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Reinhard Farwig, Toshiaki Hishida, and Detlef Müller

We analyze in classical Lq(Rn)-spaces, n = 2 or n = 3,
1 < q < ∞, a singular integral operator arising from the lin-
earization of a hydrodynamical problem with a rotating obsta-
cle. The corresponding system of partial differential equations
of second order involves an angular derivative which is not
subordinate to the Laplacian. The main tools are Littlewood–
Paley theory and a decomposition of the singular kernel in
Fourier space.

1. Introduction

Consider a three-dimensional rotating rigid body with angular velocity ω =
(0, 0, 1)T and assume that the complement, a time-dependent exterior do-
main Ω(t) ⊂ R3, is filled with a viscous incompressible fluid modelled by
the Navier–Stokes equations. By a simple coordinate transform we are led
to the nonlinear system [6]

ut − ν∆u+ u · ∇u− (ω ∧ x) · ∇u+ ω ∧ u+∇p = f in Ω

div u = 0 in Ω

u = ω ∧ x on ∂Ω

u → 0 at ∞

(1.1)

for the unknown velocity u and pressure function p in a time-independent
exterior domain Ω ⊂ R3 where ν > 0 is the coefficient of viscosity. Looking
for stationary solutions of (1.1), i.e., for time-periodic solutions of the orig-
inal problem, and ignoring the nonlinear term u · ∇u we arrive at a linear
stationary partial differential equation in Ω.

The first step to analyzing this problem is the Lq-theory of the system

−ν∆u− (ω ∧ x) · ∇u+ ω ∧ u+∇p = f in R3

div u = g in R3
(1.2)

in the whole space. Here for later applications we allow div u to equal an
arbitrarily given function g. The Coriolis force ω ∧ u = (−u2, u1, 0)T can be
considered as a perturbation of the Laplacian. But the first order partial
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differential operator (ω ∧ x) · ∇u is not subordinate to the Laplacian due
to the increasing term ω ∧ x = (−x2, x1, 0)T . Using cylindrical coordinates
(r, θ, x3) ∈ (0,∞)× [0, 2π)× R we get

(ω ∧ x) · ∇u = −x2∂1u+ x1 ∂2u = ∂θu

showing that the crucial term (ω ∧ x) · ∇u is “just” an angular derivative of
u w.r.t. θ. Since

div
(
(ω ∧ x) · ∇u− ω ∧ u

)
= (ω ∧ x) · ∇div u = ∂θ g,

the pressure p will satisfy the equation

∆p = div f + ν∆g + ∂θg in R3

which can easily be solved in Lq-spaces. Given p and ignoring (1.2)2 we
arrive at the system

− ν∆u− ∂θu+ ω ∧ u = f in R3(1.3)

with another right-hand side f . Note that (1.3) also makes sense for a
two-dimensional vector field u on R2; then ω ∧ u = (−u2, u1)T and (r, θ) ∈
(0,∞)× [0, 2π) denote polar coordinates in R2.

Theorem 1.1.

(1) Let f ∈ Lq(Rn)n, n = 2 or n = 3, 1 < q < ∞. Then (1.3) has a
solution u ∈ L1

loc(Rn)n satisfying the estimate

‖ν∇2u‖q + ‖∂θu− ω ∧ u‖q ≤ c ‖f‖q.(1.4)

Its equivalence class in the homogeneous Sobolev space Ĥ2,q(Rn)n is
unique.

(2) Let f ∈ Lq1(R3)3 ∩ Lq2(R3)3, 1 < q1, q2 < ∞, and let u1 and u2 be
solutions as given by (1) corresponding to q = q1 and q = q2, respec-
tively. Then there are α, β, γ, δ ∈ R such that u1 coincides with u2 up
to an affine linear vector field αω+βω∧x+(γx1, γx2, δx3)T , and any
solution remains a solution if one adds such a term. For n = 2 the
terms αω and (0, 0, δx3)T have to be omitted.

(3) Let f ∈ Lq(Rn)n, n = 2 or n = 3, and let g ∈ H1,q
loc (R

n) such that
(ω∧x)g,∇g ∈ Lq(Rn)n, 1 < q <∞. Then (1.2) has a locally integrable
solution (u, p) satisfying the estimate

‖ν∇2u‖q + ‖∂θu− ω ∧ u‖q + ‖∇p‖q ≤ c (‖f‖q + ‖ν∇g + (ω ∧ x)g‖q)

where (1.2)2 has to be understood in the sense ∇div u = ∇g. Its equiv-
alence class in Ĥ2,q(Rn)n × Ĥ1,q(Rn) is unique. Moreover, if (u1, p1)
and (u2, p2) are two such solutions, then p1 equals p2 up to a con-
stant and u1 equals u2 up to an affine linear vector field of the form
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αω + βω ∧ x + (γx1, γx2,−2γx3)T , α, β, γ ∈ R, and any solution re-
mains a solution if one adds such terms. For n = 2, u1 equals u2 up
to the linear term β(−x2, x1)T , β ∈ R.

