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We call a pair of polynomials f, g ∈ Fq[T ] a Davenport pair
(DP) if their value sets are equal, Vf(Fqt) = Vg(Fqt), for infin-
itely many extensions of Fq. If they are equal for all extensions
of Fq (for all t ≥ 1), then we say (f, g) is a strong Davenport
pair (SDP). Exceptional polynomials and SDP’s are special
cases of DP’s. Monodromy/Galois-theoretic methods have
successfully given much information on exceptional polyno-
mials and SDP’s. We use these methods to study DP’s in
general, and analogous situations for inclusions of value sets.

For example, if (f, g) is an SDP then f(T )−g(S) ∈ Fq[T, S]
is known to be reducible. This has interesting consequences.
We extend this to DP’s (that are not pairs of exceptional
polynomials) and use reducibility to study the relationship be-
tween DP’s and SDP’s when f is indecomposable. Addition-
ally, we show that DP’s satisfy (deg f, qt −1) = (deg g, qt −1)
for all sufficiently large t with Vf(Fqt) = Vg(Fqt). This ex-
tends Lenstra’s theorem (Carlitz–Wan conjecture) concerning
exceptional polynomials.

1. Introduction

Let Fq be a finite field with q elements, and let p denote its characteristic. For
any f ∈ Fq[T ] and finite extension Fqt of Fq, define the value set Vf (Fqt) to
be {f(a) | a ∈ Fqt}. Call (f, g) a Davenport pair over Fq if Vf (Fqt) = Vg(Fqt)
for infinitely many values of t. For brevity, we use the acronym DP. We will
see that (f, g) is automatically a Davenport pair (DP) if Vf (Fqt) = Vg(Fqt)
for one sufficiently large value of t. Call (f, g) a strong Davenport pair (SDP)
over Fq if Vf (Fqt) = Vg(Fqt) for all t ≥ 1.

The name Davenport pair honors a problem formulated by H. Davenport
in the 1960’s on a characteristic zero analogue of what we call SDP’s. He
asked which pairs (f, g) ∈ Q[T ] have equal value sets mod l, for almost all
primes l. (See Section 3.2 below for more details.)

1.1. Examples, summary of results, and problems. Call f ∈ Fq[T ]
an exceptional polynomial if Vf (Fqt) = Fqt for infinitely many values of t.
So f is exceptional if and only if (f, T ) is a DP. Thus both SDP’s and
exceptional polynomials are special types of Davenport pairs. One way to
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create a DP which is not an SDP is to compose an SDP with exceptional
polynomials.

Definition 1.1. Suppose (f, g) is an SDP and (h1, h2) is a pair of excep-
tional polynomials. Then (f ◦ h1, g ◦ h2) is a DP, which we call an SDP-Ex
composition.

SDP-Ex compositions have equal value sets over the base field Fq, a prop-
erty not possessed by all DP’s.

Problem 1.2. Suppose (f, g) is a DP over Fq, where
(1.1) q is sufficiently large and Vf (Fq) = Vg(Fq).

When is (f, g) an SDP-Ex composition?

Here sufficiently large means larger than a bound depending on the de-
grees of f and g. Condition (1.1) can be replaced with a condition not
requiring large q. By Corollary 4.4 there is a natural union of arithmetic
progressions, defined Galois theoretically, containing all but finitely many
of the values t for which Vf (Fqt) = Vg(Fqt). We can replace (1.1) with the
hypothesis that 1 is in this union of arithmetic progressions: 1 ∈ Df,g (see
Definition 4.3).

Examples of Müller (see Remark 3.16) illustrate the phenomenon of mask-
ing, which suggests an approach for finding DP’s satisfying (1.1) which are
not SDP-Ex compositions.

Definition 1.3. Let f, g, h ∈ Fq[x]. We say that h masks differences be-
tween value sets of f and g if Vf (Fqt) 6= Vg(Fqt) but Vh◦f (Fqt) = Vh◦g(Fqt)
for an infinite number of t.

We now describe the key results of this paper from the point of view that
several properties held by SDP-Ex compositions extend to DP’s in general.

For example, if (f, g) is an SDP with deg f > 1, then f(T ) − g(S) is
known to be reducible in Fq[S, T ]. It follows that, f ◦ h1(T ) − g ◦ h2(S)
is also reducible in Fq[S, T ] for any pair (h1, h2). This gives a property of
SDP-Ex composition which extends: If (f, g) is a DP satisfying (1.1), and
f is not an exceptional polynomial, then f(T )− g(S) ∈ Fq[S, T ] is reducible
over Fq (Corollary 4.12).

As another example, consider this theorem of Lenstra [CF95], conjec-
tured by Carlitz and Wan: If h ∈ Fq[T ] is exceptional, then deg h is rela-
tively prime to q − 1. It is also known that if (f, g) is an SDP, and if the
degrees of f and g are prime to the characteristic p, then deg f = deg g.
Thus if f = f ′ ◦ h1 and g = g′ ◦ h2 where (f ′, g′) is an SDP, (h1, h2) is a
pair of exceptional polynomials, and deg f and deg g are prime to p, then
gcd(deg f, q− 1) = gcd(deg g, q− 1). This property of SDP-Ex composition
holds for all DP’s satisfying (1.1). It is a consequence of Theorem 5.4 (which
is stronger since it makes no assumption on the degrees of f and g).
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Finally, consider our Theorem 8.1, a result consistent with SDP-Ex com-
position. Suppose that (f, g) is a DP and that f is indecomposable. Suppose
also that f has degree prime to the characteristic p, and is neither an excep-
tional polynomial nor linearly related to a cyclic polynomial. Then g = g′ ◦h
for some SDP (f, g′).

We end this introduction with other problems related to DP’s.

Problem 1.4. If (h1, h2) is a pair of polynomials such that (f ◦ h1, g ◦ h2)
is a DP for all SDP’s (f, g), must h1 and h2 be exceptional polynomials?

Other problems involve multiplicities of values. Call (f, g) a DP with
multiplicity if there are an infinite number of t so that f and g not only
have the same value sets over Fqt , but the values occur with the same mul-
tiplicities. That is, f(T ) − b and g(T ) − b have the same number of zeros
in Fqt for each b ∈ Fqt . Similarly, call (f, g) an SDP with multiplicity if the
multiplicity condition occurs for all values of t.

Problem 1.5. Are there SDP’s which are not SDP’s with multiplicity? Are
there DP’s which are not DP’s with multiplicity?

[Mül98, Conjecture 5.2] considered the characteristic zero analogue of
the first part of this question. Müller conjectures that Kronecker conjugate
polynomials (the analogue of SDP’s) are arithmetically equivalent (i.e., have
the same multiplicities).

1.2. A bigger context for DP’s. A polynomial f ∈ Fq[T ] gives an al-
gebraic map f : A1 → A1, or, by adding points at infinity, an algebraic
map f : P1 → P1. Our approach, via the arithmetic and geometric mon-
odromy groups associated with the map f , or pairs of maps (f, g), extends
considerably to include maps between algebraic curves defined over Fq, and
even to finite maps between higher-dimensional varieties. We concentrate on
polynomial maps, as these offer a sufficient challenge while showing us their
considerable structure without forcing excessive notation. Also, more can be
proven for such maps since they have a totally ramified point, infinity, and
the maps are between curves of genus zero. Still, we now briefly discuss a
natural program that will benefit from the investigations of this paper, but
requires considering the challenges of extending beyond polynomial maps.

We describe, in particular, the link between Davenport pairs and such
topics as Weil vectors, Galois stratification, and Chow motives. Here, a
Weil vector is the sequence of coefficients of a Poincaré series associated
to a number-theoretic counting problem. For example, if V is a projective
variety over Fq, we get the familiar Weil vector N = (N1, N2, . . . ) where
Nt is the number of Fqt-rational points of V . The associated Poincaré se-
ries is PV (X) =

∑∞
t=1NtX

t, and the associated zeta function is ZV (X) =
exp

(∑∞
t=1NtX

t/t
)
.
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Weil vectors also arise from other counting problems. For example, let V
be a scheme (reduced, separated) of finite type over Z. Consider the Weil
vector N = (N1, N2, . . . ), where Nt is the number of Z/pt-rational points
which lift to Zp-rational points. The rationality of the associated Poincaré
series was established by Denef [Den84].

