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REINHARD FARWIG, TOSHIAKI HISHIDA, AND DETLEF MULLER

We analyze in classical L?(R™)-spaces, n = 2 or n = 3,
1 < g < oo, a singular integral operator arising from the lin-
earization of a hydrodynamical problem with a rotating obsta-
cle. The corresponding system of partial differential equations
of second order involves an angular derivative which is not
subordinate to the Laplacian. The main tools are Littlewood—
Paley theory and a decomposition of the singular kernel in
Fourier space.

1. Introduction

Consider a three-dimensional rotating rigid body with angular velocity w =
(0,0,1)” and assume that the complement, a time-dependent exterior do-
main Q(t) C R3, is filled with a viscous incompressible fluid modelled by
the Navier—Stokes equations. By a simple coordinate transform we are led
to the nonlinear system [6]

(1.1)

u—vAu+u-Vu—(wAz)-Vut+wAu+Vp = f in Q
divu = 0 in Q

u = WAz on 0f)

u — 0 at oo

for the unknown velocity u and pressure function p in a time-independent
exterior domain € C R? where v > 0 is the coefficient of viscosity. Looking
for stationary solutions of (1.1), i.e., for time-periodic solutions of the orig-
inal problem, and ignoring the nonlinear term u - Vu we arrive at a linear
stationary partial differential equation in Q.
The first step to analyzing this problem is the Li-theory of the system

12) —vAu— (wAz) - Vu+wAu+Vp = f  inR3

' divu = g in R3

in the whole space. Here for later applications we allow divu to equal an
arbitrarily given function g. The Coriolis force w A u = (—ug,u1,0)” can be
considered as a perturbation of the Laplacian. But the first order partial
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differential operator (w A x) - Vu is not subordinate to the Laplacian due
to the increasing term w A x = (—x2,21,0)7. Using cylindrical coordinates
(r,0,2z3) € (0,00) x [0,27) X R we get

(WA z) Vu=—x901u+ x1 ou = gu

showing that the crucial term (w A z)-Vu is “just” an angular derivative of
u w.r.t. #. Since

div((wAz) - Vu—wAu) =(wAz) Vdivu =y g,
the pressure p will satisfy the equation
Ap=div f +vAg+dsg in R3

which can easily be solved in Li-spaces. Given p and ignoring (1.2)2 we
arrive at the system

(1.3) —vAu—dpu+wAu=f in R3

with another right-hand side f. Note that (1.3) also makes sense for a
two-dimensional vector field u on R?; then w A u = (—ug,u1)? and (r,0) €
(0,00) x [0,27) denote polar coordinates in R2.

Theorem 1.1.

(1) Let f € LYR™")", n =2 o0orn =3, 1< q < oco. Then (1.3) has a
solution w € L (R™)" satisfying the estimate

(1.4) [V %ullg + [|0pu — w Aullg < c || fllq-

Its equivalence class in the homogeneous Sobolev space H>I(R™)" is
UNIQUE.

(2) Let f € L (R33N L2(R3)3, 1 < q1, 2 < o0, and let u; and us be
solutions as given by (1) corresponding to ¢ = q1 and q = qa, respec-
tively. Then there are o, 3,7,0 € R such that uy coincides with us up
to an affine linear vector field aw + fw Az + (1, y22,023)", and any
solution remains a solution if one adds such a term. For n = 2 the
terms aw and (0,0,6x3)T have to be omitted.

(3) Let f € LY(R™M™, n =2 orn = 3, and let g € HLI(R™) such that
(wAz)g,Vg e LIYR™")™, 1 < g < co. Then (1.2) has a locally integrable
solution (u,p) satisfying the estimate

loV2ully + [18pu — w Aullg + [ Vpllg < ([ fllq + Vg + (w A 2)gllg)

where (1.2)2 has to be understood in the sense Vdivu = Vg. Its equiv-
alence class in H>4(R™)™ x HY(R") is unique. Moreover, if (u1,p1)
and (ug,p2) are two such solutions, then pi equals pe up to a con-
stant and w1 equals us up to an affine linear vector field of the form
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aw + Pw Az + (yx1, vz, —2vx3)T, a,B,v € R, and any solution re-
mains a solution if one adds such terms. Forn = 2, u1 equals uo up
to the linear term B(—xa, 1), B € R.