The so-called homogeneous Sobolev spaces Ĥk,q(Rn) in Theorem 1.1 are
defined as follows: Let Πk−1 denote the space of polynomials of degree
≤ k − 1. Then, using multi-index notation,

Ĥk,q(Rn) =
{
u ∈ L1

loc(Rn)/Πk−1 : ∂αu ∈ Lq(Rn) for all α ∈ Nn
0 , |α| = k

}
is equipped with the norm

∑
|α|=k ‖∂αu‖q. Note that elements in Ĥk,q(Rn)

are equivalence classes of L1
loc-functions being unique only up to polynomi-

als from Πk−1. Since Ĥk,q(Rn) can be considered as a closed subspace of
Lq(Rn)N for some N = N(k, n) ∈ N, it is reflexive for every q ∈ (1,∞). For
more details on these spaces see Chapter II in [3]. Notice, however, that the
space Πn

1 is not completely contained in the kernel of the operator

L = −ν∆− ∂θ + ω∧

arising in (1.3).
We note that separate Lq-estimates of the terms ω ∧ u and ∂θu in Theo-

rem 1.1 are not possible unless f satisfies an additional set of compatibility
conditions, see Remark 2.3 and Proposition 2.4 below; in particular u or
ω ∧ u are not necessarily Lq-integrable. Furthermore Proposition 2.1 indi-
cates that the main solution operator does not define a classical Calderón–
Zygmund integral operator.

The underlying problem of the flow around a rotating obstacle has at-
tracted much attention during the last years. Weak solutions have been con-
sidered in [1] and [2], whereas one of the present authors proved the existence
of a unique instationary solution in an L2-setting using semigroup theory ([6]
and [7]). It is a remarkable fact that the operator −ν∆u− ∂θu+ω ∧u does
not generate an analytic semigroup, but a contractive C0-semigroup. Several
auxiliary linearized equations without the crucial term ∂θu have been con-
sidered in [8]. An L2- and an L3/2-theory of problem (1.2) have been estab-
lished in [4], where the nonlinear problem is also solved for non-Newtonian,
second-order fluids and rigid bodies moving due to gravity. Pointwise decay
estimates for the linear and nonlinear case are obtained in [5]. For further
references on moving bodies in fluids see [4] and [5].

2. Preliminaries

To find the fundamental solutions of (1.2) and of (1.3) (see also [6] and [7]),
we use the Fourier transform F =∧, i.e.,

û(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξ u(x)dx.
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Note that in S ′(Rn), the space of tempered distributions, ∂̂ju = iξj û and
x̂ju = i∂û/∂ξj , 1 ≤ j ≤ n . Hence (1.3) is related to the problem

νs2û− ∂ϕû+ ω ∧ û = f̂(2.1)

where s = |ξ| and ∂ϕ = −ξ2 ∂/∂ξ1 + ξ1∂/∂ξ2 = (ω ∧ ξ) · ∇ξ is the angular
derivative in Fourier space when using polar or cylindrical coordinates for
ξ ∈ R2 or ξ ∈ R3, resp. Ignoring for a moment the term ω ∧ û the ordinary
differential equation −∂ϕû+ νs2û = f̂ yields the solution

û(ϕ) = eνs2ϕû0 − eνs2ϕ

∫ ϕ

0
e−νs2tf̂(t)dt, û0 ∈ Rn,(2.2)

when omitting in û, f̂ the variables s = |ξ| or s′ = (ξ21 +ξ22)
1/2, ξ3, resp. Due

to the 2π-periodicity of û w.r.t. ϕ the unknown û0 is given by

û0 =
(
1− e−2πνs2)−1

∫ 2π

0
e−νs2tf̂(t)dt.

Using for s 6= 0 the geometric series expansion of
(
1 − e−2πνs2)−1 and the

2π-periodicity of f̂ w.r.t. t we get û0 =
∫∞
0 e−νs2tf̂(t)dt. Then (2.2) yields

û(ϕ) =
∫ ∞

0
e−νs2tf̂(ϕ+ t)dt.(2.3)

Let O(t) denote the orthogonal matrix

O(t) =

 cos t − sin t 0
sin t cos t 0
0 0 1

 or O(t) =
(

cos t − sin t
sin t cos t

)
describing the rotation around the ξ3-axis or in the plane by the angle t,
resp. Thus, in the variable ξ,

û(ξ) =
∫ ∞

0
e−νs2tf̂

(
O(t)ξ

)
dt

is the solution of (2.1) when ω ∧ u has been ignored. To deal with the
term ω ∧ u note that ∂ϕO(ϕ) = ω ∧ O(ϕ) in the sense of linear maps.
Applying O(ϕ)T to (2.1) the unknown v̂(ϕ) = O(ϕ)T û(ϕ) will satisfy the
ordinary differential equation νs2v̂(ϕ) − ∂ϕv̂(ϕ) = O(ϕ)T f̂(ϕ). Hence by
(2.3) v̂(ϕ) =

∫∞
0 e−νs2tO(ϕ+ t)T f̂(ϕ+ t)dt and consequently

û(ξ) =
∫ ∞

0
e−νs2tO(t)T f̂(O(t)ξ)dt.(2.4)

Since e−ν|ξ|2t multiplied by (2π)−n/2 is the Fourier transform of the heat
kernel

Et(x) =
1

(4πνt)n/2
e−

|x|2
4νt
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and since ̂f(O(t)x) = f̂(O(t)ξ), (2.4) yields the formal solution

u(x) =
∫ ∞

0
O(t)TEt ∗ f(O(t)·)(x)dt(2.5)

of (1.3).
Note that for n = 3 and f ∈ S(R3)3, the integrals (2.4) and (2.5) do in

fact converge absolutely and define a distributional solution u ∈ S ′(R3)3 of
(1.3).

