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We study mapping properties of the heat operator etA of
an m-th order elliptic b-differential operator in appropriately
defined spaces of whole and fractional (Hölder) derivatives.
An application is made to short time existence of solutions to
certain semilinear parabolic equations.

1. Introduction

Let (M, g) be a compact manifold with boundary. We say that M has a
cylindrical end if there is a neighborhood in which there is a local diffeomor-
phism to a product [0, ε)x × Nz in which the metric may be approximated
by (

dx

x

)2

+ hN ,

where hN is a Riemannian metric on the cross section N. Note that in this
metric, the boundary is infinitely far away. M is called a manifold with
cylindrical ends if it has at least one cylindrical end and no other type of
boundary.

The purpose of this paper is to study differentiability properties of solu-
tions to the heat equation {

∂u
∂t −∆u = 0

u|t=0 = f
(1)

on such a manifold M. The Laplacian in such a metric g will be a b-
differential operator, that is to say, an operator composed of vector fields
tangent to the boundary. In the local coördinates given above, the set of
such vector fields is generated by{

x
∂

∂x
,

∂

∂z1
, . . . ,

∂

∂zn−1

}
.

These are called the boundary vector fields. In fact, the Laplacian could be
replaced by A, any elliptic combination of the boundary vector fields. See
[Ma] or [Me] for more on these elliptic operators. Elliptic b-operators are
essentially self-adjoint.
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Example 1.1. If M = [0,∞), the heat equation is

∂u

∂t
−

(
x

∂

∂x

)2
u = 0.

The relevant analytic feature of this operator is the vanishing coefficient
x in the elliptic part, which prevents it from being uniformly elliptic in the
traditional sense. It was for the purpose of studying such operators that
Melrose developed the b-calculus; see his book [Me] and also the paper of
Mazzeo [Ma] and the many others referenced in their work. This is exactly
what is needed here, for in this point of view the vector field x∂/∂x is seen
as one indivisible entity rather than x being the coefficient. All spaces and
operators are in terms of derivatives by the boundary vector fields. We define
Ck

b (M) to be the space of continuous functions with up to k derivatives by
x∂/∂x and ∂/∂zi bounded. We also make use of the Hölder space Cγ

b (M)
consisting of continuous functions for which

‖u‖γ = sup
M
|u|+ sup

p6=q

|u(p)− u(q)|
(dg(p, q))γ

< ∞,

where dg(p, q) represents the distance between the points p and q in the
cylindrical end metric as long as p and q are ‘close’. For a precise definition,
see Section 4.

The main theorem is:

Theorem 1.2. Let etA be the heat operator of an m-th order b-differential
operator A which is elliptic with respect to a sector whose complement is
negative (see Theorem 2.4). Then for any α ∈ R, etA is bounded for t within
any fixed bounded interval of (0,∞), between the following weighted spaces
and with the corresponding estimates:

etA : xαC0(M) −→ xαCk
b (M); ‖u‖k ≤ Ct−k/m‖f‖0,

and

etA : xαCγ
b (M) −→ xαCm

b (M); ‖u‖m ≤ Ct−1+γ/m‖f‖γ .

We note two immediate features of these estimates. One is that the esti-
mates blow up as t approaches zero. This occurs because of the well-known
smoothing phenomenon associated to heat transfer. The second observa-
tion is that although our spaces are defined in a way that accounts for the
singular metric, the powers of t are the same as in the smooth case.

The method of proof is roughly the same also. The solution to the heat
equation may be expressed as the integral of the product of the heat kernel
with the initial data. For the heat equation of the usual Laplacian in Rn,
this solution is

u(x, t) =
∫

Rn

1
(4πt)n/2

e−‖x−y‖2/4tf(y) dy.



HEAT OPERATORS ON MANIFOLDS WITH CYLINDRICAL ENDS 333

To estimate derivatives, one passes the derivative inside the integral and
checks that the integrals converge. One may calculate directly that each
successive differentiation produces a factor of t−1/2. See for example a stan-
dard text in PDE such as that of Evans [E] or Folland [F]. On a smooth
compact manifold, or in the interior of our manifold with cylindrical ends,
the heat kernel of the metric Laplacian is approximated by that of Rn, as
one discovers in Aubin [A]. Following a similar method, we explain in Sec-
tion Two the form of the heat kernel on a manifold with cylindrical ends,
and in Sections Three and Four we carry out the calculations.

