) (P, @k = (p(T)Q) (0); p,geP.

Here p(T) is the operator derived from p(x) by replacing x; by T;. A useful
collection of its properties can be found in [9] and [17]. We recall that (.,.)x
is symmetric, positive-definite and (p,q)x = 0, for p € Pp, ¢ € Py, with
n # m. Moreover, for all j =1,...,d and p,q € P,

(20, )k = (0, Tjq)k-
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Let {¢y},ene be an orthonormal basis of P with respect to the scalar
product (.,.); such that ¢, € P),| and the coefficients of the ¢, are real.
As P = @®penPrn and P, LP, for n # m, the ¢, with |v| = n can for
example be constructed by Gram-Schmidt orthogonalization within P,, from
an arbitrary ordered real-coefficients basis of P,. If &k = 0 the c%nonical

Nk

As in the classical case, M. Rosler obtained in [17, p. 524] the following
connection of the basis ¢, with the Dunkl kernel:

(2) Ei(z,w) Z v (2)pu(w);  z,w € CY
veNd

choice of the homogeneous orthonormal basis ¢, is just ¢, (z) =

where the convergence is normal on C¢ x C¢.

Example. If d =1 and G = Zy every homogeneous orthonormal basis is
of the form

= Z" _ 2%([n/2])! n+1 1
® )=t )= T (| e ).
Here [n/2] is the integer part of n/2.

From (2), the Dunkl kernel Ej, possesses the following properties ([17, 19]
and [20]): For all z,w € C? and A € C,

(4) Ei(z,w) = Ex(w, 2), Er(Az,w) = Ey(z, \w),

(5) Bi(z,w) = Be(2,W), En(z,2) =) lou(2)%,
vENd

(6) | B (2, w)| < el

In [18], M. Rosler establish the Bochner-type representation of the Dunkl
kernel

(7) Eiy(z,2) = / e dp,(€); zeRY zeC?
Rd

where ji, is a probability measure on R? with support in {¢ € RY/|¢| < |z|}.
The Dunkl kernel Ej, is analytic on C% x C%. Therefore, there exist unique
analytic functions m,,, v € N¢, on C¢ with

(®) Ey(zw)= Y

veNd

my(z)

' w’; z,we CY
v!

The restriction of m, to R? are called the v-th moment functions ([18, 19]
and [20]). It is given explicitly by

/ £ dps (8 T e Rda

where p, is the measure given by (7
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The functions m, are homogeneous polynomials of degree |v|. Among the
applications of these moments, we mention the construction of martingales
from Dunkl-type Markov processes [19].

3. Fock spaces for the Dunkl kernel.

In this section we define and study the generalized Fock space for the Dunkl
kernel in d-dimensions.

Definition 1. The generalized Fock space Ay associated with the Dunkl
operators is the space of holomorphic functions f on C% which can be written

[(2) =3, end v (2) with
If1I7 = Z lay|? < oco.

veNd

Hence the inner product in Ay, is given for f(z) = Y, cne v (2) € Ay and
9(2) =3 ena bupu(2) € Ai, by

(9) G =3 ab.
veNd
Remark. If £ =0, Ag is the ordinary Fock space A [4].
Proposition 1.
i) If f,.g € Ay with f(z) = ZueNd avpy(2) and g(z) = ZueNd bupw(2),

we have
(£ 9 = (£(1)3) 0),

where §(z) = e g (2)
ii) If f € A with f(2) =, cna avou(2), we have
£ < Tl
Proof. 1) From [17, p. 529], we have

(QOZ/(T)@S) (0) = 51/,&

where 6, 5 is the Kronecker symbol.
Thus

(Foohk =Y abs(2ulD)e,) 0).
v,s€Nd
Using the continuously of the inner product, we obtain the result.

ii) Using Cauchy-Schwarz’s inequality, then

FEP < | D0 Ll | | Y0 len(@)P| = I I1REx(z,2).

veNd veNd
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Thus
1£(2)] < [Br(z,2)] 2] £ -
The result follows from the inequality (6). O
From Proposition 1 ii), the map f — f(z), z € C%, is a continuous linear

functional on Aj. Thus from Riesz theorem [1], A has a reproducing
kernel.