The so-called homogeneous Sobolev spaces H k:4(R™) in Theorem 1.1 are
defined as follows: Let II;_; denote the space of polynomials of degree
< k — 1. Then, using multi-index notation,

PR = {u € L (R")/Ij—y : 0% € LY(R") for all o € N§, |a| = k}

is equipped with the norm ;. [[0%u[lq. Note that elements in H"(R™)
are equivalence classes of Llloc—functions being unique only up to polynomi-
als from II;_;. Since H*9(R™) can be considered as a closed subspace of
LI(R™N for some N = N(k,n) € N, it is reflexive for every ¢ € (1, 00). For
more details on these spaces see Chapter II in [3]. Notice, however, that the
space II} is not completely contained in the kernel of the operator

L =—vA—0y+wA

arising in (1.3).

We note that separate L%-estimates of the terms w A u and Jypu in Theo-
rem 1.1 are not possible unless f satisfies an additional set of compatibility
conditions, see Remark 2.3 and Proposition 2.4 below; in particular u or
w A u are not necessarily Li-integrable. Furthermore Proposition 2.1 indi-
cates that the main solution operator does not define a classical Calderén—
Zygmund integral operator.

The underlying problem of the flow around a rotating obstacle has at-
tracted much attention during the last years. Weak solutions have been con-
sidered in [1] and [2], whereas one of the present authors proved the existence
of a unique instationary solution in an L?-setting using semigroup theory ([6]
and [7]). It is a remarkable fact that the operator —vAu — dpu + w A u does
not generate an analytic semigroup, but a contractive C’-semigroup. Several
auxiliary linearized equations without the crucial term Oypu have been con-
sidered in [8]. An L?- and an L3/2-theory of problem (1.2) have been estab-
lished in [4], where the nonlinear problem is also solved for non-Newtonian,
second-order fluids and rigid bodies moving due to gravity. Pointwise decay
estimates for the linear and nonlinear case are obtained in [5]. For further
references on moving bodies in fluids see [4] and [5].

2. Preliminaries

To find the fundamental solutions of (1.2) and of (1.3) (see also [6] and [7]),
we use the Fourier transform F =", i.e.,

N 1 iz
() = W/Rn e y(x)dx.
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Note that in S’(R™), the space of tempered distributions, 5]-17 = {0 and
zju=100/0&;, 1 < j <n. Hence (1.3) is related to the problem

(2.1) vs*li — dyi+w A= f

where s = |¢] and 0, = —§20/0& + £10/062 = (w A §) - V¢ is the angular
derivative in Fourier space when using polar or cylindrical coordinates for
€ € R? or ¢ € R3, resp. Ignoring for a moment the term w A @ the ordinary
differential equation —9,1 + vs*i = f yields the solution

¥ X
(2.2) u(p) = e’ Pay — 6”82”/ e_”sgtf(t)dt, ug € R,
0

when omitting in @, f the variables s = || or ' = (£24-£3)1/2, &3, resp. Due
to the 2w-periodicity of @ w.r.t. ¢ the unknown g is given by

2
Uy = (1 — 627”’82)_1/ eiVSQtf(t)dt
0

Using for s # 0 the geometric series expansion of (1 — e 2 52)_1 and the
2r-periodicity of f w.r.t. t we get G = fooo e‘”52tf(t)dt. Then (2.2) yields

(2.3) (o) = /OOO e f (@ + t)dt.