Boundedness properties of the heat operator etA in appropriately defined
Lp and Sobolev spaces have been studied extensively by several authors;
see for example [Ma], [Me], and [L]. Our purpose in investigating the
differentiability and Hölder properties is to allow applications to nonlinear
problems. An existence theorem for certain semilinear equations will be
given in the last section.

This paper is continuation of our earlier paper [JL] in which we studied
the heat equation on a cone manifold, and further description of related
work of other authors may be found there.

Finally, we thank the referee for helpful comments in improving the paper.

2. The heat space and heat kernel

We wish to express the heat operator as an integral operator, and a detailed
understanding of the singular structure of the integral kernel will enable us
to determine the mapping properties. Such a description is given in [L] and
we will quote that result in this section after establishing some concepts and
notations.

A central idea of Melrose is that when M is singular or has boundary, these
integral kernels are more naturally described as functions or distributions
not on M ×M × [0,∞)t, but rather on a more complicated manifold with
corners, whose interior is identified with the interior of M×M×[0,∞)t. The
singularities of the kernel are then described by the asymptotic behavior
of the kernel on approach to the various corners, edges, and faces. It is
explained in Melrose’ book [Me] that the correct space is obtained by an
ordinary blow up of Z × [0,∞) ⊂ M2 × [0,∞), where Z = (∂M)2 ⊂ M2 is
the corner, followed by what he calls a parabolic blow up at the diagonal at
t = 0. This space is denoted here by M2

H and is a well-defined object with
a differentiable structure and so on; all these details may be found in [Me].
We remark that Melrose focused primarily on Laplace-type operators. We
wish to include m-th order operators. Because the blow up space is not
essentially different, we will call this last step of its construction an “m-th
order parabolic blow up,” and we will also use the same notation, M2

H , to
denote it.



334 THALIA D. JEFFRES AND PAUL LOYA

For our immediate purpose here, we only need to know that locally
these blow ups are simply introduction of singular coördinates, and these
coördinates are very natural because they reflect the familiar radial sym-
metry of b-differential operators and the parabolic symmetry of the heat
operator. As a manifold with corners, there is no global coördinate chart
for all of M2

H . We now describe the local charts.
Again let (x, z1, . . . , zn−1) be coördinates in a neighborhood of the bound-

ary where M is locally diffeomorphic to [0, ε)x×Nz. Let (y, z′1, . . . , z
′
n−1) be

local coördinates for the second copy of M in M2 × [0,∞). To compress
notation we will often write z = (z1, . . . , zn−1) and z′ = (z′1, . . . , z

′
n−1). The

first blow up is accomplished by the introduction of projective (really polar,
reflecting the radial symmetry of the elliptic part — see [G]) coördinates
near Z × [0,∞) ⊂ M2 × [0,∞). At this stage we have two neighborhoods.

I. Near the left-hand corner{
t = t, ξ = x/y, η = y, z = z, z′ = z′} .

Three boundary hypersurfaces meet at the left-hand corner. Using nota-
tion consistent with [L], we define them as follows:

Definition 2.1. The left boundary, lb, is the lift of {x = 0} and is given in
these coördinates by {ξ = 0}. The front face, ff , is the blow up of the corner
and is given by {η = 0}. The temporal boundary, tb, is the lift of {t = 0}
and is described in by {t = 0}. This submanifold is also denoted by M2

b and
is often referred to as the ‘b-stretched product’.

II. Near the right-hand corner{
t = t, ξ′ = x, η′ = y/x, z = z, z′ = z′

}
.

Definition 2.2. The right boundary, rb, is given by {η′ = 0}.
Note however that approach to the right boundary can also be described

in the coördinates I. by ξ →∞.

Next we do the m-th order parabolic blow up of the lifted diagonal {x =
y, z = z′}∩{t = 0}. This set belongs to either coördinate patch, so choosing
those near the left-hand corner, it is described locally by {ξ = 1, z = z′} ∩
{t = 0}. Parabolic blow up is introduction of a singular system of coördinates
in which three data are used to locate a point: Its position η along the
diagonal, its location (ω0, ω

′) on a unit reference heat sphere Sn
H centered at

(ξ, z − z′, η, t) = (1, 0, η, 0), and its parabolic distance from the center. The
upper hemisphere of the unit heat sphere with center at the origin is defined
to be

Sn
H = {~ω = (ω0, ω

′) ∈ Rn+1 | ω0 ≥ 0, ω2
0 + |ω′|2m = 1},
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and the parabolic distance of (ξ, z − z′, η, t) to (1, 0, η, 0) is

d = 2m
√

t2 + |(ξ − 1, z − z′)|2m.

