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The W3 algebra of central charge 6/5 is realized as a sub-
algebra of the vertex operator algebra V√

2A2
associated with

a lattice of type
√

2A2 by using both coset construction and
orbifold theory. It is proved that W3 is rational. Its irre-
ducible modules are classified and constructed explicitly. The
characters of those irreducible modules are also computed.

1. Introduction

The vertex operator algebras associated with positive definite even lattices
afford a large family of known examples of vertex operator algebras. An
isometry of the lattice induces an automorphism of the lattice vertex op-
erator algebra. The subalgebra of fixed points of an automorphism is the
so-called orbifold vertex operator algebra. In this paper we deal with the
case where the lattice L =

√
2A2 is

√
2 times an ordinary root lattice of

type A2 and the isometry τ is an element of the Weyl group of order 3.
We use this algebra to study the W3 algebra of central charge 6/5. In fact,
by using both coset construction and orbifold theory we construct the W3

algebra of central charge 6/5 inside VL and classify its irreducible modules.
We also prove that the W3 algebra is rational and compute the characters
of the irreducible modules.

The vertex operator algebra VL associated with L =
√

2A2 contains three
mutually orthogonal conformal vectors ω1, ω2, ω3 with central charge c =
1/2, 7/10, or 4/5 respectively [10]. The subalgebra Vir(ωi) generated by
ωi is the Virasoro vertex operator algebra L(c, 0), which is the irreducible
unitary highest weight module for the Virasoro algebra with central charge
c and highest weight 0. The structure of VL as a module for Vir(ω1) ⊗
Vir(ω2)⊗ Vir(ω3) was discussed in [23]. Among other things it was shown
that VL contains a subalgebra of the form L(4/5, 0) ⊕ L(4/5, 3). Such a
vertex operator algebra is called a 3-state Potts model. This subalgebra is
contained in the subalgebra (VL)τ of fixed points of τ . There is another
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subalgebra M in VL, which is of the form

L

(
1
2
, 0
)
⊗ L

(
7
10

, 0
)
⊕ L

(
1
2
,
1
2

)
⊗ L

(
7
10

,
3
2

)
and is invariant under τ . The representation theory of M was studied in
[21] and [24].

We are interested in the subalgebra M τ of fixed points of τ in M . Its
Virasoro element is ω = ω1+ω2. The central charge of ω is 1/2+7/10 = 6/5.
We find an element J of weight 3 in M τ such that the component operators
L(n) = ωn+1 and J(n) = Jn+2 satisfy the same commutation relations as in
[3, (2.1), (2.2)] for W3. Thus the vertex operator subalgebra W generated
by ω and J is a W3 algebra with central charge 6/5.

We construct 20 irreducible M τ -modules. 8 of them are inside irreducible
untwisted M -modules, while 6 of them are inside irreducible τ -twisted M -
modules and the remaining 6 are inside irreducible τ2-twisted M -modules.
There are exactly two inequivalent irreducible τ i-twisted M -modules MT (τ i)
and WT (τ i), i = 1, 2. We investigate the irreducible τ i-twisted VL-modules
constructed in [7] and obtain MT (τ i) and WT (τ i) inside them.

We classify the irreducible modules forW by determining the Zhu algebra
A(W) (cf. [36]). The method used here is similar to that in [35], where the
Zhu algebra of a W3 algebra with central charge −2 is studied. We can define
a map of the polynomial algebra C[x, y] with two variables x, y to A(W) by
x 7→ [ω] and y 7→ [J ], which is a surjective algebra homomorphism. Thus
it is sufficient to determine its kernel I. The key point is the existence of
a singular vector v for the W3 algebra W of weight 12. A positive definite
invariant Hermitian form on VL implies that v is in fact 0. Thus [v] = 0.
Moreover, [J(−1)v] = [J(−2)v] = [J(−1)2v] = 0. Hence the corresponding
polynomials in C[x, y] must be contained in the ideal I. It turns out that I
is generated by those four polynomials and the classification of irreducible
W-modules is established by Zhu’s theory ([36]). That is, there are exactly
20 inequivalent irreducible W-modules. The calculation of explicit form of
the singular vector v and the calculation of the ideal I were done by a
computer algebra system Risa/Asir.

By the classification of irreducible W-modules and a positive definite in-
variant Hermitian form, we can show that M τ = W. The eigenvalues of
the action of weight preserving operators L(0) = ω1 and J(0) = J2 on
the top levels of those 20 irreducible M τ -modules coincide with the values

∆
(

n m
n′ m′

)
and w

(
n m
n′ m′

)
of [14, (1.2), (5.6)] with p = 5. Hence our M τ

is an algebra denoted by [Z(5)
3 ] in [14].

We prove that W is C2-cofinite and rational by using the singular vector
v of weight 12 and the irreducible modules forW. In the course of the proof
we use a result about a general vertex operator algebra V. It says that if V
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is C2-cofinite, then V is rational if and only if A(V ) is semisimple and any
simple A(V )-module generates an irreducible V -module. This result will
certainly be useful in the future study of relationship between rationality
and C2-cofiniteness.

We also study the characters of those irreducible M τ -modules. Using the
modular invariance of trace functions in orbifold theory (cf. [9]), we describe
the characters of the 20 irreducible M τ -modules in terms of the characters
of irreducible unitary highest weight modules for the Virasoro algebras.

The results in this paper have applications to the Monster simple group.
Recently, it was shown in [22] that the Z3 symmetry of a 3-state Potts model
in (VL)τ affords 3A elements of the Monster simple group. Such a result has
been suggested by [28]. It is expected that the Z3 symmetry of M τ affords
3B elements.

The organization of the paper is as follows: In Section 2 we review some
properties of M for later use. In Section 3 we define the vector J and
compute the commutation relations among the component operators L(n) =
ωn+1 and J(n) = Jn+2. In Section 4 we construct 20 irreducible M τ -modules
and discuss their properties. In Section 5 we determine the Zhu algebra
of the vertex operator subalgebra W generated by ω and J and show that
M τ =W. Thus we conclude that M τ has exactly 20 inequivalent irreducible
modules. Finally, in Section 6 we study the characters of those irreducible
M τ -modules.

2. Subalgebra M of V√
2A2

In this section we fix notation. For basic definitions concerning lattice vertex
operator algebras we refer to [7] and [17]. We also recall certain properties
of the vertex operator algebra V√2A2

(cf. [23]).
Let α1, α2 be the simple roots of type A2 and set α0 = −(α1 + α2). Then

〈αi, αi〉 = 2 and 〈αi, αj〉 = −1 if i 6= j. Set βi =
√

2αi and let L = Zβ1+Zβ2

be the lattice spanned by β1 and β2. We usually denote L by
√

2A2.
We follow Sections 2 and 3 of [7] with L =

√
2A2, p = 3, and q = 6. In

our case 〈α, β〉 ∈ 2Z for all α, β ∈ L, so that the alternating Z-bilinear map
c0 : L×L→ Z/6Z defined by [7, (2.9)] is trivial. Thus the central extension

1 −→ 〈κ6〉 −→ L̂
−−→ L −→ 1(2.1)

determined by the commutator condition aba−1b−1 = κ
c0(a,b)
6 splits. Then

for each α ∈ L, we can choose an element eα of L̂ so that eαeβ = eα+β . The
twisted group algebra C{L} is isomorphic to the ordinary group algebra
C[L].
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We adopt the same notation as in [21] to denote cosets of L in the dual
lattice L⊥ = {α ∈ Q⊗Z L | 〈α, L〉 ⊂ Z}, namely,

L0 = L, L1 =
−β1 + β2

3
+ L, L2 =

β1 − β2

3
+ L,

L0 = L, La =
β2

2
+ L, Lb =

β0

2
+ L, Lc =

β1

2
+ L,

and

L(i,j) = Li + Lj

for i = 0, a, b, c and j = 0, 1, 2, where {0, a, b, c} ∼= Z2 × Z2. Then, L(i,j), i ∈
{0, a, b, c}, j ∈ {0, 1, 2} are all the cosets of L in L⊥ and L⊥/L ∼= Z2×Z2×Z3.

Our notation for the vertex operator algebra (VL, Y ( · , z)) associated with
L is standard [17]. In particular, h = C ⊗Z L is an abelian Lie algebra,
ĥ = h ⊗ C[t, t−1] ⊕ Cc is the corresponding affine Lie algebra, M(1) =
C[α(n) ; α ∈ h, n < 0], where α(n) = α ⊗ tn, is the unique irreducible ĥ-
module such that α(n)1 = 0 for all α ∈ h and n > 0, and c = 1. As a
vector space VL = M(1) ⊗ C[L] and for each v ∈ VL, a vertex operator
Y (v, z) =

∑
n∈Z vnz−n−1 ∈ End(VL)[[z, z−1]] is defined. The coefficient vn

of z−n−1 is called a component operator. The vector 1 = 1⊗ 1 is called the
vacuum vector.

By Dong [5], there are exactly 12 isomorphism classes of irreducible VL-
modules, which are represented by VL(i,j) , i = 0, a, b, c and j = 0, 1, 2. We
use the symbol eα, α ∈ L⊥ to denote a basis of C{L⊥}.

To describe certain weight 2 elements in VL, we introduce the following
notation:

x(α) = e
√

2α + e−
√

2α,

y(α) = e
√

2α − e−
√

2α,

w(α) =
1
2
α(−1)2 − x(α)

for α ∈ {±α0,±α1,±α2}. We have

w(αi)1w(αj) =

{
8w(αi) if i = j

w(αi) + w(αj)− w(αk) if i 6= j,
(2.2)

where k is such that {i, j, k} = {0, 1, 2}. Moreover, w(αi)2w(αj) = 0 and

w(αi)3w(αj) =

{
41 if i = j
1
21 if i 6= j.

(2.3)
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Let

ω =
1
5
(
w(α1) + w(α2) + w(α0)

)
,

ω̃ =
1
6
(
α1(−1)2 + α2(−1)2 + α0(−1)2

)
,

ω1 =
1
4
w(α1), ω2 = ω − ω1, ω3 = ω̃ − ω.

Then ω̃ is the Virasoro element of VL and ω1, ω2, ω3 are mutually orthogonal
conformal vectors of central charge 1/2, 7/10, 4/5 respectively (cf. [10]). The
subalgebra Vir(ωi) generated by ωi is isomorphic to the Virasoro vertex
operator algebra of given central charge, and ω1, ω2, and ω3 generate

Vir(ω1)⊗Vir(ω2)⊗Vir(ω3) ∼= L

(
1
2
, 0
)
⊗ L

(
7
10

, 0
)
⊗ L

(
4
5
, 0
)

.

We study certain subalgebras, and also submodules for them in VLi , i =
0, a, b, c and VLj , j = 0, 1, 2. Set

M i
k = {v ∈ VLi | (ω3)1v = 0},

W i
k =

{
v ∈ VLi | (ω3)1v =

2
5
v

}
, for i = 0, a, b, c,

and

M j
t = {v ∈ VLj | (ω1)1v = (ω2)1v = 0},

W j
t =

{
v ∈ VLj | (ω1)1v = 0, (ω2)1v =

3
5
v

}
, for j = 0, 1, 2.

Then M0
k and M0

t are simple vertex operator algebras. Furthermore,
{M i

k, W i
k, i = 0, a, b, c} and {M j

t , W j
t , j = 0, 1, 2} are the sets of all in-

equivalent irreducible modules for M0
k and M0

t , respectively ([21], [23] and
[24]). We also have

M0
k
∼= L

(
1
2
, 0
)
⊗ L

(
7
10

, 0
)
⊕ L

(
1
2
,
1
2

)
⊗ L

(
7
10

,
3
2

)
,

W 0
k
∼= L

(
1
2
, 0
)
⊗ L

(
7
10

,
3
5

)
⊕ L

(
1
2
,
1
2

)
⊗ L

(
7
10

,
1
10

)
,

Ma
k
∼= M b

k
∼= L

(
1
2
,

1
16

)
⊗ L

(
7
10

,
7
16

)
,

W a
k
∼= W b

k
∼= L

(
1
2
,

1
16

)
⊗ L

(
7
10

,
3
80

)
,

M c
k
∼= L

(
1
2
,
1
2

)
⊗ L

(
7
10

, 0
)
⊕ L

(
1
2
, 0
)
⊗ L

(
7
10

,
3
2

)
,
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W c
k
∼= L

(
1
2
,
1
2

)
⊗ L

(
7
10

,
3
5

)
⊕ L

(
1
2
, 0
)
⊗ L

(
7
10

,
1
10

)
as L(1/2, 0)⊗ L(7/10, 0)-modules and

M0
t
∼= L

(
4
5
, 0
)
⊕ L

(
4
5
, 3
)

, W 0
t
∼= L

(
4
5
,
2
5

)
⊕ L

(
4
5
,
7
5

)
,

M1
t
∼= M2

t
∼= L

(
4
5
,
2
3

)
, W 1

t
∼= W 2

t
∼= L

(
4
5
,

1
15

)
as L(4/5, 0)-modules.

Note also that

VL(i,j)
∼=
(
M i

k ⊗M j
t

)
⊕
(
W i

k ⊗W j
t

)
as an M0

k ⊗M0
t -module.

We consider the following three isometries of (L, 〈·, ·〉):

τ : β1 → β2 → β0 → β1,

σ : β1 → β2, β2 → β1,

θ : βi → −βi, i = 1, 2.

Note that τ is fixed-point-free and of order 3. Note also that στσ =
τ−1. The isometries τ, σ, and θ of L can be extended to isometries of L⊥.
Then they induce permutations on L⊥/L. Since L̂ is a split extension, the
isometry τ of L lifts naturally to an automorphism of L̂. Then it induces
an automorphism of VL:

α1(−n1) · · ·αk(−nk)eβ 7−→ (τα1)(−n1) · · · (ταk)(−nk)eτβ.

By abuse of notation, we denote it by τ also. Moreover, we can consider
the action of τ on VL(i,j) in a similar way. We apply the same argument to
σ and θ.

Set M = M0
k . The vertex operator algebra M plays an important role in

this paper. Recall that

M ∼= L

(
1
2
, 0
)
⊗ L

(
7
10

, 0
)
⊕ L

(
1
2
,
1
2

)
⊗ L

(
7
10

,
3
2

)
as Vir(ω1) ⊗ Vir(ω2)-modules. Note that ω is the Virasoro element of M
whose central charge is 6/5. For u ∈ M , we have ω1u = hu for some h ∈ Z
if and only if ω̃1u = hu. In such a case h is called the weight of u. Note
also that M is generated by w(α1), w(α2), and w(α0). In particular, M is
invariant under τ , σ, and θ. In fact, θ acts on M as the identity.

We next show that the automorphism group Aut(M) of M is generated
by σ and τ .
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Theorem 2.1.

(1) There are exactly three conformal vectors of central charge 1/2 in M ,
which are 1

4w(αi), i = 0, 1, 2.
(2) Aut(M) = 〈σ, τ〉 is isomorphic to a symmetric group of degree 3.

Proof. We first consider conformal vectors in M . By [27, Lemma 5.1], a
weight 2 vector v is a conformal vector of central charge 1/2 if and only
if v1v = 2v and v3v = 1

41. Since {w(α0), w(α1), w(α2)} is a basis of the
weight 2 subspace of M , we may write v =

∑2
i=0 aiw(αi) for some ai ∈ C.