Let O(t) denote the orthogonal matrix
cost —sint 0
O(t)=| sint cost 0 or Ot) = <
0 0 1

describing the rotation around the £s-axis or in the plane by the angle ¢,
resp. Thus, in the variable &,

ale) = /0 T e 0@t

is the solution of (2.1) when w A uw has been ignored. To deal with the
term w A u note that 9,0(¢) = w A O(p) in the sense of linear maps.
Applying O(¢)? to (2.1) the unknown 9(¢) = O(p)Ti(p) will satisfy the
ordinary diﬁerential equation vs*o(p) — 0,0(p) = O(p)T f(¢). Hence by
(2.3 = [ e s *t0(p + )T f(¢ + t)dt and consequently

(2.4) ae) = /0 T e o o))t

cost —sint
sint cost

Since e~“é*t multiplied by (27)~"/2 is the Fourier transform of the heat

kernel
Fila) = o e
r)=-—-7—-=e€ v
! (4mvt)n/2



SINGULAR “WINDING” INTEGRAL OPERATOR 301
and since f@x) = f(O(t)€), (2.4) yields the formal solution

(2.5) ulw) = [ T 00T« F(O0)) (@)t

of (1.3).

Note that for n = 3 and f € S(R?)3, the integrals (2.4) and (2.5) do in
fact converge absolutely and define a distributional solution u € S'(R?)? of
(1.3).

However, if n = 2, then both integrals fail to converge in S’(R?)?, even
when f € S(R?)2. This is not surprising, in view of a similar phenomenon
for the Poisson equation in dimension 2. In this case, we need to modify
(2.4), by defining a solution u € &'(R?)? e.g., by means of the convergent
integral

(u, ) =
/ / O HO(0E) - o) di dg
le1>1

st T o .
+/§|<1/0 e PO T FO()E) - ($(€) — ¢(0)) dt dE

for all ¢ € S(R?)2; here “denotes the inverse Fourier transform.

Then, in both dimensions n = 2,3, for f € S(R™)", we have constructed
a solution u € S'(R™)"™ of (1.3). Moreover, in the next section we shall
prove that u satisfies inequality (1.4) in Theorem 1.1(1). In particular,
[[V2ull; < c|f]ly < oo for 1 < q < oo, yielding u € LL _(R")". We will
conclude that, for any f € LY(R™)", there is a solution u € L{ (R™)" of
(1.3) satlsfylng (1.4).

To this end, consider the sequence of balls B,,(0) C R™ and choose a
sequence {f;} C S(R™)" converging to f in L4(R™)"™. Let u; be the solution
of (1.3) corresponding to f;. The proof of completeness of H>9(R™) in [3]
reveals that we can find a sequence of polynomials {r;} C II} and u €
Li (R™)™ such that for j — oo

loc
IV ((wj +75) =) [lg = 0

and

(2.6) (uj +7j)|B,y — ulB,, in LY(By,)" forall meN.

Then (2.6) implies that Lu; + Lr; — Lu in the sense of distributions, which
shows that Lr; — Lu — f in D'(R™)". And, since LII} is closed, as a linear
subspace of the finite-dimensional space I17, we see that Lu — f = L,
for some r € II}. Thus, if we put v = @ — r, then u € L{ (R™)" and
[[V2ul|, < chHq, so that u satisfies (1.4).
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Observe next that formula (2.5) may be rewritten by using

Ey+ f(O(t)-)(x) = (B¢ [)(O(t)x),
the proof of which is based on the radial symmetry of E(-).
For n = 3 we arrive at the identity

(2.7 uw) = [ T )y
with the fundamental solution
(2.8) INz,y) = /0 Ot Ey(O(t)x — y)dt.

Furthermore Au(z) can be represented — as u(x) in (2.7) — with the help
of the kernel

(2.9)
K(z,y)
= A,(x,y)

/AO T B (O(t)z — y)dt

—= /0 0(75)T(47T]/1t)n/2 <—2th + W) exp <—|O(7;);£t—y|2> dt,

for n =2 or n = 3, cf. (3.4) below.

The following proposition indicates that K(x,y) = A,I'(x,y) does not
define a classical Calderon—Zygmund integral operator:
Proposition 2.1.