Global “coördinates” are

{ω0 = t/dm, ω′ = (ξ − 1)/d, (z − z′)/d, η, z′, d}.

There appears to be an extra coördinate because ω0 and ω′ are not inde-
pendent. In the regions where ξ− 1 and z− z′ are small compared to t, i.e.,
near the top of the blown-up diagonal, local coördinates are{

ρ = t1/m, w =
ξ − 1
t1/m

=
x− y

yt1/m
, ζ =

z − z′

t1/m
, η = y, z′ = z′

}
.

Near the top where the blown-up diagonal meets the front face, there are
two boundary hypersurfaces, the front face and a new one.

Definition 2.3. The blown-up diagonal is called the temporal face and is
denoted by tf . It is locally given by {ρ = 0}.

We could also define a separate coördinate system valid near tb where the
diagonal hits the front face, but it won’t be necessary because tb is reached
as |(w, ζ)| → ∞.

We now recall an ellipticity condition that guarantees the existence of
the heat operator for a b-differential operator. Let A be an m-th order b-
differential operator on M . Then on a neighborhood [0, ε)x × N near the
boundary, we can write

A =
m∑

k=0

Am−k(x) ·
(

x
∂

∂x

)k

,

where the Am−k’s are differential operators of order m− k on N depending
smoothly in x. The b-principal symbol of A, ab, is just the usual principal
symbol of A in the interior of M , and in the decomposition above is defined
by

ab(ξ) =
m∑

k=0

am−k(x, ξ′) · (iξ1)k, ξ = (ξ1, ξ
′) ∈ R× T ∗(N),

where am−k(x, ξ′) is the principal symbol of the operator Am−k(x) as a
differential operator on N . The b-principal symbol ab is a function on the
b-cotangent bundle (see [Me]). A is said to be elliptic with respect to a
sector Λ ⊂ C if ab(ξ) − λ 6= 0 for all λ ∈ Λ ∪ {0} and b-cotangent vectors
ξ 6= 0. Finally, a sector Λ is said to be negative if it is of the form Λ = {λ ∈
C |π − δ < arg λ < π + δ} for some 0 < δ < π/2.

For instance, the principal symbol of the one-dimensional Laplacian ∆ =
(x∂x)2 is −ξ2. Since −ξ2 − λ 6= 0 for ξ 6= 0 and for λ not on the negative
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real axis, ∆ is elliptic with respect to any sector whose complement is nega-
tive. In general, the Laplacian on a manifold with cylindrical ends is always
elliptic with respect to any sector whose complement is negative.

Theorem 2.4 ([L]). Let A be an m-th order b-differential operator that is
elliptic with respect to a sector whose complement is negative. Then the heat
operator etA exists and its Schwartz kernel, when written in the singular
coördinates of M2

H , defines a smooth function on the interior of M2
H that

vanishes to infinite order at lb, rb, and tb, is smooth up to ff , and finally,
has an expansion up to tf with leading power given by −n.

The primary example of an operator satisfying the conditions of this the-
orem is the Laplacian with respect to a cylindrical end metric (cf. Theorem
7.24 of [Me]).

In Theorem 2.4, we choose to treat the kernel κH of the heat operator
H = etA as a function. In other words, the action of the operator on the
initial data f, also a function, will be to multiply f by κH and integrate
against the Riemannian volume form:

Hf(x, z, t) =
∫

κH(x, y, z, z′, t)f(y, z′)y−1dydz′.

To illustrate the above theorem, consider the coördinates ρ = t1/m, w =
(ξ − 1)/t1/m = (x− y)/yt1/m, ζ = (z − z′)/t1/m, η = y, and z′ = z′ near the
blown-up diagonal. Here, ρ defines tf , η defines ff , and tb corresponds to
the face in the limit |(w, ζ)| → ∞. Then the above theorem states that we
can write

κH = H(ρ,w, ζ, η, z′),

where H is a function that vanishes to infinite order as |(w, ζ)| → ∞, is
smooth in η and z′, and finally, has an expansion as ρ → 0 with leading
power −n. Thus, we have

H ∼
∞∑

j=0

ρ−n+jaj(w, ζ, η, z′) as ρ → 0,

where the aj ’s are smooth functions vanishing to infinite order as |(w, ζ)| →
∞ and smooth in η and z′.