However, if n = 2, then both integrals fail to converge in S ′(R2)2, even
when f ∈ S(R2)2. This is not surprising, in view of a similar phenomenon
for the Poisson equation in dimension 2. In this case, we need to modify
(2.4), by defining a solution u ∈ S ′(R2)2 e.g., by means of the convergent
integral

〈u, ϕ〉 = 〈û, ϕ̌〉

=
∫
|ξ|≥1

∫ ∞

0
e−νs2tO(t)T f̂(O(t)ξ) · ϕ̌(ξ) dt dξ

+
∫
|ξ|<1

∫ ∞

0
e−νs2tO(t)T f̂(O(t)ξ) · (ϕ̌(ξ)− ϕ̌(0)) dt dξ

for all ϕ ∈ S(R2)2; hereˇdenotes the inverse Fourier transform.
Then, in both dimensions n = 2, 3, for f ∈ S(Rn)n, we have constructed

a solution u ∈ S ′(Rn)n of (1.3). Moreover, in the next section we shall
prove that u satisfies inequality (1.4) in Theorem 1.1(1). In particular,
||∇2u||q ≤ c||f ||q < ∞ for 1 < q < ∞, yielding u ∈ L1

loc(Rn)n. We will
conclude that, for any f ∈ Lq(Rn)n, there is a solution u ∈ L1

loc(Rn)n of
(1.3) satisfying (1.4).

To this end, consider the sequence of balls Bm(0) ⊂ Rn and choose a
sequence {fj} ⊂ S(Rn)n converging to f in Lq(Rn)n. Let uj be the solution
of (1.3) corresponding to fj . The proof of completeness of Ĥ2,q(Rn) in [3]
reveals that we can find a sequence of polynomials {rj} ⊂ Πn

1 and ũ ∈
L1

loc(Rn)n such that for j →∞

||∇2 ((uj + rj)− ũ) ||q → 0

and

(uj + rj)|Bm → ũ|Bm in Lq(Bm)n for all m ∈ N.(2.6)

Then (2.6) implies that Luj +Lrj → Lũ in the sense of distributions, which
shows that Lrj → Lũ− f in D′(Rn)n. And, since LΠn

1 is closed, as a linear
subspace of the finite-dimensional space Πn

1 , we see that Lũ − f = Lr,
for some r ∈ Πn

1 . Thus, if we put u = ũ − r, then u ∈ L1
loc(Rn)n and

||∇2u||q ≤ c||f ||q, so that u satisfies (1.4).
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Observe next that formula (2.5) may be rewritten by using

Et ∗ f(O(t)·)(x) = (Et ∗ f)(O(t)x),

the proof of which is based on the radial symmetry of Et(·).
For n = 3 we arrive at the identity

u(x) =
∫

R3

Γ(x, y)f(y)dy(2.7)

with the fundamental solution

Γ(x, y) =
∫ ∞

0
O(t)TEt(O(t)x− y)dt.(2.8)

Furthermore ∆u(x) can be represented — as u(x) in (2.7) — with the help
of the kernel

K(x, y)

(2.9)

= ∆xΓ(x, y)

=
∫ ∞

0
∆xO(t)TEt(O(t)x− y)dt

=
∫ ∞

0
O(t)T 1

(4πνt)n/2

(
− n

2νt
+
|O(t)x− y|2

(2νt)2

)
exp

(
−|O(t)x− y|2

4νt

)
dt,

for n = 2 or n = 3, cf. (3.4) below.

The following proposition indicates that K(x, y) = ∆xΓ(x, y) does not
define a classical Calderón–Zygmund integral operator:

Proposition 2.1.
(1) Let n = 3. Then, for |x|, |y| → ∞, the fundamental solution Γ(x, y) is

not bounded by C|x − y|−1. Actually there exists an α > 0 such that
for suitable x, y ∈ R3 with |x|, |y| → ∞

|Γ(x, y)| ≥ α
log |x− y|
|x− y|

.

(2) Let n = 2 or n = 3. Then there exists an α > 0 and suitable x, y ∈ Rn

with |x|, |y| → ∞ such that the kernel

K1(x, y) =
∫ ∞

0
t−n/2 1

t
e−|O(t)x−y|2/tdt

satisfies the estimate

K1(x, y) ≥
α

|x− y|
.

The same result holds for the kernel K2(x, y) where the term 1
t in the

definition of K1 is replaced by |O(t)x− y|2/t2, cf. (2.9).
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Proof. (1) Considering only the component Γ3,3(x, y) and points x, y ∈ R3

with equal third component x3 = y3 and of equal norm r = |x| = |y| we
use complex notation. Thus we may omit the third component of x, y and
we restrict ourselves to complex numbers x = r and y = reiθ, 0 < θ < π,
yielding

|O(t)x− y| = r|eit − eiθ| = 2r
∣∣∣∣sin θ − t

2

∣∣∣∣
and |x−y| = 2r| sin θ

2 |. Now Γ3,3(x, y) is bounded from below by
N∑

k=0

Ik(r, θ),

where N = [2r2 sin2 θ
2 ] and

Ik(r, θ) =
∫ 3θ/2+2kπ

θ/2+2kπ

1
(4πνt)3/2

exp
(
−r2 sin2

∣∣∣∣θ − t

2

∣∣∣∣/(νt)
)
dt.

