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We give a Dieudonné module description for the finite com-
mutative infinitesimal unipotent group schemes over a perfect
field of prime characteristic. Witt vector addition is used to
describe the algebra and coalgebra structures of the repre-
senting Hopf algebra of a uniserial group.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. The purpose of
this paper is to describe the Hopf algebra of a finite commutative infinites-
imal unipotent k-group scheme which is uniserial, i.e., which has a unique
composition series. As there is only one simple finite commutative infin-
itesimal unipotent group scheme (namely αp := ker {F : Ga → Ga} , with
Ga being the additive group scheme and F the Frobenius map), composi-
tion series on this class of group schemes are a bit easier to study than for
arbitrary group schemes. A certain class of uniserial groups, namely the
V -uniserial groups, are important in studying representation theory: A fi-
nite connected k-group scheme G has finite representation type if and only
if the quotient G/M(G), where M(G) is the multiplicative center of G, is
a semidirect product of a V -uniserial unipotent group U together with a
group of type µpn [FV, 2.7].

In [FRV], the authors introduce Dieudonné modules to classify the V -
uniserial unipotent groups in an effort to describe all groups of finite rep-
resentation type. It is shown that the (isomorphism classes of) uniserial
groups follow one of six different “types”, three of which are dual to the
other three.

Here, we will also use classical Dieudonné module theory to describe unis-
erial groups, but we will reduce the number of types needed in the descrip-
tion. Surprisingly, there is an easy way to write the isomorphism classes
of uniserial groups in terms of Dieudonné modules: They all fit into one
of two types, and furthermore the types are dual to each other. Since any
representation-finite local algebra is of the form k [t] / (tm), by [FV, 2.7 and
3.1] we have that G = Spec (H) is V -uniserial if and only if H∗ = Hom(H, k)
is monogenic (i.e., generated as a k-algebra by a single element), and by du-
ality G is F -uniserial if and only if H is monogenic. Using the classification
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found in [K2], this enables us to quickly describe all uniserial groups in
terms of their Dieudonné modules.

In [FRV, 5.1], most of the attention is focused on the classification of
V -uniserial groups due to their relationship with representation theory. A
group is V -uniserial if and only if the dual to the representing algebra is
monogenic. We will look primarily at F -uniserial groups due to the simple
structure of their representing Hopf algebras. Duality will give us the results
for V -uniserial groups. We will explicitly show how our classification is
equivalent to the Farnsteiner–Röhrle–Voigt classification in the third section.

While the representation-theoretic applications appear to be most com-
mon when k is algebraically closed, in the final section we extend our results
to the case where k is a perfect (not necessarily algebraically closed) field of
characteristic p. In this case, it is still true that G = Spec(H) is uniserial
if and only if either H or H∗ is monogenic, however there are usually many
more isomorphism classes of monogenic Hopf algebras than when k is alge-
braically closed. For the case where k is finite we provide a formula for the
number of (isomorphism classes of) uniserial groups of order pn for some n.

Throughout this paper, all groups are commutative, finite, connected,
and unipotent. Until the final section, k is an algebraically closed field of
positive characteristic p.

2. Uniserial groups and their Dieudonné modules

Let W = W (k) be the ring of Witt vectors with coefficients in k. Following
the notation in [O] we let E be the non-commutative polynomial ring E =
W [F, V ] with relations FV = V F = p, Fw = wσF, and wV = V wσ, where
σ is the Frobenius map on W . There is an antiequivalence D∗ between
finite connected unipotent commutative group schemes and finite length E-
modules killed by a power of F and V . The correspondence is given by

D∗(G) = Hom(G, C)

where C is the ring of Witt covectors as described in [F1, p. 1273]. We
will use the term Dieudonné module to indicate a finite length E-module
killed by a power of F and V . There are other definitions of Dieudonné
module which encompass a larger variety of group schemes, for example in
[F1] and [F2] a Dieudonné module theory is constructed that can be used
to describe formal groups as well as non-connected, non-unipotent group
schemes. However, our definition is all that is needed for the results to
follow.