3. Local calculations of sup and whole derivative bounds

This section and the next comprise the proof of Theorem 1.2.

Definition 3.1. The space Ck
b (M) consists of continuous functions on M

such that

sup |u|+ sup |V1u|+ · · ·+ sup |V1 · · ·Vku| < ∞
for every choice of k boundary vector fields.
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Recall that the boundary vector fields are locally generated by vector
fields x∂/∂x and ∂/∂zi.

Henceforth, we fix an m-th order b-differential operator A that is elliptic
with respect to a sector whose complement is negative. We begin by reducing
Theorem 1.2 to the case of zero weights. Indeed, observe that for any α ∈ R,
we have

etA : xαC0(M) −→ xαCk
b (M) ⇐⇒ x−αetAxα : C0(M) −→ Ck

b (M).

If κH denotes the Schwartz kernel of etA, then x−ακHyα = ξ−ακH is the
kernel of x−αetAxα. By Theorem 2.4, κH vanishes to infinite order at lb =
{ξ = 0} and rb = {ξ = ∞}. Since the multiplier ξ−α can only affect the
asymptotics of κH at the left and right boundaries, it follows that the kernels
of etA and x−αetAxα have the same asymptotics as functions on M2

H . We
prove Theorem 1.2 using only the asymptotic properties of the heat kernel,
and thus without loss of generality we assume that α = 0. We examine the
heat kernel in each of the coördinate patches on M2

H separately, multiplying
by a cut-off function so that we can assume each time that the heat kernel
is supported in a box within that coördinate patch.

Estimates near the left and right-hand corners
Recalling the local coördinates from Section Two, we write the heat op-

erator out, for simplicity omitting the z and z′ variables corresponding to
the compact cross section and which play no role yet. Here H stands for
both the operator and its integral kernel:

Hf(x, t) =
∫

H
(
t,

x

y
, y

)
f(y) y−1dy.

According to Theorem 2.1 above, H(t, ξ, y) vanishes to infinite order as t → 0
or as ξ = x/y → 0; H is also vanishing to infinite order as ξ → ∞, for this
is approach to the right boundary. We use this infinite vanishing to absorb
the nonintegrable factor of y−1 appearing in the measure, by introducing a
change of variables, u = y/x. Then

Hf(x, t) =
∫

H
(
t,

1
u

, xu
)
f(xu) u−1du.

Absorbing u−1 into a new kernel by defining

G
(
t,

1
u

, xu
)

= u−1H
(
t,

1
u

, xu
)
,

the new kernel G is still vanishing to infinite order at both ends, u → 0 and
u →∞. Therefore,

Hf(x, t) =
∫

G
(
t,

1
u

, xu
)
f(xu) du,
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and estimating f by its maximum,

|Hf(x, t)| ≤ C‖f‖0.

For the derivatives, we pass the derivative inside the integral,

x
∂

∂x
(Hf)(x, t) =

∫
x

∂H

∂ξ

∂ξ

∂x
f(y) y−1dy

=
∫

x
∂H

∂ξ

1
y
f(y) y−1dy

=
∫

ξ
∂H

∂ξ
f(y) y−1dy.

Now note that because the kernel H was vanishing to infinite order in ξ at
both zero and infinity, the very same is true of ξ∂H/∂ξ. In fact, any finite
number of derivatives can be applied and the resulting factors of ξk can be
absorbed without changing the nature of the asymptotics. Therefore, we
find ourselves with a kernel of the same description as H itself, and may
apply the same argument as used in the sup estimate. There is never any
problem with the zi derivatives, since these represent compact directions, so
we obtain ∣∣∣∣∣

(
x

∂

∂x

)k ∂

∂zi1

. . .
∂

∂zil

Hf(x, z, t)

∣∣∣∣∣ ≤ Ck+l‖f‖0.