(1) Let n = 3. Then, for |z|, |y| — oo, the fundamental solution T'(z,y) is
not bounded by Cl|rx — y|~'. Actually there exists an o > 0 such that
for suitable z, y € R3 with |z, |y| — oo

IP(z,y)| =

(2) Let n =2 orn = 3. Then there exists an o > 0 and suitable z, y € R"
with |z, |y| — oo such that the kernel

o 1
Ki(z,y) = /0 ¢/ n e 10W—yP/t gy

satisfies the estimate
@

|z —y|
The same result holds for the kernel Ko(x,y) where the term % in the
definition of K; is replaced by |O(t)x — y|?/t2, cf. (2.9).

Ki(z,y) >



SINGULAR “WINDING” INTEGRAL OPERATOR 303

Proof. (1) Considering only the component I's 3(x,y) and points z,y € R?
with equal third component z3 = y3 and of equal norm r = |z| = |y| we
use complex notation. Thus we may omit the third component of x, y and
we restrict ourselves to complex numbers z = r and y = re?, 0 < 0 < ,
yielding

|Ot)x —y| = r|eit - ew] =2r

.0 — t‘
sin ——
2
N
and |z —y| = 2r|sin g] Now I'3 3(x, y) is bounded from below by Z Iy(r,0),
k=0

where N = [2r? sin? g] and

0

Lin6) /39/2+2k7r 1 . p< 22| t /(yt)) i@t
, — —— - X - .
. 0/24+2kn  (4mvt)3/2

We find constants o; > 0 independent of r, 6§ and of £ such that for £ > 1

9) > A i 242 /1) dt
(7' ) - k3/2 _9/2 €xp ( — QaTr / )

20 r/(2Vk)

=5 exp ( — OJQSZ)dS.

For 1 <k < N ~720% and 70 >> 1, we find ag > 0 such that I (r,0) > o8
Summing up we are led to the inequality
N
I's33(z,y) >kar9 >agz—>a4
k=1 k=1
with a constant ay > 0 independent of 7 and of § when 70 > 1.

log( 0)

(2) Again we use complex notation and consider points z = r, y = ret?,

0 < @ < 7, where now 726 > 1. Then K;(x,y) is bounded from below by

0-+V0/r o
/ t="2 exp (—4r2 sin? 9275‘ /t) %

0—\/@/7‘
Vo/r
aq
> g /0 exp ( — a2r2t2/9)dt

> 70‘1 ey
= o2 | © 5

The kernel Ko(z,y) can be estimated anal-

Hence Kl (x y) W
ogously. O
Before proving Theorem 1.1 in Section 3 below we consider the much

simpler case ¢ = 2, the question of separate estimates for uy and w A u and
a variation of (2.10) when the integrals w.r.t. ¢ extend from 27 to oc.
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Proposition 2.2. Given f € L2 (R™)", n = 2 or n = 3, the solution u of
(1.3) given by (2.5) satisfies the estimate

(2.10) HV2UH2 + (wAz) Vu—wAu|z <c|fl2-

Proof. By Plancherel’s theorem, Fubini’s theorem and the inequality of
Cauchy—Schwarz (with s = |£])

= [ | [T ot fowea]

f(o
< [ ([T o) ([T e iome ) de
-1 ( [ serfomeras) d
-1 /0 N ( /. sze—”%\f@)\?ds) dt

1
= 5 If1B.

Furthermore, for any second order partial derivative

A . 1
10;0kulla = [I&;€xtll> < [€[*all> = [Aulla < ~[If]2.