Galois stratification is a tool for studying Weil vectors in a wide va-
riety of counting problems (see [FS76] and [FJ86]). Denef and Loeser
[DL] link Galois stratification and Chow motives. Given two Weil vectors
N = (N1, N2, . . . ) and N ′ = (N ′

1, N
′
2, . . . ), the characteristic set χ(N ,N ′)

is {t ∈ N+ | Nt = N ′
t}. Such characteristic sets, when the Weil vectors arise

from Galois stratification, form Frobenius progressions (Definition 4.5).
To consider the link between DP’s and these topics, consider your fa-

vorite equation Φ(T,U) = 0, where Φ ∈ Fq[T,U] and U = (U1, . . . , Us).
Consider also the Weil vector N (Φ) = (N1(Φ), N2(Φ), . . . ), where Nt(Φ)
is the number of solutions over Fqt . You often substitute a polynomial or
rational function f(T ) for T to get the related equation Φ(f(T ),U) = 0.
Write Φf for Φ(f(T ),U). Let (f, g) be a pair of polynomials, and let
χ(f, g) be the set of t with the property that Vf (Fqt) and Vg(Fqt) are equal,
and every value occurs with the same multiplicity. We assume χ(f, g) is
infinite. In other words, (f, g) is a DP with multiplicity. Observe that
χ(f, g) ⊆ χ(N (Φf ),N (Φg)).

This gives us a procedure for generating nontrivial (nonfinite) charac-
teristic sets relating many different pairs of Weil vectors. The resulting
characteristic sets must contain a common Frobenius progression χ(f, g) re-
gardless of your choice of favorite equation. This suggests the importance
of the study of Frobenius progressions of the form χ(f, g) from the more
general Weil vector viewpoint.

For any pair of Weil vectors, attached to any elementary problem (as
in [FS76]), there is a characteristic set at which the two Weil vectors are
equal. The argument of [Fri94, Riem. Hyp. Lem. 2.2] extends to show that
such a characteristic set is always, modulo finite sets, a union of Frobenius
progressions. We consider such a characteristic set a relation among Weil
vectors. It is a fundamental problem to consider how such relations arise
and to what extent they arise from sets χ(f, g) as in our problem above.

2. Notations and conventions

Note that (f(T ), f(T p)) is an SDP (as above, f ∈ Fq[T ] and p is the char-
acteristic of Fq). So, for value set problems, it is harmless to replace any
polynomial of the form f(T p) by f(T ). By repeating this process starting
with a given polynomial, we obtain a polynomial whose derivative is not the
zero polynomial, and whose value set, in all finite extensions, is the same as
the original polynomial. This justifies the following convention. Assume all
polynomials appearing in this paper have nonzero derivatives.
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Let F be a field. We are most interested in F = Fq, especially when we
are considering value sets, but many of our results hold for more general F .
Fix an algebraic closure F (z) of F (z), where z is a fixed transcendental
element over F , and regard F as a subfield of F (z). We use the letter T (as
above) for a general transcendental element not in F (z). We use S and T

when we need two independent transcendental elements (neither in F (z)).
For any f ∈ F [T ], let Ωf ⊆ F (z) be the splitting field of f(T ) − z.

Since f(T )− z has z-degree 1, it is irreducible in F (z)[T ]. It is also separable
(the derivative f ′ is not the zero polynomial). Call

Ĝf = Gal(Ωf/F (z))

the arithmetic monodromy group of f . Let F̂f = Ωf ∩ F . Call

Gf = Gal(Ωf/F̂f (z)) ⊆ Ĝf

the geometric monodromy group. Let n = deg f , and let {x1, x2, . . . , xn} be
the zeros of f(T )− z in Ωf . If H is Ĝf or a subgroup, denote the elements
of H which fix xi by H(xi). For example, Ĝf (xi) = Gal(Ωf/F (xi)).

Think of f ∈ F [T ] as an algebraic map f : A1 → A1. By adding a point
at infinity, also regard a polynomial (or rational function) as an algebraic
covering map f : P1 → P1.

Now consider the case F = Fq. Here we abuse notation and write F̂f

for F̂f . The quotient Ĝf/Gf is isomorphic to the cyclic group Gal(Fqd/Fq),
where d = [F̂f : Fq]. Not only is Gal(Fqd/Fq) cyclic, but it is canonically
isomorphic to Z/d by the map sending the Frobenius automorphism a 7→ aq

to 1. Let Ĝf,t be the Gf -coset of elements σ ∈ Ĝf for which σ|bFf
is the map

a 7→ aqt
. So Ĝf,t consists of elements of Ĝf whose image in Z/d is congruent

to t. Thus Ĝf,t depends only on t modulo d.
Now consider analogous definitions for pairs of polynomials (f, g), first

for a general field F . Let Ωf,g = Ωf ·Ωg ⊆ F (z) be the splitting field of the
product (f(T ) − z)(g(T ) − z). Let F̂f,g = Ωf,g ∩ F . Define the arithmetic
monodromy group of the pair as Ĝf,g = Gal(Ωf,g/F (z)) and the geometric
monodromy group as Gf,g = Gal(Ωf,g/F̂f,g(z)).

Let {x1, x2, . . . , xn} be the zeros of f(T ) − z, and {y1, y2, . . . , ym} those
of g(T )− z. Then Ĝf,g acts on {xi}, on {yj}, and on the Cartesian product
{xi}×{yj}. For H equal to Ĝf,g or a subgroup, H(xi), H(yj), and H(xi, yj)
have the usual meanings as stabilizer subgroups.

Note that Ĝf,g is the fiber product of Ĝf and Ĝg over the common quotient
group Gal(Ωf ∩ Ωg/F (z)).
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Now consider the case F = Fq. We abuse notation and write F̂f,g for F̂f,g.
As before, we have the exact sequence

1 → Gf,g → Ĝf,g → Z/d→ 1,

where d = [F̂f,g : Fq]. Denote the elements of Ĝf,g mapping to t mod d
by Ĝf,g,t. So Ĝf,g,t is the Gf,g-coset of all σ that restrict on Fqd to the
automorphism x 7→ xqt

.
Again consider a general field F . Call f ∈ F [T ] decomposable over F

if f = f1 ◦ f2 with f1, f2 ∈ F [T ], deg fi > 1, i = 1, 2. Otherwise, f is
indecomposable over F .

If f, l1, l2 ∈ F [T ] are polynomials with deg l1 = deg l2 = 1, then we say f
and l1 ◦ f ◦ l2 are linearly related over F . Linearly related polynomials have
isomorphic monodromy groups and equivalent actions of their monodromy
groups on their respective zero sets.

When comparing value sets, we are interested in a special type of linearly
related polynomial pairs. If f, l ∈ F [T ] are polynomials such that deg l = 1,
then we say that f and f ◦ l are linearly related on the inside over F . For
example, a pair of polynomials f, g ∈ Fq[T ] linearly related on the inside
over Fq clearly forms an SDP. We call such SDP’s trivial. As explained in
the next section, there are examples of nontrivial SDP’s.

If n is a positive integer, we consider the statement n is prime to the
characteristic of F to be vacuously true if F has characteristic zero.

3. Review of earlier results

We summarize some of what is known concerning value sets, exceptional
polynomials, SDP’s, and DP’s.
3.1. Value sets from the monodromy point of view. Consider a poly-
nomial map as a covering map f : P1 → P1. Suppose b ∈ Fqt = A1(Fqt) is
not a branch point for this map. Then b ∈ Vf (Fqt) if and only if the asso-
ciated Frobenius element Frobt(b) ∈ Ĝf fixes at least one zero of f(T )− z.
Further, the number of a ∈ Fqt satisfying f(a) = b is equal to the number of
fixed points of Frobt(b) acting on the zeros {xi}. We call this the Frobenius
Principle. It follows from an early result of Artin [Art23, §2]. Here

Frobt(b) = i

(
Ωf · Fqt/Fqt(z)

Pb

)
,

where Pb is the place of Fqt(z) associated to b ∈ A1(Fqt),
(L/K

P

)
is the Artin

symbol, and i : Gal(Ωf · Fqt/Fqt(z)) → Ĝf is the natural inclusion induced
by restriction. The Artin symbol is defined up to conjugacy, so the number
of fixed points of Frobt(b) is well-defined.