Where the diagonal hits the front face
For the first time the coördinates in the direction of the cross section

appear, and we write the action of the heat operator on f in these local
coördinates as

Hf(x, z, t) =
∫

H

(
t1/m,

x− y

yt1/m
,
z − z′

t1/m
, y, z′

)
f(y, z′) y−1dydz′,

with leading asymptotic H ∼ ρ−n = t−n/m and vanishing to infinite order
as |(w, ζ)| → ∞. Upon first inspection it looks as though the sup bound will
produce an unexpectedly bad factor of t−n/m, but once again we can use
the variables in which H vanishes to infinite order to absorb some of this.
Letting w and ζ be the variables of integration, we have

Hf(x, z, t) =
∫

H(t1/m, w, ζ, y, z′) f

(
x

wt1/m + 1
, z − t1/mζ

)
· t1/m

wt1/m + 1
t(n−1)/m dwdζ.
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The total factor of t coming from the measure is now t+n/m and we cancel
this with the t−n/m in the kernel and call the new kernel G to get

Hf(x, z, t) =
∫

G(t1/m, w, ζ, y, z′)f
(

x

wt1/m + 1
, z − t−1/mζ

)
· 1
wt1/m + 1

dwdζ.

Under the assumption that the heat kernel is supported in a small box
around the diagonal, the factor 1/(wt1/m + 1) may be bounded above, be-
cause the denominator equals ξ, which is one at the diagonal. The new
kernel G is bounded in ρ = t1/m, y, and z′, plus is rapidly decreasing in w
and ζ, so that

|Hf(x, z, t)| ≤ C‖f‖0.

For the derivative in the transversal direction, we calculate

x
∂

∂x
(Hf)(x, z, t) =

∫ (
w

∂H

∂w
+ t−1/m ∂H

∂w

)
· f(y, z′) y−1dydz′.

The factor of t−1/m comes outside the integral, and the remaining terms
inside the integral have the same asymptotics as the kernel H itself, so we
apply to the integral the same argument as above in the sup bound and
obtain the estimate ∣∣∣∣x ∂

∂x
(Hf)(x, z, t)

∣∣∣∣ ≤ t−1/mC‖f‖0.

It is easily seen that derivatives by ∂/∂zi also produce a factor of t−1/m and
do not otherwise change the asymptotics. Each successive differentiation by
a boundary vector field produces a new factor of t−1/m so that in the end
we have ∣∣∣∣∣

(
x

∂

∂x

)k ∂

∂zi1

, . . . ,
∂

∂zil

(Hf)(x, z, t)

∣∣∣∣∣ ≤ Ck+lt
−(k+l)/m‖f‖0.

4. The Hölder estimates

We define dg(p, q) as the geometric distance between p and q if this distance
is less than or equal to 1, and 1 if the geometric distance is greater than 1.

Definition 4.1. For 0 < γ < 1, the Hölder space Cγ
b (M) contains those

functions which are continuous and for which

‖u‖γ = sup
M
|u|+ sup

p6=q

|u(p)− u(q)|
(dg(p, q))γ

< ∞.
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There is a simple description of the distance dg in local coördinates. Near
the boundary, the cylindrical end metric is of the form(

dx

x

)2

+ h = d(log x)2 + h,

where h is a metric on N . Let (x, z) be coördinates in a neighborhood of the
boundary in M and let (y, z′) be a second copy of the same coördinates. In
these coördinates, the square of the geometric distance between (x, z) and
(y, z′) has the same order of magnitude as

| log x− log y|2 + |z − z′|2 = u2 + |z − z′|2,(2)

where u = log(x/y) takes values in (−∞,∞). If v = (x− y)/(x + y), then v
takes values in [−1, 1], and a short computation shows that

v =
1− e−u

1 + e−u
⇐⇒ u = log

v + 1
1− v

.

Thus, each u corresponds to a unique v and each v corresponds to a unique
u. Moreover, u = −∞ corresponds to v = −1, u = 0 corresponds to v = 0,
and u = +∞ corresponds to v = +1, and hence the squared distance (2) is
has the same order of magnitude as

v2 + |z − z′|2 =
(

x− y

x + y

)2

+ |z − z′|2,

as long as log(x/y) is bounded by some fixed constant.
In view of this discussion, the Hölder part of the norm has the same order

of magnitude as

|u(x, z)− u(y, z′)|
|(x− y)/(x + y)|γ +

∑n−1
1 |zi − z′i|γ

,

which after multiplication by |x + y|γ can be written as

|x + y|γ |u(x, z)− u(y, z′)|
|x− y|γ + |x + y|γ

∑n−1
1 |zi − z′i|γ

.