We find constants αj > 0 independent of r, θ and of k such that for k ≥ 1

Ik(r, θ) ≥
α1

k3/2

∫ θ/2

−θ/2
exp

(
− α2r

2t2/k
)
dt

=
2α1

rk

∫ rθ/(2
√

k)

0
exp

(
− α2s

2
)
ds.

For 1 ≤ k ≤ N ∼ r2θ2 and rθ � 1, we find α3 > 0 such that Ik(r, θ) ≥ α3
rk .

Summing up we are led to the inequality

Γ3,3(x, y) ≥
N∑

k=1

Ik(r, θ) ≥ α3

N∑
k=1

1
rk

≥ α4
log(rθ)
r

with a constant α4 > 0 independent of r and of θ when rθ � 1.

(2) Again we use complex notation and consider points x = r, y = reiθ,
0 < θ < π, where now r2θ � 1. Then K1(x, y) is bounded from below by∫ θ+

√
θ/r

θ−
√

θ/r
t−n/2 exp

(
−4r2 sin2

∣∣∣∣θ − t

2

∣∣∣∣/t) dt

t

≥ α1

θ1+n/2

∫ √
θ/r

0
exp

(
− α2r

2t2/θ
)
dt

≥ α1

rθ1/2+n/2

∫ 1

0
e−α2s2

ds.

Hence K1(x, y) ≥ α3

θn/2−1/2|x−y| . The kernel K2(x, y) can be estimated anal-
ogously. �

Before proving Theorem 1.1 in Section 3 below we consider the much
simpler case q = 2, the question of separate estimates for uθ and ω ∧ u and
a variation of (2.10) when the integrals w.r.t. t extend from 2π to ∞.
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Proposition 2.2. Given f ∈ L2(Rn)n, n = 2 or n = 3, the solution u of
(1.3) given by (2.5) satisfies the estimate

‖∇2u‖2 + ‖(ω ∧ x) · ∇u− ω ∧ u‖2 ≤ c‖f‖2.(2.10)

Proof. By Plancherel’s theorem, Fubini’s theorem and the inequality of
Cauchy–Schwarz (with s = |ξ|)

‖∆u‖2
2 =

∫
Rn

s4
∣∣∣∣∫ ∞

0
e−νs2tO(t)T f̂(O(t)ξ) dt

∣∣∣∣2 dξ
≤
∫

Rn

(∫ ∞

0
s2e−νs2t dt

)
·
(∫ ∞

0
s2e−νs2t|f̂(O(t)ξ)|2dt

)
dξ

=
1
ν

∫ ∞

0

(∫
Rn

s2e−νs2t|f̂(O(t)ξ)|2 dξ
)
dt

=
1
ν

∫ ∞

0

(∫
Rn

s2e−νs2t|f̂(ξ)|2 dξ
)
dt

=
1
ν2
‖f‖2

2.

Furthermore, for any second order partial derivative

‖∂j∂ku‖2 = ‖ξjξkû‖2 ≤ ‖|ξ|2û‖2 = ‖∆u‖2 ≤
1
ν
‖f‖2.

�

Remark 2.3. Inequality (2.10) cannot be improved in the sense that both
‖ω ∧ u‖2 and ‖(ω ∧ x) · ∇u‖2 are finite or can even be estimated by ‖f‖2.
In the two-dimensional case let

u(x) = u(r, θ) = a(r)
1
r

(
− sin θ
cos θ

)
= a(r)

1
r2
x⊥

where x⊥ is obtained from x by rotation with the angle π
2 and a ∈ C∞(R+)

satisfies a = 1 for large r and a = 0 for r ∈ [0, 1). Obviously u ∈ C∞(R2)2

is solenoidal, |∇2u(x)| ∼ 1
r3 for large r yielding ∇2u ∈ L2(R2)4, supp∆u ⊂

supp a and ω ∧ u = a(r)
r

(− cos θ
− sin θ

)
= uθ. Consequently ω ∧ u − uθ ≡ 0 and

the right-hand side f = −ν∆u ∈ L2(R2)2, but |ω ∧ u| ∼ 1
r 6∈ L2(R2). An

analogous result holds in Lq-spaces, q 6= 2, when choosing u(x) = a(r)r−λ x⊥

for suitable λ > 0 .

Proposition 2.4. Let f ∈ Lq(R2)2 satisfy the compatibility conditions

fm(r) :=
1
2π

∫ 2π

0
O(θ)T f(r, θ) dθ = 0 for a.a. r > 0.(2.11)

Then one can find a suitable representative u of the unique solution in
Ĥ2,q(R2)2 of (1.3) given by Theorem 1.1, satisfying the estimate

‖∇2u‖q + ‖∂θu‖q + ‖u‖q ≤ c‖f‖q.
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An analogous result holds for n = 3 where (2.11) is replaced by the assump-
tion 1

2π

∫ 2π
0 O(θ)T f(r, θ, x3) dθ = 0 for a.a. r =

√
x2

1 + x2
2 > 0, x3 ∈ R.