From (2.2) and (2.3) we see that v1v = 2v and v3v = 1
41 hold only if

(a0, a1, a2) = (1/4, 0, 0), (0, 1/4, 0), or (0, 0, 1/4). This proves (1). Then any
automorphism of M induces a permutation on {w(α0), w(α1), w(α2)}. If an
automorphism induces the identity permutation on the set, it must be the
identity since M is generated by w(α1), w(α2), and w(α0). Now

τ : w(α1)→ w(α2)→ w(α0)→ w(α1),

and

σ : w(α1)→ w(α2), w(α2)→ w(α1), w(α0)→ w(α0).

Hence (2) holds. �

Let vh = w(α2)−w(α0). This vector is a highest weight vector of highest
weight (1/2, 3/2) for Vir(ω1)⊗Vir(ω2), that is, (ω1)1vh = (1/2)vh, (ω2)1vh =
(3/2)vh, and (ω1)nvh = (ω2)nvh = 0 for n ≥ 2. Thus the Vir(ω1)⊗Vir(ω2)-
submodule in M generated by vh is isomorphic to L(1/2, 1/2)⊗L(7/10, 3/2).
In particular, M is generated by ω1, ω2, and vh.

We can choose another generator of M . Let

u1 = w(α1) + ξ2w(α2) + ξw(α0),

u2 = w(α1) + ξw(α2) + ξ2w(α0),
(2.4)

where ξ = exp(2π
√
−1/3) is a primitive cubic root of unity. Then τu1 =

ξu1, τu2 = ξ2u2, and σu1 = ξ2u2. We also have (u1)1u1 = 4u2 and
((u1)1u1)1u1 = 140ω. Thus u1, (u1)1u1, and ((u1)1u1)1u1 span the weight 2
subspace of M . This implies that M is generated by a single vector u1. A
similar assertion holds for u2.

The subalgebra M0
t
∼= L(4/5, 0)⊕L(4/5, 3) is called a 3-state Potts model.

It plays an important role in Subsection 4.2. The irreducible M0
t -modules

and their fusion rules are determined in [23] and [28]. The Virasoro element
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of M0
t is ω3. Let

vt =
1
9
(α1 − α2)(−1)(α2 − α0)(−1)(α0 − α1)(−1)(2.5)

− 1
2
(α1 − α2)(−1)x(α0)−

1
2
(α2 − α0)(−1)x(α1)

− 1
2
(α0 − α1)(−1)x(α2),

which is denoted by q in [23]. The vector vt is a highest weight vector in
M0

t of highest weight 3 for Vir(ω3). Clearly, τvt = vt and thus τ fixes every
element in M0

t . Moreover, σvt = −vt and θvt = −vt. Hence σ and θ induce
the same automorphism of M0

t , namely, 1 on Vir(ω3) ∼= L(4/5, 0) and −1
on the Vir(ω3)-submodule generated by vt, which is isomorphic to L(4/5, 3).
The automorphism group Aut(M0

t ) is of order 2 generated by θ.

3. Subalgebra W generated by ω and J in Mτ

For any τ -invariant space U , set U(ε) = {u ∈ U | τu = ξεu}, ε = 0, 1, 2,
where ξ = exp(2π

√
−1/3). We usually denote the subspace U(0) of fixed

points by U τ also.
We are interested in the subalgebra M τ . The weight 2 subspace of M τ is

spanned by ω. In fact, ω is the Virasoro element of M with central charge
6/5. This means that the subalgebra Vir(ω) generated by ω is isomorphic
to L(6/5, 0). Note that M and M τ are completely reducible as modules
for Vir(ω), since VL possesses a positive definite invariant Hermitian form
(see Subsection 5.3). Every irreducible direct summand in M or M τ is
isomorphic to L(6/5, h) for some nonnegative integer h. Note also that σ
leaves M τ = M(0) invariant and interchanges M(1) and M(2). Since σ fixes
ω, σ acts on Vir(ω) as the identity. Thus M(1) and M(2) are equivalent
Vir(ω)-modules.

We now count dimensions of homogeneous subspaces of M of small weights.
The characters of L(1/2, h), L(7/10, h), and L(6/5, h) are well-known (cf.
[19] and [32]). Using them, we have the first several terms of the character
of M :

chM = chL

(
1
2
, 0
)

chL

(
7
10

, 0
)

+ chL

(
1
2
,
1
2

)
chL

(
7
10

,
3
2

)
= 1 + 3q2 + 4q3 + 9q4 + 12q5 + 22q6 + · · · .

Comparing chM with the character of L(6/5, h), we see that

M ∼= L

(
6
5
, 0
)

+ 2L

(
6
5
, 2
)

+ L

(
6
5
, 3
)

+ 2L

(
6
5
, 4
)

+ L

(
6
5
, 6
)

+ · · ·

as Vir(ω)-modules.
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The vectors u1 and u2 of (2.4) are highest weight vectors for Vir(ω) of
weight 2. Hence the Vir(ω)-submodule generated by uε in M(ε) is isomorphic
to L(6/5, 2), ε = 1, 2.

Next, we study the weight 3 subspace. The weight 3 subspace of M is
of dimension 4 and so there are nontrivial relations among w(αi)0w(αj),
i, j ∈ {0, 1, 2}. For example,

w(α1)0w(α2)− w(α2)0w(α1)

= w(α2)0w(α0)− w(α0)0w(α2)

= w(α0)0w(α1)− w(α1)0w(α0).

Set J = w(α1)0w(α2) − w(α2)0w(α1). In terms of the lattice vertex
operator algebra VL, J can be written as

J =
1
3

(
α1(−2)

(
α0(−1)− α2(−1)

)
+ α2(−2)

(
α1(−1)− α0(−1)

)
+ α0(−2)

(
α2(−1)− α1(−1)

))
+
√

2
((

α0(−1)− α2(−1)
)
y(α1)

+
(
α1(−1)− α0(−1)

)
y(α2) +

(
α2(−1)− α1(−1)

)
y(α0)

)
.

Note that (u1)1u2− (u2)1u1 = 3
√
−3J . Note also that τJ = J , σJ = −J

and θJ = J . The weight 3 subspace of M τ is of dimension 2 and it is
spanned by ω0ω and J . Furthermore, we have ω1J = 3J and ωnJ = 0 for
n ≥ 2. Hence:

Lemma 3.1. J is a highest weight vector for Vir(ω) of highest weight 3 in
M τ .

The weight 4 subspace of M is of dimension 9. By a direct calculation, we
can verify that w(αi)−1w(αj), 0 ≤ i, j ≤ 2 are linearly independent. Hence
w(αi)−1w(αj)’s form a basis of the weight 4 subspace of M . From this it
follows that the weight 4 subspace of M τ is of dimension 3. Since the weight
4 subspace of Vir(ω) ∼= L(6/5, 0) is of dimension 2 and since the weight 4
subspace of the Vir(ω)-submodule generated by J , which is isomorphic to
L(6/5, 3), is of dimension 1, we conclude that there is no highest weight
vector for Vir(ω) in the weight 4 subspace of M τ . We have shown that:

Lemma 3.2.

(1) {w(αi)−1w(αj) | 0 ≤ i, j ≤ 2} is a basis of the weight 4 subspace of M .
(2) There is no highest weight vector for Vir(ω) of weight 4 in M τ .

By the above argument, we know all the irreducible direct summands
L(6/5, h) with h ≤ 6 in the decomposition of M(ε) into a direct sum of
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irreducible Vir(ω)-modules. Namely,

M τ = M(0) ∼= L

(
6
5
, 0
)

+ L

(
6
5
, 3
)

+ L

(
6
5
, 6
)

+ · · · ,

M(1) ∼= M(2) ∼= L

(
6
5
, 2
)

+ L

(
6
5
, 4
)

+ · · · .

We now consider the vertex operator algebra W generated by ω and J in
M τ . Of course W is a subalgebra of M τ . We shall show that W is, in fact,
equal to M τ . The basic data are the commutation relations of the component
operators ωm and Jn. For the determination of the commutation relation
[Jm, Jn], it is sufficient to express JnJ , 0 ≤ n ≤ 5, by using ω. First of all we
note that the weight wt JnJ = 5− n is at most 5 for 0 ≤ n ≤ 5. Thus JnJ
is contained in L(6/5, 0) + L(6/5, 3), where L(6/5, 0) and L(6/5, 3) stand
for Vir(ω) and the Vir(ω)-submodule generated by J respectively. Since σ
fixes every element in Vir(ω) and σJ = −J , σ acts as −1 on the Vir(ω)-
submodule generated by J . Hence JnJ is in fact contained in Vir(ω).

By a direct calculation, we have

J5J = −841,

J4J = 0,

J3J = −420ω,

J2J = −210ω0ω,

J1J = 9ω0ω0ω − 240ω−1ω,

J0J = 22ω0ω0ω0ω − 120ω0ω−1ω.

(3.1)

Note that {ω0ω, J}, {ω0ω0ω, ω−1ω, ω0J}, and {ω0ω0ω0ω, ω0ω−1ω, ω0ω0J,
ω−1J} are bases of weight 3, 4, and 5 subspaces of M τ respectively.

In terms of the lattice vertex operator algebra VL, the vectors J2J, J1J ,
and J0J can be written as follows:

J2J = −42
2∑

i=0

αi(−2)αi(−1) + 42
√

2
2∑

i=0

αi(−1)y(αi),

J1J = −38
2∑

i=0

αi(−3)αi(−1)− 3
2∑

i=0

αi(−2)2 − 8
2∑

i=0

αi(−1)4

+ 6
2∑

i=0

αi(−1)2x(αi) + 51
√

2
2∑

i=0

αi(−2)y(αi),
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J0J = −36
2∑

i=0

αi(−4)αi(−1)− 4
2∑

i=0

αi(−3)αi(−2)− 16
2∑

i=0

αi(−2)αi(−1)3

+ 36
2∑

i=0

αi(−2)αi(−1)x(αi) +
2∑

i=0

(
44
√

2αi(−3)− 4
√

2αi(−1)3
)
y(αi).

We need some formulas for vertex operator algebras (cf. [17]), namely,

[um, vn] =
∞∑

k=0

(
m

k

)
(ukv)m+n−k,(3.2)

(umv)n =
∞∑

k=0

(−1)k

(
m

k

)(
um−kvn+k − (−1)mvm+n−kuk

)
,(3.3)

(ω0v)n = −nvn−1.(3.4)

Using them we can obtain the commutation relations of the component
operators ωm and Jn.

Theorem 3.3. Let L(n) = ωn+1 and J(n) = Jn+2 for n ∈ Z, so that the
weights of these operators are wt L(n) = wt J(n) = −n. Then

[L(m), L(n)] = (m− n)L(m + n) +
m3 −m

12
· 6
5
· δm+n,0,(3.5)

[L(m), J(n)] = (2m− n)J(m + n),(3.6)

[J(m), J(n)] = (m− n)
(
22(m + n + 2)(m + n + 3)(3.7)

+ 35(m + 2)(n + 2)
)
L(m + n)

− 120(m− n)
( ∑

k≤−2

L(k)L(m + n− k)

+
∑

k≥−1

L(m + n− k)L(k)
)

− 7
10

m(m2 − 1)(m2 − 4)δm+n,0.

Proof. The first equation holds since ω is the Virasoro element of central
charge 6/5. We know that ω1J = 3J and ωnJ = 0 for n ≥ 2. Hence the
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second equation holds. Now

(ω−1ω)n+3 =
∞∑

k=0

(−1)k

(
−1
k

)(
ω−1−kωn+3+k − (−1)−1ωn+2−kωk

)
=

∞∑
k=0

(
L(−k − 2)L(n + k + 2) + L(n− k + 1)L(k − 1)

)
=
∑

k≤−2

L(k)L(n− k) +
∑

k≥−1

L(n− k)L(k).

Thus the last equation follows from (3.1). �

Remark 3.4. Let Ln = L(n) and Wn =
√
−1/210J(n). Then the com-

mutation relations in the above theorem coincide with the commutation
relations (2.1) and (2.2) of [3]. Thus W is a W3 algebra of central charge
6/5.

Let λ(m) = i(i + 1) if m = 2i + 1 is odd and λ(m) = i2 if m = 2i is
even. Let : L(n1)L(n2) : be the normal ordered product, so that it is equal
to L(n1)L(n2) if n1 ≤ n2 and L(n2)L(n1) if n1 ≥ n2. Then we have another
expression of (ω−1ω)n+3. That is (cf. [14]),

(ω−1ω)n+3 = λ(n + 3)L(n) +
∑
k∈Z

: L(k)L(n− k) : .

4. 20 irreducible modules for Mτ

In this section we construct 20 irreducible modules for M τ . Furthermore, we
calculate the action of the weight preserving component operators L(0) =
ω1 and J(0) = J2 on the top levels of those irreducible modules for M τ .
Recall that M has exactly 8 inequivalent irreducible modules M i

k, W i
k, i =

0, a, b, c. Let (U, YU ) be one of those irreducible M -modules. Following [9],
we consider a new M -module (U ◦ τ, YU◦τ ) such that U ◦ τ = U as vector
spaces and

YU◦τ (v, z) = YU (τv, z) for v ∈M.

Then U 7→ U ◦τ induces a permutation on the set of irreducible M -modules.
If U and U ◦ τ are equivalent M -modules, U is said to be τ -stable. By
the definition, we have U ◦ τ2 = (U ◦ τ) ◦ τ . The following lemma is a
straightforward consequence of the definition of M i

k and W i
k:

Lemma 4.1.
(1) M0

k ◦ τ = M0
k and W 0

k ◦ τ = W 0
k .

(2) Ma
k ◦ τ = M c

k, M c
k ◦ τ = M b

k, and M b
k ◦ τ = Ma

k .
(3) W a

k ◦ τ = W c
k , W c

k ◦ τ = W b
k , and W b

k ◦ τ = W a
k .
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Here W 0
k ◦ τ = W 0

k means that there exists a linear isomorphism φ(τ) :
W 0

k −→W 0
k such that φ(τ)YW 0

k
(v, z)φ(τ)−1 = YW 0

k
(τv, z) for all v ∈M . The

automorphism τ of VL fixes ω3 and so W 0
k is invariant under τ . Hence we can

take τ as φ(τ). Note also that τY (v, z)τ−1 = Y (τv, z) for all v ∈ M = M0
k

since τ ∈ Aut(M).

4.1. Irreducible Mτ -modules in untwisted M-modules. We first find
8 irreducible M τ -modules inside the 8 irreducible modules for M . Recall
that M(ε) = {v ∈ M0

k | τv = ξεv}. Likewise, set W (ε) = {v ∈ W 0
k | τv =

ξεv}. From Lemma 4.1, [11, Theorem 4.4] and [13, Theorem 6.14], we see
that M(ε) and W (ε) are inequivalent irreducible M τ -modules for ε = 0, 1, 2.
Note that M i

k, i = a, b, c are equivalent irreducible M τ -modules and that
W i

k, i = a, b, c are also equivalent irreducible M τ -modules by [13, Theorem
6.14]. Hence we obtain 8 inequivalent irreducible M τ -modules.

The top levels, that is, the weight subspaces of the smallest weights of
M(0), M(1), and M(2) are C1, Cu1, and Cu2 respectively. The top levels
of W (0), W (1), and W (2) are

C(y(α1) + y(α2) + y(α0)), C(α1(−1)− ξα2(−1)), and

C(α1(−1)− ξ2α2(−1))

respectively. Moreover, the top levels of M c
k and W c

k are

C(eβ1/2 − e−β1/2) and C(eβ1/2 + e−β1/2)

respectively. All of those top levels are of dimension one.
Next, we deal with the action of L(0) and J(0) on those top levels. The

operator L(0) acts as multiplication by the weight of each top level. For the
calculation of the action of J(0), we first notice that

[w(αi)1, w(αj)1] = (w(αi)0w(αj))2 + (w(αi)1w(αj))1
by (3.2). Since w(αi)1w(αj) = w(αj)1w(αi), it follows that

J(0) = (w(α1)0w(α2))2 − (w(α2)0w(α1))2
= [w(α1)1, w(α2)1]− [w(α2)1, w(α1)1].