O

Remark 2.3. Inequality (2.10) cannot be improved in the sense that both
lw A ull2 and ||(w A x) - Vul|2 are finite or can even be estimated by | f/|2.
In the two-dimensional case let
1/—sinf 1
ue) = ur0) =alr) (00) = atr)

where 2 is obtained from z by rotation with the angle 3 and a € C*°(R)

satisfies a = 1 for large r and a = 0 for r € [0,1). Obviously u € C°°(R?)?
is solenoidal, |V?u(z)| ~ % for large r yielding V?u € L?(R?)*, supp Au C
suppa and w A u = a(:) (:‘;’sg) = ugp. Consequently w A u —ugp = 0 and
the right-hand side f = —vAu € L*(R?)?, but |w Au| ~ 2 ¢ L*(R?). An
analogous result holds in Li-spaces, ¢ # 2, when choosing u(z) = a(r)r—* 2t
for suitable A > 0.

Proposition 2.4. Let f € LI(R?)? satisfy the compatibility conditions
1 2
(2.11) F(r) = o oML f(r,0)dd =0  for a.a. > 0.
T Jo
Then one can find a suitable representative u of the unique solution in
H?9(R?)2 of (1.3) given by Theorem 1.1, satisfying the estimate

IV2ullg + 19pully + llullg < ¢l flq



SINGULAR “WINDING” INTEGRAL OPERATOR 305

An analogous result holds for n = 3 where (2.11) is replaced by the assump-
tzon%f T f(r,0,23) df =0 for a.a. r = \/zi+ a3 >0, z3 € R.
Proof. The main idea is to show that the integral mean

1 2
2r Jo
vanishes for a.a. r > 0, for a suitable representative u; for n = 3 the integral

mean 1, (r, z3) is defined analogously. Then the identity O(0)99(O(0)Tu) =
Opu — w A u and Wirtinger’s inequality will imply that

2
Hqu —/ / u(r, 0)|? dodr

< ¢||0p(O ( )H <cH89u—w/\u||

O(0) u(r,0) do

Um(r) =

and Theorem 1.1(1) will complete the proof for n = 2 and also for n = 3.
In order to prove that u,,(r) = 0 notice that, for n = 2, u(x) = O(0)un(r)
satisfies (1.3) with f replaced by f = 0 since

L(w) = L(O(0)um(r)) = O(0)(Lu)m(r) = O(0) fm(r) = 0.
Furthermore, since u € S’'(R?)2, the proof of Theorem 1.1(2), see Section 3

below, implies that @ € I12. Replacing u by u — %, we may then assume that
Uy, = 0. This argument easily extends to the case n = 3. (]

Remark 2.5. The difficulties in the proof of Theorem 1.1 when estimating
Awu with u given by (2.5) arise from the corresponding integrals on (0, ¢),
e > 0. Actually, consider the operator S on L?(R™) given by

o0

Sf(x) = / (—A)OW) B, + F(O())(@)dt,

™

i.e., in Fourier space

Sie) = | T2 tomT oM s = €]

™
Since O(t) is 27-periodic and s? > 7o | e=2kmvs? — g2p—2mvs? (1—6*27”’52)*1 =:
m(§), we get that

o 2 5 R
57(6) = m(©) /O O )T F(O(0)E) dt
21

@7 ([ 0w B fO0)@ar)

Obviously m(§) satisfies the classical Michlin-Hérmander multiplier condi-
tion, cf. [9], and due to properties of the heat kernel

2m 2
O(t)" B¢ + f(O(t))(x)dt S/O 1F(O@®) )l dt = 27| flq-

0
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Then multiplier theory yields the estimate ||[Sf|l, < ¢||f|q for every ¢ €
(1,00) with a constant ¢ = ¢(m, q).
3. Proof of Theorem 1.1

Due to the well-known estimate ||0;0kul|q < c||Aullq, 1 < ¢ <o0,1<j,k <
n, cf. [9], it suffices to consider only Awu. The main ideas are Littlewood—
Paley theory and a decomposition of the integral operator

By T - | T (MO (B HOW)dt = [ K(ww)f(y)dy

R

in Fourier space where each integral kernel has compact support. Since

F(— 20T (B £)(O))(€) = O1)TIePe € f(O(1)e)
define ¢ € S(R™) by

(3.2) B(€) = (2m) 2PV E" = (CA)E

and
(3.3) ¢t($) = t*n/Zw (j%) ’ T/;t(f) — ’(/3(\/%5) _ (27T)fn/2t‘§’267yt\§|2.