The Cartier dual of an infinitesimal unipotent group scheme G, given
by G∗ = Hom(G, Gm) (where Gm is the multiplicative group scheme), is
also infinitesimal and unipotent. In terms of Dieudonné modules, D∗(G∗) is
simply the module D∗(G) with the roles of F and V interchanged [DG, V,
4, 5.6].
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Of particular interest to us will be Dieudonné modules that are cyclic,
i.e., are of the form E/I for some ideal I ⊂ E. Each of the uniserial groups
will be what is called a Witt subgroup, that is, a subgroup of a group Wn

of Witt vectors of length n for some n. The antiequivalence D∗ restricts to
a correspondence between Witt subgroups and cyclic Dieudonné modules
[K1, 1.2].

Recall that a group scheme G is uniserial if it has a unique composition
series. Additionally, there are the notions of F -uniserial and V -uniserial.
The group scheme G is F -uniserial if the kernel of the Frobenius map F :
G → G(p) is simple, i.e., if ker F ∼= αp. Likewise, G is V -uniserial if the
cokernel of the Verschiebung V : G(p) → G is simple. A group scheme G
is uniserial if and only if it is either F -uniserial or V -uniserial [FRV, Sec.
1.2].

A Dieudonné module M is called F -uniserial if coker F is simple as a
Dieudonné module, i.e., if coker F ∼= E/E(F, V ). Letting n be the smallest
positive integer so that FnM = 0, this gives rise to a composition series

0 = FnM ⊂ Fn−1M ⊂ · · · ⊂ F 2M ⊂ FM ⊂ M

which is the only composition series for M , hence an F -uniserial module is
necessarily a uniserial module (that is it has a unique composition series).
Indeed, suppose M is a nonsimple uniserial module with composition series

0 = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M.

Observe that F acts trivially on Mi+1/Mi
∼= k and hence FMi+1 ⊂ Mi.

Then we have

FMi+1 ⊂ Mi ⊂ Mi+1

with Mi 6= Mi+1. Since F induces a composition series on Mi+1 it follows
that FMi+1 = Mi.

Similarly, M is V -uniserial if kerV ∼= E/E(F, V ), that is we have that

0 ⊂ V n−1M · · · ⊂ V 2M ⊂ V M ⊂ M

is a composition series, where V n−1M 6= 0 and V nM = 0. By an argument
similar to the one above a V -uniserial module is also uniserial. Conversely,
it is straightforward to show that any uniserial Dieudonné module is either
F -uniserial or V -uniserial.

Using the definitions of uniserial above it follows that G is F -uniserial
(resp. V -uniserial) if and only if D∗(G) is F -uniserial (resp. V -uniserial)
[FRV, 2.5].

We will now give a simple description for the Dieudonné module structure
of an F -uniserial group.
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Proposition 2.1. A commutative finite infinitesimal unipotent group
scheme G is F -uniserial if and only if

D∗(G) ∼= E/E(Fn, F r − V )

for some 1 ≤ r ≤ n.

Proof. Of course, G = Spec H is F -uniserial if and only if H is monogenic.
The result follows from [K2, 2.2] taking η = 1, which can be done since
E/E(Fn, F r − V ) ∼= E/E(Fn, F r − ηV ) for all η ∈ k× as k is algebraically
closed (see [K2, p. 199]). �

Dualizing switches the roles of F and V , and consequently changes F -
uniserial modules to V -uniserial modules, giving us:

Corollary 2.2. A commutative finite infinitesimal unipotent group scheme
G is V -uniserial if and only if

D∗(G) ∼= E/E(V n, V r − F )

for some 1 ≤ r ≤ n.

3. Equivalence to the Farnsteiner–Röhrle–Voigt classification

As stated above, the classification of (finite commutative infinitesimal unipo-
tent) uniserial group schemes has also been done by R. Farnsteiner, G.
Röhrle and D. Voigt in [FRV] using Dieudonné modules. Here we will
show how the two classifications are equivalent.