Using this formula it is relatively easy to calculate the eigenvalue for the
action of J(0) on each of the 8 top levels. The results are collected in Table 1.

4.2. Irreducible Mτ -modules in τ -twisted M-modules. Using [9],
we show that there are exactly two inequivalent irreducible τ -twisted (resp.
τ2-twisted) M -modules. Moreover, we find 3 inequivalent irreducible M τ -
modules in each of the irreducible τ -twisted (resp. τ2-twisted) M -modules.
Those irreducible τ -twisted (resp. τ2-twisted) M -modules will in turn be
constructed inside irreducible τ -twisted (resp. τ2-twisted) VL-modules. Ba-
sic references to twisted modules for lattice vertex operator algebras are [6],
[7] and [25]. The argument here is similar to that in [22, Section 6].
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Table 1. Irreducible M τ -modules in M i
k and W i

k.

irred. module top level L(0) J(0)

M(0) C1 0 0

M(1) Cu1 2 −12
√
−3

M(2) Cu2 2 12
√
−3

W (0) C(y(α1) + y(α2) + y(α0)) 8
5 0

W (1) C(α1(−1)− ξα2(−1)) 3
5 2

√
−3

W (2) C(α1(−1)− ξ2α2(−1)) 3
5 −2

√
−3

M c
k C(eβ1/2 − e−β1/2) 1

2 0

W c
k C(eβ1/2 + e−β1/2) 1

10 0

We follow [7] with L =
√

2A2, p = 3, q = 6, and ν = τ . Let h = C⊗Z L
and extend the Z-bilinear form 〈·, ·〉 on L to h linearly. Set

h1 =
1
3
(β1 + ξ2β2 + ξβ0), h2 =

1
3
(β1 + ξβ2 + ξ2β0).

Then τhj = ξjhj , 〈h1, h1〉 = 〈h2, h2〉 = 0, and 〈h1, h2〉 = 2. Moreover,
βi = ξi−1h1 + ξ2(i−1)h2, i = 0, 1, 2. For n ∈ Z, set

h(n) = {α ∈ h | τα = ξnα}.

Since τ is fixed-point-free on L, it follows that h(0) = 0. Furthermore,
h(1) = Ch1 and h(2) = Ch2. For α ∈ h, we denote by α(n) the component of
α in h(n). Thus (βi)(1) = ξi−1h1 and (βi)(2) = ξ2(i−1)h2 for i = 0, 1, 2.

Define the τ -twisted affine Lie algebra to be

ĥ[τ ] =

(⊕
n∈Z

h(n) ⊗ tn/3

)
⊕ Cc

with the bracket

[x⊗ tm, y ⊗ tn] = m〈x, y〉δm+n,0c

for x ∈ h(3m), y ∈ h(3n), m, n ∈ (1/3)Z, and [c, ĥ[g]] = 0. The isometry τ

acts on ĥ[τ ] by τ(x⊗ tm/3) = ξmx⊗ tm/3 and τ(c) = c. Set

ĥ[τ ]+ =
⊕
n>0

h(n) ⊗ tn/3, ĥ[τ ]− =
⊕
n<0

h(n) ⊗ tn/3, and ĥ[τ ]0 = Cc

and consider the ĥ[τ ]-module

S[τ ] = U(ĥ[τ ])⊗U(ĥ[τ ]+⊕ĥ[τ ]0) C
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induced from the ĥ[τ ]+ ⊕ ĥ[τ ]0-module C, where ĥ[τ ]+ acts trivially on C
and c acts as 1 on C.

We define the weight in S[τ ] by

wt(x⊗ tn) = −n and wt 1 =
1
9
,

where n ∈ (1/3)Z and x ∈ h(3n) (cf. [7, (4.6), (4.10)]). By the weight
gradation S[τ ] becomes a (1/3)Z-graded space. Its character is

chS[τ ] = q1/9
∞∏

n=1

(1− qn)
/ ∞∏

n=1

(1− qn/3).(4.1)

For α ∈ h and n ∈ (1/3)Z, denote by α(n) the operator on S[τ ] induced by
α(3n)⊗ tn. Then, as a vector space S[τ ] can be identified with a polynomial
algebra with variables h1(1/3 + n) and h2(2/3 + n), n ∈ Z. The weight of
the operator hj(j/3 + n) is −j/3− n.

The alternating Z-bilinear map cτ
0 : L× L→ Z/6Z defined by [7, (2.10)]

is such that

cτ
0(α, β) =

2∑
r=0

(3 + 2r)〈τ rα, β〉+ 6Z.

In our case
∑2

r=0 τ rα = 0, since τ is fixed-point-free on L. Moreover, we
can verify that

2∑
r=0

r〈τ rβi, βj〉 =

{
±6 if τβi 6= βj

0 if τβi = βj .

Hence cτ
0(α, β) = 0 for all α, β ∈ L. This means that the central extension

1 −→ 〈κ6〉 −→ L̂τ
−−→ L −→ 1(4.2)

determined by the commutator condition aba−1b−1 = κ
cτ
0 (a,b)

6 splits.
We consider the relation between two central extensions L̂ of (2.1) and

L̂τ of (4.2). Since both of L̂ and L̂τ are split extensions, we use the same
symbol eα to denote both of an element in L̂ and an element in L̂τ which
correspond naturally to α ∈ L. Actually, in Section 2 we choose eα ∈ L̂ so
that the multiplication in L̂ is eα × eβ = eα+β. Also we can choose eα ∈ L̂τ

such that the multiplication eα ×τ eβ in L̂τ is related to the multiplication
in L̂ by (cf. [7, (2.4)])

eα × eβ = κ
ε0(α,β)
6 eα ×τ eβ,(4.3)

where the Z-linear map ε0 : L× L→ Z/6Z is defined by [7, (2.13)]. In our
case

ε0(α, β) = −〈τ−1α, β〉+ 6Z.(4.4)
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As in Section 2, we usually write eαeβ = eα+β to denote the product of
eα and eβ in L̂. Note, for example, that the inverse of eβ1 in L̂ is e−β1 , while
the inverse of eβ1 in L̂τ is κ2

3e
−β1 .

The automorphism τ of L lifts to an automorphism τ̂ of L̂ such that
τ̂(eα) = eτα and τ̂(κ6) = κ6. Since ε0 is τ -invariant, we can also think τ̂ to
be an automorphism of L̂τ in a similar way. By abuse of notation we shall
denote τ̂ by simply τ also.

We have (1− τ)L = spanZ{β1−β2, β1 +2β2}. The quotient group L/(1−
τ)L is of order 3 and generated by β1+(1−τ)L. Now K = {a−1τ(a) | a ∈ L̂τ}
is a central subgroup of L̂τ with K = (1− τ)L and K ∩ 〈κ6〉 = 1. Here note
that a−1 is the inverse of a in L̂τ and a−1τ(a) is the product a−1×τ τ(a) in
L̂τ . In L̂τ we can verify that

e3β1 = (eβ0−β1)−1 ×τ τ(eβ0−β1) ∈ K.

Since

κ3e
β1 ×τ κ3e

β1 ×τ κ3e
β1 = e3β1 and κ3e

β1 ×τ κ3e
−β1 = 1,

it follows that

L̂τ/K = {K, κ3e
β1K, κ3e

−β1K} × 〈κ6〉K/K ∼= Z3 × Z6.

For j = 0, 1, 2, define a linear character χj : L̂τ/K → C× by

χj(κ6) = ξ6, χj(κ3e
β1K) = ξj , and χj(κ3e

−β1K) = ξ−j ,

where ξ6 = exp(2π
√
−1/6). Let Tχj be the one-dimensional L̂τ/K-module

affording the character χj . As an L̂τ -module, K acts trivially on Tχj . Since∑2
r=0 τ rα = 0 for α ∈ L, those Tχj , j = 0, 1, 2, are the irreducible L̂τ -

modules constructed in [25, Section 6].
Let

V
Tχj

L = V
Tχj

L (τ) = S[τ ]⊗ Tχj

and define the τ -twisted vertex operator Y τ (·, z) : VL → End(V
Tχj

L ){z} as
in [7]. For a ∈ L̂, define

Y τ (a, z) = 3−〈a,a〉/2φ(a)E−(−a, z)E+(−a, z)az−〈a,a〉/2,

where

E±(α, z) = exp

 ∑
n∈(1/3)Z±

α(n)
n

z−n

 ,(4.5)

φ(α) = (1− ξ2)〈τα,α〉,(4.6)
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and a ∈ L̂ acts on Tχj through the set theoretic identification between L̂ and
L̂τ . Here we denote σ(α) of [7, (4.35)] by φ(α). For v=α1(−n1) · · ·αk(−nk)·
ι(a) ∈ VL with α1, . . . , αk ∈ h and n1, . . . , nk ∈ Z>0, set

W (v, z) = ◦
◦

(
1

(n1 − 1)!

(
d

dz

)n1−1

α1(z)

)
· · ·(

1
(nk − 1)!

(
d

dz

)nk−1

αk(z)

)
Y τ (a, z)◦◦ ,

where α(z) =
∑

n∈(1/3)Z α(n)z−n−1. Define constants ci
mn ∈ C for m,n ≥ 0

and i = 0, 1, 2 by∑
m,n≥0

c0
mnxmyn = −1

2

2∑
r=1

log

(
(1 + x)1/3 − ξ−r(1 + y)1/3

1− ξ−r

)
,

∑
m,n≥0

ci
mnxmyn =

1
2
log

(
(1 + x)1/3 − ξ−i(1 + y)1/3

1− ξ−i

)
for i 6= 0.

Let {γ1, γ2} be an orthonormal basis of h and set

∆z =
∑

m,n≥0

2∑
i=0

2∑
j=1

ci
mn(τ−iγj)(m)γj(n)z−m−n.

Then for v ∈ VL, Y τ (v, z) is defined by

Y τ (v, z) = W (e∆zv, z).

We extend the action of τ to V
Tχj

L so that τ is the identity on Tχj . The
weight of every element in Tχj is defined to be 0. Then the character of

V
Tχj

L is identical with that of S[τ ].

By [7, Theorem 7.1], (V
Tχj

L (τ), Y τ (·, z)), j = 0, 1, 2 are inequivalent irre-
ducible τ -twisted VL-modules. Now among the 12 irreducible VL-modules
VL(i,j) , i ∈ {0, a, b, c} and j ∈ {0, 1, 2}, the τ -stable irreducible modules
are VL(0,j) , j ∈ {0, 1, 2}. Hence by [9, Theorem 10.2], we conclude that

(V
Tχj

L (τ), Y τ (·, z)), j = 0, 1, 2, are all the inequivalent irreducible τ -twisted

VL-modules. The isometry θ of (L, 〈·, ·〉) induces a permutation on V
Tχj

L (τ),
j = 0, 1, 2. In fact, the permutation leaves V

Tχ0
L (τ) invariant and inter-

changes V
Tχ1
L (τ) and V

Tχ2
L (τ).

Since M τ ⊗M0
t is contained in the subalgebra (VL)τ of fixed points of

τ in VL, we can deal with (V
Tχj

L (τ), Y τ (·, z)) as an M τ ⊗M0
t -module. We

shall find 6 irreducible M τ -modules inside V
Tχj

L (τ). Recall that ω, ω3, and
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ω̃ = ω + ω3 are the Virasoro element of M τ , M0
t , and VL respectively. Our

main tool is a careful study of the action of ω1 on homogeneous subspaces of
V

Tχj

L (τ) of small weights. Here we denote by un the coefficient of z−n−1 in
the twisted vertex operator Y τ (u, z) =

∑
unz−n−1 associated with a vector

u in VL. The weight in V
Tχj

L (τ) defined above is exactly the eigenvalue for
ω̃1 (cf. [7, (6.10), (6.28)]).

The character of V
Tχj

L (τ) is equal to the character of S[τ ] (cf. (4.1)). Its
first several terms are

chV
Tχj

L (τ) = chS[τ ]

= q1/9 + q1/9+1/3 + 2q1/9+2/3 + 2q1/9+1 + 4q1/9+4/3 + · · · .

Fix a nonzero vector v ∈ Tχj . We can choose a basis of each homogeneous

subspace of V
Tχj

L (τ) of weight at most 1/9 + 4/3 as in Table 2.

Table 2. Basis of homogeneous subspace in V
Tχj

L (τ).

weight basis
1
9 1⊗ v
1
9 + 1

3 h2(−1
3)⊗ v

1
9 + 2

3 h1(−2
3)⊗ v, h2(−1

3)2 ⊗ v
1
9 + 1 h1(−2

3)h2(−1
3)⊗ v, h2(−1

3)3 ⊗ v
1
9 + 4

3 h2(−4
3)⊗ v, h1(−2

3)2 ⊗ v, h1(−2
3)h2(−1

3)2 ⊗ v, h2(−1
3)4 ⊗ v

We need to know the action of ω1 on those bases. For this purpose, notice
that

Y τ (e±βi , z) = − 1
27

E−(∓βi, z)E+(∓βi, z)ξ±jz−2, i = 0, 1, 2,

since φ(±βi) = −ξ/3 and since e±βi acts on Tχj as a multiplication by
χj(e±βi) = ξ±j−1 for i, j = 0, 1, 2. The image of the vectors in Table 2
under the operator ω1 are calculated as follows:
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ω1(1⊗ v) =
(

1
15

+
1
45

(ξj + ξ−j)
)

1⊗ v,

ω1

(
h2

(
−1

3

)
⊗ v

)
=
(

4
15
− 1

9
(ξj + ξ−j)

)
h2

(
−1

3

)
⊗ v,

ω1

(
h1

(
−2

3

)
⊗ v

)
=
(

7
15
− 2

45
(ξj + ξ−j)

)
h1

(
−2

3

)
⊗ v

− 1
5
(ξj − ξ−j)h2

(
−1

3

)2

⊗ v,

ω1

(
h2

(
−1

3

)2

⊗ v

)
=
(

7
15

+
7
45

(ξj + ξ−j)
)

h2

(
−1

3

)2

⊗ v

+
2
15

(ξj − ξ−j)h1

(
−2

3

)2

⊗ v,

ω1

(
h1

(
−2

3

)
h2

(
−1

3

)
⊗ v

)
=
(

2
3

+
2
9
(ξj + ξ−j)

)
h1

(
−2

3

)
h2

(
−1

3

)
⊗ v

+
1
5
(ξj − ξ−j)h2

(
−1

3

)3

⊗ v,

ω1

(
h2

(
−1

3

)3

⊗ v

)
=
(

2
3

+
1
45

(ξj + ξ−j)
)

h2

(
−1

3

)3

⊗ v

− 2
5
(ξj − ξ−j)h1

(
−2

3

)
h2

(
−1

3

)
⊗ v,

ω1

(
h2

(
−4

3

)
⊗ v

)
=

13
15

h2

(
−4

3

)
⊗ v

+ (ξj + ξ−j)

(
− 1

90
h2

(
−4

3

)
− 3

10
h1

(
−2

3

)
h2

(
−1

3

)2
)
⊗ v

+ (ξj − ξ−j)

(
− 1

20
h1

(
−2

3

)2

− 3
20

h2

(
−1

3

)4
)
⊗ v,
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ω1

(
h1

(
−2

3

)2

⊗ v

)

=
13
15

h1

(
−2

3

)2

⊗ v

+ (ξj + ξ−j)

(
− 1

90
h1

(
−2

3

)2

+
3
10

h2

(
−1

3

)4
)
⊗ v

+ (ξj − ξ−j)

(
1
15

h2

(
−4

3

)
+

1
5
h1

(
−2

3

)
h2

(
−1

3

)2
)
⊗ v,

ω1

(
h1

(
−2

3

)
h2

(
−1

3

)2

⊗ v

)

=
13
15

h1

(
−2

3

)
h2

(
−1

3

)2

⊗ v

+ (ξj + ξ−j)

(
− 2

15
h2

(
−4

3

)
− 14

45
h1

(
−2

3

)
h2

(
−1

3

)2
)
⊗ v

− 1
15

(ξj − ξ−j)h1

(
−2

3

)2

⊗ v,

ω1

(
h2

(
−1

3

)4

⊗ v

)
=

13
15

h2

(
−1

3

)4

⊗ v

+ (ξj + ξ−j)

(
2
5
h1

(
−2

3

)2

− 1
9
h2

(
−1

3

)4
)
⊗ v

+
4
15

(ξj − ξ−j)h2

(
−4

3

)
⊗ v.