Proof. The main idea is to show that the integral mean

um(r) =
1
2π

∫ 2π

0
O(θ)Tu(r, θ) dθ

vanishes for a.a. r > 0, for a suitable representative u; for n = 3 the integral
mean um(r, x3) is defined analogously. Then the identity O(θ)∂θ(O(θ)Tu) =
∂θu− ω ∧ u and Wirtinger’s inequality will imply that

‖u‖q
q =

∫ ∞

0
r

∫ 2π

0
|O(θ)Tu(r, θ)|q dθdr

≤ c‖∂θ(O(θ)Tu)‖q
q ≤ c‖∂θu− ω ∧ u‖q

q,

and Theorem 1.1(1) will complete the proof for n = 2 and also for n = 3.
In order to prove that um(r) ≡ 0 notice that, for n = 2, ũ(x) = O(θ)um(r)

satisfies (1.3) with f replaced by f = 0 since

L(ũ) = L(O(θ)um(r)) = O(θ)(Lu)m(r) = O(θ)fm(r) = 0.

Furthermore, since ũ ∈ S ′(R2)2, the proof of Theorem 1.1(2), see Section 3
below, implies that ũ ∈ Π2

1. Replacing u by u− ũ, we may then assume that
um = 0. This argument easily extends to the case n = 3. �

Remark 2.5. The difficulties in the proof of Theorem 1.1 when estimating
∆u with u given by (2.5) arise from the corresponding integrals on (0, ε),
ε > 0. Actually, consider the operator S on Lq(Rn) given by

Sf(x) =
∫ ∞

2π
(−∆)O(t)TEt ∗ f(O(t)·)(x)dt,

i.e., in Fourier space

Ŝf(ξ) =
∫ ∞

2π
s2e−νs2tO(t)T f̂(O(t)ξ)dt, s = |ξ|.

Since O(t) is 2π-periodic and s2
∑∞

k=1 e
−2kπνs2

= s2e−2πνs2
(1−e−2πνs2

)−1 =:
m(ξ) , we get that

Ŝf(ξ) = m(ξ)
∫ 2π

0
e−νs2tO(t)T f̂(O(t)ξ) dt

= m(ξ)F
(∫ 2π

0
O(t)TEt ∗ f(O(t)·)(x)dt

)
.

Obviously m(ξ) satisfies the classical Michlin–Hörmander multiplier condi-
tion, cf. [9], and due to properties of the heat kernel∥∥∥∥∫ 2π

0
O(t)TEt ∗ f(O(t)·)(x)dt

∥∥∥∥
q

≤
∫ 2π

0
‖f(O(t)·)‖q dt = 2π‖f‖q.
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Then multiplier theory yields the estimate ‖Sf‖q ≤ c‖f‖q for every q ∈
(1,∞) with a constant c = c(m, q).

3. Proof of Theorem 1.1

Due to the well-known estimate ‖∂j∂ku‖q ≤ c‖∆u‖q, 1 < q <∞, 1 ≤ j, k ≤
n, cf. [9], it suffices to consider only ∆u. The main ideas are Littlewood–
Paley theory and a decomposition of the integral operator

Tf(x) =
∫ ∞

0
(−∆)O(t)T (Et ∗ f)(O(t)x)dt =

∫
Rn

K(x, y)f(y)dy(3.1)

in Fourier space where each integral kernel has compact support. Since

F
(
−∆O(t)T (Et ∗ f)(O(t)·)

)
(ξ) = O(t)T |ξ|2e−ν|ξ|2tf̂(O(t)ξ)

define ψ ∈ S(Rn) by

ψ̂(ξ) = (2π)−n/2|ξ|2e−ν|ξ|2 = ̂(−∆)E1(3.2)

and

ψt(x) = t−n/2ψ

(
x√
t

)
, ψ̂t(ξ) = ψ̂(

√
tξ) = (2π)−n/2t|ξ|2e−νt|ξ|2 .(3.3)

Thus the kernel K(x, y) may be written in the form

K(x, y) =
∫ ∞

0
O(t)T ψt(O(t)x− y)

dt

t
.(3.4)

To decompose ψ̂t choose ϕ̃, χ̃ ∈ C∞
0 (1

2 , 2) such that 0 ≤ ϕ̃, χ̃ ≤ 1 and
∞∑

j=−∞
χ̃(2−jr) = 1,

∫ ∞

0
ϕ̃(sr)2

ds

s
=

1
2

for all r > 0.

Then define for ξ ∈ Rn and for j ∈ Z, s > 0

χ̂j(ξ) = χ̃(2−j |ξ|), ϕ̂s(ξ) = ϕ̃(
√
s|ξ|)

yielding

supp χ̂j ⊂ A(2j−1, 2j+1) := {ξ ∈ Rn : 2j−1 < |ξ| < 2j+1},(3.5)

supp ϕ̂s ⊂ A

(
1

2
√
s
,

2√
s

)
;

moreover
∫

Rn ϕs(x)dx = 0 and
∞∑

j=−∞
χ̂j(ξ) = 1,

∫ ∞

0
ϕ̂s(ξ)2

ds

s
= 1 (ξ 6= 0).(3.6)
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The family of functions {ϕs : s > 0} will be used in Littlewood–Paley theory,
see I§8.23 in [10], yielding the inequalities

c1‖f‖q ≤

∥∥∥∥∥
(∫ ∞

0
|ϕs ∗ f(·)|2 ds

s

)1/2
∥∥∥∥∥

q

≤ c2‖f‖q(3.7)

with constants c1, c2 > 0 depending on q ∈ (1,∞), but independent of
f ∈ Lq(Rn)n. Furthermore we decompose K by defining ψj ∈ S(Rn) by

ψj = (2π)−n/2χj ∗ ψ or equivalently ψ̂j = χ̂j · ψ̂, j ∈ Z,(3.8)

yielding ψ =
∑∞

j=−∞ ψj and, cf. (3.4),

Kj(x, y) =
∫ ∞

0
O(t)T ψj

t (O(t)x− y)
dt

t
, j ∈ Z.(3.9)

Given Kj we define the operator

Tjf(x) =
∫

Rn

Kj(x, y) f(y)dy =
∫ ∞

0
O(t)T (ψj

t ∗ f)(O(t)x)
dt

t
(3.10)

such that formally and even w.r.t to the operator norm topology T =∑∞
j=−∞ Tj , see the proof below.