We start by recalling the Farnsteiner–Röhrle–Voigt classification. For
each pair of positive integers d and n, let Mn,d be a free Wn(k)-module with
basis {e1, . . . , ed}. For d ≥ 2, let En,d be the Dieudonné module defined as
follows: En,d

∼= Mn,d as Wn(k)-modules, with E-module structure given by

V (ei) = ei+1 for 1 ≤ i ≤ d− 1, V (ed) = pe1

F (e1) = ed, F (ei) = pei−1 for 2 ≤ i ≤ d.

For d, n ≥ 2 and 1 ≤ j ≤ d− 1 let

Ej
n,d = En,d/V (n−1)d+jEn,d.

For d ≥ 1 let Ed be the Dieudonné module defined as follows: Ed
∼= M1,d as

W1(k)-modules, with E-module structure given by

V (ei) = ei+1 for 1 ≤ i ≤ d− 1, V (ed) = 0

F (ei) = 0 for 1 ≤ i ≤ d.

Then every V -uniserial Dieudonné module is of one of these three forms:
En,d, Ej

n,d, or Ed; furthermore every module of each of these forms is V -
uniserial. Duality, of course, gives us the F -uniserial modules.
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Proposition 3.1. With the notation above we have:
1) En,d

∼= E/E(V nd, V d−1 − F )
2) Ej

n,d
∼= E/E(V (n−1)d+j , V d−1 − F )

3) Ed
∼= E/E(V d, F ) = E/E(V d, V d − F ).

Thus every V -uniserial group is of the form E/E(V s, V r−F ). Furthermore,
any M = E/E(F s, F r − V ) is isomorphic to either En,d, Ej

n,d, or Ed for
some choice of j, n, and d.

Proof. We will consider each of these three forms, and show that they are
isomorphic to E/E(V s, V r−F ) for some choice of r and s. Define φ : En,d →
E/E(V nd, V d−1 − F ) by φ(ei) = F i−1e for 1 ≤ i ≤ d, where e is the projec-
tion of the identity 1 under the canonical projection E → E/E(V nd, V d−1−
F ). As E/E(V nd, V d−1 − F ) has Wn(k)-basis {e, V e, V 2e, . . . , V d−1e}, this
is clearly an isomorphism of Wn(k)-modules. In fact, it is quite easy to show
that this map also preserves the F and V actions on each module, hence
En,d

∼= E/E(V nd, V d−1 − F ) as Dieudonné modules.
For the second form, the module Ej

n,d is given by

Ej
n,d = En,d/V (n−1)d+jEn,d

where n, d ≥ 2 and 1 ≤ j ≤ d − 1. Identifying En,d with the isomorphism
above gives us

Ej
n,d

∼= E/E(V nd, V d−1 − F, V (n−1)d+j) = E/E(V (n−1)d+j , V d−1 − F ).

For the third form, Ed is the k-module with basis {e1, e2, . . . , ed} with F
acting trivially and V (ei) = ei+1 for 1 ≤ i ≤ d− 1 and V (ed) = 0. Here we
define φ : Ed → E/E(V d, F ) by φ(ei) = V i−1e for 1 ≤ i ≤ d. This is an
isomorphism of Dieudonné modules.

If we let s = nd and r = d − 1 with, then we see that the first form is
E/E(V s, V r − F ). The substitutions of s for (n − 1)d + j and r for d − 1
shows that the second class is also E/E(V s, V r−F ). Finally, setting s = nd
and observing E/E(Fn, V ) = E/E(Fn, Fn−V ) gives the result for the third
form. Thus the Dieudonné module for any F -uniserial group is of the form
E/E(F s, F r − V ) for some 1 ≤ r ≤ s.

Conversely, suppose M = E/E(V s, V r − F ). If s = r we get

M = E/E(V s, V s − F ) = E/E(V s, F ) ∼= Es.

If r + 1 divides s then letting t = s/(r + 1) gives

M = E/E(V t(r+1), V (r+1)−1 − F ) ∼= Et,r+1.

If r + 1 does not divide s, then writing s = t(r + 1) + j gives

M = E/E(V t(r+1)+j , V (r+1)−1 − F ) ∼= Ej
t,r+1.
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Thus every Dieudonné module in our classification also appears somewhere
in the Farnsteiner–Röhrle–Voigt classification. �

Our classification of uniserial Dieudonné modules translates easily to the
corresponding uniserial group schemes. The proofs of the statements about
the heights will be obvious by the explicit algebra structure for the repre-
senting algebras given in the next section.