The decomposition of V
Tχj

L (τ) as a τ -twisted M⊗M0
t -module was studied

in [22]. The outline of the argument is as follows: For j = 0, 1, 2, the vectors

1⊗ v, h1

(
−2

3

)
⊗ v + (ξj − ξ−j)h2

(
−1

3

)2

⊗ v,

h2

(
−1

3

)2

⊗ v +
2
3
(ξj − ξ−j)h1

(
−2

3

)
⊗ v

are simultaneous eigenvectors for ω1 and (ω3)1. Denote by k1 and k2 the
eigenvalues for ω1 and (ω3)1 respectively. Then the pairs (k1, k2) are
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j 0 1 2

1⊗ v (1
9 , 0) ( 2

45 , 1
15) ( 2

45 , 1
15)

h1(−2
3)⊗ v + (ξj − ξ−j)h2(−1

3)2 ⊗ v (17
45 , 2

5) (1
9 , 2

3) (1
9 , 2

3)

h2(−1
3)2 ⊗ v + 2

3(ξj − ξ−j)h1(−2
3)⊗ v (7

9 , 0) (32
45 , 1

15) (32
45 , 1

15)

We first discuss the decomposition of V
Tχj

L (τ) into a direct sum of irre-
ducible M0

t -modules. We use the classification of irreducible M0
t -modules

[23] and their fusion rules [28]. Note also that the vector y(α1) + y(α2) +
y(α0) in (VL)τ is an eigenvector for ω1 of eigenvalue 8/5. Hence (VL)τ

contains the Vir(ω)⊗M0
t -submodule generated by the vector, which is iso-

morphic to

L

(
6
5
,
8
5

)
⊗
(

L

(
4
5
,
2
5

)
+ L

(
4
5
,
7
5

))
.

Set

M0
T (τ) =

{
u ∈ V

Tχ0
L (τ) | (ω3)1u = 0

}
,

W 0
T (τ) =

{
u ∈ V

Tχ0
L (τ) | (ω3)1u =

2
5
u

}
.

Moreover, for j = 1, 2 set

M j
T (τ) =

{
u ∈ V

Tχj

L (τ) | (ω3)1u =
2
3
u

}
,

W j
T (τ) =

{
u ∈ V

Tχj

L (τ) | (ω3)1u =
1
15

u

}
.

Then, by [22, Proposition 6.8], M j
T (τ) and W j

T (τ), j = 0, 1, 2, are irreducible
τ -twisted M -modules. Furthermore, for j = 0, 1, 2,

V
Tχj

L (τ) ∼= M j
T (τ)⊗M j

t ⊕W j
T (τ)⊗W j

t

as τ -twisted M ⊗M0
t -modules.

There are at most two inequivalent irreducible τ -twisted M -modules by
Lemma 4.1 and [9, Theorem 10.2]. Then, looking at the smallest weight of
M j

T (τ) and W j
T (τ), we have that M0

T (τ) ∼= M1
T (τ) ∼= M2

T (τ) and W 0
T (τ) ∼=

W 1
T (τ) ∼= W 2

T (τ) and that M0
T (τ) 6∼= W 0

T (τ) as τ -twisted M -modules. We
denote M0

T (τ) by MT (τ) and W 0
T (τ) by WT (τ). We conclude that there

are exactly two inequivalent irreducible τ -twisted M -modules, which are
represented by MT (τ) and WT (τ). As τ -twisted M ⊗ Vir(ω3)-modules, we
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have

(4.7) V
Tχ0
L (τ) ∼= MT (τ)⊗

(
L

(
4
5
, 0
)

+ L

(
4
5
, 3
))

⊕WT (τ)⊗
(

L

(
4
5
,
2
5

)
+ L

(
4
5
,
7
5

))
,

V
Tχ1
L (τ) ∼= V

Tχ2
L (τ) ∼= MT (τ)⊗ L

(
4
5
,
2
3

)
⊕WT (τ)⊗ L

(
4
5
,

1
15

)
.(4.8)

The first several terms of the characters of MT (τ) and WT (τ) are

chMT (τ) = q
1
9 + q

1
9
+ 2

3 + q
1
9
+1 + q

1
9
+ 4

3 + · · · ,

chWT (τ) = q
2
45 + q

2
45

+ 1
3 + q

2
45

+ 2
3 + q

2
45

+1 + 2q
2
45

+ 4
3 + · · · .

For ε = 0, 1, 2, let

MT (τ)(ε) = {u ∈MT (τ) | τu = ξεu},
WT (τ)(ε) = {u ∈WT (τ) | τu = ξεu}.

Those 6 modules for M τ are inequivalent irreducible modules by [30, The-
orem 2]. Their top levels are of dimension one. Those top levels and the
eigenvalues for the action of Lτ (0) = ω1 and Jτ (0) = J2 are collected in
Table 3.

Table 3. Irreducible M τ -modules in MT (τ) and WT (τ).

irred. module top level Lτ (0) Jτ (0)

MT (τ)(0) C1⊗ v 1
9

14
81

√
−3

MT (τ)(1) Ch2(−1
3)2 ⊗ v 1

9 + 2
3 −238

81

√
−3

MT (τ)(2) C(4
3h1(−2

3)2 ⊗ v + h2(−1
3)4 ⊗ v) 1

9 + 4
3

374
81

√
−3

WT (τ)(0) Ch2(−1
3)3 ⊗ v 2

45 + 2
3

176
81

√
−3

WT (τ)(1) Ch1(−2
3)⊗ v 2

45 + 1
3 −22

81

√
−3

WT (τ)(2) Ch2(−1
3)⊗ v 2

45 − 4
81

√
−3

4.3. Irreducible Mτ -modules in τ 2-twisted M-modules. Finally, we
find 6 irreducible M τ -modules in τ2-twisted M -modules. The argument is
parallel to that in Subsection 4.2. Instead of τ , we take τ2. Thus we follow
[7] with ν = τ2. Set h′1 = h2, h′2 = h1, and

h′(n) = {α ∈ h | τ2α = ξnα}.



W3 ALGEBRA AND LATTICE VERTEX OPERATOR ALGEBRAS 267

Then h′(0) = 0, h′(1) = Ch′1, and h′(2) = Ch′2. Consider a split central exten-
sion

1 −→ 〈κ6〉 −→ L̂τ2
−−→ L −→ 1

and choose linear characters χ′j : L̂τ2/K → C×, j = 0, 1, 2, such that

χ′j(κ6) = ξ6, χ′j(κ3e
β1K) = ξj , and χ′j(κ3e

−β1K) = ξ−j ,

where K = {a−1τ2(a) | a ∈ L̂τ2}. Let Tχ′j
be the one-dimensional L̂τ2/K-

module affording the character χ′j . Then the irreducible τ2-twisted VL-
module associated with Tχ′j

is

V
Tχ′

j

L (τ2) = S[τ2]⊗ Tχ′j
.

As a vector space S[τ2] is isomorphic to a polynomial algebra with variables
h′1(1/3 + n) and h′2(2/3 + n), n ∈ Z. The weight on S[τ2] is given by
wt 1 = 1/9 and wth′j(j/3 + n) = −j/3− n. Moreover, wt v = 0 for v ∈ Tχ′j

.
Set

MT (τ2) =
{

u ∈ V
Tχ′0
L (τ2) | (ω3)1u = 0

}
,

WT (τ2) =
{

u ∈ V
Tχ′0
L (τ2) | (ω3)1u =

2
5
u

}
.

Then MT (τ2) and WT (τ2) are the inequivalent irreducible τ2-twisted M -
modules. Furthermore, we have

V
Tχ′0
L (τ2) ∼= MT (τ2)⊗

(
L

(
4
5
, 0
)

+ L

(
4
5
, 3
))

⊕WT (τ2)⊗
(

L

(
4
5
,
2
5

)
+ L

(
4
5
,
7
5

))
,

V
Tχ′1
L (τ2) ∼= V

Tχ′2
L (τ2) ∼= MT (τ2)⊗ L

(
4
5
,
2
3

)
⊕WT (τ2)⊗ L

(
4
5
,

1
15

)
as τ2-twisted M ⊗Vir(ω3)-modules. The character of MT (τ2) or WT (τ2) is
equal to that of MT (τ) or WT (τ) respectively. For ε = 0, 1, 2, let

MT (τ2)(ε) = {u ∈MT (τ2) | τ2u = ξεu},
WT (τ2)(ε) = {u ∈WT (τ2) | τ2u = ξεu}.

Those 6 modules for M τ are inequivalent irreducible modules by [30, The-
orem 2]. Their top levels and the eigenvalues for the action of Lτ2

(0) = ω1

and Jτ2
(0) = J2 are collected in Table 4.
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Table 4. Irreducible M τ -modules in MT (τ2) and WT (τ2).

irred. module top level Lτ2
(0) Jτ2

(0)

MT (τ2)(0) C1⊗ v 1
9 −14

81

√
−3

MT (τ2)(1) Ch′2(−1
3)2 ⊗ v 1

9 + 2
3

238
81

√
−3

MT (τ2)(2) C(4
3h′1(−2

3)2 ⊗ v + h′2(−1
3)4 ⊗ v) 1

9 + 4
3 −374

81

√
−3

WT (τ2)(0) Ch′2(−1
3)3 ⊗ v 2

45 + 2
3 −176

81

√
−3

WT (τ2)(1) Ch′1(−2
3)⊗ v 2

45 + 1
3

22
81

√
−3

WT (τ2)(2) Ch′2(−1
3)⊗ v 2

45
4
81

√
−3

4.4. Remarks on 20 irreducible Mτ -modules. We have obtained 20
irreducible M τ -modules in Subsections 4.1, 4.2, and 4.3. Note that the top
levels of them are of dimension one and they can be distinguished by the
eigenvalues for ω1 and J2.

The isometry σ of the lattice (L, 〈·, ·〉) induces a permutation of order 2 on
those 20 irreducible M τ -modules. Clearly, σ leaves M(0) and W (0) invariant
and transforms M c

k (resp. W c
k ) into an irreducible M τ -module equivalent

to M c
k (resp. W c

k ). Moreover, σ interchanges irreducible M τ -modules as
follows:

M(1) ←→ M(2), W (1) ←→ W (2),
MT (τ)(ε) ←→ MT (τ2)(ε), WT (τ)(ε) ←→ WT (τ2)(ε)(4.9)

for ε = 0, 1, 2. The top level of MT (τ2)(ε) can be obtained by replacing
hj(j/3 + n) with h′j(j/3 + n) for j = 1, 2 in the top level of MT (τ)(ε).
Similar symmetry holds for WT (τ2)(ε) and WT (τ)(ε). The action of J(0) on
the top level of MT (τ2)(ε) (resp. WT (τ2)(ε)) is negative of the action on the
top level of MT (τ)(ε) (resp. WT (τ)(ε)). These symmetries are consequences
of the fact that στσ = τ2 and σJ = −J .

In [14] an infinite series of 2D conformal field theory models with Z3 sym-
metry was studied. In the case p = 5 of [14], 20 irreducible representations

are discussed [14, (5.5)]. If we multiply the values w

(
n m
n′ m′

)
of [14, (5.6)]

by
√
−105/2, then the pairs(

∆
(

n m
n′ m′

)
,
√
−105/2 w

(
n m
n′ m′

))
coincide with the pairs of the eigenvalues for ω1 and J2 of the top levels of

the 20 irreducible M τ -modules listed in Tables 1, 3 and 4. Here ∆
(

n m
n′ m′

)
is given by [14, (1.3)].
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5. Classification of irreducible modules for Mτ

We show in this section that the 20 irreducible modules discussed in Section 4
are all the inequivalent irreducible modules for M τ . This is achieved by
determining the Zhu algebra A(W) of the vertex operator subalgebra W
in M τ generated by ω and J . It turns out that A(W) is isomorphic to a
quotient algebra of the polynomial algebra C[x, y] with two variables x and
y by a certain ideal I and that A(W) is of dimension 20. We shall also prove
that M τ =W and W is rational.

As in Theorem 3.3, let L(n) = ωn+1 and J(n) = Jn+2 for n ∈ Z. The
action of those operators on the vacuum vector 1 is such that

L(n)1 = 0 for n ≥ −1, L(−2)1 = ω,(5.1)

J(n)1 = 0 for n ≥ −2, J(−3)1 = J.(5.2)

5.1. A spanning set for W. For a vector expressed in the form u1
n1
· · ·uk

nk
1

with ui ∈ {ω, J} and ni ∈ Z, we denote by lω(u1
n1
· · ·uk

nk
1) or lJ(u1

n1
· · ·uk

nk
1)

the number of i, 1 ≤ i ≤ k such that ui = ω or ui = J respectively.
We shall call these numbers the ω-length or the J-length of the expression
u1

n1
· · ·uk

nk
1. Since each vector in W is not necessarily expressed uniquely

in such a form, the ω-length and the J-length are not defined for a vector.
They depend on a specific expression in the form u1

n1
· · ·uk

nk
1.

Lemma 5.1. Let the ω-length and the J-length of u1
n1
· · ·uk

nk
1 be s and t

respectively. Then u1
n1
· · ·uk

nk
1 can be written as a linear combination of

vectors of the form

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1

such that:
(1) m1 ≥ · · · ≥ mp ≥ 2, n1 ≥ · · · ≥ nq ≥ 3,
(2) q ≤ t,
(3) p + q ≤ s + t,
(4) m1 + · · ·+ mp + n1 + · · ·+ nq = wt(u1

n1
· · ·uk

nk
1).

Proof. We proceed by induction on t. If t = 0, the assertion follows from
the commutation relation (3.5) and the action of L(n) on the vacuum vector
(5.1).

Suppose the assertion holds for the case where the J-length of u1
n1
· · ·uk

nk
1

is at most t− 1 and consider the case where the J-length is t. By (3.6), we
can replace J(−n)L(−m) with L(−m)J(−n) or J(−m−n). Hence we may
assume that u1

n1
· · ·uk

nk
1 is of the form

L(−m1) · · ·L(−ms)J(−n1) · · ·J(−nt)1(5.3)

for some mi, nj ∈ Z.
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By (5.2), we may assume that nt ≥ 3. Suppose ni < ni+1 for some i. Then
by the commutation relation (3.7), the vector (5.3) can be written as a linear
combination of the vectors which are obtained by replacing J(−ni)J(−ni+1)
with:

(i) J(−ni+1)J(−ni),
(ii) L(−ni − ni+1),
(iii) L(k)L(−ni − ni+1 − k) or L(−ni − ni+1 − k)L(k) for some k ∈ Z, or
(iv) a constant.