Thus the kernel K (z,y) may be written in the form

dt
(3.4) @)= [ 0w w00~ T
To decompose v, choose o, x € C§° ( ,2) such that 0 < ¢, ¥ <1 and
> : o0 ds 1
Z X(277r) =1, / {5(5r)2—3 =— forall »>0.
oo 0 S 2

Then define for £ € R™ and for j € Z, s > 0
Xi(€) = X(27IE]),  @s(6) = P(VslE])

yielding
(3.5) supp X; C A(2771, 274 == (£ e R : 2771 < ¢ < 2711,
supp ps C A ( 2 )
2VERRVE
moreover [, ¢s(z)dr = 0 and
N > ds
(36) > we-1 [a@rT -1 cro

j==o0
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The family of functions {5 : s > 0} will be used in Littlewood—Paley theory,
see 1§8.23 in [10], yielding the inequalities

</0°° s * f(,)yg ?)1/2 |

with constants c1,ca > 0 depending on ¢ € (1,00), but independent of
f € LY(R™)™. Furthermore we decompose K by defining 1/ € S(R™) by

(3.8) P = (27r)_n/2xj %1 or equivalently 7 = Xj Vv, je,
yielding ¢ = >72°  _4; and, cf. (3.4),

B9 K= [ 0000 -nT. et

(3.7) cillfllg < < el fllq

Given K; we define the operator

(310)  Tif(@)= | K(x.y) fy)dy = /O T oW (4 HO(t))

R

dt
t

such that formally and even w.r.t to the operator norm topology T =
Y22 o Tj, see the proof below.

j=—o00

Lemma 3.1. The functions wg have the following properties:
(1) Forje€Z andt >0

Ve A 2J—1 9j+l
C — — .
w4 (3. 7)
(2) Form > 2 let h(z) = (14|z|?) ™" and, cf. (3.3), hu(z) :t—n/2h<%),

Then there exists a constant ¢ > 0 independent of j € Z such that
17 (z)] < ¢27 2 hy o (2)  for all x € R™

In particular
97l < e272,

Proof. (1) is obvious due to (3.3), (3.5) and (3.8). To prove (2) we show
first of all the pointwise estimate

(3.11) [271910%97 (€)| < a2 n(277[€])
for all £ € R", j € Z, for all multi-indices o € N{j and with a function

n e Cgo(i,él), 0 < n < 1. By the definition of x;, (3.5) and the pointwise
estimates
j[max@2=18D g < 1

laﬂqj}(g)‘ S cﬁ,N ) /8 € Nn?
€=~ » lEl=1
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for every N € N, cf. (3.2), Leibniz’s formula yields the estimate
2l (€)] < e D 2710271 107())

0<B<a

<c Y 2VIn7E)) 0% ).

0<B<a
For j > 0 where only [£| ~ 27 has to be considered, we get (3.11) imme-
diately, even with 2=Vl replacing 272, For j < 0 and [£] ~ 27 < 1 the
right-hand side of the last inequality is bounded by
¢ Z n(277|¢]) 20 max(1812) < ¢ 9=2lily)(2-dlEl),
0<B<a

Now (3.11) is proved.
To estimate 17 (z) we use for m > & the identity

1 . N )
G [, (- 2YA (0 e e

(1+ [272]*)™ 9 (2) =
By (3.11)
(1= 22 A" I (€)] < Cruv 27 In(277€))
for all j € Z and £ € R™. Hence
(1 — 22 A ]|y < Gy 2020
and consequently |(1 + |27z|?)™ ¢ (x)| < ¢2"~2l proving Part (2). O

Lemma 3.2. For j € Z let M7 denote the maximal operator

: , dt
Mig(a) =sup [ (6] = lg (O )
r>0J A,
where A, = [ﬁ,l(ﬁr}. Then for q € (2,00) the operator T; satisfies the
estimate

1T Fllg < e 197 I/ HIMIN 2 £ 1

with a constant ¢ > 0 independent of j € Z. The term |||M|]|(4/2) denotes

the operator norm of the sublinear operator M? on L(q/Q)/(R"), where ﬁ%—

1 _
(]/—2_1.