Lemma 3.1. The functions ψj
t have the following properties:

(1) For j ∈ Z and t > 0

supp ψ̂j
t ⊂ A

(
2j−1

√
t
,

2j+1

√
t

)
.

(2) For m > n
2 let h(x) = (1+|x|2)−m and, cf. (3.3), ht(x) = t−n/2 h

(
x√
t

)
.

Then there exists a constant c > 0 independent of j ∈ Z such that

|ψj(x)| ≤ c 2−2|j|h2−2j (x) for all x ∈ Rn.

In particular
‖ψj‖1 ≤ c 2−2|j|.

Proof. (1) is obvious due to (3.3), (3.5) and (3.8). To prove (2) we show
first of all the pointwise estimate

|2j|α|∂αψ̂j(ξ)| ≤ cα 2−2|j|η(2−j |ξ|)(3.11)

for all ξ ∈ Rn, j ∈ Z, for all multi-indices α ∈ Nn
0 and with a function

η ∈ C∞
0

(
1
4 , 4
)
, 0 ≤ η ≤ 1. By the definition of χ̂j , (3.5) and the pointwise

estimates

|∂βψ̂(ξ)| ≤ cβ,N

 |ξ|max(0,2−|β|) , |ξ| < 1

|ξ|−N , |ξ| ≥ 1
, β ∈ Nn

0 ,
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for every N ∈ N, cf. (3.2), Leibniz’s formula yields the estimate

|2j|α|∂αψ̂j(ξ)| ≤ c
∑

0≤β≤α

2j|a||∂α−βχ̃(2−j |ξ|)| |∂βψ̂(ξ)|

≤ c
∑

0≤β≤α

2j|β|η(2−j |ξ|) |∂βψ̂(ξ)|.

For j ≥ 0 where only |ξ| ∼ 2j has to be considered, we get (3.11) imme-
diately, even with 2−N |j| replacing 2−2|j|. For j < 0 and |ξ| ∼ 2j < 1 the
right-hand side of the last inequality is bounded by

c
∑

0≤β≤α

η(2−j |ξ|) 2j max(|β|,2) ≤ c 2−2|j|η(2−j|ξ|).

Now (3.11) is proved.
To estimate ψj(x) we use for m > n

2 the identity

(1 + |2jx|2)m ψj(x) =
1

(2π)n/2

∫
Rn

(1− 22j∆)m ψ̂j(ξ) eix·ξ dξ.

By (3.11)
|(1− 22j∆)m ψ̂j(ξ)| ≤ Cm,N 2−2|j|η(2−j |ξ|)

for all j ∈ Z and ξ ∈ Rn. Hence

‖(1− 22j∆)m ψ̂j‖1 ≤ Cm 2nj−2|j|

and consequently |(1 + |2jx|2)m ψj(x)| ≤ c 2nj−2|j| proving Part (2). �

Lemma 3.2. For j ∈ Z let Mj denote the maximal operator

Mjg(x) = sup
r>0

∫
Ar

(|ψj
t | ∗ |g|)(O(t)Tx)

dt

t

where Ar =
[

r
16 , 16r

]
. Then for q ∈ (2,∞) the operator Tj satisfies the

estimate
‖Tjf‖q ≤ c ‖ψj‖1/2

1 |||Mj |||1/2
(q/2)′ ‖f‖q

with a constant c > 0 independent of j ∈ Z. The term |||Mj |||(q/2)′ denotes
the operator norm of the sublinear operator Mj on L(q/2)′(Rn), where 1

(q/2)′ +
1

q/2 = 1.

Proof. To estimate ‖Tjf‖q we use the Littlewood–Paley decomposition (3.7)
of Tjf and find a function 0 ≤ g ∈ L(q/2)′(Rn) with ‖g‖(q/2)′ = 1 (note that
q > 2) such that

‖Tjf‖2
q ≤

1
c21

∥∥∥∫ ∞

0
|ϕs ∗ Tjf(·)|2 ds

s

∥∥∥
q/2

=
1
c21

∫ ∞

0

∫
Rn

|ϕs ∗ Tjf |2g dx
ds

s
.
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By (3.9), (3.10)

ϕs ∗ Tjf(x) =
∫ ∞

0
O(t)T (ϕs ∗ ψj

t ∗ f)(O(t)x)
dt

t
,

where due to (3.5) ϕs ∗ ψj
t = 0 unless t ∈ A(s, j) := [22j−4s, 22j+4s]. Since∫

t∈A(s,j)
dt
t = log 28 for every j ∈ Z, s > 0, the inequality of Cauchy–Schwarz

and the associativity of convolutions yield

|ϕs ∗ Tjf(x)|2 ≤ c

∫
A(s,j)

|
(
ψj

t ∗ (ϕs ∗ f)
)
(O(t)x)|2 dt

t

≤ c ‖ψj‖1

∫
A(s,j)

(|ψj
t | ∗ |ϕs ∗ f |2)(O(t)x)

dt

t
.