In Cases (ii), (iii), or (iv), we get an expression whose J-length is at most
t− 2, and so we can apply the induction hypothesis. Therefore, in (5.3) we
may assume that n1 ≥ · · · ≥ nt ≥ 3.

Now we argue by induction on the ω-length s of the expression (5.3). If
s = 0, the assertion holds. Suppose the assertion holds for the case where
the ω-length is at most s−1. By (3.6), we can replace L(−ms)J(−n1) with:

(i) J(−n1)L(−ms) or
(ii) J(−ms − n1).

In Case (ii), we get an expression of ω-length at most s− 1, so that we can
apply the induction hypothesis. Arguing similarly, we can reach

L(−m1) · · ·L(−ms−1)J(−n1) · · ·J(−nt)L(−ms)1.

Hence we may assume that ms ≥ 2 by (5.1). Suppose mi < mi+1 for some
i. Then by (3.5), the vector (5.3) can be written as a linear combination of
the vectors which are obtained by replacing L(−mi)L(−mi+1) with:

(i) L(−mi+1)L(−mi),
(ii) L(−mi −mi+1), or
(iii) a constant.

Since Case (ii) or (iii) yields an expression whose ω-length is at most s− 1,
we can apply the induction hypothesis. This completes the proof. �

A vector of the form

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1(5.4)

with m1 ≥ · · · ≥ mp ≥ 2 and n1 ≥ · · · ≥ nq ≥ 3 will be called of normal
form.

Corollary 5.2. W is spanned by the vectors of normal form

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1

with m1 ≥ · · · ≥ mp ≥ 2, n1 ≥ · · · ≥ nq ≥ 3, p = 0, 1, 2, . . . , and q =
0, 1, 2, . . . .

Proof. As a vector space W is spanned by the vectors u1
n1
· · ·uk

nk
1 with

ui ∈ {ω, J}, ni ∈ Z, and k = 0, 1, 2, . . . . Hence the assertion follows from
Lemma 5.1. �
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A similar argument for a spanning set can be found in [12, Section 3].
See also [3, Section 2.2].

Remark 5.3. Let U be an admissible W-module generated by u ∈ U such
that L(n)u = J(n)u = 0 for n > 0 and L(0)u = hu, J(0)u = ku for some
h, k ∈ C. It can be proved in a same way that U is spanned by

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)u

with m1 ≥ · · · ≥ mp ≥ 1, n1 ≥ · · · ≥ nq ≥ 1, p = 0, 1, 2, . . . , and q =
0, 1, 2, . . . .

5.2. A singular vector v12. A singular vector v of weight h for W is by
definition a vector v which satisfies

(1) L(0)v = hv,
(2) L(n)v = 0 and J(n)v = 0 for n ≥ 1.

Note that v is not necessarily an eigenvector for J(0). By commutation
relations (3.5) and (3.6), it is easy to show that the condition (2) holds if v
satisfies

(2′) L(1)v = L(2)v = J(1)v = 0.

We consider W as a space spanned by the vectors of the form (5.4) . The
weight of such a vector is m1 + · · · + mp + n1 + · · · + nq. Let v be a linear
combination of the vectors of the form (5.4) of weight h. For example, there
are 76 vectors of the form (5.4) of weight 12. We use the conditions (5.1)
and (5.2) and the commutation relations (3.5), (3.6), and (3.7) to compute
L(1)v, L(2)v, and J(1)v. This computation was done by a computer algebra
system Risa/Asir. The result is as follows:

Lemma 5.4. Let v be a linear combination of the vectors of the form (5.4)
of weight h. Under the conditions (5.1) and (5.2) and the commutation
relations (3.5), (3.6) and (3.7), we have L(1)v = L(2)v = J(1)v = 0 only if
v = 0 in the case h ≤ 11. In the case h = 12, there exists a unique, up to
scalar multiple, linear combination v12 which satisfies L(1)v12 = L(2)v12 =
J(1)v12 = 0. The explicit form of v12 is given in Appendix A. We also have
J(0)v12 = 0.

We only use conditions (5.1) and (5.2) and the commutation relations
(3.5), (3.6) and (3.7) to obtain v12 in the above computation. Since we
consider W inside the lattice vertex operator algebra VL, there might exist
some nontrivial relations among the vectors of the form (5.4) which are not
known so far. This ambiguity will be removed in Subsection 5.3.
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5.3. A positive definite invariant Hermitian form on VL. It is well-
known that the vertex operator algebra constructed from any positive def-
inite even lattice as in [17] possesses a positive definite Hermitian form
which is invariant in a certain sense ([15], [17], [26] and [29]). Following
[29, Section 2.5], we review it for our VL.

Set L̃(n) = ω̃n+1, n ∈ Z, where ω̃ is the Virasoro element of VL. Then
L̃(1)(VL)(1) = 0 and (VL)(0) is one dimensional. Thus by [26, Theorem 3.1],
there is a unique symmetric invariant bilinear form ( · , · ) on VL such that
(1,1) = 1. That the form is invariant means

(Y (u, z)v, w) = (v, Y (ezeL(1)(−z−2)eL(0)u, z−1)w)(5.5)

for u, v, w ∈ VL. The value (u, v) is determined by

(1,1) = 1,(5.6)

(u, v) = Resz z−1(1, Y (ezeL(1)(−z−2)eL(0)u, z−1)v).(5.7)

From (5.5), we see that (L̃(n)u, v) = (u, L̃(−n)v). In case of n = 0, this
implies ((VL)(m), (VL)(n)) = 0 if m 6= n. For α ∈ L and u, v ∈ VL,

(α(n)u, v) = Resz zn(Y (α(−1), z)u, v)

= −(u, α(−n)v).
(5.8)

Furthermore, for α, β ∈ L we have

(eα, eβ) = δα+β,0.(5.9)

Note that (−1)〈α,α〉/2 = 1 since α ∈ L. Consider an R-form VL,R of VL

as in [17, Section 12.4]. That is, let M(1)R = R[α(n); α ∈ L, n < 0] and
VL,R = M(1)R ⊗ R[L]. Then C ⊗R VL,R = VL. Moreover, VL,R is invariant
under the automorphism θ. Let V ±

L,R = {v ∈ VL,R | θv = ±v}. We shall
show that the form ( · , · ) is positive definite on V +

L,R and negative definite
on V −

L,R. Indeed, let {γ1, γ2} be an orthonormal basis of R⊗Z L. Then using
(5.8) and (5.9) we can verify that

(γi1(−m1) · · · γip(−mp)eα, γj1(−n1) · · · γjq(−nq)eβ) 6= 0

only if γi1(−m1) · · · γip(−mp) = γj1(−n1) · · · γjq(−nq) in M(1)R and α+β =
0. Furthermore,

(γi1(−m1) · · · γip(−mp)eα, γi1(−m1) · · · γip(−mp)e−α)(5.10)

= (−1)p · (a positive integer).

We can choose a basis of V +
L,R consisting of vectors of the form

γi1(−m1) · · · γip(−mp)(eα + e−α), p even, α ∈ L,

γi1(−m1) · · · γip(−mp)(eα − e−α), p odd, 0 6= α ∈ L.
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By (5.9) and (5.10), these vectors are mutually orthogonal and the square
length of each of them is a positive integer. Hence the form ( · , · ) is positive
definite on V +

L,R. Likewise, we see that the form ( · , · ) is negative definite
on V −

L,R.
We also have (V +

L,R, V −
L,R) = 0. Thus the form ( · , · ) is positive definite

on V +
L,R +

√
−1V −

L,R. The R-vector space V +
L,R +

√
−1V −

L,R is an R-form of
VL since VL = C ⊗R (V +

L,R +
√
−1V −

L,R). Note that it is invariant under the
component operators un of Y (u, z) for u ∈ V +

L,R.
Define a Hermitian form (( · , · )) on VL by ((λu, µv)) = λµ(u, v) for λ, µ ∈

C and u, v ∈ V +
L,R +

√
−1V −

L,R. Then the Hermitian form (( · , · )) is positive
definite on VL and invariant under V +

L,R, that is,

((Y (u, z)v, w)) =
((

v, Y
(
ezeL(1)(−z−2)eL(0)u, z−1

)
w
))

(5.11)

for u ∈ V +
L,R and v, w ∈ VL.

Using the Hermitian form (( · , · )), we can show that VL is semisimple
as a W-module and that W is a simple vertex operator algebra. Note that
L̃(n)v = L(n)v for v ∈ M . Note also that V +

L,R contains ω and J . Then by
(5.11),

((L(n)u, v)) = ((u, L(−n)v)),(5.12)

((J(n)u, v)) = −((u, J(−n)v))(5.13)

for n ∈ Z and u, v ∈ VL.
Let U be a W-submodule. Denote by U⊥ the orthogonal complement of

U in VL with respect to (( · , · )). Then VL = U⊕U⊥ since (( · , · )) is positive
definite. Moreover, U⊥ is also a W-submodule by (5.12) and (5.13). Thus
we conclude that:

Theorem 5.5. VL is semisimple as a W-module.

Since the weight 0 subspace C1 of W is one dimensional and since W is
generated by 1 as a W-module, we have:

Theorem 5.6. W is a simple vertex operator algebra.

Then there is no singular vector in W of positive weight. Hence:

Corollary 5.7. The singular vector v12 = 0.

5.4. The Zhu algebra A(W). Based on the properties of W we have
obtained so far, we shall determine the Zhu algebra A(W) of W. First we
review some notations and formulas for the Zhu algebra A(V ) of an arbitrary
vertex operator algebra (V, Y,1, ω). The standard reference is [36, Section
2].
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For u, v ∈ V with u being homogeneous, define two binary operations

u ∗ v = Resz

((1 + z)wt u

z
Y (u, z)v

)
=

∞∑
i=0

(
wt u

i

)
ui−1v,(5.14)

u ◦ v = Resz

((1 + z)wt u

z2
Y (u, z)v

)
=

∞∑
i=0

(
wt u

i

)
ui−2v.(5.15)

We extend ∗ and ◦ for arbitrary u, v ∈ V by linearity. Let O(V ) be the
subspace of V spanned by all u ◦ v for u, v ∈ V . By a theorem of Zhu [36],
O(V ) is a two-sided ideal with respect to the operation ∗. Thus it induces an
operation on A(V ) = V/O(V ). Denote by [v] the image of v ∈ V in A(V ).
Then [u] ∗ [v] = [u ∗ v] and A(V ) is an associative algebra by this operation.
Moreover, [1] is the identity and [ω] is in the center of A(V ). We denote by
[u]∗p the product of p copies of [u] in A(V ). For u, v ∈ V , we write u ∼ v
if [u] = [v]. For f, g ∈ EndV , we write f ∼ g if fv ∼ gv for all v ∈ V . We
need some formulas from [36].

Resz

((1 + z)wt(u)+m

z2+n
Y (u, z)v

)
=

∞∑
i=0

(
wt(u) + m

i

)
ui−n−2v ∈ O(V )

(5.16)

for n ≥ m ≥ 0 and

v ∗ u ∼ Resz

((1 + z)wt(u)−1

z
Y (u, z)v

)
=

∞∑
i=0

(
wt(u)− 1

i

)
ui−1v.(5.17)

Moreover (see [34]),

L(−n) ∼ (−1)n
{
(n− 1)

(
L(−2) + L(−1)

)
+ L(0)

}
(5.18)

for n ≥ 1 and

[ω] ∗ [v] = [(L(−2) + L(−1))v].(5.19)

It follows from (5.18) and (5.19) that

[L(−n)u] = (−1)n(n− 1)[ω] ∗ [u] + (−1)n[L(0)u](5.20)

for n ≥ 1.
For a homogeneous u ∈ V , set o(u) = uwt(u)−1, which is the weight zero

component operator of Y (u, z). Extend o(u) for arbitrary u ∈ V by linearity.
We call a module in the sense of [36] as an admissible module as in [9]. If
U = ⊕∞n=0U(n) is an admissible V -module with U(0) 6= 0, then o(u) acts on
its top level U(0). Zhu’s theory [36] says:

(1) o(u)o(v) = o(u ∗ v) as operators on the top level U(0) and o(u) acts as
0 on U(0) if u ∈ O(V ). Thus U(0) is an A(V )-module, where [u] acts
on U(0) as o(u).
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(2) The map U 7→ U(0) is a bijection between the set of equivalence classes
of irreducible admissible V -modules and the set of equivalence classes
of irreducible A(V )-modules.

We now return to W. Since wtJ = 3, we have

[J(−n− 4)v] = −3[J(−n− 3)v]− 3[J(−n− 2)v]− [J(−n− 1)v](5.21)

for v ∈ W and n ≥ 0 by (5.16).

Lemma 5.8. The image [L(−m1) · · · L(−mp)J(−n1) · · · J(−nq)1] of the
vector (5.4) with m1 ≥ · · · ≥ mp ≥ 2 and n1 ≥ · · · ≥ nq ≥ 3 in A(W) is
contained in

span
{

[ω]∗s ∗ [J ]∗t | 0 ≤ s, 0 ≤ t ≤ q, 2s + 3t ≤ m1 + · · ·

+ mp + n1 + · · ·+ nq

}
.

In particular, A(W) is commutative and every element of A(W) is a
polynomial in [ω] and [J ].

Proof. We proceed by induction on the J-length q. By a repeated use of
(5.20), we see that [L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1] is a linear com-
bination of [ω]∗s ∗ [J(−n1) · · ·J(−nq)1], 0 ≤ s ≤ p. Thus the assertion holds
if q = 0.

Suppose the assertion holds for vectors of normal form with J-length at
most q − 1 and consider [J(−n1) · · ·J(−nq)1]. Let v = J(−n1) · · ·J(−nq)1
and u = J(−n2) · · ·J(−nq)1, so that v = J(−n1)u. We proceed by induc-
tion on the weight. The vector of the smallest weight is the case n1 = 3. In
this case v = J(−3)q1 and u = J(−3)q−11. Since v = J−1u, it follows from
(5.14) that

[v] = [J ] ∗ [u]− 3[J(−2)u]− 3[J(−1)u]− [J(0)u].

The weight of J(−n)u, 0 ≤ n ≤ 2, is less than wt v. By Lemma 5.1, each
of these three vectors is a linear combination of vectors of normal form with
J-length at most q − 1. Then we can apply the induction hypothesis on
J-length and the assertion holds if n1 = 3. Assume that n1 ≥ 4. By (5.21),
[v] = [J(−n1)u] is a linear combination of [J(−n)u], n1 − 3 ≤ n ≤ n1 − 1.
The weight of J(−n)u, n1 − 3 ≤ n ≤ n1 − 1, is less than wt v. Hence by
Lemma 5.1, these three vectors are linear combinations of vectors of normal
form with J-length at most q and weight less than wt v. The induction is
complete. �

The image [L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1] of the vector of nor-
mal form (5.4) with m1 ≥ · · · ≥ mp ≥ 2 and n1 ≥ · · · ≥ nq ≥ 3 in A(W)
can be written explicitly as a polynomial in [ω] and [J ] by the following
algorithm:
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Since A(W) is commutative, it follows from (5.17) that

[J(−3)v] = [J ] ∗ [v]− 2[J(−2)v]− [J(−1)v](5.22)

for v ∈ W. Now we use (5.20), (5.21) and (5.22). Although J(−n − 4)v
is of normal form, the vectors J(−n − 3)v, J(−n − 2)v, and J(−n − 1)v
in (5.21) may not be of normal form. However, the weight of any of these
three vectors is less than the weight of J(−n− 4)v, and so we can apply the
argument in the proof of Lemma 5.1. A similar discussion is also needed
for the formula (5.22). Thus the algorithm is by induction on the weight.
We use formulas (5.20), (5.21), (5.22) and apply Lemma 5.1, that is, use
the commutation relations (3.5), (3.6), (3.7) and the conditions (5.1) and
(5.2). By induction on the weight and a repeated use of those formulas and
conditions, we can write explicitly the image of the vector (5.4) in A(W) as
a polynomial in [ω] and [J ].