Corollary 3.2.
1) Suppose D∗ (G) = E/E(V s, V r − F ). Then G = ker{V r − F : Ws →

Ws}. Explicitly, for any k-algebra A we have

G (A) =
{

(a0, . . . , as−1) ∈ Ws(A) | apds/re

j = 0 for j < r,

ai = ap
i−r for all r ≤ i ≤ s− 1

}
≤ Ws (A)

when s > r, and

G (A) = {(a0, . . . , as−1) ∈ Ws (A) | ap
i = 0 for 0 ≤ i ≤ s− 1} ≤ Ws (A) .

This group scheme has height ds/re, where d e is the ceiling function.
2) If D∗ (G) = E/E(F s, F r − V ), then G = ker {F r − V : Wm → Wm}

where m = ds/re. For any k-algebra A we have

G (A) =
{

(a0, . . . , as−1) ∈ Wm (A) | aps

i = 0 for all i,

apr

i = ai−1 for i 6= 0
}
≤ Wm (A) .

This group scheme has height s.

Remark. While the use of cyclic Dieudonné modules unifies the descrip-
tion of the F -uniserial (resp. V -uniserial) modules in a nice way, there are
differences in these classes that may be important for various applications.
For example, the modules En,d correspond to the F -uniserial group schemes
Gn,d that can be lifted to W (k), i.e., for which there is a W (k)-group scheme
Ĝ with Ĝ×Spec W (k) Spec(k) ∼= G. The other two classes do not lift to W (k).
See [K2, 4.2], where α = 1.

4. The Hopf algebra structure

We now use the simplified Dieudonné module structure for uniserial groups
to compute their representing Hopf algebras. By insisting on the form used
in Proposition 2.1 we can determine the underlying Hopf algebra structure.

Given a finite abelian (that is, commutative and cocommutative) local
Hopf algebra H with local dual, we can associate to it a Dieudonné module
M by setting M = D∗(Spec(H)). Conversely, given a Dieudonné module
M , we can associate to it a k-Hopf algebra H(M). We will show how this
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is done after introducing the notation of Witt polynomials. For any n > 0
define a polynomial wn(Z0, Z1, . . . , Zn) by

wn(Z0, Z1, . . . , Zn) = pnZn + pn−1Zp
n−1 + · · ·+ Zpn

0 .

The wn’s are used to define polynomials S0, S1, . . . ; P0, P1, . . . via

wn(S0, . . . , Sn) = wn(X0, . . . , Xn) + wn(Y0, . . . , Yn)

wn(P0, . . . , Pn) = wn(X0, . . . , Xn)wn(Y0, . . . , Yn).

For example,

S0(X0, Y0) = X0 + Y0

S1((X0, X1), (Y0, Y1)) = X1 + Y1 −
(X0 + Y0)p −Xp

0 − Y p
0

p

P0(X0, Y0) = X0Y0

P1((X0, X1), (Y0, Y1)) = Xp
0Y1 + X1Y

p
0 + pX1Y1.

Further properties of these polynomials can be found in [J].
We are now ready to describe H(M). As a k-algebra, H(M) = k[Tx | x ∈

M ] with the following relations:

TFx = (Tx)p

Tx+y = SN ((TV Nx, TV N−1x, . . . , Tx); (TV Ny, TV N−1y, . . . , Ty))
Twx = PN ((wp−N

0 , wp−N

1 , . . . , wp−N

N ); (TV Nx, TV N−1x, . . . , Tx))

where x, y ∈ M, w = (w0, w1, . . . ) ∈ W (k), and N is any nonnegative
integer so that V N+1M = 0. The comultiplication is given by

∆(Tx) = SN

(
(TV Nx ⊗ 1, TV N−1x ⊗ 1, . . . , Tx ⊗ 1);

(1⊗ TV Nx, 1⊗ TV N−1x, . . . , 1⊗ Tx)
)
.

These operations make H(M) into a Hopf algebra, giving a 1-1 correspon-
dence between finite local Hopf algebras with local dual and Dieudonné
modules [G, II, Sec. 5].