Observe that Frobt(b) ∈ Ĝf,t. Conversely, the nonregular analog of the
Chebotarev Density Theorem implies the proportion of b ∈ Fqt with Frobt(b)
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in a given conjugacy class C ⊆ Ĝf,t is approximately |C|/|Ĝf,t|. More
precisely, if p(C) is the proportion of b ∈ Fqt such that Frobt(b) ∈ C and b
is not a branch point, then∣∣∣∣∣p(C)− |C|

|Ĝf,t|

∣∣∣∣∣ < B|C|q−t/2.

The best B depends on f , but we can find a B depending only on n = deg f .
For example, the bound of Proposition 5.16 of [FJ86], specialized to the
current situation, gives B = 4(g + 2), where g is the genus of Ωf . There is
a bound in n for this genus g, and hence for B. (From Riemann–Hurwitz,
bounding higher ramification group orders bounds the Ω/F̂f (z) different
divisor degree. To bound the nontrivial higher ramification groups in Gf ,
combine an obvious bound on the F̂f (xi)/F̂f (z) different degree with the
corollary to Proposition 4, Chapter IV, §1, of [Ser79].)

Let N(σ) be the cardinality of those {x1, . . . , xn} fixed by σ ∈ Ĝf,t. Then∑
σ∈ bGf,t

N(σ) =
∣∣Ĝf,t

∣∣.(3.1)

This is a corollary of the Chebotarev Density Theorem, taking t′ ≡ t mod d,
where d = [F̂f : Fq] and t′ is large. It is also a consequence of the following
group-theoretical lemma [GW97, Lemma 3.1], taking H = Gf , H∗ = Ĝf,t,
G ⊆ Ĝf the group generated by Gf and Ĝf,t, and r = 1.

Lemma 3.1. Let G be a finite group acting on a finite set S. Let H be a
normal subgroup of G such that G/H is cyclic. Finally, let H∗ be a coset
whose image generates G/H. Then

1
|H∗|

∑
σ∈H∗

N(σ) = r,

where r is the number of H-orbits in S which are also G-orbits, and where
N(σ) is the number of points in S that σ ∈ G fixes.

(The case when H = G is well-known; see Lemma 7.1.)
From (3.1), the following are equivalent:

(3.2) Every element of Ĝf,t fixes at least one element of {xi}.
(3.3) Every element of Ĝf,t fixes at most one element of {xi}.
(3.4) Every element of Ĝf,t fixes exactly one element of {xi}.

Remark 3.2. Suppose any of (3.2), (3.3) or (3.4) hold. Then, for any
b ∈ Fqt not a branch point, Frobt(b) fixes exactly one zero. So, by the
Frobenius Principle, f : Fqt → Fqt is bijective on the set of points mapping
to nonbranch points.
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When b ∈ Fqt is a branch point, one has a Frobenius coset instead of a
Frobenius element. To determine the number of a ∈ Fqt satisfying f(a) = b,
consider the action of the associated decomposition group D and inertia
group I on the zeros {xi}. It is well-known that one counts I-orbits which
are also D-orbits (for example, [vdW35]). Lemma 3.1, with G = D, H = I,
and H∗ the Frobenius coset, shows that the number of a ∈ Fqt mapping to b
is the average number of {xi} fixed by σ as σ varies over the Frobenius coset.
We call this the Strong Frobenius Principle. So, (3.4) implies bijectivity even
when we allow points above branch points. (Note: in the Frobenius Principle
or the Strong Frobenius Principle, we can replace Ĝf with the Galois group
of any normal extension of Fq(z) containing Ωf .)

Definition 3.3. Let 0 ≤ ε ≤ 1. Call a polynomial map f : Fqt → Fqt

ε-almost injective if the proportion of points b ∈ Fqt which either have at
most one a ∈ Fqt satisfying f(a) = b or are branch points is at least 1 − ε.
Similarly, call f : Fqt → Fqt ε-almost surjective if the proportion of points
b ∈ Fqt which are either in the value set Vf (Fqt) or are branch points is at
least 1− ε.

The above considerations lead easily to the following theorem.

Theorem 3.4. Let 0 ≤ ε < 1/|Ĝf,t|, and let δ = 1/|Ĝf,t| − ε. If qt ≥
(B/δ)2, where B is the constant in the Chebotarev Density Theorem, then
the following are equivalent:

(3.5) f : Fqt → Fqt is ε-almost surjective.
(3.6) f : Fqt → Fqt is ε-almost injective.
(3.7) f : Fqt → Fqt is bijective.
(3.8) Every element of Ĝf,t fixes exactly one zero of f(T )− z.

For general qt, large or small, (3.8) implies (3.7).

Remark 3.5. See [Fri74, Lemma 2 and Theorem 1] for a generalization
to multivariable polynomial maps An → An. This theorem has also been
generalized [FGS93, p. 186] to covering maps X → Y between absolutely
irreducible curves over Fq. (The statement in [FGS93] is essentially the
case where ε = 0, but the methods clearly work for small ε > 0.)

The upper bound for ε in the implication (3.5) ⇒ (3.8) can be replaced
by 1/deg f . With a priori restrictions on the monodromy groups involved,
one can often do better (see [GW97]).

Corollary 3.6. A polynomial f ∈ Fq[T ] is exceptional if and only if any of
the equivalent conditions (3.2) to (3.7) hold for a suitable value of t and ε.

If (3.7) holds for t, then it holds for any divisor of t. This yields:

Corollary 3.7. If f ∈ Fq[T ] is an exceptional polynomial and any of the
(equivalent) conditions (3.2) to (3.4) are true of t = t0, then these conditions
are true of any t satisfying gcd(t, d)| gcd(t0, d) where d = [F̂f : Fq].
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A similar analysis gives a monodromy interpretation for Vf (Fqt) =Vg(Fqt).

Theorem 3.8. Let f, g ∈ Fq[T ]. Suppose that, for some t,

(3.9) every σ ∈ Ĝf,g,t fixes an element of {xi} if and only if it fixes an
element of {yj} (as usual, {xi} are the zeros of f(T ) − z and {yj}
are the zeros of g(T )− z).

Then Vf (Fqt) = Vg(Fqt).
Conversely, if Vf (Fqt) = Vg(Fqt) for t sufficiently large, then (3.9) holds.

Remark 3.9. The Chebotarev Density Theorem together with the Frobe-
nius Principle gives the converse above, even generalizing it by replacing
the hypothesis Vf (Fqt) = Vg(Fqt) with an ε-almost equality (analogous to
Theorem 3.4).

To prove that (3.9) implies Vf (Fqt) = Vg(Fqt) one can use the Strong
Frobenius Principle (as in Remark 3.2) to cover both branch points and
nonbranch points. Alternatively, one can use the following argument, a
straightforward adaptation to the current situation of the second part of the
proof of [FJ86, Lem. 19.27]. Let b ∈ Vf (Fqt), and let a ∈ Fqt be a zero
of f(T )− b. Consider the homomorphism Fq[x1] → Fqt with x1 7→ a (and so
z 7→ b). Extend this to a homomorphism ϕ : R→ Fq, where R is the integral
closure of Fq[z] in Ωf,g. Let D(ϕ) ⊆ Ĝf,g(x1) be the decomposition group
associated to ϕ (the subgroup fixing kerϕ). Since D(ϕ) is a decomposition
group, the homomorphism D(ϕ) → Gal(Fqs/Fq(a)) associated to the residue
maps is surjective, where Fqs is the image of ϕ. Thus, some τ ∈ D(ϕ) has
image in Gal(Fqs/Fq(a)) the qt-power Frobenius map u 7→ uqt

. Note that
τ fixes x1 and that τ ∈ Ĝf,g,t. From (3.9), τ fixes some yj . Let c = ϕ(yj).
The image of τ acting on Fqs fixes c. Thus, c ∈ Fqt . Since g(c) = b,
conclude b ∈ Vg(Fqt).

For inclusions of value sets we have:

Theorem 3.10. Let f, g ∈ Fq[T ]. Suppose that, for some t,

(3.10) every σ ∈ Ĝf,g,t that fixes some xi also fixes some yj.

Then Vf (Fqt) ⊆ Vg(Fqt).
Conversely, if Vf (Fqt) ⊆ Vg(Fqt) for t sufficiently large, then (3.10) holds.

Remark 3.11. We can replace (3.10) with:

(3.11) Every σ ∈ Ĝf,g,t(x1) fixes an element of {yj}.
3.2. Strong Davenport pairs. [Fri99] discusses the theory of SDP’s start-
ing with the following characterization (a corollary of Theorem 3.8).