Consider the algebra homomorphism

C[x, y] −→ A(W); x 7−→ [ω], y 7−→ [J ]

of the polynomial algebra C[x, y] with two variables x, y onto A(W). Denote
its kernel by I. Then C[x, y]/I ∼= A(W). We shall consider v12, J(−1)v12,
J(−2)v12, and J(−1)2v12. These vectors are described explicitly as linear
combinations of vectors of normal form in Appendix A. Their images [v12],
[J(−1)v12], [J(−2)v12], and [J(−1)2v12] can be written as polynomials in
[ω] and [J ] by the above mentioned algorithm. The results are given in
Appendix B. Let Fi(x, y) ∈ C[x, y], 1 ≤ i ≤ 4, be the polynomials which are
obtained by replacing [ω] with x and [J ] with y in the polynomials given in
Appendix B. Since v12 = 0 by Corollary 5.7, Fi(x, y)’s are contained in I.
Let I ′ be the ideal in C[x, y] generated by Fi(x, y), 1 ≤ i ≤ 4.

The primary decomposition of I ′ is I ′ = ∩20
i=1Pi, where Pi, 1 ≤ i ≤ 20

are
〈x, y〉, 〈5x− 8, y〉,
〈2x− 1, y〉, 〈10x− 1, y〉,
〈x− 2, y − 12

√
−3〉, 〈x− 2, y + 12

√
−3〉,

〈5x− 3, y − 2
√
−3〉, 〈5x− 3, y + 2

√
−3〉,

〈9x− 1, 81y − 14
√
−3〉, 〈9x− 1, 81y + 14

√
−3〉,

〈9x− 7, 81y − 238
√
−3〉, 〈9x− 7, 81y + 238

√
−3〉,

〈9x− 13, 81y − 374
√
−3〉, 〈9x− 13, 81y + 374

√
−3〉,

〈45x− 2, 81y − 4
√
−3〉, 〈45x− 2, 81y + 4

√
−3〉,

〈45x− 17, 81y − 22
√
−3〉, 〈45x− 17, 81y + 22

√
−3〉,

〈45x− 32, 81y − 176
√
−3〉, 〈45x− 32, 81y + 176

√
−3〉.

(5.23)

These primary ideals correspond to the 20 irreducible M τ -modules listed
in Tables 1, 3 and 4 in Section 4. The correspondence is given by substituting
x and y with the eigenvalues for L(0) and J(0) on the top levels of 20
irreducible modules. The eigenvalues are the zeros of those primary ideals.
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Note that the 20 pairs of those eigenvalues for L(0) and J(0) on the top
levels are different from each other. Since the top levels of the 20 irreducible
M τ -modules are one dimensional and since W is contained in M τ , there
are at least 20 inequivalent irreducible W-modules whose top levels are the
same as those of irreducible M τ -modules. Hence by Zhu’s theory [36], we
conclude that I = I ′ and A(W) ∼= ⊕20

i=1C[x, y]/Pi. In particular, W has
exactly 20 inequivalent irreducible modules.

If W 6= M τ , then we can take an irreducible W-module U in M τ such
that W ∩ U = 0 by Theorem 5.5. From the classification of irreducible
W-modules we see that the smallest weight of U is at most 2. But we can
verify that the homogeneous subspaces of W of weight 0, 1, and 2 coincide
with those of M τ . Therefore, W = M τ .

We have obtained the following theorem:

Theorem 5.9.
(1) M τ =W.
(2) A(M τ ) ∼= ⊕20

i=1C[x, y]/Pi is a 20-dimensional commutative associative
algebra.

(3) There are exactly 20 inequivalent irreducible M τ -modules. Their rep-
resentatives are listed in Tables 1, 3 and 4 in Section 4, namely, M(ε),
W (ε), M c

k, W c
k , MT (τ i)(ε), and WT (τ i)(ε) for ε = 0, 1, 2 and i = 1, 2.

Remark 5.10. The explicit description of v12, J(−1)v12, J(−2)v12, and
J(−1)2v12 in Appendix A, the images of these four vectors in A(W) in
Appendix B, and the primary ideals (5.23) were obtained by a computer
algebra system Risa/Asir.

5.5. Rationality of W. Recall that a vertex operator algebra V is called
C2-cofinite if V/C2(V ) is finite dimensional where C2(V ) is the subspace of
V spanned by u−2v for u, v ∈ V . The following result about a general vertex
operator algebra was essentially proved in [31, Theorem 9.0.1]:

Proposition 5.11. Let V = ⊕n≥0Vn be a C2-cofinite vertex operator alge-
bra such that V0 is one-dimensional. Assume that A(V ) is semisimple and
any V -module generated by an irreducible A(V )-module is irreducible. Then
V is a rational vertex operator algebra.

Proof. By the definition of rationality (cf. [8]), we need to prove that any
admissible W-module Z is completely reducible. By [1, Lemma 5.5], Z is a
direct sum of generalized eigensapces for L(0). So it is enough to prove that
any submodule generated by a generalized eigenvector for L(0) is completely
reducible. We can assume that Z is generated by a generalized eigenvector
for L(0). Then Z = ⊕n≥0Zλ+n for some λ ∈ C where Zλ+n is the generalized
eigenspace for L(0) with eigenvalue λ+n and Zλ 6= 0. We call λ the minimal
weight of Z. By [4, Theorem 1], each Zλ+n is finite dimensional.
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Let X be the submodule of Z generated by Zλ. Then X is completely
reducible by the assumption. So we have an exact sequence

0→ X → Z → Z/X → 0

of admissible V -modules. Let Z ′ = ⊕n≥0Z
∗
λ+n be the graded dual of Z.

Then Z ′ is also an admissible V -module (see [15]) and we have an exact
sequence

0→ (Z/X)′ → Z ′ → X ′ → 0
of admissible V -modules. On the other hand, the V -submodule of Z ′ gen-
erated by Z∗

λ is isomorphic to X ′. As a result we have Z ′ is isomorphic to
X ′ ⊕ (Z/X)′. This implies that Z ∼= X ⊕ Z/X. Clearly, the minimal weight
of Z/X is greater than the minimal weight of Z. Continuing in this way we
prove that Z is a direct sum irreducible modules. �

Now we turn our attention to W.

Theorem 5.12. W is C2-cofinite.

Proof. Note from Corollary 5.2 that W is spanned by

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)1

with m1 ≥ · · · ≥ mp ≥ 2, n1 ≥ · · · ≥ nq ≥ 3, p = 0, 1, 2, . . . , and q =
0, 1, 2, . . . . Then W is spanned by L(−2)pJ(−3)q1 modulo C2(W). It is
well-known that W/C2(W) is a commutative associative algebra under the
product u · v = u−1v for u, v ∈ W (cf. [36]). So W is spanned by ωp · Jq

modulo C2(W) for p, q ≥ 0.
The key idea to prove that W is C2-cofinite is to use the singular vector

v12. By the explicit form of v12, J(−1)v12, and J(−1)2v12 in Appendix A,
we have the following relations in W/C2(W):

−(59680000/3501)ω6 − (184400/1167)ω3 · J2 + J4 = 0,

−926640ω2 · J3 − 89856000ω5 · J = 0,

21565440000ω7 − 680659200ω4 · J2 − 5559840ω · J4 = 0.

Multiplying by ω2, J, ω respectively we get

−(59680000/3501)ω8 − (184400/1167)ω5 · J2 + ω2 · J4 = 0,

−926640ω2 · J4 − 89856000ω5 · J2 = 0,

21565440000ω8 − 680659200ω5 · J2 − 5559840ω2 · J4 = 0.

It follows immediately that

ω8 = ω2 · J4 = ω5 · J2 = 0.

Thus

J8 =
(
(59680000/3501)ω6 + (184400/1167)ω3 · J2

)2 = 0.

As a result, W/C2(W) is spanned by ωp ·Jq for 0 ≤ p, q ≤ 7, as desired. �



W3 ALGEBRA AND LATTICE VERTEX OPERATOR ALGEBRAS 279

Lemma 5.13. Let U be an irreducible A(W)-module. Then any W-module
Z generated by U is irreducible.

Proof. By Theorem 5.9, A(W) has exactly 20 irreducible modules and ω
acts on each irreducible module as a constant in the set

P =
{

0, 2, 8/5, 3/5, 1/2, 1/10, 1/9, 1/9 + 2/3, 1/9 + 4/3,

2/45, 2/45 + 1/3, 2/45 + 2/3
}

.

Let ω act on U as λ. Assume that λ 6= 0, 3/5. Then λ is maximal in the
set P ∩ (λ + Z). Let Z = ⊕n≥0Zλ+n and Zλ = U. If Z is not irreducible
then Z has a proper submodule X =

∑
n≥0 Xλ+n0+n for some n0 > 0 with

Xλ+n0 6= 0 where Xλ+m = X ∩ Zλ+m. So Xλ+n0 is an A(W)-module on
which ω acts on λ+n0. Since λ+n0 ∈ P ∩ (λ+Z) is greater than λ we have
a contradiction. This shows that Z must be irreducible.

It remains to prove the result with λ = 0 or λ = 3/5. If λ = 0, then U ∼=
C1 and Z is isomorphic to W (see [26]). Now let λ = 3/5. By Theorem 5.9,
U can be either W (1)3/5 or W (2)3/5 (see Table 1). We can assume that
U = W (1)3/5 and the proof for U = W (2)3/5 is similar. In this case J(0)
acts on U as 2

√
−3. Let U = Cu. Then Z is spanned by

L(−m1) · · ·L(−mp)J(−n1) · · ·J(−nq)u

with m1 ≥ · · · ≥ mp ≥ 1, n1 ≥ · · · ≥ nq ≥ 1, p = 0, 1, 2, . . . , and q =
0, 1, 2, . . . (see Remark 5.3). Since 8/5 is the only number in P ∩ (3/5 + Z)
greater than 3/5, Z is irreducible if and only if there is no nonzero vector
v ∈ Z8/5 such that L(1)v = J(1)v = 0.

Note that Z8/5 is spanned by L(−1)u and J(−1)u. By formulas (3.5)-(3.7)
we see that

L(1)L(−1)u =
6
5
u,

L(1)J(−1)u = 6
√
−3u,

J(1)L(−1)u = 6
√
−3u,

J(1)J(−1)u =
(

237× 6
5

− 48× 39
5

)
u.

Now let v = αL(−1)u + βJ(−1)u ∈ Z8/5 such that L(1)v = J(1)v = 0.
Then we have a system of linear equations

6
5
α + 6

√
−3β = 0,

6
√
−3α− 90β = 0.

Unfortunately, the system is degenerate and has solutions α = −5
√
−3β.

Thus up to a constant we can assume that v = −5
√
−3L(−1)u + J(−1)u.
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We have to prove that v = 0. If v is not zero, then Cv is an irre-
ducible module for A(W) on which ω acts as 8/5. Again by Table 1, J
must act on v as 0. Using (3.6) and (3.7), we find out that J(0)v =
−120L(−1)u − 8

√
−3J(−1)u = −8

√
−3v. This implies that v = 0. Clearly

we have a contradiction. Thus Z is an irreducible W-module. �

Combining Proposition 5.11, Theorem 5.12, and Lemma 5.13 together
yields:

Theorem 5.14. The vertex operator algebra W is rational.

It is proved in [1] that a rational and C2-cofinite vertex operator algebra
is regular in the sense that any weak module is a direct sum of irreducible
admissible modules. Thus we, in fact, have proved that W is also regular.

6. Characters of irreducible Mτ -modules

We shall describe the characters of the 20 irreducible M τ -modules by the
characters of irreducible modules for the Virasoro vertex operator algebras.
Throughout this section z denotes a complex number in the upper half plane
H and q = exp(2π

√
−1z). First we recall the character of the irreducible

module L(cm, h
(m)
r,s ) with highest weight h

(m)
r,s for the Virasoro vertex opera-

tor algebra L(cm, 0) with central charge cm, where

cm = 1− 6
(m + 2)(m + 3)

, m = 1, 2, . . . ,

h(m)
r,s =

(
(m + 3)r − (m + 2)s

)2 − 1
4(m + 2)(m + 3)

, 1 ≤ s ≤ r ≤ m + 1.

The character of L(cm, h
(m)
r,s ) is obtained in [32] as follows:

chL(cm, h(m)
r,s ) =

∑
k∈Z(qb(k) − qa(k))∏∞

i=1(1− qi)
,(6.1)

where

a(k) =

(
2(m + 2)(m + 3)k + (m + 3)r + (m + 2)s

)2 − 1
4(m + 2)(m + 3)

,

b(k) =

(
2(m + 2)(m + 3)k + (m + 3)r − (m + 2)s

)2 − 1
4(m + 2)(m + 3)

.
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Define Ξ(m)
r,s (z) = q−cm/24 chL(cm, h(m)

r,s ). For 1 ≤ s ≤ r ≤ m + 1, the
following transformation formula holds (cf. [18, Exercise 13.27]):

Ξ(m)
r,s

(
−1
z

)
=

√
8

(m + 2)(m + 3)

(6.2)

·
∑

1≤j≤i≤m+1

(−1)(r+s)(i+j) sin
πri

m + 2
sin

πsj

m + 3
Ξ(m)

i,j (z).

Let η(z) = q1/24
∏∞

i=1(1− qi) be the Dedekind η-function. The following
transformation formula is well-known (cf. [2]):

η

(
−1
z

)
=
(
−
√
−1z

)1/2
η(z),

where we choose the branch of the square root function x1/2 so that it is
positive when x > 0.

We review notations and some properties of the trace function in [9]. Let
g, h ∈ Aut(M) be such that gh = hg. Let C1(g, h) be the space of (g, h)
1-point functions. Let W be a g-twisted h-stable M -module with conformal
weight λ. There is a linear isomorphism φ(h) : W →W such that

φ(h)YW (u, z) = YW (hu, z)φ(h).

Define

TW (u, (g, h), z) = trW uwt(u)−1φ(h)qL(0)−1/20

for homogeneous u ∈ M and extend it for arbitrary u ∈ M linearly. Note
that the central charge of M is 6/5. Then TW ( · , (g, h), z) ∈ C1(g, h) by [9,

Theorem 8.1]. Let F ( · , z) ∈ C1(g, h) and A =
(

a b
c d

)
∈ SL2(Z). Define

F |A by

F |A(u, z) = (cz + d)−kF

(
u,

az + b

cz + d

)
for u ∈ M[k] and extend it for arbitrary u ∈ M linearly. Then F |A ∈
C1(gahc, gbhd) by [9, Theorem 5.4]. We denote TW (1, (g, h), z) by TW ((g, h),
z) for simplicity. Recall that the character ch W of W is defined to be
trW qL(0).

We want to determine the characters of the 20 irreducible M τ -modules
M(ε), W (ε), M c

k , W c
k , MT (τ i)(ε), and WT (τ i)(ε) for ε = 0, 1, 2 and i = 1, 2.