Proposition 2. The function K given for w,z € C?, by
K(z,w) = Ex(z,w0),
is a reproducing kernel for the generalized Fock spaces Ay , that is:

i) For every w € CY, the function z — K(z,w) belongs to Ay, .
ii) The reproducing property: For every w € C* and f € Ay, , we have

(f,lC(-,w))k = f(w)
Proof. i) Using (5) and (6), we deduce for w € C%,
1B = S (@) = Bu(w, @) < eloP,
veNd

which proves 1).

i) If f(2) =, cnd awpn(2) € Ay, it follows from (9) that
(fs Be(, W) = Z aypy (W) = f(w).

veNd

Corollary 1.
i) The set {Ex(-,w), w € C%} is complete in Ay.
ii) For all z,w € C%, we have
Ek(§>w) = (Ek’(az)a Ek(aw))k
iii) Let m € N\{0} and 21,22, ...,2m € C, with z; # z;, then

m

det [Ek(zi, zj)] > 0.

4,j=1
Notation. We denote by L?(j) the Hilbert space of measurable functions
on R¢, for which

Il i= | [ 1760 P (o) S

Here i, is the measure defined on R¢, by

d

-1
dug(z) := cywg(z)dz, with ¢ = (/ ex|2duk(x)) )
R

is the Mehta-type constant.
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In the next part of this section we establish the unitary equivalence of
L?(uy) and Ay, . First we recall some properties of the generalized Hermite

functions ([17] and [19]):
Definition 2. The generalized Hermite polynomials {H,},cne associated
with the basis {¢, },ene on CY, are given by

1% \/2} n

Hy(2) = 2Wle= 2kl () = ol Z 22n ALz,

where Ay = Zle T? is the Dunkl Laplacian [17].
Moreover, we define the generalized Hermite functions on C%, by

hy(2) =27 W2~ @12 ().

Examples.
1) If k =0, we obtain

ol & 102 1 & 4
H,,(x):—He 19z, (x,l)zil_[Hyi(xi), xz € RY

m i=1 V! =1
where v
o~ g 2
H — 1 v; xf —x3
X4 ( ) € 8$;/1 (e )

2) If d =1 and G = Zg, we obtain

Hy(z) =Y ——2 _(22)" % x€cR,
0= w5 )

where by, () are the constants given by (3).
The following lemma is shown in [17, p. 525-529]:

Lemma 1.
i) The set {h,},ene is an orthonormal basis of L*(uy).
ii) For all z,w € C%, there is a generating function for the generalized

Hermite polynomials,

(w)Ek 22 w Z h
veNd

Notation. We denote by Uy, the kernel given for z,w € C%, by
(10) Up(z,w) 1= e”CE+HWI2 By (/27 w).

Lemma 2. For w,z € C%, we have

Ui(z,w) = Zh

veNd
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Proof. From Definition 2, we have

> hy(2)pu(w) = e D2 2V H (2)0, (w).
reNd veNd

As ¢, is homogeneous of degree |v|, then

o <\%) =27M2g, (w).

Thus
S huledoutw) =92 S e ().

veNd veNd
Applying Lemma 1 ii) and (4), we obtain

> hu()pu(w) = e EOHENRE (92 D) Uy (2, w).
reNd \/i

Lemma 3.
i) For all z,w € C¢, we have

Ex(z,w) = /Rd Uk(z, 2)U(w, x)dpg(x).

ii) For all z € C%, the function x — Uy(z,x) belongs to L*(uy), and we
have

iii) For all x € R%, the function z — Uy(z,z) belongs to Ay, and we have
10k )l = e~ By (22, 2).
Proof. 1) We put

I= /dUk(z,x)Uk(w,x)dﬂk(x).
R
From (10), we have

[ = e~z Hew)/2 / e B (V3z, 2) Be(V3w, ) djug (x).
Rd

So from [17, p. 523] and (4), we get
/]Rd ™1™ By (V2z, 2) B (V2w, 2)dpg (x) = e“ OB (2, w),

which proves i).
ii) This assertion follows from i) and (5).
iii) For z € C¢, we put
d(z) = e~ UEHE)/2,
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Let € R?, then from Proposition 2 ii), (10) and (4), we have
HUk(? x)Hi - ei‘x|2(¢()Ek(7 \/i’b), Ek('? \/5‘7;))16 = 673‘x|2Ek(2$7 1’)
(]

Definition 3. The chaotic transform Cj (also called S-transform in the
stochastic calculus [15]) is the transformation defined on L?(jy), by

CL(f)(z) = / Uiz, o) f()dugla), 2 e C

Remark. The basis elements of L?(uy) and Ay, are called chaos. In the
following theorem we shall prove that the transformation C; maps the chaos
of L?(u) to these of Ay .

Theorem 1. The chaotic transform Cy is a unitary mapping of L*(ux) on
Ay . Moreover, the basis elements are related by

Cr(hy) = pu.
Proof. Tt follows directly from Lemma 1 i) and Lemma 2, that for v € N9,

C(hy)(z) = /]Rd Ui (2, 2)hy (2)dpg(z) = 0, (2), ze€ CY

Consequently C, maps the subspace generated by the family {h,},cne into
the polynomials in Ag. Thus C, maps a dense set in L?(j;) into a dense set
in A. Further, if f € L?(uy), then f(2) = Y, cna avhy(x). For v € N9, let

In(z) = Z;V:o ZM:]' ayhy(z), z € R. Then

N
Celfn)() =D D avpul2): Jim IIf = fvllzs = 0.

J=0v|=j
On the other hand, from Hoélder’s inequality and Lemma 3 ii), we have

Ce(f — fn)(2)] < [Ex(z,2)]Y2If = fllok
Thus we obtain

Cr(f)(z) = Z aypy(2)-

Hence
ICk(HIE =D laul® = [I£15-
veNd
It follows that Cj, is a unitary transformation from L?(py) into Ay.
Clearly, if g(2) = >, cna avpu(2) € A, we have

(11) C 9 @) =Y ayhy(z), zeR”
veNd
Which completes the proof. O
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Proposition 3. If g € Ai, we have
C. N (9) (@) = (9, Uk, 2))k, € R™
Proof. Let g € Aj,. We put for z € R,
Vi(9)(x) = (g, Uk(-,2))k-

Using Lemma 2, Lemma 3 iii) and the same method as in the proof of
Theorem 1 we obtain

=Y ah(z)=C(9)(x), weR™

veNd

4. Commutators and Weyl relations for the Dunkl kernel.

We define the multiplication operators Q;; i =1,...,d on A by

Qif(2) == zif(z), zeC%
We denote also by T;; i = 1,...,d the operators defined on Ay.
Let

D(Qi) ={f € A/ Qi(f) € Ax},
D(T;) ={f € A/ Tif € A}
denote the domains of Q; and T; respectively.

We denote by [.,.] the commutator product ([A, B] = AB — BA). As in
[11], we have the following relations:

Lemma 4. The operators Q; and T;, i = 1,...,d satisfy on A the com-
mutation relations:

(13) T3, Qi) = di;T+ > k(@)ie;Ba; 1,5 =1,....d,
acRy

where I the identity operator and B, is the reflection operator (B2 = I)
given by
(14) Baf(z> = f(Uocz)'
Proof. Using the fact that 02 = id and (a, JaZ> —(a, z), we obtain
0 f(z) = foa2)
T;T; =T k(o — .
e =1 (555) ) + 2 Mgy ( (@ 2)

Since

;Zi(f(aaz)) = Z alag floaz),
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we have
02 0 0
T30G) =505 1+ T () 0+ T3 () )
f(2) = f(0a2) = 351(0a2)
- k ER A Gz 7|
2 ey | T T )
Thus
(T3, Tj] f(2) = 0.
The other relations are evident. O

Proposition 4. Let

Proof. Applying Proposition 1 i), we get

(Qif, 9k = (Qif(T)(0) = D avbsTipu (T)ps(0).
v,s€Nd
Then from (12) we obtain
Qifs k=Y abspu(T)Tips(0) = (f, Tig)i.

v,s€Nd

Lemma 5. If f € A, then B,f € Ai, and we have
1Qif IR = ITf IR+ AR+ D k(@)af(f, Baf )k,
acRy
where By, is the operator given by (14).

Proof. Let f € Ax. Applying the chaotic transform, in view of Theorem 1,
it suffices to show that C;, ' (Baf) € L*(ug). From (11), we have

Ci ' (Baf)(z) = € (H)(0an), @ €R™
Putting u = o4, we get
d
dug(x) = |Jo|duk(u)  where J, = det [51‘,3‘ — aiaj] .
1,j=
Since J, = —1, we obtain

1C (Baf) 2, —/ 1C () () Py ).
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Which proves that B, f € Ay.
On the other hand, from Proposition 4, we deduce

1QiflI% = (f. T:Qif -
But from (13), we have

T,Qif = QTif + f+ Y k(a)a]Baf.

aERy
Thus
Qi fIli = (f, QiTif ) + IFIIF + D k(@)ai(f, Baf)k:
a€ER}
Using another time Proposition 4, we obtain the result. O

Proposition 5. The operators QQ; and T; are closed densely defined opera-
tors on Ay, and we have

D(Qi) =D(Ty); Q7 =T; T = Qi
where QF and T} are the adjoints operators of Q; and T;, respectively.

Proof. These results follow from [4, Theorem 1.2], Lemma 5 and Proposi-
tion 4 by using the same method as [21, Proposition 6]. U

Lemma 6. For v € N\{0}, we have the following relations:
i)
[T", Q4] = I/jlel .. .Tyl 17?’1_11—;:1_? .. Tdy‘i
d vi—1
+ B2 Y 3N ke)agoy HY L HI HITY T T T
i=1 (=0 a€R,

where H;; i = 1,...,d, are given by the differential-difference opera-
tors
H,=-T;,+ 2 Zalag
ii)
(75, Q") = v;Q .. Q75 QY QY ... QY
d v;—1

+Bazz Z k(a)aza; 200 .. 27 ZEQY ™ —= 1Q;/f11... .

i=1 (=0 a€R,

where Z;; 1 =1,...,d, are the multiplication operators given by

d
=) i@y
(=1
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Proof. From (13), we have
llifl

1, Q) = > T, Q!

v;—1
= Vi(SiVjTiyiil + Z k(a)aiochfBaTiuifefl.
(=0
From this equality, we get

Tl/ Q] Zszl l/z 1 TI/Z Qj] 1112:1-1 B 'T(’ijd

e 2 2 Vi—1mvi—1pVit1 1]
_uJTl LT T T LT

d v;—1

T Z Z Z k(a)@iaijl ) ..T”Z lTeB TVZ o— 1T211Ji1 N

i=1 ¢=0 a€R4
But

where

Thus we obtain Assertion i). And 81m11arly we get 11).

Notation. For z € R? and z € C?, we denote by
Ex(z,x) — Ex(z,04)

In(z,x) :== o)

From [17, p. 533], we can write the function I;(z,x) in the form
1
(15) Ik(za .%') = <V$Ek(za J?), Oé> + §<Oé, .CC>OétD926Ek(Z, €)aa

with some £ on the line segment between = and o,z.

Vi
TV

(Here V and D?f(x) denote the usual gradient and Hessian of f in x.)

Lemma 7. For a,b € C%, we have the following commutation relations:

i) [Ex(a,T), Q4] = a;Er(a,T) — Ry j(a,T), where
Rk,j(a T) =

Z k(a)a;li(a,T)

aER

7

d v;—1
~Ba ). )Y kla ( )H”l CHYVHEPT T T

i+1
veNd =1 (=0
aER

vq
TV
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11) [T‘]?Ek(a Q)] = b]Ek(bv Q) - Sk,j (b7 Q); where
Sk,i(b,Q) =
> k(@)oIi(b, Q)

aER4
d v;—1 )

— B, Zzzk qu1 Vz 1ZEQVZ€1QI~/H_1--.

i+1
VENd i=1 ¢=0
a€RL

Proof. Using (8) and Lemma 6 i), we obtain

[Ex(a, T) Qj]
; Q5]
reNd
= > A ey
veENd :

d v;—1

+ B, Z ZZ Zk )H”l CHPTHITY T T

veNd =1 (=0 aceRy
Applying the relation
ow; e,
we obtain
[Ex(a,T), Q5] = a;Ex(a,T) — Ry j(a,T).
This proves i). Similarly, we can prove ii).

Remark. If d =1 and G = Zy [21], we have

2y
Ry(a,Ty) = 2y + 1(1(1 - B)gv-&-%(a'ﬂ/)a

5,(0:Q) = 5 IbT = B)3, ,(0Q),
where Bf(z) = f(—z).

0
—FEi(z,w) = 2 E(2,w) Z k(a)a;ly(z,w); z,we ce,

393

Vd
d

Vq
STV

Since Ej(a,0) = 1, the Dunkl kernel Ey(a, 2); a,z € C%, is a unit in the

integral domain formal power series over C?. We define
t
E Ya,2) = Z L'a)z”.
veNd v
Writing
Ek(a7 Z)Ek_l(av Z) = Ek_l(a¢ Z)Ek(aa Z) =1,
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we obtain

@) =1, A (Y ) mes@r(o) g 5=

veNd | s<v
Thus {t,(a)},ena is a sequence of moment functions in a determined by
v
tola) =1, t,(a)=— Y ( ’ )m,,_s(a)ts(a).
s<v—1

The function E; l(a, z) occurs in the generalized Weyl commutation rela-
tions for the Dunkl kernel.

Theorem 2. Let a,b € C?, then:

i) Ex(b,Q)Ek(a,T) = Ex(a,T)Ex(b, P,), = (Pai,---,Pad), where
Poj = Qj — a;I + B '(a, T)R,”( T).

ii) Ey(a,T)EL(b,Q) = Ex(b,Q)Ex(a, Ly), Ly= (Lpa,...,Lyq), where
Lyj =Tj+ bl — E; ' (b,Q)Sk,;(b, Q).

iii) Ey(a, Q)Ek(b, Q) = Ep(a#bd, Q), Ei(a, T)Ey(b, T) = Eg(a#b, T),
where a#b is the convolution of a and b given by

iy (ath) = ; ( ! )ms(a)m,,_s(b).

Proof. We shall prove i), ii) follows in the same way. For j =1,2,....d, we
have

By 0, T)Q; Ex(a, T) = By Mo, T){ Bula, T)Q; — [Br(a, T), Q1.
Using Lemma 7 i), we obtain
E N a, T)Q;Ek(a,T) = Q; — a;I + E;  (a, )Ry j(a, T).
Thus implies that for v € N%:
E ' a,T)Q"Ey(a,T) = P/, Py = (Pa1,..., Puq),

where
Poj = Qj —a;l + E. ' (a,T)Ry j(a,T).

m, (b)
o

Multiplying by and summing, we get

Ei ' (a, T)Bi (b, Q) Ex(a, T) = Ey(b, Pa).
Then i) follows upon multiplication by Ey(a,T).

iii) It suffices to prove the first relation.
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Using (8) and (12), we can write

my (a)ms(b)

Bi(a, Q)Er(b,Q) = ot

v,s€Nd

-y Z( v )ms(a)mu—s(b) g

veNd | s<v

_ Z mu(a#b)Qu.

|
veNd v

V! sl

Thus we obtain
Ek(aa Q)Ek(bv Q) = Ek(a’#b? Q)
O

Remarks. 1) In the classical case (k = 0) [13, p. 223], the Weyl commu-
tation relations are given by

(0P e 0.Q) — (a) ((bQ) g(a.P)
e{aP) (0:P) — glatb,P),

¢(@Q)(bQ) _ a+b.Q)

where P = (a%,...,a%) and Q = (Q1,...,Qq).
2) If d =1 and G = Z3 [21], the Weyl commutation relations are given by

EL(0Q)Ey(aTy) = Ey(aTy)Ey(bF,);
E,(aTy) By (bQ) = Ey(bQ)Ey(aLy),

where
2y

P, =Q—al
a=@ N N |

aEv_l(aT,y)(I — B)Sat1(aly),

and

2y -1
Ly=T I — —bF 1 - B)S .
=Ty + 0] = 5 =B (BQ)T = B)Sai (0Q)
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