We can now give an explicit description of the Hopf algebra based on
the Dieudonné module. If M = E/E(F s, F r − V ) then H(M) ∼= k[t]/(tp

s
)

(under this isomorphism t ∈ H corresponds to Te where e is the image of
1 ∈ E under the canonical map E → M) with

∆(t) = SN

((
tp

Nr ⊗ 1, . . . , tp
r ⊗ 1, t⊗ 1

)
;
(
1⊗ tp

Nr
, . . . , 1⊗ tp

r
, 1⊗ t

))
where N = ds/re − 1. Clearly H(E/E(F, V )) is the representing algebra of
αp. In general the generator t is primitive if and only if s = r.
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If, on the other hand, M ∼= E/E(V s, V r − F ) we let εi = d(s + 1− i)/re
for 1 ≤ i ≤ r − 1, which gives us

H(M) ∼= k [t1, t2, . . . , tr−1]
/ (

tp
ε1

1 , tp
ε2

2 , . . . , tp
εr−1

r−1

)
with a straightforward but usually messy coalgebra structure: In this case
ti ∈ H corresponds to TV i·1M

. As a small example, if s = 3 and r = 2 we
have

H(M) ∼= k[t1, t2]/(tp
2

1 , tp2)

∆ (t1) = S2 ((tp1 ⊗ 1, t2 ⊗ 1, t1 ⊗ 1) ; (1⊗ tp1, 1⊗ t2, 1⊗ t1))

∆ (t2) = S2 ((0, tp1 ⊗ 1, t2 ⊗ 1) ; (0, 1⊗ tp1, 1⊗ t2))

= S1 ((tp1 ⊗ 1, t2 ⊗ 1) ; (1⊗ tp1, 1⊗ t2)) .

5. Uniserial groups over perfect fields of characteristic p

Finally, we can quickly extend these results to the case where k is any
perfect (but not necessarily algebraically closed) field of characteristic p.
The definitions of uniserial, F -uniserial, and V -uniserial are the same as
in the algebraically closed case, both when speaking about group schemes
as well as Dieudonné modules. In fact, it is still true that G = Spec H is
uniserial if and only if H or H∗ is monogenic. By [K2, Th. 2.2], we obtain:

Proposition 5.1. Let M be an F -uniserial Dieudonné module. Then

M ∼= E/E(Fn, F r − ηV )

where η is a nonzero element of k.

Caveat. The F -uniserial Dieudonné modules are not parameterized by
triples (n, r, η) since different choices of η can give isomorphic modules.
Adopting the notation Mn,r,η = E/E(Fn, F r − ηV ) gives that if Mn,r,η

∼=
Mn′,r′,η′ then n = n′ and r = r′; [K1, 3.1]. Furthermore, Mn,r,η

∼= Mn,r,η′ if
and only if there is an invertible element a ∈ k such that(

η

η′

)pm

= apl+m−1

[K1, 3.2]. In the case where k is a finite field, it is possible to give a
complete list of non-isomorphic F -uniserial Dieudonné modules. The proof
follows immediately from the above proposition together with [K2, 3.1].

Corollary 5.2. Let k = Fp`, and let M be an F -uniserial Dieudonné mod-
ule. Let k0 = Fpd , where d = gcd(`, r + 1). Fix α ∈ k such that k = k0 [α] .
Then

M ∼= E/E(Fn, F r − αzV ) or M ∼= E/E(Fn, V )

where 1 ≤ r ≤ n− 1 and 0 ≤ z ≤ pd − 2.
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For an explicit description of H(M) in the former case, as well as a de-
scription of the corresponding V -uniserial group scheme, see [K3, Sec. 4].

Finally, the above corollary enables us to provide a formula for the number
of uniserial groups of order pn for some n when k is a finite field.

Corollary 5.3. The number of isomorphism classes of uniserial group
schemes over a field k = Fp` of order pn for n > 1 is given by

2

(
2− n−

n−1∑
r=1

pgcd(`,r+1)

)
.

Of course, if n = 1 then the only isomorphism class is the one containing
αp.
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