We have shown in Theorem 2.1 that Aut(M) is generated by σ and τ . We
shall consider the cases where g = 1 and h = τ or g = τ and h = 1. We
specify φ(h) as follows: If h = 1, we take φ(h) = 1. We shall deal with
the case g = 1 and h = τ for W = M or W 0

k . In such a case we consider
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the same φ(τ) as in Section 4. Thus if W = M , we take φ(τ) to be the
automorphism τ . If W = W 0

k , we take φ(τ) to be the linear isomorphism
which is naturally induced from the isometry τ of the lattice (L, 〈 · , · 〉).

Note that TW ((g, 1), z) = q−1/20 chW . Note also that the symmetry (4.9)
induced by σ implies TM(1)((1, 1), z) = TM(2)((1, 1), z). A similar assertion
holds for W (1) and W (2).

Proposition 6.1. For i = 1, 2,

TMT (τ i)((τ
i, 1), z) =

η(z)
η(z/3)

(
−Ξ(3)

2,1 − Ξ(3)
3,1 + Ξ(3)

3,3

)
,

TWT (τ i)((τ
i, 1), z) =

η(z)
η(z/3)

(
Ξ(3)

1,1 + Ξ(3)
4,1 − Ξ(3)

4,3

)
.

Proof. Since chV
Tχj

L (τ) = chS(τ) for j = 0, 1, 2, we have

q−1/12 chV
Tχj

L (τ) =
η(z)

η(z/3)

by (4.1). Then (4.7) and (4.8) imply that

η(z)
η(z/3)

= TMT (τ)((τ, 1), z) ·
(
Ξ(3)

1,1 + Ξ(3)
4,1

)
(6.3)

+ TWT (τ)((τ, 1), z) ·
(
Ξ(3)

2,1 + Ξ(3)
3,1

)
,

η(z)
η(z/3)

= TMT (τ)((τ, 1), z) · Ξ(3)
4,3 + TWT (τ)((τ, 1), z) · Ξ(3)

3,3.(6.4)

Now consider
(
Ξ(3)

1,1+Ξ(3)
4,1

)
Ξ(3)

3,3−
(
Ξ(3)

2,1+Ξ(3)
3,1

)
Ξ(3)

4,3. Using (6.2) we can verify
that it is invariant under the action of SL2(Z). Moreover, its q-expansion is
1 + 0 · q + · · · . Thus(

Ξ(3)
1,1 + Ξ(3)

4,1

)
Ξ(3)

3,3 −
(
Ξ(3)

2,1 + Ξ(3)
3,1

)
Ξ(3)

4,3 = 1.

Hence the assertions for i = 1 follow from (6.3) and (6.4). The assertions
for i = 2 also hold by the symmetry (4.9). �

Theorem 6.2. The characters of the 20 irreducible M τ -modules M(ε),
W (ε), M c

k, W c
k , MT (τ i)(ε), and WT (τ i)(ε) for ε = 0, 1, 2 and i = 1, 2 are

given by the following formulas:
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(1) For ε = 1, 2 we have

q−1/20 chM(0) =
1
3

(
Ξ(1)

1,1Ξ
(2)
1,1 + Ξ(1)

2,1Ξ
(2)
3,1 + 2

η(z)
η(3z)

Ξ(3)
3,3

)
,

q−1/20 chM(ε) =
1
3

(
Ξ(1)

1,1Ξ
(2)
1,1 + Ξ(1)

2,1Ξ
(2)
3,1 −

η(z)
η(3z)

Ξ(3)
3,3

)
,

q−1/20 chW (0) =
1
3

(
Ξ(1)

1,1Ξ
(2)
3,2 + Ξ(1)

2,1Ξ
(2)
3,3 − 2

η(z)
η(3z)

Ξ(3)
4,3

)
,

q−1/20 chW (ε) =
1
3

(
Ξ(1)

1,1Ξ
(2)
3,2 + Ξ(1)

2,1Ξ
(2)
3,3 +

η(z)
η(3z)

Ξ(3)
4,3

)
,

q−1/20 chM c
k = Ξ(1)

22 Ξ(2)
21 ,

q−1/20 chW c
k = Ξ(1)

22 Ξ(2)
22 .

(2) For i = 1, 2 we have q−1/20 ch(MT (τ i)(0))
q−1/20 ch(MT (τ i)(1))
q−1/20 ch(MT (τ i)(2))


=

1
3

 1 1 1
1 ξ ξ2

1 ξ2 ξ


 TMT (τ i)((τ i, 1), z)

e−11π
√
−1/90TMT (τ i)((τ i, 1), z + 1)

e−22π
√
−1/90TMT (τ i)((τ i, 1), z + 2)

 ,

 q−1/20 ch(WT (τ i)(0))
q−1/20 ch(WT (τ i)(1))
q−1/20 ch(WT (τ i)(2))


=

1
3

 1 1 1
1 ξ ξ2

1 ξ2 ξ


 TWT (τ i)((τ i, 1), z)

e61π
√
−1/90TWT (τ i)((τ i, 1), z + 1)

e122π
√
−1/90TWT (τ i)((τ i, 1), z + 2)

 ,

where ξ = exp(2π
√
−1/3).

Proof. Since MT (τ i) = ⊕2
ε=0MT (τ i)(ε) for i = 1, 2, we have

TMT (τ i)((τ
i, 1), z) =

2∑
ε=0

TMT (τ i)(ε)((1, 1), z).

Replace z with z + k, where k = 0, 1, 2. Then

TMT (τ i)(ε)((1, 1), z + k) = trMT (τ i)(ε) qL(0)−1/20 exp(2π
√
−1k)L(0)−1/20.

Note that exp(2π
√
−1k)L(0)−1/20 = exp(11π

√
−1k/90)ξ2kε on MT (τ i)(ε),

since the eigenvalues for L(0) on MT (τ i)(ε) are of the form 1/9 + 2ε/3 + n
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with n ∈ Z≥0. Thus

TMT (τ i)((τ
i, 1), z + k) = exp(11π

√
−1k/90)

2∑
ε=0

ξ2kεTMT (τ i)(ε)((1, 1), z).

We can solve these equations for k = 0, 1, 2 with respect to

TMT (τ i)(ε)((1, 1), z), ε = 0, 1, 2,

and obtain the expressions of TMT (τ i)(ε)((1, 1), z) = q−1/20 ch(MT (τ i)(ε)) in
the theorem.

Similarly, WT (τ i) = ⊕2
ε=0 WT (τ i) (ε) and the eigenvalues for L(0)

on WT (τ i)(ε) are of the form 2/45 + (2 − ε)/3 + n, n ∈ Z≥0. Hence
exp(2π

√
−1k)L(0)−1/20 = exp(−61π

√
−1k/90)ξ2kε on WT (τ i)(ε) and we ob-

tain the expressions of q−1/20 ch(WT (τ i)(ε)), ε = 0, 1, 2.
It is proved in [24] that M = M0

k is a rational vertex operator alge-
bra. Moreover, there are exactly two inequivalent irreducible τ -stable M -
modules, namely, M and W 0

k by Lemma 4.1. Since MT (τ) and WT (τ) are
two inequivalent irreducible τ -twisted M -modules, we have dim C1(τ, 1) =
dim C1(1, τ) = 2 and

{TMT (τ)( · , (τ, 1), z), TWT (τ)( · , (τ, 1), z)}

is a basis of C1(τ, 1) by [9, Theorems 5.4 and 10.1]. Now TM ( · , (1, τ), z)|S ∈

C1(τ, 1) for S =
(

0 −1
1 0

)
by [9, Theorems 5.4 and 8.1]. Thus,

TM ((1, τ), z) = αTMT (τ)

(
(τ, 1),

−1
z

)
+ βTWT (τ)

(
(τ, 1),

−1
z

)
for some α, β ∈ C.

From (6.2) and Proposition 6.1 it follows that

η(3z)
η(z)

TMT (τ)

(
(τ, 1),

−1
z

)
=

2 sin(π
5 )

√
5

Ξ(3)
3,3 −

2 sin(2π
5 )

√
5

Ξ(3)
4,3,

η(3z)
η(z)

TWT (τ)

(
(τ, 1),

−1
z

)
=

2 sin(2π
5 )

√
5

Ξ(3)
3,3 +

2 sin(π
5 )

√
5

Ξ(3)
4,3.

Thus

TM ((1, τ), z) = q−1/20

((
α

2 sin(π
5 )

√
5

+ β
2 sin(2π

5 )
√

5

)
+
(
− α

2 sin(2π
5 )

√
5

+ β
2 sin(π

5 )
√

5

)
q3/5 + · · ·

)
.
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Furthermore, we see that TM ((1, τ), z) = q−1/20(1+0·q3/5+· · · ) by a direct
computation. Hence α = 2 sin(π

5 )/
√

5 and β = 2 sin(2π
5 )/
√

5. Therefore,

TM ((1, τ), z) =
η(z)
η(3z)

Ξ(3)
3,3.

Note that

TM ((1, 1), z) = q−1/20 chM = Ξ(1)
1,1Ξ

(2)
1,1 + Ξ(1)

2,1Ξ
(2)
3,1.

Now M = M(0)⊕M(1)⊕M(2) and TM(1)((1, 1), z) = TM(2)((1, 1), z) by
the symmetry (4.9). Then

TM ((1, 1), z) = TM(0)((1, 1), z) + TM(1)((1, 1), z) + TM(2)((1, 1), z)

= TM(0)((1, 1), z) + 2TM(1)((1, 1), z)

and

TM ((1, τ), z) = TM(0)((1, 1), z) + ξTM(1)((1, 1), z) + ξ2TM(2)((1, 1), z)

= TM(0)((1, 1), z)− TM(1)((1, 1), z)

by the definition of trace functions. Thus q−1/20 chM(ε) = TM(ε)((1, 1), z)
can be expressed as

q−1/20 chM(0) =
1
3

(
TM ((1, 1), z) + 2TM ((1, τ), z)

)
=

1
3

(
Ξ(1)

1,1Ξ
(2)
1,1 + Ξ(1)

2,1Ξ
(2)
3,1 + 2

η(z)
η(3z)

Ξ(3)
3,3

)
,

q−1/20 chM(ε) =
1
3

(
TM ((1, 1), z)− TM ((1, τ), z)

)
=

1
3

(
Ξ(1)

1,1Ξ
(2)
1,1 + Ξ(1)

2,1Ξ
(2)
3,1 −

η(z)
η(3z)

Ξ(3)
3,3

)
for ε = 1, 2. The computations for W (ε), ε = 0, 1, 2 are similar.

Since M i
k, i = a, b, c are equivalent irreducible M τ -modules by Lemma 4.1,

we have q−1/20 chM c
k = q−1/20 chMa

k = Ξ(1)
2,2Ξ

(2)
2,1. Likewise, q−1/20 chW c

k =

q−1/20 chW a
k = Ξ(1)

2,2Ξ
(2)
2,2. The proof is complete. �

We now discuss the relation between the characters computed here and
those of modules for a W -algebra computed in [16]. We use the notation of
[16] without any comments. We refer to their results in the case that g is the
simple finite dimensional Lie algebra over C of type A2 and (p, p′) = (6, 5).
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In this case, we have

P p−h∨

+ = P 3
+ =

{
2∑

i=0

aiΛi | 0 ≤ ai ∈ Z and
2∑

i=0

ai = 3

}
,

P∨
+

p′−h = P∨
+

2 =

{
2∑

i=0

biΛ∨i | 0 ≤ bi ∈ Z and
2∑

i=0

bi = 2

}
.

It can be easily shown that W̃+ = 〈g〉 is the cyclic group of order 3
such that g(Λ0) = Λ1, g(Λ1) = Λ2, and g(Λ2) = Λ0. The cardinality of
Ip,p′ = (P 3

+ × P∨
+

2)/W̃+ is equal to 20.
For λ ∈ P 3

+, µ ∈ P∨
+

2, define

ϕλ,µ(z) = η(z)−2
∑

w∈W

ε(w)q
1

2pp′ |p
′w(λ+ρ)−p(µ+ρ∨)|2

.

The vector space spanned by ϕλ,µ(z), (λ, µ) ∈ Ip,p′ is invariant under the
action of SL2(Z) and the transformation formula

ϕλ,λ′

(
−1
z

)
=

∑
(µ,µ′)∈Ip,p′

S(λ,λ′),(µ,µ′)ϕµ,µ′(z)

is given by [16, (4.2.2)]. Define F1 = {ϕλ,µ(z) | (λ, µ) ∈ Ip,p′}. In [16,
Section 3], it is shown that each ϕλ,µ(z) ∈ F1 is the character of a module
for the W -algebra associated to g and (p, p′) which is conjectured to be
irreducible.

We denote by F2 the set of characters of all irreducible M τ -modules
computed in Theorem 6.2. For any m, there is a congruence subgroup Γm

such that each Ξ(m)
r,s is a modular form for Γm (cf. [33, (6.11)]). Then there

is a congruence subgroup Γ such that each character in F2 is invariant under
the action of Γ. The following transformation formulas hold by the formula
(6.2):

TM ((1, 1), −1
z )

TW 0
k
((1, 1), −1

z )
TMc

k
((1, 1), −1

z )
TW c

k
((1, 1), −1

z )



=



sin(π
5
)√

5

sin( 2π
5

)√
5

3 sin(π
5
)√

5

3 sin( 2π
5

)√
5

sin( 2π
5

)√
5

− sin(π
5
)√

5

3 sin( 2π
5

)√
5

−3 sin(π
5
)√

5
sin(π

5
)√

5

sin( 2π
5

)√
5

− sin(π
5
)√

5
− sin( 2π

5
)√

5
sin( 2π

5
)√

5
− sin(π

5
)√

5
− sin( 2π

5
)√

5

sin(π
5
)√

5




TM ((1, 1), z)
TW 0

k
((1, 1), z)

TMc
k
((1, 1), z)

TW c
k
((1, 1), z)


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and(
TM ((1, τ), −1

z )
TW 0

k
((1, τ), −1

z )

)
=

 2 sin(π
5
)√

5

2 sin( 2π
5

)√
5

2 sin( 2π
5

)√
5

−2 sin(π
5
)√

5

( TMT (τ)((τ, 1), z)
TWT (τ)((τ, 1), z)

)
.

Thus we have the transformation formulas for elements of F2. Comparing
the q-expansions and the coefficients of transformation formulas of elements
in F1 and F2, it can be shown that F1 = F2 using Lemma 1.7.1 in [20]. In
particular, ϕ3Λ0,2Λ∨0

(z) = q−1/20 chM τ holds.