We now derive Hölder estimates on the heat operator. To do so, we apply
m derivatives to Hf and pass the derivatives inside to get(

x
∂

∂x

)m

Hf(x, z, t) =
∫ (

x
∂

∂x

)m

H · f(y, z′) y−1dydz′(3)

=
∫ (

x
∂

∂x

)m

H · [f(y, z′)− f(x, z)] y−1dydz′

+ f(x, z)
∫ (

x
∂

∂x

)m

H · y−1dydz′.
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The first integral is estimated using the fact that the initial data function
f is bounded in the Hölder norm:∣∣∣∣∫ (

x
∂

∂x

)m

H · [f(y, z′)− f(x, z)] y−1dydz

∣∣∣∣
≤

∫ ∣∣∣∣(x
∂

∂x

)m

H

∣∣∣∣ · ∣∣∣∣f(y, z′)− f(x, z)
∣∣∣∣ y−1dydz′

≤ ‖f‖γ

∫ ∣∣∣∣(x
∂

∂x

)m

H

∣∣∣∣ |x− y|γ + |x + y|γ
∑n−1

1 |zi − z′i|γ

|x + y|γ
y−1dydz′

= ‖f‖γ

∫ ∣∣∣∣(x
∂

∂x

)m

H

∣∣∣∣ · |x− y|γ

|x + y|γ
y−1dydz′

+ ‖f‖γ

n−1∑
1

∫ ∣∣∣∣(x
∂

∂x

)m

H

∣∣∣∣ · |zi − z′i|γy−1dydz′.

In the first term, notice that x and y are both positive, so that |x+ y|γ >
|y|γ , and therefore

|x− y|γ

|x + y|γ
≤ |x− y|γ

yγ
=
|x− y|γ

tγ/myγ
tγ/m = |w|γtγ/m.

In this way, the first term can be rewritten as∫ ∣∣∣∣(x
∂

∂x

)m

H

∣∣∣∣ · |w|γtγ/my−1dydz′.

Because H is bounded in compact regions for w and vanishing to infinite
order as |w| → ∞, the |w|γ factor can be absorbed into the kernel without
changing the asymptotics. The m-th derivative of the kernel produces a
factor of t−1. Therefore, by the sup and whole derivative estimates done
above, the first integral can be bounded by Ct−1+γ/m‖f‖γ .

Similarly in the second term, in the i-th summand, we can write

|zi − z′i|γ =
|zi − z′i|γ

tγ/m
tγ/m = |ζi|γtγ/m,

and absorb |ζi|γ into the kernel without altering its asymptotics. Therefore
the second term and also the first integral is bounded in terms of

t−1+γ/m · ‖f‖γ .

To estimate the second integral in (3), we show that∣∣∣∣∫ (
x

∂

∂x

)m

H · y−1dydz′
∣∣∣∣ ≤ C t−1+1/m.(4)
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This estimate implies that for t ≤ 1,∣∣∣∣f(x, z)
∫ (

x
∂

∂x

)m

H · y−1dydz′
∣∣∣∣ ≤ ‖f‖0 · C t−1+1/m

≤ C t−1+γ/m‖f‖γ .

Together with the estimate on the first integral in (3) we have∣∣∣∣(x
∂

∂x

)m

Hf(x, z, t)
∣∣∣∣ ≤ C t−1+γ/m‖f‖γ .

Similar arguments give analogous estimates for derivatives by the vector
fields ∂/∂zi. This concludes the proof of Theorem 1.2.

To prove the estimate (4), we consider the heat kernel in coördinates
where the diagonal hits the front face:∫ (

x
∂

∂x

)m

H · y−1dydz′

=
∫ (

x
∂

∂x

)m

H

(
t1/m,

log(x/y)
t1/m

,
z − z′

t1/m
, y, z′

)
y−1dydz′,

where we use log(x/y) in place of the coördinate x/y − 1 that we have
been using. Here, we used the fact that log 1 = 0 and the logarithm is
a diffeomorphism of R+ onto R to justify this substitution. Setting v =
log(x/y)/t1/m and ζ = (z − z′)/t1/m, the kernel H(t1/m, v, ζ, y, z′) has the
leading asymptotics H ∼ t−n/m and vanishes to infinite order as |(v, ζ)| →
∞.