Proof. To estimate ||T f||, we use the Littlewood-Paley decomposition (3.7)

of T; f and find a function 0 < g € L(q/z),(R”) with [|gl(g/2)r = 1 (note that
g > 2) such that

|2 ds
s

1 x
2
H Jqu—C%H/O ‘803* ]f() 42

1 [ ds
L
Cl 0 n S
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By (3.9), (3.10)
dt
‘PS*Tf O @S*wt*f)( ())7,

where due to (3.5) s % ¢! = 0 unless t € A(s,j) := [221~4s, 227+45]. Since
fte Als.) t = log 28 for every j € Z, s > 0, the inequality of Cauchy Schwarz,
and the associativity of convolutions yield

pex TE@E < [ |+ (eax 1)(O0)

A(s)g)

2 8¢
t

dt

<cllv!|; (1 Lps * FPY(O()2)
A(s5) t

Here we used the inequality

(] (s % )W) < NI (9] Jsps * 1P (w)
and that [[¢7 |, = |[¢7] for all £ > 0. Thus

I3 12 < el /0 / » [ w1+l £2)@) 9(O(—t))dn § 2.
S,7 n

In the inner integral on R™ note that ¢ = ]wi | is radially symmetric; thus
for arbitrary functions f and h we get [(¢* f)hdz = [ f ¢p+hdz. Then the
elementary identity ¢ * [g(O(—t)-)] = (¢ * g)(O(—t)-) implies that

j dt d
||Tf|!2s6W||1// oo 1@ [l g)O(0m) § T

Here the inner integral on A(s, 5) is bounded by M/ g(x) uniformly in s > 0.
Now Holder’s inequality and (3.7) show that

2/q
112 < ol 2 ds q/Qd j
1T5f 1l < clle’[lx My s+ 17~ x| Mgl

< cea|[9? 1 NG M g2y gl a2y
Since [|gll(4/2) = 1, the proof is complete. O

Lemma 3.3. Let M denote the classical Hardy—Littlewood mazimal opera-
tor on R", i.e.,

1
My(x) = sup

y)| dy,
B @) o 1Y

and let Mgg denote the “angular” mazimal operator

Magla) =sup [ la(007) .

r>0
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where A, = {5, 16r]. Then MY in Lemma 3.2 satisfies the estimates

Mig(z) < c27 M(Myg)(z)  for a.a. z € R,

||Mjg||q < 272 9llq Jor 1 < q < oo.

Proof. By Lemma 3.1 (2) lwg(x)\ < ¢2 2l hyy—s; () and consequently

Migla) < 2 sy [ (s ¢ g (O 0) T
r>0 »

There exists a constant ¢ > 0 independent of 7, j such that h;—2; < ch,g9-2;
for all t € A,.. Hence

. . dt
Mig(z) < 272l sup hyg-2 / lg/(0(t) " z) —
>0 A, t

< ¢2 Wl sup hy « Mog(x).
t>0

Note that h is a nonnegative, radially decreasing function and that [ hy dz =
co > 0 for all ¢ > 0. Therefore we conclude by I1§2.1 in [10] that

sup he % Mog(z) < coM(Mag)(z)
>

proving the first assertion.
For g € (1, 00) the maximal operator M is bounded on L?(R™). Concern-

ing My we consider for given g € LI(R"™) its restriction

g9r(0) = g(r,0) or gru(0) =g(r,0,z3)

for n = 2 or n = 3, resp., when using polar or cylindrical coordinates. For
n = 2 g (0) € Li0,2r) for a.a. r > 0 by Fubini’s theorem, and with
the classical one-dimensional Hardy—Littlewood maximal operator M; on
L9(0,2m)