Appendix A. v12, J(−1)v12, J(−2)v12, and J(−1)2v12

v12 = −(5877264800/3501)L(−12)1 + (3404072000/3501)L(−10)L(−2)1

− (2653990000/3501)L(−9)L(−3)1− (266376800/3501)L(−8)L(−4)1

+ (282988000/1167)L(−8)L(−2)21− (23744800/1167)L(−7)L(−5)1

− (30824000/1167)L(−7)L(−3)L(−2)1 + (1242377600/1167)L(−6)21

− (61947200/3501)L(−6)L(−4)L(−2)1− (1313806000/1167)L(−6)L(−3)21

− (45496000/1167)L(−6)L(−2)31− (3046768400/3501)L(−5)2L(−2)1

+ (299424800/1167)L(−5)L(−4)L(−3)1 + (2347094000/3501)L(−5)L(−3)L(−2)21

− (17280400/1167)L(−4)31− (2036373200/3501)L(−4)2L(−2)21

+ (82996000/3501)L(−4)L(−3)2L(−2)1 + (1074512000/3501)L(−4)L(−2)41

+ (511628125/3501)L(−3)41− (418850000/3501)L(−3)2L(−2)31

− (59680000/3501)L(−2)61− (505200/389)L(−6)J(−3)21

+ (3380480/1167)L(−4)L(−2)J(−3)21 + 1150L(−3)2J(−3)21

− (184400/1167)L(−2)3J(−3)21 + (3788680/1167)L(−5)J(−4)J(−3)1

− (8788400/3501)L(−3)L(−2)J(−4)J(−3)1−(12761440/3501)L(−4)J(−5)J(−3)1

− (5727500/10503)L(−4)J(−4)21 + (352400/389)L(−2)2J(−5)J(−3)1

+ (5727500/10503)L(−2)2J(−4)21 + (1593900/389)L(−3)J(−6)J(−3)1

+ (12935800/10503)L(−3)J(−5)J(−4)1 + (4108000/3501)L(−2)J(−7)J(−3)1

− (2811800/1167)L(−2)J(−6)J(−4)1− (3131600/10503)L(−2)J(−5)21

− (14904160/3501)J(−9)J(−3)1 + (32677600/10503)J(−8)J(−4)1

+ (9423200/10503)J(−7)J(−5)1 + (2432375/1167)J(−6)21

+ J(−3)41.

J(−1)v12 = (47528/389)L(−4)J(−3)31− (53552200/1167)J(−7)J(−3)21

− (14322122880/389)L(−10)J(−3)1− (7313862400/389)L(−8)L(−2)J(−3)1

− (2263268800/389)L(−7)L(−3)J(−3)1

+ (7140323840/1167)L(−6)L(−4)J(−3)1

− (4870066240/389)L(−5)2J(−3)1− (41271174880/3501)L(−9)J(−4)1



288 DONG, LAM, TANABE, YAMADA, AND YOKOYAMA

+ (87811701120/389)J(−13)1− (65647722400/389)L(−2)J(−11)1

+ (195884000/1167)L(−8)J(−5)1 + (18292448200/389)L(−3)J(−10)1

− (2704504400/389)L(−7)J(−6)1− (8342231040/389)L(−4)J(−9)1

− (2134787200/389)L(−6)J(−7)1 + (17270275360/1167)L(−5)J(−8)1

− (926640/389)L(−2)2J(−3)31 + (24986000/1167)L(−2)J(−5)J(−3)21

− (2833833600/389)L(−6)L(−2)2J(−3)1

+ (1692496000/389)L(−5)L(−3)L(−2)J(−3)1

− (6705813920/1167)L(−4)2L(−2)J(−3)1

− (10899200/9)L(−7)L(−2)J(−4)1

+ (20147275200/389)L(−2)2J(−9)1

+ (32842950400/3501)L(−6)L(−2)J(−5)1

− (8472651200/389)L(−3)L(−2)J(−8)1

− (10511649200/1167)L(−5)L(−2)J(−6)1

+ (12944796800/1167)L(−4)L(−2)J(−7)1− (9963200/389)J(−5)2J(−3)1

+ (1607444800/389)L(−5)L(−3)J(−5)1− (1408915040/1167)L(−4)2J(−5)1

+ (1271140/1167)L(−3)J(−4)J(−3)21

− (2312728600/1167)L(−4)L(−3)2J(−3)1

− (38446491200/3501)L(−6)L(−3)J(−4)1

− (1002365000/1167)L(−3)2J(−7)1

+ (462527000/389)L(−4)L(−3)J(−6)1

+ (14283100/389)J(−6)J(−4)J(−3)1

+ (15075473920/3501)L(−5)L(−4)J(−4)1

− (11661041600/3501)L(−4)L(−2)2J(−5)1

− (7223710000/3501)L(−3)2L(−2)J(−5)1

+ (2639390000/389)L(−3)L(−2)2J(−6)1

− (30846400/389)L(−5)L(−2)2J(−4)1

+ (5365349600/3501)L(−4)L(−3)L(−2)J(−4)1

− (34590712000/3501)L(−2)3J(−7)1 + (6230282500/3501)L(−3)3J(−4)1

+ (1547000/389)J(−5)J(−4)21− (4562948000/3501)L(−3)L(−2)3J(−4)1

− (10829000/1167)L(−2)J(−4)2J(−3)1

+ (4340336000/3501)L(−2)4J(−5)1

+ (1919403200/1167)L(−4)L(−2)3J(−3)1

− (99658000/389)L(−3)2L(−2)2J(−3)1

− (89856000/389)L(−2)5J(−3)1.

J(−2)v12 = −4272L(−5)J(−3)31− (21069744/389)J(−8)J(−3)21

− (14150438080/1167)L(−11)J(−3)1
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− (3639849600/389)L(−9)L(−2)J(−3)1

− (9699222400/1167)L(−8)L(−3)J(−3)1

+ (2157139840/1167)L(−7)L(−4)J(−3)1

− (5925448960/1167)L(−6)L(−5)J(−3)1

+ (3006435200/389)L(−10)J(−4)1

+ (325064548960/389)J(−14)1− (176823168000/389)L(−2)J(−12)1

+ (10174691200/3501)L(−9)J(−5)1 + (38988751200/389)L(−3)J(−11)1

− (4612321600/1167)L(−8)J(−6)1− (33023056960/389)L(−4)J(−10)1

− (13371577600/1167)L(−7)J(−7)1 + (54711326720/1167)L(−5)J(−9)1

+ (4368409600/1167)L(−6)J(−8)1− 960L(−3)L(−2)J(−3)31

+ (5080480/389)L(−2)J(−6)J(−3)21

− (1269523200/389)L(−7)L(−2)2J(−3)1

+ (1626342400/1167)L(−6)L(−3)L(−2)J(−3)1

− (3954100480/1167)L(−5)L(−4)L(−2)J(−3)1

+ (6597673600/1167)L(−8)L(−2)J(−4)1

+ (382495595200/3501)L(−2)2J(−10)1

+ (23379344000/3501)L(−7)L(−2)J(−5)1

− (41865472000/1167)L(−3)L(−2)J(−9)1

+ (5662851200/1167)L(−6)L(−2)J(−6)1

+ (41335582720/1167)L(−4)L(−2)J(−8)1

− (66974297600/3501)L(−5)L(−2)J(−7)1 + 7760L(−3)J(−5)J(−3)21

− (13118000/1167)J(−6)J(−5)J(−3)1

− (3036691200/389)L(−6)L(−3)J(−5)1

+ (2541514240/1167)L(−5)L(−4)J(−5)1

− (4489884400/1167)L(−5)L(−3)2J(−3)1

+ (48898000/389)L(−5)L(−3)J(−6)1

+ (524720000/389)L(−4)2L(−3)J(−3)1

− (478727200/389)L(−4)2J(−6)1

− (315678400/3501)L(−7)L(−3)J(−4)1

− (5656762000/1167)L(−3)2J(−8)1

+ (4388915200/1167)L(−4)L(−3)J(−7)1

+ (5080480/1167)L(−4)J(−4)J(−3)21

+ (7809478400/1167)L(−6)L(−4)J(−4)1

+ (117493120/3501)J(−7)J(−4)J(−3)1

− (6924715520/3501)L(−5)2J(−4)1

+ (7972739200/3501)L(−5)L(−2)2J(−5)1

+ (726208000/3501)L(−4)L(−3)L(−2)J(−5)1

+ (15160000/3501)J(−5)2J(−4)1
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− (9229774400/1167)L(−4)L(−2)2J(−6)1

− (1273060000/1167)L(−3)2L(−2)J(−6)1

− (5021408000/3501)L(−6)L(−2)2J(−4)1

+ (4736835200/1167)L(−5)L(−3)L(−2)J(−4)1

− (4697646400/3501)L(−4)2L(−2)J(−4)1

− (28325800/3501)J(−6)J(−4)21

+ (10330016000/1167)L(−3)L(−2)2J(−7)1

+ (6184910000/3501)L(−3)3J(−5)1

− (2988476000/3501)L(−4)L(−3)2J(−4)1

+ (2298688000/1167)L(−4)L(−2)3J(−4)1

− (59886716800/3501)L(−2)3J(−8)1

− (1320284000/3501)L(−3)2L(−2)2J(−4)1

+ (22910000/10503)L(−2)J(−4)31

− (3979216000/3501)L(−3)L(−2)3J(−5)1

− (122435200/389)L(−5)L(−2)3J(−3)1

− (977670400/1167)L(−4)L(−3)L(−2)2J(−3)1

− (22467200/3501)L(−2)J(−5)J(−4)J(−3)1

+ (58888000/1167)L(−3)3L(−2)J(−3)1

− (17576800/3501)L(−3)J(−4)2J(−3)1

+ (29504000/389)L(−3)L(−2)4J(−3)1 + (2281792000/1167)L(−2)4J(−6)1

− (368800/389)L(−2)2J(−4)J(−3)21− (238720000/1167)L(−2)5J(−4)1.

J(−1)2v12 = (28587850894720/389)L(−14)1 + (40679435680000/1167)L(−12)L(−2)1

− (20370766707200/389)L(−11)L(−3)1

− (29040708661120/389)L(−10)L(−4)1

− (1357372140800/389)L(−10)L(−2)21

− (120978369778240/1167)L(−9)L(−5)1

+ (15046999864000/1167)L(−9)L(−3)L(−2)1

− (120139236131200/1167)L(−8)L(−6)1

+ (7353135836800/1167)L(−8)L(−4)L(−2)1

+ (5914869272000/389)L(−8)L(−3)21

− (9027652192000/1167)L(−8)L(−2)31− (19757556187200/389)L(−7)21

+ (10357377908800/389)L(−7)L(−5)L(−2)1

+ (6212435174400/389)L(−7)L(−4)L(−3)1

− (3066391744000/389)L(−7)L(−3)L(−2)21

− (34866323814400/1167)L(−6)2L(−2)1
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− (1360052761600/389)L(−6)L(−5)L(−3)1

− (3455809144320/389)L(−6)L(−4)21

+ (8114060115200/1167)L(−6)L(−4)L(−2)21

+ (2356317080000/1167)L(−6)L(−3)2L(−2)1

− (4200302912000/1167)L(−6)L(−2)41

+ (2046779720960/389)L(−5)2L(−4)1

+ (5012264899200/389)L(−5)2L(−2)21

+ (5606971697600/1167)L(−5)L(−4)L(−3)L(−2)1

+ (4546296703000/1167)L(−5)L(−3)31

− (3986231288000/1167)L(−5)L(−3)L(−2)31

− (824891421120/389)L(−4)3L(−2)1

+ (129922182000/389)L(−4)2L(−3)21

+ (9190279446400/1167)L(−4)2L(−2)31

− (3417631724000/1167)L(−4)L(−3)2L(−2)21

− (1854416512000/1167)L(−4)L(−2)51

− (339474200000/1167)L(−3)4L(−2)1

+ (472407520000/1167)L(−3)2L(−2)41 + (21565440000/389)L(−2)71

− (33906046720/389)L(−8)J(−3)21

− (38547928640/389)L(−6)L(−2)J(−3)21

+ (8889576280/389)L(−5)L(−3)J(−3)21− (52680368/389)L(−4)2J(−3)21

+ (1681515680/389)L(−4)L(−2)2J(−3)21

− (4900781600/389)L(−3)2L(−2)J(−3)21

− (680659200/389)L(−2)4J(−3)21

− (21316634560/1167)L(−7)J(−4)J(−3)1

+ (15456968800/389)L(−5)L(−2)J(−4)J(−3)1

− (57407779520/1167)L(−4)L(−3)J(−4)J(−3)1

+ (769371200/389)L(−3)L(−2)2J(−4)J(−3)1

+ (82018834560/389)L(−6)J(−5)J(−3)1

− (318755320000/3501)L(−6)J(−4)21

− (62232722240/1167)L(−4)L(−2)J(−5)J(−3)1

+ (59657182000/3501)L(−4)L(−2)J(−4)21

+ (4384283800/1167)L(−3)2J(−5)J(−3)1

+ (28313585300/1167)L(−3)2J(−4)21

+ (14719931200/1167)L(−2)3J(−5)J(−3)1

− (15017860000/3501)L(−2)3J(−4)21

− (102815580920/389)L(−5)J(−6)J(−3)1
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+ (214806972640/3501)L(−5)J(−5)J(−4)1

+ (20784972000/389)L(−3)L(−2)J(−6)J(−3)1

− (133605586400/3501)L(−3)L(−2)J(−5)J(−4)1

+ (243575438080/1167)L(−4)J(−7)J(−3)1

+ (7292932400/389)L(−4)J(−6)J(−4)1

− (12891781760/389)L(−4)J(−5)21

− (49983377600/389)L(−2)2J(−7)J(−3)1

+ (10825750000/389)L(−2)2J(−6)J(−4)1

− (13957486400/3501)L(−2)2J(−5)21

− (173848522640/1167)L(−3)J(−8)J(−3)1

− (65060216000/1167)L(−3)J(−7)J(−4)1

+ (25622862200/389)L(−3)J(−6)J(−5)1

+ (174271514560/389)L(−2)J(−9)J(−3)1

− (232573421600/3501)L(−2)J(−8)J(−4)1

+ (392430209600/3501)L(−2)J(−7)J(−5)1

− (31534947600/389)L(−2)J(−6)J(−6)1

− (5559840/389)L(−2)J(−3)41− (291151720080/389)J(−11)J(−3)1

+ (257458099600/1167)J(−10)J(−4)1− (140099797760/389)J(−9)J(−5)1

+ (83988236280/389)J(−8)J(−6)1− (44378890400/389)J(−7)21

+ (22538776/389)J(−5)J(−3)31− (26131300/1167)J(−4)2J(−3)21.
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Appendix B. The images of four vectors in A(W)

For simplicity of notation we omit the symbol ∗ for multiplication in A(W).

[v12] = −(59680000/3501)[ω]6 + (156040000/3501)[ω]5

− (115878400/3501)[ω]4

+
(
− (184400/1167)[J ]2 + 32328400/3501

)
[ω]3

+
(
(536500/1167)[J ]2 − 3155968/3501

)
[ω]2

+
(
− (87812/389)[J ]2 + 93184/3501

)
[ω]

+ [J ]4 + (75776/3501)[J ]2.

[J(−1)v12] = −(89856000/389)[J ][ω]5 + (228945600/389)[J ][ω]4

− (555607520/1167)[J ][ω]3

+
(
− (926640/389)[J ]3 + (57790304/389)[J ]

)
[ω]2

+
(
(1637064/389)[J ]3 − (19542016/1167)[J ]

)
[ω]

− (668408/389)[J ]3 + (186368/389)[J ].

[J(−2)v12] = (179712000/389)[J ][ω]5 − (457891200/389)[J ][ω]4

+ (1111215040/1167)[J ][ω]3

+
(
(1853280/389)[J ]3 − (115580608/389)[J ]

)
[ω]2

+
(
− (3274128/389)[J ]3 + (39084032/1167)[J ]

)
[ω]

+ (1336816/389)[J ]3 − (372736/389)[J ].

[J(−1)2v12] = (21565440000/389)[ω]7 + (513849856000/1167)[ω]6

− (552497504000/389)[ω]5

+
(
− (680659200/389)[J ]2 + 1285515063040/1167

)
[ω]4

+
(
(3994427840/389)[J ]2 − 121501591744/389

)
[ω]3

+
(
− (8220864912/389)[J ]2 + 36103315456/1167

)
[ω]2

+
(
− (5559840/389)[J ]4 + (3836073072/389)[J ]2

− (363417600/389)
)
[ω]

− (9879324/389)[J ]4 − (355536896/389)[J ]2.
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