Since y = xe−t1/mv, z′ = z − t1/mζ, and dy/y dz′ = tn/mdvdζ, we can
write ∫ (

x
∂

∂x

)m

H · y−1dydz′(5)

= t−1+n/m

∫ (
∂mH

∂vm

) (
t1/m, v, ζ, xe−t1/mv, z − t1/mζ

)
dvdz′,

where the partial derivatives in v apply only to the second variable in
H(t1/m, v, ζ, y, z′). With v = log(x/y)/t1/m and ζ = (z − z′)/t1/m, we have

∂

∂v

(
∂m−1H

∂vm−1

)
=

(
∂mH

∂vm

)
− t1/mxe−t1/mv

(
∂

∂y
· ∂m−1H

∂vm−1

)
=

(
∂mH

∂vm

)
− t1/m

(
y

∂

∂y
· ∂m−1H

∂vm−1

)
.

Now integrating by parts and using the fact that H vanishes to infinite order
as |(v, ζ)| → ∞ shows that Equation (5) is equal to

t−1+n/m · t1/m

∫ (
y

∂

∂y
· ∂m−1H

∂vm−1

) (
t1/m, v, ζ, xe−t1/mv, z − t1/mζ

)
dvdz′,
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where we recall that y = xe−t1/mv. Since H(t1/m, v, ζ, y, z′) ∼ t−n/m and
vanishes to infinite order as |(v, ζ)| → ∞, this integral is bounded by a
constant times t−1+1/m. The estimate (4) is now proved.

5. Applications to semilinear problems

In this section we apply the above results to obtain solutions to some semi-
linear equations. The reaction-diffusion equations are famous examples of
such equations with wide applicability to problems in physics and engineer-
ing. Other equations, applications, and theory may be found in the book
of Cazenave and Haraux, [CH], dedicated to this subject. Taylor’s volume
on nonlinear PDE’s, [T], also provides a thorough discussion of nonlinear
parabolic equations and includes many interesting physical examples.

The book of Taylor, [T], explains how to reformulate a nonlinear problem
as a contraction mapping. Suppose in addition to the linear part Au, our
equation also involves quadratic and higher order terms in u and its first
derivatives by boundary vector fields. We denote these higher order terms
by Q(u, V u), separate them out, and rewrite the equation as

∂u

∂t
−Au−Q(u, V u) = 0, u(0) = f.(6)

Treating Q as an inhomogeneous term and applying Duhamel’s principle,
Taylor proves the following result:

Theorem 5.1 ([T], p. 273). Suppose that X and Y are Banach spaces such
that the following four conditions are satisfied:

1. etA : X −→ X is a strongly continuous semigroup, for t ≥ 0.
2. Q : X −→ Y is locally Lipschitz.
3. etA : Y −→ X, for t > 0.
4. For some −γ > −1,

‖etA‖L(Y,X) ≤ Ct−γ , for 0 < t ≤ 1.

Then the initial value problem (6) with f ∈ X has a unique solution u ∈
C([0, T ], X) where T > 0 and is estimable from below in terms of ‖f‖X .

Interpreting this in the context of a manifold with cylindrical ends, we
have the following:

Theorem 5.2. On a manifold with cylindrical ends, let either Y = C0(M)
and X = Cm−1

b (M) or else Y = Cγ
b (M) and X = Cm

b (M), and let Q : X −→
Y be locally Lipschitz. Then given any initial data in X, the semilinear initial
value problem (6) has a solution in X existing on some time interval [0, T ]
for some T > 0.
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Proof. The third and fourth conditions are exactly the content of Theo-
rem 1.2. Therefore the only hypothesis that remains to check is the semi-
group property. Namely, we need to show that

‖Hf(·, t)− f‖X → 0 as t → 0.

This result is very similar to the proof given in Section Six of the earlier
paper, [JL]. Let us simply note here that local calculations similar to the
ones we gave in Sections Three and Four show that away from the diagonal,
the heat operator becomes more like the zero map as t → 0, while at the
diagonal it becomes more and more like the identity operator. For details
we refer the reader to [JL].

As a concluding remark, we observe that long time existence of solutions
involves completely different considerations. The reaction-diffusion equa-
tion, for example, models a fluid or gas that is diffusing while simultaneously
undergoing a chemical reaction. The nonlinear term representing the reac-
tion may be a growth term which is in competition with the linear diffusion
term, and which is stronger is highly dependent on the individual problem.
Likewise, in geometric applications, global aspects such as curvature and
topology influence the long time behavior of solutions.
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