Here we used the inequality

|
(
ψj

t ∗ (ϕs ∗ f)
)
(y)|2 ≤ ‖ψj

t ‖1(|ψj
t | ∗ |ϕs ∗ f |2)(y)

and that ‖ψj
t ‖1 = ‖ψj‖ for all t > 0. Thus

‖Tjf‖2
q ≤ c‖ψj‖1

∫ ∞

0

∫
A(s,j)

∫
Rn

(|ψj
t | ∗ |ϕs ∗ f |2)(x) g(O(−t)x)dx dt

t

ds

s
.

In the inner integral on Rn note that φ = |ψj
t | is radially symmetric; thus

for arbitrary functions f and h we get
∫

(φ ∗ f)h dx =
∫
f φ ∗h dx. Then the

elementary identity φ ∗ [g(O(−t)·)] = (φ ∗ g)(O(−t)·) implies that

‖Tjf‖2
q ≤ c ‖ψj‖1

∫
Rn

∫ ∞

0
|ϕs ∗ f |2(x)

∫
A(s,j)

(|ψj
t | ∗ g)(O(−t)x) dt

t

ds

s
dx.

Here the inner integral on A(s, j) is bounded by Mjg(x) uniformly in s > 0.
Now Hölder’s inequality and (3.7) show that

‖Tjf‖2
q ≤ c ‖ψj‖1

(∫
Rn

(∫
0
|ϕs ∗ f |2

ds

s

)q/2

dx

)2/q

‖Mjg‖(q/2)′

≤ cc2‖ψj‖1 ‖f‖2
q |||Mj |||(q/2)′ ‖g‖(q/2)′ .

Since ‖g‖(q/2)′ = 1, the proof is complete. �

Lemma 3.3. Let M denote the classical Hardy–Littlewood maximal opera-
tor on Rn, i.e.,

Mg(x) = sup
r>0

1
|Br(x)|

∫
Br(x)

|g(y)| dy,

and let M̃θg denote the “angular” maximal operator

M̃θg(x) = sup
r>0

∫
Ar

|g(O(t)Tx)|dt
t
,
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where Ar = [ r
16 , 16r]. Then Mj in Lemma 3.2 satisfies the estimates

Mjg(x) ≤ c 2−2|j|M(M̃θg)(x) for a.a. x ∈ Rn ,

‖Mjg‖q ≤ c 2−2|j| ‖g‖q for 1 < q <∞.

Proof. By Lemma 3.1 (2) |ψj
t (x)| ≤ c 2−2|j|ht2−2j (x) and consequently

Mjg(x) ≤ c 2−2|j| sup
r>0

∫
Ar

(ht2−2j ∗ |g|)(O(t)Tx)
dt

t
.

There exists a constant c > 0 independent of r, j such that ht2−2j ≤ chr2−2j

for all t ∈ Ar. Hence

Mjg(x) ≤ c 2−2|j| sup
r>0

hr2−2j ∗
∫

Ar

|g|(O(t)Tx)
dt

t

≤ c 2−2|j| sup
t>0

ht ∗ M̃θg(x).

Note that h is a nonnegative, radially decreasing function and that
∫
ht dx ≡

c0 > 0 for all t > 0. Therefore we conclude by II§2.1 in [10] that

sup
t>0

ht ∗ M̃θg(x) ≤ c0M(M̃θg)(x)

proving the first assertion.
For q ∈ (1,∞) the maximal operator M is bounded on Lq(Rn). Concern-

ing M̃θ we consider for given g ∈ Lq(Rn) its restriction

gr(θ) = g(r, θ) or gr,x3(θ) = g(r, θ, x3)

for n = 2 or n = 3, resp., when using polar or cylindrical coordinates. For
n = 2 gr(θ) ∈ Lq(0, 2π) for a.a. r > 0 by Fubini’s theorem, and with
the classical one-dimensional Hardy–Littlewood maximal operator M1 on
Lq(0, 2π)

|M̃θg(r, θ)| ≤ c(M1gr)(θ) for a.a. r > 0.(3.12)

Thus

‖M̃θg‖q
q ≤ c

∫ ∞

0
r‖M1gr‖q

Lq(0,2π)dr ≤ c

∫ ∞

0
r‖gr‖q

Lq(0,2π)dr = c ‖g‖q
q

due to the Lq-boundedness of M1. For n = 3 the proof is analogous. �

End of the proof of Theorem 1.1 (1). Let q ∈ (2,∞). Then by Lemmata 3.1-
3.3

‖Tjf‖q ≤ c 2−|j| · 2−|j| ‖f‖q.

Thus
∑

j∈Z Tj converges in the Lq-operator norm and T =
∑

j∈Z Tj is
bounded on Lq(Rn)n for q > 2.



SINGULAR “WINDING” INTEGRAL OPERATOR 311

Closely related to T is the operator T ∗f(x) =
∫
K∗(x, y)f(y)dy with

kernel

K∗(x, y) =
∫ ∞

0
ψt(O(t)y − x)O(t)

dt

t
.