Corollary 3.12. The pair (f, g) in Fq[T ] is an SDP if and only if

(3.12) for σ ∈ Ĝf,g, fixing an element of {xi} is equivalent to fixing an
element of {yj}.
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An analogous result holds for polynomials over number fields ([FJ86,
Lemma 19.27] or [Mül98, Theorem 2.3]). Then (3.12) is equivalent to f
and g being Kronecker conjugate over a number field K: their value sets are
equal modulo all but a finite number of nonzero prime ideals of K.

We generalize the following well-known result ([Fri73, Proposition 3],
[FJ86, Lemma 19.31], and [Fri99]) to DP’s (see Corollary 4.12).

Theorem 3.13. Let f, g ∈ Fq[T ]. If (f, g) is an SDP where deg f > 1, then
f(T )− g(S) ∈ Fq[S, T ] is reducible.

This gives several immediate corollaries. For example, if f and g have
relatively prime degrees, then (f, g) is not an SDP. As another example, if
(f, g) is an SDP with each degree at most 3, then (f, g) is a trivial SDP:
reducibility implies the existence of a linear factor, which implies that f and
g are linearly related on the inside.

When f : P1 → P1 and g : P1 → P1 are tamely ramified, the results
in [Fri73] in characteristic 0 are relevant, implying major restrictions on
the pair (f, g). We now review these results.

Let K be a number field and let f, g ∈ K[T ]. If f and g are Kronecker
conjugate and deg f > 1, the analogue of Theorem 3.13 holds: f(T )− g(S)
is reducible. When f is indecomposable, the reducibility of f(T ) − g(S)
forces the geometric monodromy group of f to be one of a small list, and
deg f to be one of 7, 11, 13, 15, 21, and 31. That f and g are Kronecker
conjugate also forces deg f = deg g. This together with the Grothendieck
Lifting Theorem gives the following theorem in positive characteristic.

Theorem 3.14. Consider an SDP (f, g) over Fq with these properties:
(3.13) f : P1 → P1 is tamely ramified.
(3.14) f is indecomposable.

Then deg f = deg g, and both deg f and Gf satisfy the above restrictions.

The following result from [Fri99, Thm 5.7] shows degrees are not bounded
when we allow f : P1 → P1 to have wild ramification.

Theorem 3.15. Over any field Fq there are infinitely many n prime to the
characteristic for which nontrivial SDP’s (f, g) exist with n = deg f = deg g
and f indecomposable.

The monodromy groups appearing in these examples are subgroups of the
projective linear groups over finite fields of characteristic p.

Finally we mention what is known concerning Davenport’s original ques-
tion. If K = Q there are no nontrivial Kronecker conjugate polynomials
with f indecomposable [Fri73], or with f and g each compositions of two
indecomposable polynomials of degree at least 2 [Mül98]. Still, f(T ) = T 8

and g(T ) = 16T 8 are Kronecker conjugate polynomials, each the composi-
tion of three indecomposable polynomials. Over Q, Müller suggests this is
a singular anomaly.
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Remark 3.16 (Müller’s work on masking). If (f, g) is an SDP, then the
pair (h ◦ f, h ◦ g) is also an SDP for all h ∈ Fq[T ]. More surprisingly, there
are pairs (f, g) which are not SDP’s (not even DP’s) and h ∈ Fq[T ] of positive
degree such that (h◦f, h◦g) is an SDP. That is, h masks (see Definition 1.3)
the difference between f and g. Müller [Mül98, §4] gave examples of this
over number fields and they apply over suitable Fq. So this, in addition to
the case where the pairs are indecomposable in Theorem 3.15 shows there are
many nontrivial SDP’s. Müller’s examples give polynomials with equivalent
permutation characters, so they yield SDP’s with multiplicity.

3.3. Other related value set work. Earlier related work (not exclusive
to SDP’s or exceptional polynomials) did not concern DP’s per se, but rather
polynomials with equal value sets over the ground field Fq. Note: for q large,
such pairs are DP’s (Corollary 4.2).

For example, [Coh81] studies pairs of rational functions f, g ∈ Fq(T )
satisfying Vf (Fq) ⊆ Vg(Fq). The main result is a classification of such f and
g with deg g ≤ 4, where the characteristic is greater than 3 and q is large
(lower bounds depending on deg f). Other much earlier work: McCann and
Williams (value set equalities for polynomials of degree 3), Mordell (also for
degree 3), and Carlitz (value set inclusions with g(T ) = Tm).

Finally, [Ait98] studies the overlap between Vf (Fq) and Vg(Fq) when the
two sets are not equal, which, for large q, yields a criterion for whether or
not two polynomials form a DP.

4. Basic results concerning Davenport pairs

Let f, g ∈ Fq[T ], and let d = [F̂f,g : Fq]. Below are corollaries of Theorem 3.8.

Corollary 4.1. The pair (f, g) is a DP if and only if, for some t, (3.9)
holds.

Corollary 4.2. The pair (f, g) is a DP if and only if Vf (Fqt) = Vg(Fqt) for
a sufficiently large t.

Here, sufficiently large means that qt exceeds some bound depending only
on the maximum of the degrees of f and g.

Condition (3.9) depends only on t mod d. Thus, if (3.9) holds for one t,
it holds for infinitely many t; the set of such t forms a union of arithmetic
progressions. For any integer t, denote its image in Z/d by t.

Definition 4.3. Let Df,g = {t ∈ Z/d | (3.9) holds for t}. So (f, g) is a
DP if and only if Df,g is not empty, and (f, g) is an SDP if and only if
Df,g = Z/d.

Corollary 4.4. For t sufficiently large, Vf (Fqt) = Vg(Fqt) if and only if
t ∈ Df,g. For all t, large or small, t ∈ Df,g implies Vf (Fqt) = Vg(Fqt).
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The set Df,g is an example of a Frobenius set :

Definition 4.5. A Frobenius set (mod d) is a subset S of Z/d with the
following property. If a ∈ S, then so is ua, where u is a unit in Z/d.
Equivalently, if a, b have the same order in Z/d, then a ∈ S if and only
if b ∈ S. So S is completely determined by the data (d,D), where D is the
set of divisors of d representing the orders in Z/d of the elements in S.

Call a subset A of N+ (or N or Z) a pure Frobenius progression if there
exists a Frobenius set S ⊆ Z/d so that a ∈ A if and only if a ∈ S. Finally, call
a subset A of N+ a Frobenius progression if it differs from a pure Frobenius
progression by only a finite number of elements.

Remark 4.6. If (f, g) is a pair of polynomials, then Df,g is a Frobenius set.
The set of t satisfying (3.9) forms a pure Frobenius progression. Finally, the
set of t where Vf (Fqt) = Vg(Fqt) is a Frobenius progression (containing the
associated pure Frobenius progression).

For exceptional polynomials, the associated Frobenius set has additional
structure: if d1 ∈ D, where D is the set of divisors characterizing the Frobe-
nius set, and k is a positive integer such that kd1|d, then kd1 ∈ D. This
follows from Corollary 3.7. One consequence is that Df,T contains (Z/d)∗.
In particular, 1 ∈ Df,T .

When we require Vf (Fqt) = Vg(Fqt) with multiplicity, we also get Frobe-
nius progressions. Later we discuss Frobenius progressions in the context of
the reducibility of f(T )− g(S).

The following lemma, a basic application of the Riemann Hypothesis, is
needed to prove reducibility.

Lemma 4.7. Suppose Φ(S, T ) ∈ Fq[S, T ] has At irreducible factors over
Fqt [S, T ], of which Nt are absolutely irreducible. Then Mt, the number of
Fqt-points in the algebraic set Φ(S, T ) = 0, is approximately Nt · qt. More
precisely,

∣∣Mt/q
t −Nt

∣∣ < cq−t/2 for some constant c which depends only on
the total degree of Φ.

Proof. Factor Φ over Fqt [S, T ] as Φ1 · · ·ΦAt . Index the factors so Φ1, . . . ,ΦNt

are absolutely irreducible. Let Mi be the number of Fqt-points of the variety
Φi = 0. Bezout’s Theorem bounds |Mt−ΣMi|. For i > Nt, |Mi| is bounded
(use Bezout’s Theorem here as well). For i ≤ Nt let X̃i be the nonsingular
projective curve corresponding to the affine curve Φi = 0. Let M̃i be the
number of Fqt-points on X̃i. Then |Mi − M̃i| is bounded. All these bounds
depend on the total degree of Φ, not on qt. Finally, the Riemann Hypothesis
bounds |M̃i − qt|, giving the desired bound for |Mt −Nt · qt|. �

Theorem 4.8. Suppose Vf (Fqt) = Vg(Fqt) for sufficiently large t. Let Nt be
the number of absolutely irreducible factors of f(T )−g(S) ∈ Fq[S, T ] defined
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over Fqt. Then Nt ≥ 1. Furthermore, Nt = 1 if and only if

Vf (Fqt) = Fqt = Vg(Fqt).

(So Nt = 1 implies that f and g are both exceptional polynomials.)
Here, t sufficiently large means that qt is larger than an effectively com-

putable bound which depends only on deg f and deg g.

Proof. Let Mt be the number of Fqt-solutions of f(T ) − g(S) = 0. Then
Vf (Fqt) = Vg(Fqt) implies Mt ≥ qt. Lemma 4.7 shows Nt ≥ 1. Furthermore,
if Vf (Fqt) = Fqt , then Mt = qt, so Nt = 1.

Now suppose Vf (Fqt) 6= Fqt . Theorem 3.4 gives an A > 0 (independent
of t) with at least A · qt elements of Vf (Fqt) having at least two elements of
Fqt mapping to it under f . This implies Mt ≥ qt · (A+1). Thus Nt > 1. �

Remark 4.9. Let f, g ∈ F [T ]. Gauss’ Lemma implies that the factorization
of f(T )−g(S) into irreducibles in F [S, T ] gives a factorization of f(T )−g(yj)
into irreducibles in F (yj)[T ] (with all factors having positive T -degree). By
basic Galois theory, these irreducible factors of f(T ) − g(yj) over Fq(yj)
correspond to the orbits of {xi} under the action of Ĝf,g(yj).

Conclude that the F -irreducible factors of f(T ) − g(S) correspond to
the orbits of {xi} under the action of Ĝf,g(yj). Further, if Φ is a factor
associated with an orbit O then |O| = degT Φ. Similar statements apply for
the Ĝf,g(xi)-action on {yj}.

Remark 4.10. When f, g ∈ Fq[T ], let Gt be the subgroup of Ĝf,g generated
by elements of Ĝf,g,t ∪ Gf,g. In other words, Gt is the subgroup generated
by Gf,g and an element lifting the qt-power Frobenius automorphism. Since
Gt is canonically isomorphic to the Galois group of Ωf,gFqt over Fqt(z),
Remark 4.9 gives a natural correspondence between divisors Φ ∈ Fqt [S, T ] of
f(T )−g(S) (up to multiplication by constants in F×qt) and subsets B ⊆ {yj}
on which Gt(xi) acts. Also, the divisor Φ is absolutely irreducible if and
only if the corresponding subset B is an orbit under the action of Gf,g(xi).
A similar statement applies, reversing the roles of {yj} vs. {xj} and S vs. T .

Remark 4.11. Suppose Φ ∈ Fqt [S, T ] is a divisor of f(T ) − g(S). Since
Gt = Gd′ with d′ = gcd(d, t), the above shows that, up to multiplication by
a nonzero constant, Φ ∈ Fqd′ [S, T ].

The above theorem and remarks give the following:

Corollary 4.12. For (f, g) a DP and f not exceptional, f(T ) − g(S) is
reducible over Fq. In fact, if t ∈ Df,g, then f(T )−g(S) is reducible over Fqt.

Proof. The first statement is clear. The second statement is clear for t
sufficiently large, though the above remarks show that reducibility is not
actually a property of t, large or small, but a property of t mod d. �
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Remark 4.13. The t such that f(T )−g(S) is reducible over Fqt form a pure
Frobenius progression, with associated Frobenius set a subgroup of Z/d. Let
(d,D) be the data defining this Frobenius set, where D is a set of divisors
of d. Then, in contrast with the Frobenius set of an exceptional polynomial,
if d1|d2 are divisors of d with d2 ∈ D, then d1 ∈ D.

Now we consider the analogous situation for inclusions Vf (Fqt) ⊆ Vg(Fqt).

Proposition 4.14. Let Vf (Fqt) ⊆ Vg(Fqt) for t sufficiently large, and let
Nt be the number of absolutely irreducible factors of f(T ) − g(S) defined
over Fqt. Then Nt ≥ 1. Furthermore, Nt = 1 if and only if g is bijective
over Vf (Fqt) in the sense that every nonbranch point b ∈ Vf (qt) has exactly
one a ∈ Fqt mapping to it under g.

Proof. Let Gt be as in Remark 4.10. Also from this remark, the number Nt

of absolutely irreducible factors of f(T )−G(S) defined over Fqt equals the
number of Gt(x1)-orbits which are also Gf,g(x1)-orbits.

Use Lemma 3.1 to count such orbits. Conclude that Nt = r, where r is
the average number of elements of {yj} fixed by σ, as σ varies in Ĝf,g,t(x1).
By Theorem 3.10, r ≥ 1, and r = 1 if and only if every σ ∈ Ĝf,g,t fix-
ing x1 fixes exactly one element of {yj}. So, by the Frobenius Principle and
the Chebotarev Density Theorem, r = 1 is equivalent to every nonbranch
point b ∈ Vf (Fqt) being the image of exactly one a ∈ Fqt under the map
induced by g. �

Remark 4.15. This generalizes Theorem 4.8 since, if Vf (Fqt) = Vg(Fqt),
bijectivity of f over Vf (Fqt) is equivalent to Vf (Fqt) = Fqt (use Theorem 3.4).
In fact, we may view the above proof as an alternate proof of Theorem 4.8.

We end with a generalization of Theorem 3.13.

Proposition 4.16. If Vf (Fqt) ⊆ Vg(Fqt) for all t, and deg g > 1, then
f(T )− g(S) is reducible over Fq.

Proof. By Remark 4.9, the number of factors of f(T )− g(S) is the number
of Ĝf,g(x1)-orbits of {yj}. By (3.10), each element of Ĝf,g(x1) fixes at least
one element of {yj}. If {yj} has only one Ĝf,g(x1)-orbit, then Ĝf,g(x1, yj),
as yj varies, are conjugate subgroups of Ĝf,g(x1). The conjugates, however,
of a proper subgroup of a finite group cannot cover the group. �

Remark 4.17. Section 7 continues the topic of reducibility.

5. Behavior at infinity

Many results above generalize to nonpolynomial maps. The main distinction
is that polynomial maps f : P1 → P1 totally ramify above the place at
infinity. This section considers the consequences of total ramification.
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We begin with a lemma concerning the special case of tame ramification.
It is similar to results in the literature (for example [Mül98, Section 2.2]).
However, for generality and the convenience of the reader, we give a proof.
The setup is as follows. Let K be a field with discrete valuation v and
associated residue field k, and let L be a degree n separable extension of K
with valuation w extending v to L. Let M be the normal closure of L over
K, and let ω be a valuation of M extending w with residue field k(ω). For
a subgroup H of a group G, we denote the group of permutations of the n
cosets G/H by Perm(G/H).

Lemma 5.1. Let G = Gal(M/K) and H = Gal(M/L). Suppose (L,w) is
tamely and totally ramified over (K, v). Then:

(5.1) (M,ω) is tamely ramified over (K, v) and unramified over (L,w).
(5.2) The inertia group Iω ⊆ G is cyclic and acts transitively and ef-

fectively on G/H; any generator of Iω corresponds to an n-cycle
in Perm(G/H).

(5.3) k(ω) = k(ζn), where ζn is a primitive n-th root of 1.
(5.4) The decomposition group Gω ⊆ G is isomorphic to the semidirect

product µn oϕ G̃ where µn ⊆ k(ω)× is the group of n-th roots of 1, G̃
is Gal(k(ω)/k), and ϕ : G̃ → Aut(µn) is the natural Galois action
on the n-th roots of unity.

(5.5) The isomorphism Gω → µn oϕ G̃ can be chosen so that the inertia
group Iω corresponds to µn, and H ∩Gω corresponds to G̃.

Proof. Let π = πL be a uniformizer for (L,w) and let h1 ∈ K[T ] be its
minimal, monic polynomial. This polynomial is Eisenstein of degree n (its
nonleading coefficients have positive valuation, and its constant term is a
uniformizer for (K, v)).

Since (L,w) is totally ramified over (K, v), Iω acts transitively on G/H.
The action is effective (G acts effectively on G/H). The property of tame
ramification behaves well under composita, and (L,w) is tamely ramified
over (K, v). Thus (M,ω) is also tamely ramified over (K, v). So Iω is cyclic.
It acts transitively and effectively on G/H, so its generator acts as an n-
cycle. In particular |Iω| = |G/H| = n, forcing (M,ω) to be unramified
over (L,w).

Let Kv, Lw, and Mω be the completions associated with (K, v), (L,w),
and (M,ω). So Gω is canonically isomorphic to Gal(Mω/Kv). Since h1

remains irreducible over Kv, Lw = Kv(π) and Mω is the splitting field of
h1 over Kv. Let h2(T ) = Tn − πK , where πK = −h1(0). Note that πK is a
uniformizer for Kv. Let M ′ be the splitting field of h2 over Kv. We show
that Mω = M ′.

Let β ∈ M ′ be a zero of h2, and ζ ∈ M ′ a primitive n-th root of unity.
Note that h3(T ) def= h1(βT )/πK is a monic polynomial inM ′ with coefficients
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of nonnegative valuation. By Hensel’s Lemma, all the zeros r1, . . . , rn of h3

are in M ′. Thus {riβ}, the zeros of h1, are in M ′. Conclude Mω ⊆M ′.
The zeros of h1 correspond to the zeros of h2 as follows. If α is a zero of

h1, expand α in M ′ in terms of the uniformizer β as α = ζiβ plus higher-
order terms. The correspondence sends α to ζiβ. This correspondence is
compatible with the Gal(M ′/Kv) action. Conclude that Mω = M ′.

Clearly Iω = Gal(Mω/Kv(ζ)), and so Gal(Kv(ζ)/Kv) is canonically iso-
morphic to G̃ = Gal(k(ω)/k). Conclude that k(ω) = k(ζn).

Replace β by βζi, if necessary, so that π corresponds to β. SoHω = H∩Gω

is the subgroup of Gω fixing β, and Lw = Kv(β). Clearly Hω ∩ Iω = 1 and
|Hω| = |G̃|. So, restricting the natural homomorphism Gω → G̃ gives an
isomorphism Hω → G̃. The inverse isomorphism splits the exact sequence

1 → Iω → Gω → G̃→ 1.

Thus Gω is isomorphic to a semi-direct product Iω oG̃ with an isomorphism
which sends Hω to G̃.

The rule γ 7→ γ(β)/β defines a natural isomorphism Iω → µn [Frö67,
Section 8], where a 7→ a is the residue map. If γ 7→ ζi

n, then clearly σγσ−1 7→
σ̃(ζi

n), where σ̃ is the image of σ in G̃. The result follows. �

Example 5.2. Let f ∈ F [T ] be a polynomial of degree prime to the char-
acteristic of F . The following imply the hypotheses of Lemma 5.1:
K = F (z) with v = ∞z, the place at infinity. (So k = F ).
L = F (x1) with w = ∞x1 . (Here, x1 is a fixed zero of f(T )− z.)
M = Ωf with ω any place above ∞x1 .
G = Ĝf and H is the subgroup fixing x1.
Note: We can identify the zeros {x1, . . . , xn} with G/H, where a given

zero xj corresponds to the coset of elements sending x1 to xj .

Let ζn ∈ F be a primitive n-th root of 1, and µn ∈ F× the group of n-th
roots of 1. Applying Lemma 5.1 to the above example yields:

Corollary 5.3. Suppose n = deg f is prime to the characteristic of F .

• The geometric monodromy group Gf contains an element which acts
on the set {xi} as an n-cycle.

• The field F̂f is a subfield of F (ζn). In particular, if F = Fq and q ≡ 1
mod n, then F̂f = Fq and Ĝf = Gf .

• The arithmetic monodromy group Ĝf contains a subgroup isomor-
phic to µn o Gal(F (µn)/F ), and the geometric monodromy group Gf

contains a subgroup isomorphic to µn o Gal(F (µn)/F̂f ).

We now give the main theorem of this section. Here Df,g ⊆ Z/d is as in
Definition 4.3 and d = [F̂f,g : Fq].
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Theorem 5.4. Let f, g ∈ Fq[T ] with n = deg f and m = deg g. If (f, g) is
a DP, then gcd(n, qt − 1) = gcd(m, qt − 1) for all positive t with t ∈ Df,g.

Proof. Let t be a positive integer with t ∈ Df,g. Let n = n0p
u and m = m0p

v

with n0 and m0 prime to p = char(Fq). We must show

gcd(n0, q
t − 1) = gcd(m0, q

t − 1).

Let ∞z be the infinite place of Fq(z) and K the completion. Fix a place ω
of Ωf,g above ∞z. Let Ĝω ⊆ Ĝf,g be the decomposition group associated
to ω, and I ⊆ Ĝω the inertia group. Thus Ĝω is canonically isomorphic
to Gal(Ωω/K), where Ωω is the completion of Ωf,g at ω. Choose φt ∈ Ĝω

that induces the automorphism x 7→ xqt
of the residue field. Since Fq(x1) is

totally ramified over Fq(z) at ∞z, the group I acts transitively on {xi}. So,
after replacing φt by σφt for a suitable σ ∈ I, we can assume φt fixes x1.
Note: φt ∈ Ĝf,g,t(x1), so φt must also fix an element of {yj}.

Let I1 ⊆ I be the first higher ramification group. Thus I1 is a normal
p-Sylow subgroup of I with cyclic quotient. Let γ ∈ I be an element whose
image in I/I1 is a generator.

Let Rx be Ĝω/I1Ĝω(x1) and consider the map {xi} → Rx sending xi to
the coset σI1Ĝω(x1), where σ ∈ Ĝω is chosen so that σ(x1) = xi. The fibers
of this map are exactly the I1-orbits of {xi}. Since I1 is normal in I and I
acts transitively on {xi}, the I1-orbits all have the same size; that size is a
power of p, and the number of I1-orbits is prime to p. Since n = |{xi}| is
the product of |Rx| and the fiber size, it follows that Rx has n0 elements,
and the fibers have size pu. Likewise, let Ry be Ĝω/I1Ĝω(y1) and consider
the corresponding map {yj} → Ry. Conclude that |Ry| = m0 and the fibers
have size pv.

Let Lx ⊆ Ωω be the fixed field of I1Ĝω(x1) and Ly that of I1Ĝω(y1). Let
Mx ⊆ Ωω be the normal closure of Lx over K and My that of Ly over K.
We can identify Rx with

Gal(Mx/K)
/
Gal(Mx/Lx).

So [Lx : K] = n0. Since I acts transitively on Rx, the extension Lx/K is
totally and tamely ramified. A similar conclusion holds for Ly/K.

Apply Lemma 5.1 to Lx/K and Ly/K. For example, identify Rx with
Z/n0 so φt fixes 0 ∈ Z/n0 and γ acts as the map c 7→ c+ 1. Consequently,
γbφt acts on Z/n0 as the map c 7→ qtc + b. Identify Ry with Z/m0 in a
similar manner.

Now suppose a = gcd(qt − 1, n0) is not a multiple of gcd(qt − 1, m0).
Then γaφt, viewed as c 7→ qtc+a modulo n0, clearly fixes an element of Rx.
Yet γaφt, viewed as c 7→ qtc+a modulo m0, fixes no element of Ry. Suppose
γaφt fixes ρ ∈ Rx. Let xi0 be an element of the fiber of {xi} → Rx. Since
fibers of this map are I1-orbits, there is a τ ∈ I1 such that τγaφt fixes xi0 . As
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τγaφt and γaφt act on Ry in the same way, neither has a fixed point in Ry.
Thus, τγaφt fixes no element of {yj}, contradicting t ∈ Df,g. Conclude that
a is a multiple of gcd(qt − 1, m).

Similarly, conclude gcd(qt−1, m0) is a multiple of gcd(qt−1, n0). There-
fore, gcd(qt − 1, m0) = gcd(qt − 1, n0). �

Remark 5.5. Although we have adopted the convention that polynomials
in this paper have nonzero derivatives, the above theorem (and its corollar-
ies) remain valid for polynomials with zero derivatives.

A corollary is Lenstra’s theorem [CF95]:

Corollary 5.6. Let f ∈ Fq[T ] with n = deg f . If f is an exceptional poly-
nomial, then gcd(n, q − 1) = 1.

Proof. Apply the theorem to (f, g), where g(T ) = T . Take t = 1 and recall
that 1 ∈ Df,g since f is exceptional. �

Corollary 5.7. Let f, g ∈ Fq[T ], where deg f = n0p
u and deg g = m0p

v

with n0 and m0 prime to the characteristic p. If (f, g) is an SDP, then
n0 = m0.

Proof. Let t be the order of q modulo n0m0. Thus n0m0|(qt−1). By Theo-
rem 5.4,

n0 = gcd(qt − 1, deg f) = gcd(qt − 1, deg g) = m0. �

The above theorem and corollary easily generalize to value set inclusions.

Proposition 5.8. Let f, g ∈ Fq[T ], where deg f = n and deg g = m. For
all t such that (3.10) holds, gcd(qt − 1, m) divides gcd(qt − 1, n).

Proposition 5.9. Let f, g ∈ Fq[T ], where deg f = n0p
u and deg g = m0p

v

with n0 and m0 prime to the characteristic p. If Vf (Fqt) ⊆ Vg(Fqt) for all t,
then m0 divides n0.

6. Factoring separated variable polynomials and rational
functions

This section reviews properties of induced decompositions and how they
affect factorizations of variables separated rational functions. For simplicity
we stay with a notation where f and g are polynomials, until Remarks 6.4
and 6.9. Most results are in [Fri73] or are extensions of results there.

6.1. Statements on reducibility. This subsection concentrates on fac-
torization, while the next concentrates on conclusions about SDPs and DPs.

Lemma 6.1. Let f, g ∈ F [T ] be a pair of polynomials. There is a decom-
position f = f1 ◦ f2 with f1, f2 ∈ F [T ] having the following properties:

(6.1) F (xi) ∩ Ωg = F (f2(xi)) for all xi in {x1, . . . , xn}.
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(6.2) deg f2 = 1 if and only if Ωf ⊆ Ωg.
(6.3) For all xi, f2(T )− f2(xi) is an irreducible polynomial over Ωg.

These properties characterize f1 and f2 up to composition with linear poly-
nomials (actually (6.1) suffices). More specifically, if f = f1◦f2 = f ′1◦f ′2 are
two such decompositions, then f ′1 = f1 ◦ l−1 and f ′2 = l ◦ f2, where l ∈ F [T ]
is a linear polynomial.

Call this decomposition and the analogous decomposition of g the induced
decompositions associated to the pair (f, g).

Proof. Fix a particular zero xi. By Lüroth’s Theorem, F (xi) ∩ Ωg = F (wi)
for some wi ∈ F (xi). Adjust wi by a suitable linear fractional transformation
so that wi = f2(xi) and z = f1(wi) for some f1, f2 ∈ F [T ]. Thus f = f1 ◦f2.
Any other choice w′

i has the form awi + b, where a, b ∈ F and a 6= 0. So
f1 and f2 are unique up to composition with a linear polynomial. Now let
xj be any element of {x1, . . . , xn} and let σ ∈ Ĝf,g send xi to xj . Then
F (xj) ∩ Ωg = F (σ(xi)) ∩ Ωg = F (f2(σ(xi))) = F (f2(xj)). So (6.1) holds.

To see (6.2), note that deg f2 = 1 implies F (xi) ∩ Ωg = F (xi). Thus
F (xi) ⊆ Ωg, so Ωf ⊆ Ωg. The converse is clear.

To see (6.3), consider f2(T )− f2(xi). By (6.1), this polynomial is defined
over Ωg. We will show it is irreducible by showing Gal(Ωg/Ωg) acts transi-
tively on its zeros. Any zero equals some xj satisfying f2(xi) = f2(xj). Let
σ ∈ Gal

(
F (z)/F (z)

)
satisfy σ(xi) = xj . Let σ̃ be the restriction of σ to Ωg.

Clearly, σ̃(f2(xi)) = f2(xi), so σ̃ ∈ Gal(Ωg/Ωg∩F (xi)). The restriction map

Gal (F (xi) · Ωg/F (xi)) → Gal (Ωg/Ωg ∩ F (xi))

is an isomorphism. Use this to lift σ̃ to F (xi)·Ωg, and then to Ωg so the lifting
τ fixes xi. Then σ ◦ τ−1 ∈ Gal(Ωg/Ωg) and σ ◦ τ−1(xi) = σ(xi) = xj . �

An important feature of these induced decompositions is that they respect
the factorization of f(T )− g(S).

Lemma 6.2. Suppose f(T ) − g(S) is reducible over F , and f = f1 ◦ f2 is
the induced decomposition. Then f1(T ) − g(S) is reducible over F . More-
over, substituting f2(T ) for T into the factorization of f1(T )− g(S) gives
the factorization of f(T )− g(S). In particular, deg f1 > 1.

Proof. Fix xi. As in Remark 4.9, factoring g(S)− f(T ) over F [S, T ] corre-
sponds to finding the orbits of {yj} under the action of

Gxi

def= Gal
(
F (z)/F (xi)

)
.

Similarly, factoring g(S) − f1(T ) over F [S, T ] corresponds to finding the
orbits of {yj} under the action of

Gf2(xi)
def= Gal

(
F (z)/F (f2(xi))

)
.
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Decompose {yj} into orbits with both groups. Clearly the Gf2(xi)-orbits
contain the Gxi-orbits. We show, in fact, they are equal. Let σ ∈ Gf2(xi)

send yj to yk. If σ sends xi to xl, then xi and xl are both zeros of the
polynomial f2(T ) − f2(xi). By (6.3), there is a τ ∈ Gal

(
F (z)/Ωg

)
sending

xi to xl. Thus τ−1 ◦ σ ∈ Gxi sends yj to yk.
Let O ⊆ {yj} be such an orbit, Φ(S, T ) the corresponding irreducible

factor of g(S) − f1(T ), and Φ′(S, T ) the corresponding irreducible factor
of g(S)− f(T ). The correspondence of Remark 4.9 yields the equation∏

yj∈O

(S − yj) = cΦ(S, xi) = c′ Φ′(S, f2(xi))

for some c, c′ ∈ F . Thus cΦ(S, T ) = c′ Φ′(S, f2(T )). �

Corollary 6.3 ([Fri73], Lemma 7). Suppose f(T )− g(S) is reducible over
F . Then there are decompositions f = f ′◦f ′′ and g = g′◦g′′ with f ′, f ′′, g′, g′′

in F [T ] such that:

(i) f ′(T )− g′(S) is reducible.
(ii) Ωf ′ = Ωg′.
(iii) Substituting f ′′(T ) for T and g′′(S) for S into the factorization

of f ′(T )− g′(S) gives the the factorization of f(T )− g(S).

Furthermore, if either deg f ′ or deg g′ is prime to p, then deg f ′ = deg g′.

Proof. To prove this, repeatedly use the previous lemma applied to induced
decompositions of f and g. (Replace f and g with the outer composites
as you go along). Eventually you will obtain f2 and g2 of degree 1, which
implies that Ωf = Ωg.

Now if deg f ′ or deg g′ is prime to p, then the place at infinity is tamely
ramified in Ωf ′ = Ωg′ . Conclude that both deg f ′ and deg g′ give the order of
the inertia group at infinity, so they are equal. (See Lemma 5.1 above.) �

Remark 6.4. Suppose f = u1/u2 and g = v1/v2, with u1, u2, v1, v2 ∈ F [T ]
and (u1, u2) = 1 = (v1, v2). We think of the factors of f(T )− g(S) as being
the factors of the polynomial u2v2(f(T ) − g(S)). Geometrically, these are
the components of the fiber product of the two maps f : P1

t → P1
z and

g : P1
s → P1

z over the sphere P1
z uniformized by z. Recall that the degree of

f is the maximum of the degrees of u1 and u2.
Lemma 6.1 and Lemma 6.2 hold exactly as stated for rational functions

f and g (though in the proof one uses linear fractional changes of variables
instead of just affine changes). In Corollary 6.3, the only result that doesn’t
hold for rational functions is the conclusion about deg f = deg g when one
of the degrees are prime to p. That requires using total tame ramification
over ∞.
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6.2. Statements on value sets. Now we show that induced decomposi-
tions behave well in certain types of value set situations. Since we are dealing
with value sets, we restrict to F = Fq for the remainder of this section.

Proposition 6.5. Suppose Vf (Fqt) ⊆ Vg(Fqt) for all t. Let f = f1 ◦ f2 be
the induced decomposition associated to the pair (f, g) and let g = g1 ◦ g2 be
any decomposition (for example, the induced decomposition). Then

Vf1(Fqt) ⊆ Vg1(Fqt)

for all t.

Proof. All zeros of f1(T )−z have the form f2(xi). By Theorem 3.10, we can
show Vf1(Fqt) ⊆ Vg(Fqt) for all t by showing that any σ ∈ Gal

(
Fq(z)/Fq(z)

)
fixing f2(xi) must also fix some yj . If σ ∈ Gal(Fq(z)/Fq(z)) fixes f2(xi), then
xl = σ(xi) is a zero of f2(T )−f2(xi). By (6.3), there is a τ ∈ Gal

(
Fq(z)/Ωg

)
sending xl to xi. So τ ◦ σ fixes xi, and by hypothesis and Theorem 3.10, it
must fix some yj . Since τ fixes yj , conclude that σ also fixes yj .

Clearly, Vg(Fqt) ⊆ Vg1(Fqt). �

Corollary 6.6. Suppose (f, g) is an SDP with deg g > 1, so (as in Proposi-
tion 4.16) f(T )−g(S) is reducible. Then the decompositions of Corollary 6.3
can be chosen so that (f ′, g′) is an SDP.

Suppose, instead, Vf (Fqt) ⊆ Vg(Fqt) for all t. Then the decompositions of
Corollary 6.3 can be chosen so that Vf ′(Fqt) ⊆ Vg′(Fqt) for all t.

Proposition 6.7. Suppose (f, g) is an SDP with n = deg f and m = deg g
prime to p. Then Ωf = Ωg and degf = deg g.

Proof. By Corollary 5.7, n = m. Let f = f1 ◦ f2 be the induced decomposi-
tion associated to the pair (f, g). By Proposition 6.5, (f1, g) is also an SDP.
By Proposition 5.9 again, deg f1 = m. Hence, deg f2 = 1. Thus, by (6.2),
Ωf ⊆ Ωg. A similar argument gives the other inclusion. �

Finally, we show that in some circumstances the induced decompositions
behave well for DP’s.

Proposition 6.8. Suppose (f, g) is a DP with F̂f,g = F̂g. Let f = f1 ◦ f2

be the induced decomposition associated to the pair (f, g). Then (f1, g) is
a DP. Furthermore, we have Df,g ⊆ Df1,g, both being subsets of Z/d where
d = [F̂g : Fq]. An analogous result holds for inclusions of value sets replacing
the DP hypothesis.

Proof. We need to verify (3.9) with (f1, g) for all t such that t ∈ Df,g (Defi-
nition 4.3). So, let σ ∈ Ĝf1,g,t with t ∈ Df,g, and let σ̃ ∈ Ĝf,g,t be an element
restricting to σ. Note that the zeros of f1(T )− z have the form f2(xi).

First, suppose σ fixes yj . So σ̃ fixes yj , and, by property (3.9), σ̃ fixes
some xi. Thus σ̃, and hence σ, fix f2(xi).
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Now suppose that σ fixes f2(xi). Let xl = σ̃(xi) (so that xl is a zero of
f2(T )−f2(xi)). By (6.3) there is a τ ∈ Gal(Ωf,g/Ωg) sending xi to xl. Since
τ fixes Ωg, it also fixes F̂g = F̂f,g. Hence τ−1 ◦ σ̃ ∈ Ĝf,g,t(xi). Since t ∈ Df,g,
property (3.9) applies, and τ−1 ◦ σ̃ must fix some yj . Since τ fixes yj ∈ Ωg,
conclude that σ also fixes yj . �

Remark 6.9. As with Remark 6.4, we may allow f and g to be rational
functions, rather than polynomials. For the discussion of value sets this
means we formally add ∞ to the domain and range. The only exception is
in Proposition 6.7, where even the conclusion Ωf = Ωg uses the total tame
ramification over ∞ (as in the direct argument of [Fri73, Prop. 3]).

7. Reducibility and representations

This section links the reducibility of f(T ) − g(S) to the behavior of the
associated Galois representations. It builds on the characteristic zero results
of [Fri73] and the positive characteristic results of [Fri99].

7.1. Representation lemmas. LetG, a finite group, act on a set S = {si}
with N elements. This permutation action of G has an associated linear
action of G on a complex vector space VS as follows. Let VS be an N -
dimensional complex vector space with a chosen basis (si). Have σ ∈ G act
on VS by the unique linear transformation that sends si1 to si2 if and only
if σ (acting on S) sends si1 to si2 .

Let χS be the character of the action of G on VS . The following lemma,
a special case of Lemma 3.1, is easy and well-known.

Lemma 7.1. For all σ ∈ G, the value of the character χS(σ) is the number
of elements of S fixed by σ. Furthermore,

〈χS , 1〉 =
1
|G|

∑
σ∈G

χS(σ) = number of orbits in S.

Here we use the standard Hermitian inner product on the vector space C|G|

of functions from G to C:

〈f1, f2〉
def=

1
|G|

∑
σ∈G

f1(σ)f2(σ).

The irreducible characters form an orthogonal basis.
The C[G]-module VS decomposes as 111S ⊕ V ′

S , where 111S is the submodule
generated by

∑
i si and where V ′

S is the kernel of the augmentation map
η : VS → C defined by

∑
i λisi 7→

∑
λi. Let χ′S be the character associated

to V ′
S . In particular, χS = 1 + χ′S .

Lemma 7.2. If G acts transitively on S, then 111S consists of all elements
of VS fixed by G. Furthermore 〈1, χ′S〉 = 0, and so 〈χ′S , χ′S〉 = 〈χS , χS〉− 1.
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Proof. The identity character appears exactly once in the permutation rep-
resentation of each orbit of G acting on S. So, transitivity means that 111
doesn’t appear in χ′S . Apply the inner product of 111 +χ′S to itself to get the
given relation. �

Remark 7.3. In general, 〈χ′S , χ′S〉 = 〈χS , χS〉 − (2r − 1), where r is the
number of orbits in S.

Now let the finite group G act transitively on two finite sets A and B.
Consider also the associated G-action on A×B. The following easy lemma
is the starting point for our analysis of reducibility.

Lemma 7.4. There are 〈χA, χB〉 orbits for G acting on the product A×B.

Proof. The character χA×B associated to the action of G on A×B is χA ·χB.
By Lemma 7.1, the number of orbits in A×B is

1
|G|

∑
σ∈G

χA×B(σ) =
1
|G|

∑
σ∈G

χA(σ)χB(σ) = 〈χA, χB〉.

(Note: this proof does not require the transitivity assumption.) �

The following well-known characterization of double transitivity is an im-
mediate consequence of the above results.

Corollary 7.5. Suppose the action of G on S is transitive where |S| ≥ 2.
Then the following are equivalent:

(7.1) The action of G on S is doubly transitive.
(7.2) There are exactly two orbits in S × S under the action of G.
(7.3) 〈χS , χS〉 = 2.
(7.4) 〈χ′S , χ′S〉 = 1.
(7.5) V ′

S is an irreducible C[G]-module.

Remark 7.6. In Corollary 7.5, we can replace the hypothesis that G acts
transitively on S with the alternate hypothesis |S| > 2.

The following is also an easy consequence of Lemma 7.4.

Lemma 7.7. If G acts doubly transitively on A and |A| ≥ 2, then the mul-
tiplicity of V ′

A in the decomposition of V ′
B is one less than the number of

G-orbits of A×B.

Corollary 7.8. Suppose |A| ≥ 2 and G acts doubly transitively on A. Sup-
pose also that |A| = |B|. Then the following are equivalent:

(7.6) χA = χB.
(7.7) A×B has more than one orbit.
(7.8) A×B has exactly two orbits.
(7.9) VA and VB are isomorphic as C[G]-modules.



24 W. AITKEN, M. FRIED AND L. HOLT

Remark 7.9. If (7.6) (or its equivalents) hold, then G must act doubly
transitively on B as well (by Corollary 7.5).

We refine (7.9) above by explicitly constructing a natural isomorphism
from VA to VB when the following hold:

(i) G acts doubly transitively on A.
(ii) |A| = |B|.
(iii) A×B has more than one orbit.

We define some maps VA → VB without using hypotheses (i), (ii) or (iii).
Then we show one gets an isomorphism when the hypotheses hold.

First choose a G-invariant subset Γ of A×B, for example a G-orbit. For
convenience, label elements: A = {ai}, B = {bj}. Consider the matrix
E = [εi,j ], where εi,j is 1 if (ai, bj) ∈ Γ, and 0 otherwise. