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Let A be a finite-dimensional, power-associative algebra
over a field F, either R or C, and let S, a subset of A, be
closed under scalar multiplication. A real-valued function f
defined on S, shall be called a subnorm if f(a) > 0 for all
0 6= a ∈ S, and f(αa) = |α|f(a) for all a ∈ S and α ∈ F. If in
addition, S is closed under raising to powers, then a subnorm
f shall be called stable if there exists a constant σ > 0 so that

f(am) ≤ σ f(a)m for all a ∈ S and m = 1, 2, 3 . . . .

The purpose of this paper is to provide an updated account of
our study of stable subnorms on subsets of finite-dimensional,
power-associative algebras over F. Our goal is to review and
extend several of our results in two previous papers, dealing
mostly with continuous subnorms on closed sets.

1. Introduction and review

Let A be a finite-dimensional algebra over a field F, either R or C. Through-
out the paper we shall assume that A is power-associative, that is, the sub-
algebra generated by any one element of A is associative.

Let S be a nonempty subset of A, closed under scalar multiplication,
namely a ∈ S and α ∈ F implies αa ∈ S. Following [GL1], we call a
function

f : S → R
a subnorm if for all a ∈ S and α ∈ F,

f(a) > 0, a 6= 0,

f(αa) = |α|f(a).

If in addition, S is closed under raising to powers, i.e., a ∈ S implies
am ∈ S, m = 1, 2, 3, . . . , then a subnorm f on S shall be called a submodulus
if

f(am) = f(a)m for all a ∈ S and m = 1, 2, 3, . . . .

We recall that if S is closed under scalar multiplication and under addi-
tion, then a real-valued function N on S is a norm if for all a, b ∈ S and
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α ∈ F,

N(a) > 0, a 6= 0,

N(αa) = |α|N(a),

N(a + b) ≤ N(a) + N(b);

hence, a norm is a subadditive, continuous subnorm on S.
Surely, a subnorm is said to be continuous if it is continuous with respect

to the (unique) finite-dimensional norm-topology on A.
Let a subset S ofA be closed under scalar multiplication and under raising

to powers. Following familiar terminology for norms, we say that a subnorm
f on S is stable if there exists a positive constant σ such that

f(am) ≤ σf(a)m for all a ∈ S and m = 1, 2, 3, . . . .

The purpose of this paper is to review and extend some of our results
in [GL1] and [GGL], dealing mostly with continuous subnorms on closed
subsets of finite-dimensional, power-associative algebras.

We begin by quoting:

Theorem 1.1 ([GL1, Theorem 1.1(a)]; [GGL, Theorem 1]). Let S, a
closed subset of a finite-dimensional, power-associative algebra A over F,
be closed under scalar multiplication and under raising to powers. Let f be
a continuous subnorm on S, and let g be a continuous submodulus on S.
Then f is stable if and only if f ≥ g on S.

An elementary consequence of this theorem is:

Corollary 1.1 ([GL1, Corollary 1.1]; [GGL, Corollary 1]). If A, S, and g
are as in Theorem 1.1, then g is the only continuous submodulus on S.

Proof. Let g′ be another submodulus on S. Since g and g′ are stable sub-
norms, Theorem 1.1 implies g ≥ g′ and g′ ≥ g, and the proof is complete. �

In the absence of a submodulus, Theorem 1.1 tells us nothing. Indeed, as
indicated by the following simple result, not every set has a submodulus:

Proposition 1.1 ([GGL, Proposition 3]). If S, a subset of a power-asso-
ciative algebra A over F, contains nonzero nilpotent elements, then S has
no submodulus.

Theorem 1.1 and Corollary 1.1 were illustrated both in [GL1] and [GGL]
by viewing the complex numbers

C ≡ {z = α + iβ : α, β ∈ R}

as a 2-dimensional algebra over the reals, and noting that

|z| ≡
√

α2 + β2(1.1)
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is a continuous submodulus. Thus, by Corollary 1.1, the absolute-value func-
tion in (1.1) is the only continuous submodulus on C; and by Theorem 1.1,
a continuous subnorm f on C is stable if and only if f(z) ≥ |z| for all z ∈ C.
For instance, observing that for each fixed p, 0 < p ≤ ∞,

|z|p ≡ (|α|p + |β|p)1/p, z = α + iβ ∈ C,

is a continuous subnorm on C (a norm if and only if 1 ≤ p ≤ ∞), we find
that | · |p is stable on C if and only if 0 < p ≤ 2.