Analogous arguments as before show that T ∗ is bounded on Lq(Rn)n for
every q > 2. Now let q ∈ (1, 2). Then for f ∈ Lq(Rn)n, g ∈ Lq′(Rn)n

|〈Tf, g〉| = |〈f, T ∗g〉| ≤ ‖f‖q c‖g‖q′

implying the Lq-boundedness of T . The case q = 2 had been considered in
Proposition 2.2. �

Proof of Theorem 1.1(2). It suffices to prove that every solution u ∈ S ′(R3)3

of (1.3) when f = 0 and ∇2u ∈ Lq(R3) equals a polynomial of the form αω+
βω ∧ x + (γx1, γx2, δx3)T . Given u define v̂(s′, ϕ, ξ3) = O(ϕ)T û(s′, ϕ, ξ3) ∈
S ′(R3)3 using cylindrical coordinates for ξ ∈ R3 and s′ =

√
(ξ21 + ξ22). Then,

cf. Section 2,
ν|ξ|2v̂ − ∂ϕv̂ = 0 in S ′(R3)3.

Let us show that 〈v̂, ψ〉 = 0 for all ψ ∈ C∞
0 (R3\{0})3. Given ψ define

ψ0(s′, ϕ, ξ3) = e−ν|ξ|2ϕ

∫ ϕ

−∞
eν|ξ|

2ϕ′
ψ(s′, ϕ′, ξ3) dϕ′.

Obviously ψ0 ∈ C∞
0 (R3\{0})3 and (ν|ξ|2 + ∂ϕ)ψ0 = ψ. Consequently

〈v̂, ψ〉 = 〈v̂, (ν|ξ|2 + ∂ϕ)ψ0〉 = 〈(ν|ξ|2 − ∂ϕ)v̂, ψ0〉 = 0

proving that supp v̂ ⊂ {0} and also supp û ⊂ {0}. Hence u is a polynomial.
Since ∇2u ∈ Lq(R3), u is even affine linear, u(x) = a + Bx for a ∈ R3,
B ∈ R3,3. Then (1.3) with f = 0, i.e., (ω ∧ x) · ∇u = ω ∧ u, shows that
ω ∧ a = 0 or equivalently a = αω, α ∈ R. Furthermore Bx must be of the
form Bx = βω ∧ x+ (γx1, γx2, δx3)T with constants β, γ, δ ∈ R. For n = 2
one easily obtains that a = 0 and Bx = βω ∧ x+ γx. �

Proof of Theorem 1.1(3). As explained in Section 1 problem (1.2) may be
reduced to (1.3) by solving the equation

∆p = div f + ν∆g + ∂θg = divF in Rn(3.13)

where F = f+ν∇g+(ω∧x)g satisfies the estimate ‖F‖q ≤ c(‖f‖q +‖ν∇g+
(ω∧x)g‖q). Thus divF may be considered as a continuous linear functional
on Ĥ1,q′(Rn). Since the operator ∆ is easily seen to be an isomorphism
from Ĥ1,q(Rn) to its dual Ĥ1,q′(Rn)∗ there exists a unique p ∈ Ĥ1,q(Rn)
solving ∆p = divF and satisfying ‖∇p‖q ≤ c‖F‖q. Then Part (1) yields a
u ∈ Ĥ2,q(Rn)n satisfying −ν∆u − ∂θu + ω ∧ u = f − ∇p and the estimate
‖∇2u‖q +‖∂θu−ω∧u‖q ≤ c(‖f‖q +‖∇p‖q). In particular (−ν∆−∂θ)div u =
div f −∆p and consequently (−ν∆ − ∂θ)(div u − g) = 0. By the reasoning
of Part (2) we may conclude that div u − g is a polynomial and due to the
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integrability assumptions even a constant. Replacing u by u− γ(x1, x2, 0)T ,
if necessary, we get a solution (u, p) of (1.2) satisfying also div u = g. The
uniqueness assertion is proved as in Part (2). �

References

[1] W. Borchers, Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes-
Gleichungen inkompressibler viskoser Flüssigkeiten, Habilitation Thesis, Univ. of
Paderborn, 1992.

[2] Z.M. Chen and T. Miyakawa, Decay properties of weak solutions to a perturbed
Navier–Stokes system in Rn, Adv. Math. Sci. Appl., 7 (1997), 741–770, MR 1476275
(98k:35147), Zbl 0893.35092.

[3] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equa-
tions, Vol. I, Linearized Steady Problems, Springer Tracts in Natural Philosophy, 38,
2nd edition, 1998, MR 1284205 (95i:35216a), Zbl 0949.35004.

[4] , On the motion of a rigid body in a viscous liquid: A mathematical analysis
with applications, in ‘Handbook of Mathematical Fluid Mechanics’ (S. Friedlander
and D. Serre, eds.), Elsevier Science, 653–791, 2002, MR 1942470 (2003j:76024).

[5] , Steady flow of a Navier–Stokes fluid around a rotating obstacle, J. Elasticity,
71 (2003), 1–31.

[6] T. Hishida, An existence theorem for the Navier–Stokes flow in the exterior of a
rotating obstacle, Arch. Rational Mech. Anal., 150 (1999), 307–348, MR 1741259
(2001b:76024), Zbl 0949.35106.

[7] , The Stokes operator with rotation effect in exterior domains, Analysis, 19
(1999), 51–67, MR 1690643 (2000c:35185), Zbl 0938.35114.
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