(3.12) |Mog(r,0)| < c(Mig,)(8) for a.a. r> 0.
Thus

o

. o
| Magllg < c /0 PIMigo 14 0 gy dr < € /0 19012 ag0.0mdr = €l

due to the L?-boundedness of M;. For n = 3 the proof is analogous. O

End of the proof of Theorem 1.1 (1). Let g € (2,00). Then by Lemmata 3.1-
3.3

IT5fllg < 270270 1]l
Thus EjeZTj converges in the LY-operator norm and 7' = ZjeZTj is
bounded on LI(R™)" for ¢ > 2.
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Closely related to T' is the operator T*f(z) = [ K*(z,y)f(y)dy with
kernel
. o0 dt
K (z,y)= [ (O@t)y —2)O0(t)
0
Analogous arguments as before show that 7™ is bounded on L?(R™)™ for
every q > 2. Now let ¢ € (1,2). Then for f € LY(R")", g € LY (R")"

(Tf 9 = [T 9 <[ fllgcllglly

implying the L?-boundedness of T'. The case ¢ = 2 had been considered in
Proposition 2.2. O

Proof of Theorem 1.1(2). Tt suffices to prove that every solution u € S'(R3)3
of (1.3) when f = 0 and V2u € L(R3) equals a polynomial of the form aw+
Bw A x + (yr1,yT2,023)T. Given u define 9(s, ¢, &3) = O(p)T (s, @, &3) €
S'(R3)3 using cylindrical coordinates for ¢ € R? and ' = /(€2 + £2). Then,
cf. Section 2,

V[0 — 0,5 =0 in S'(R?)®.
Let us show that (9,1) = 0 for all 1y € C§°(R*\{0})3. Given ¢ define

<p /
11}0(8/7 ©, 63) = e_y|€|2(p / ey‘£|2¢’ 7/)(5,» (10/7 53) d(pl

—0o0

Obviously 19 € C§°(R3\{0})? and (v|¢]? + 9,)v0 = . Consequently

(0,9) = (0, (VIE]® + 0p)h0) = ((VIE]* = D)0, 4h0) =0
proving that supp v C {0} and also supp @ C {0}. Hence u is a polynomial.
Since V2u € LI(R3), u is even affine linear, u(z) = a + Bz for a € R3,
B € R33. Then (1.3) with f = 0, i.e., (WA x) - Vu = w A u, shows that
w A a = 0 or equivalently a = aw, a € R. Furthermore Bz must be of the
form Bx = fw Az + (yz1,v22,023)" with constants 3,7, € R. For n = 2
one easily obtains that a = 0 and Bx = fw A z + vz. O

Proof of Theorem 1.1(3). As explained in Section 1 problem (1.2) may be
reduced to (1.3) by solving the equation

(3.13) Ap =div f + vAg+ 0pg = divF in R"

where F' = f+vVg+ (wAx)g satisfies the estimate || F'||; < c(|| fllq+[[¥Vg+
(wAZ)g|lq). Thus div F' may be considered as a continuous linear functional
on HLY (R™). Since the operator A is easily seen to be an isomorphism
from H“9(R") to its dual H'4 (R™)* there exists a unique p € H4(R")
solving Ap = div F' and satisfying ||Vp|l; < ¢||F|l;. Then Part (1) yields a
u € I:IM(R”)” satisfying —vAu — Opu +w A u = f — Vp and the estimate
[V2ullg+ 10pu—wAully < (|| fllq+]VPllg)- In particular (—vA —p)divu =
div f — Ap and consequently (—vA — 9y)(divu — g) = 0. By the reasoning
of Part (2) we may conclude that divu — ¢ is a polynomial and due to the
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integrability assumptions even a constant. Replacing u by u —y(z1, x2,0)7,
if necessary, we get a solution (u,p) of (1.2) satisfying also divu = g. The

uniqueness assertion is proved as in Part (2). O
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