Similar examples in [GL1] and [GGL] concerned the non-commutative,
4-dimensional, associative algebra of the quaternions,

H ≡ {q = α + iβ + jγ + kδ : α, β, γ, δ ∈ R}, i2 = j2 = k2 = ijk = −1,

with its continuous submodulus

|q| ≡
√

α2 + β2 + γ2 + δ2;

and the 8-dimensional, power-associative algebra of the octonions (often
called the Cayley numbers or the octaves),

O ≡ {c = γ1 + e2γ2 + · · ·+ e8γ8 : γi ∈ R},
with its intricate multiplication rule (e.g., [B]) and its continuous submod-
ulus

|c| ≡
√

γ2
1 + · · ·+ γ2

8 .(1.2)

With Theorem 1.1 in mind, we remark that if our set is closed and consists
only of nilpotents, then the question of stability becomes a triviality:

Proposition 1.2 ([GGL, Proposition 4]). Let S be a closed set of nilpo-
tent elements in a finite-dimensional, power-associative algebra, closed un-
der scalar multiplication and under raising to powers. Then any continuous
subnorm on S is stable.

Another simple observation is given by the following assertion which may
prove useful in investigating stability, even when a submodulus does not
exist:

Proposition 1.3 ([GGL, Proposition 5]). Let S, a closed subset of a finite-
dimensional, power-associative algebra A over F, be closed under scalar mul-
tiplication and under raising to powers. Let f and g be continuous subnorms
on S such that f is stable and f ≤ g. Then g is stable on S.

If S, a subset of Fn×n, the algebra of n × n matrices over F, is void of
nonzero nilpotent matrices, then obviously, the spectral radius,

ρ(A) ≡ max{|λ| : λ eigenvalue of A}, A ∈ S,

is a submodulus on S. This fact, combined with Proposition 1.1 and Corol-
lary 1.1, immediately produce:
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Theorem 1.2 ([GL1, Theorem 1.2]; [GGL, Proposition 6]). Let S, a sub-
set of Fn×n, be closed under scalar multiplication and under raising to pow-
ers. Then:

(a) S has a submodulus if and only if S has no nonzero nilpotent matrices.
(b) If S has no nonzero nilpotents, then ρ, the spectral radius, is a sub-

modulus on S.
(c) If S is closed and has no nonzero nilpotents, then ρ is the only contin-

uous submodulus on S.

We note that if S in Theorem 1.2 is not closed, then S may have infinitely
many continuous submoduli. For example, let S be the class of all n × n
invertible matrices over F. Evidently, this open set is closed under scalar
multiplication and under raising to powers, and is void of nonzero nilpotents.
Put

τ(A) ≡ min{|λ| : λ eigenvalue of A}, A ∈ S,

and observe that τ is a positive continuous function on S, satisfying for all
α ∈ F, A ∈ S, and positive integers m,

τ(αA) = |α|τ(A),

τ(Am) = τ(A)m.

Hence,
gκ(A) ≡ ρ(A)κ+1τ(A)−κ

is a continuous submodulus on S for every real constant κ.
If S in Theorem 1.2 is not closed, we also observe that S may have infin-

itely many discontinuous submoduli. An example supporting this statement
was given in [GGL] with S the class of all n × n normal matrices over F.
Since this closed set is closed under scalar multiplication and under raising
to powers, and since it is void of nonzero nilpotents, Theorem 1.2(c) tells us
that the only continuous submodulus on S is the spectral radius. It is not
hard to see, however, that

hκ(A) ≡

{
ρ(A)κ+1τ(A)−κ, τ(A) 6= 0,

ρ(A), τ(A) = 0,

is a submodulus on S for every real constant κ. As expected, if κ 6= 0, then
hκ is discontinuous, since by appealing to the normal matrix

Aε = diag(1, . . . , 1, ε), ε > 0,

we get

lim
ε→0

hκ(Aε) =

{
∞, κ > 0,

0, κ < 0,

whereas hκ(A0) = 1. Other examples of a similar nature can be found in
[GL2].
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Dealing with matrices, we follow standard nomenclature and call a sub-
norm f on a subset S of Fn×n spectrally dominant if f majorizes the spectral
radius, i.e.,

f(A) ≥ ρ(A) for all A ∈ S.

Hence, Theorems 1.1 and 1.2(c) yield:

Theorem 1.3 ([GL1, Theorem 1.3(a)]; [GGL, Corollary 4]). Let S, a
closed subset of Fn×n, be closed under scalar multiplication and under raising
to powers. If S contains no nonzero nilpotent matrices and f is a continuous
subnorm on S, then f is stable if and only if it is spectrally dominant on S.

It is not hard to see that half of Theorem 1.3 can be obtained without
assuming that S contains no nonzero nilpotents:

Proposition 1.4 ([GL2, Theorem 1.5(b)]; [GGL, Proposition 7]). Let S,
a closed subset of Fn×n, be closed under scalar multiplication and under
raising to powers, and let f be a continuous, stable subnorm on S. Then f
is spectrally dominant on S.

As for the other half of Theorem 1.3, we claim that the assumption that
S contains no nonzero nilpotents cannot be dropped. We shall prove this
assertion (compare [GGL]) by exhibiting a subalgebra A of Fn×n that con-
tains nonzero nilpotents as well as elements which are not nilpotent, and a
norm that is spectrally dominant but not stable on A.

Indeed, let I be the n× n identity matrix, and let Un denote the class of
strictly upper triangular matrices in Fn×n. Then

A ≡ {αI + B : α ∈ F, B ∈ Un}
is a subalgebra of Fn×n of the desired type. Let N be a norm on Un and
define

N ′(A) ≡ max{|α|, N(B)}, A = αI + B ∈ A, B ∈ Un.

Evidently, N ′ is a spectrally dominant norm on A, so it remains to show
that N ′ is unstable. Consider

Aκ = I + Jκ ∈ A
where Jκ is the n × n matrix whose upper-right entry is a constant κ and
all other entries vanish. Fix κ so that N(Jκ) = 1; hence N ′(Aκ) = 1. On
the other hand, since Jm

κ = 0 for all m ≥ 2, we have

Am
κ = (I + Jκ)m = I + mJκ, m = 1, 2, 3, . . . .

So, as
N(mJκ) = mN(Jκ) = m −→

m→∞
∞,

we obtain

N ′(Am
κ ) = N ′(I + mJκ) = max{1, N(mJκ)} −→

m→∞
∞,
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and our assertion holds.

2. Existence and uniqueness of submoduli

Theorem 1.2 provides a rather complete account regarding the existence and
uniqueness of submoduli on sets of matrices. As we shall see, this theorem
can be adapted almost verbatim to describe the situation for arbitrary finite-
dimensional, associative algebras over F.

Verily, if A is a finite-dimensional, associative algebra over F, it is well
known that every element a ∈ A possesses a unique minimal polynomial,
i.e., a monic pa of positive degree, with coefficients in F, satisfying pa(a) = 0
and dividing every other polynomial that annihilates a. Hence, for each
a ∈ A, we may define

ρ′(a) ≡ max{|λ| : λ root of pa}.(2.1)

Since A is associative, it is algebraically isomorphic to a matrix algebra
over F, where the operations (scalar multiplication, addition and multipli-
cation) and the topology are preserved. Let ϕ be such an isomorphism and
denote the corresponding matrix algebra by Aϕ, so that

ϕ : A → Aϕ; ϕ(a) ≡ Aa ∈ Aϕ, a ∈ A.(2.2)

It follows that if a is an element in A with minimal polynomial pa, then pa

is the minimal polynomial of the corresponding matrix Aa = ϕ(a). So, ρ′(a)
and the spectral radius of Aa coincide, i.e.,

ρ′(a) = ρ(ϕ(a)) = ρ(Aa).(2.3)

Using the definition of ρ′ in (2.1), and the common properties of the
isomorphism ϕ and the spectral radius on Aϕ, we readily find that for every
a ∈ A and α ∈ F,

ρ′(a) ≥ 0,

ρ′(αa) = |α|ρ′(a),(2.4)

ρ′(am) = ρ′(a)m, m = 1, 2, 3, . . . .

Further, we obtain that ρ′ is a continuous function on A that vanishes only
on nilpotent elements.

Assisted by this argument and by Corollary 1.1, we are now ready to post
the following generalization of Theorem 1.2:

Theorem 2.1 (compare [GGL, Theorem 2]). Let S, a subset of a finite-
dimensional, associative algebra A over F, be closed under scalar multipli-
cation and under raising to powers. Then:

(a) S has a submodulus if and only if S has no nonzero nilpotent elements.
(b) If S has no nonzero nilpotents then the continuous function ρ′ defined

in (2.1), is a submodulus on S.
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(c) If S is closed and has no nonzero nilpotents, then ρ′ is the only con-
tinuous submodulus on S.

Falling back on our last argument, we comment that if f is a subnorm
(even a submodulus or a norm) on the subset S described in Theorem 2.1,
and if ϕ is the isomorphism in (2.2), then fϕ, defined by

fϕ(Aa) ≡ f(a), a ∈ S,

is a subnorm (submodulus, norm) on the set Sϕ, the image of S under ϕ,
and vice versa. Moreover, it is not hard to see that f will be continuous or
stable on S if and only if fϕ will be so on Sϕ.

Hence, we can register the following analogue of Proposition 1.4:

Proposition 2.1. Let S, a closed subset of a finite-dimensional, associative
algebra A over F, be closed under scalar multiplication and under raising to
powers, and let f be a continuous, stable subnorm on S. Then f majorizes
ρ′ on S.

To illustrate Theorem 2.1, let us revisit the algebra of complex numbers

C ≡ {z = α + iβ : α, β ∈ R},
and note that the minimal polynomial of z ∈ C (over the reals) is

pz(λ) = λ2 − 2αλ + α2 + β2, z = α + iβ.

Since the roots of pz are z and z, it follows that

ρ′(z) = |z|.(2.5)

Furthermore, as C contains no nonzero nilpotents, Theorem 2.1(c) implies
the previously mentioned fact (see (1.1)) that ρ′ in (2.5) is the only contin-
uous submodulus on C.

As was shown in [GL1] and [GGL], (2.5) can be also obtained by con-
sidering the familiar isomorphism

z → Az ≡
(

α β
−β α

)
, z = α + iβ ∈ C,

that maps C onto the 2-dimensional subalgebra of R2×2,

A2(R) ≡
{(

α β
−β α

)
: α, β ∈ R

}
.

Referring to (2.3), we obtain

ρ′(z) = ρ

(
α β
−β α

)
=

√
α2 + β2 = |z|, z = α + iβ ∈ C,

and (2.5) follows.
When A is merely power-associative, the question of existence and espe-

cially uniqueness of a submodulus is more demanding, and it seems that
only parts (a) and (b) of Theorem 2.1 can be salvaged.
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We begin our examination of this case by observing that power-asso-
ciativity is enough to force the existence of a minimal polynomial for every
element of A; hence the definition of ρ′ in (2.1) remains valid. Now let a ∈ A
be an arbitrary element, and let Aa denote the subalgebra of A generated
by a. Since A is power-associative, Aa is associative; so by the argument
preceding Theorem 2.1, we find that for every a ∈ A and α ∈ F, ρ′ satisfies
the relations in (2.4), and ρ′(a) = 0 if and only if a is nilpotent. Therefore,
in analogy with the first two parts of Theorem 2.1, we may record:

Theorem 2.2. Let S, a subset of a finite-dimensional, power-associative
algebra A over F, be closed under scalar multiplication and under raising to
powers. Then:

(a) S has a submodulus if and only if S has no nonzero nilpotent elements.
(b) If S has no nonzero nilpotents then ρ′ defined in (2.1), is a submodulus

on S.

As it stands, we are unable to determine whether, in the power-associative
case, ρ′ is always continuous on A. This drawback can be mended if one
is willing to assume more than just power-associativity; for example, that
A is an alternative algebra, i.e., that the subalgebra generated by any two
elements in A is associative.

Assuming that A is alternative, consider the regular left representation of
A, where with each element a ∈ A we associate the mapping Ta defined by

Tax = ax for all x ∈ A.(2.6)

Since Ta is a linear transformation on a finite-dimensional vector space, its
spectral radius,

ρ(Ta) ≡ max{|λ| : λ eigenvalue of Ta},

is well defined. Set

ρ′′(a) ≡ ρ(Ta), a ∈ A.(2.7)

Then surely, for every a ∈ A and α ∈ F, ρ′′ satisfies

ρ′′(a) ≥ 0,

ρ′′(αa) = |α|ρ′′(a).

Moreover, ρ′′ is continuous on A since the matrix coefficients of Ta relative
to any basis of A are continuous.

Now, let a and x be any two elements in A. Since A is alternative, the
subalgebra of A generated by a and x is associative. Hence, by the definition
of Ta in (2.6), for every positive integer m, we obtain

Tam = Tm
a .(2.8)
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Consequently, we get

ρ′′(am) = ρ′′(a)m, m = 1, 2, 3, . . . ;

and further, we maintain that an element a ∈ A is nilpotent if and only if
ρ′′(a) = 0. Indeed, if a is nilpotent, then ak = 0 for some positive integer k.
Thus Tak = 0; so by (2.8),

ρ(Ta)k = ρ(T k
a ) = ρ(Tak) = 0,

whence ρ′′(a) = ρ(Ta) = 0.
Conversely, if ρ′′(a) = 0, then ρ(Ta) = 0; so Ta is nilpotent, that is, T k

a = 0
for some k. By (2.8) therefore, Tak = 0, or in other words, akx = 0 for all
x ∈ A. Hence, ak+1 = 0, and our claim follows.

With this discussion, and by Corollary 1.1, we have thus established:

Theorem 2.3. Let S, a subset of a finite-dimensional, alternative algebra
A over F, be closed under scalar multiplication and under raising to powers.
Then:

(a) S has a submodulus if and only if S has no nonzero nilpotent elements.
(b) If S has no nonzero nilpotents then the continuous function ρ′′ defined

in (2.7), is a submodulus on S.
(c) If S is closed and has no nonzero nilpotents, then ρ′′ is the only con-

tinuous submodulus on S.

We recall (e.g., [B, Theorem 2]) that the octonions constitute an alter-
native algebra. However, knowing already that the only continuous sub-
modulus on O is the absolute value function in (1.2), all we can learn from
Theorem 2.3 about the octonions is that for each c ∈ O, the spectral radius
of the left regular representation Tc, is |c|.

Note that if A is associative, then ρ′ in (2.1) and ρ′′ in (2.7) coincide. This
is so since in the associative case, the roots of pa, the minimal polynomial
of an element a ∈ A, are those of the characteristic polynomial of the left
representation Ta in (2.6).

3. Stable norms on Rn×n

Motivated by Theorem 1.3, we tried, without a shred of success, to charac-
terize the class of all matrix algebras over F that contain nonzero nilpotents,
with the property that a norm on such an algebra will be stable if and only
if it is spectrally dominant.

The renowned Friedland–Zenger theorem tells us that Cn×n, the algebra
of n× n complex matrices, belongs to this class, namely:

Theorem 3.1 ([FZ, Theorem 1]). A norm on Cn×n is stable if and only if
it is spectrally dominant.
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In [GGL] we conjectured that Rn×n also belongs to this class. Unable to
prove this conjecture, we settled for a simpler result about absolute norms.
Recalling that a norm N on Fn×n is absolute if

N(A) = N(A+), A ∈ Fn×n,

where A+ is the matrix obtained by taking the absolute values of the entries
of A, we proved:

Theorem 3.2 ([GGL, Theorem 5]). An absolute norm on Rn×n is stable
if and only if it is spectrally dominant.

Theorem 3.2 can be easily strengthened by recalling (e.g., [G2]) that a
norm N on Fn×n is quasimonotone if it is monotone on the cone of matrices
with positive entries; i.e.,

0 ≤ A ≤ B ⇒ f(A) ≤ f(B), A, B ∈ Fn×n,

where the inequalities 0 ≤ A ≤ B are construed entrywise.
With this definition we are led to:

Theorem 3.3. A quasimonotone norm on Rn×n is stable if and only if it
is spectrally dominant.

Proof. The proof is almost identical to that of Theorem 5 in [GGL]. If N is
a stable norm on Rn×n, then by Proposition 1.4, N is spectrally dominant.

Conversely, let N be a quasimonotone, spectrally dominant norm on
Rn×n. Extend N to Cn×n by putting

N ′(A) ≡ N(A+), A ∈ Cn×n.

As N is quasimonotone, it follows that N ′ is a norm on Cn×n since

N ′(A) > 0, A 6= 0,

N ′(αA) = |α|N ′(A), α ∈ C, A ∈ Cn×n,

and for all A,B ∈ Cn×n,

N ′(A + B) = N((A + B)+)

≤ N(A+ + B+)

≤ N(A+) + N(B+)

= N ′(A) + N ′(B).

Now, an old result of Frobenius (e.g., [W], [HJ, Theorem 8.1.18] and
[G1, Example 1]) maintains that ρ, the spectral radius, is semimonotone on
Cn×n; that is, if B and C are n× n matrices with B ≥ C+, then

ρ(B) ≥ ρ(C).

It follows that

N ′(A) = N(A+) ≥ ρ(A+) ≥ ρ(A), A ∈ Cn×n,
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hence N ′ is spectrally dominant on Cn×n. By the Friedland–Zenger theorem,
therefore, N ′ is stable on Cn×n; hence N , the restriction of N ′ to the real
n× n matrices, is stable on Rn×n. �

With Theorem 3.3 at hand, recall that a norm N on Fn×n is monotone if

A+ ≤ B+ ⇒ N(A) ≤ N(B), A,B ∈ Fn×n;

so monotonicity implies quasimonotonicity. Further, a well-known result ([Z,
Theorem 108.1], [HJ, Theorem 5.5.10]; compare [BSW]) states that a norm
N on Fn×n is monotone if and only if it is absolute. Thus, Theorem 3.3 is
indeed an extension of Theorem 3.2. This is a nontrivial extension, as some
of the best known norms on Fn×n are quasimonotone but not monotone
([G1] and [G2]); e.g., the numerical radius

r(A) ≡ max{|x∗Ax| : x ∈ Cn, x∗x = 1}, A ∈ Fn×n,

and the `p operator norms for 1 < p < ∞,

‖A‖p ≡ max{|Ax|p : x ∈ Cn, |x|p = 1}, A ∈ Fn×n,

where

|x|p ≡

 n∑
j=1

|ξj |p
1/p

, x = (ξj), (n ≥ 2).

While Theorem 3.3 excludes norms that are not qusimonotone, we remark
that there is a whole universe of such norms, some of which are easy to come
by. In fact, in order to display a non-quasimonotone norm on Fn×n, it suffices
to construct such a norm on Fn. For let | · | be a non-quasimonotone norm
on Fn, so we can find vectors x0, y0 ∈ Fn with 0 ≤ x0 ≤ y0 and |x0| > |y0|.
For A ∈ Fn×n, write A = (a1, . . . , an) where a1, . . . , an are the columns of
A, and set

‖A‖ ≡ max
1≤j≤n

|aj |.

Then ‖ · ‖ is obviously a norm on Fn×n. Moreover, putting

A0 = (x0, . . . , x0), B0 = (y0, . . . , y0),

we get 0 ≤ A0 ≤ B0 and ‖A0‖ > ‖B0‖; hence ‖ · ‖ is not quasimonotone.
To illustrate the construction above (compare [G2]) consider the matrix

H =
(

2 −1
−1 1

)
.

Since H is positive definite, it follows that

(x, y)H ≡ yT Hx, x, y ∈ R2,

(T denoting the transpose) is an inner product on R2; thus

|x|H ≡ (x, x)1/2
H = (2ξ2

1 + ξ2
2 − 2ξ1ξ2)1/2, x = (ξ1, ξ2)T ,
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is a norm on the same space. Further, the column vectors x0 = (1, 0)T , y0 =
(1, 1)T , satisfy 0 ≤ x0 ≤ y0, |x0|H > |y0|H ; so | · |H is not quasimonotone on
R2, and the corresponding matrix norm,

‖A‖H ≡ max{|a1|H , |a2|H}, A = (a1, a2),(3.1)

is not quasimonotone on R2×2.
Appealing to the 2× 2 matrix E all whose entries are 1, we see that the

norm in (3.1) is not spectrally dominant. Not surprisingly, ‖ · ‖H is not
stable either, since

‖E‖H = 1, ‖Em‖H = 2m−1‖E‖H = 2m−1 −→
m→∞

∞.

In concluding this paper, we point out that the Friedland–Zenger theorem
cannot be extended to proper subnorms, i.e., to subnorms which are not
norms. Indeed, let f be a subnorm (even a norm) on Cn×n, and define

g(A) ≡ max{ρ(A), f(A−DA)}, A ∈ Cn×n,

where DA is the diagonal part of A. Clearly g is a spectrally dominant sub-
norm on Cn×n. Now, as in the example following Proposition 1.4, consider
the matrix

Aκ = I + Jκ,

where Jκ is the n×n matrix whose upper-right entry is a real constant κ and
the rest of its entries vanish. Select κ such that f(Jκ) = 1. Then g(Aκ) = 1,
whereas

g(Am
κ ) = g(I + mJκ) = f(mJκ) = m −→

m→∞
∞;

so g is unstable on Cn×n. Surely, g is a proper subnorm on Cn×n. For if g
were a norm, then by its spectral dominance, the Friedland–Zenger theorem
would force it to be stable on Cn×n.
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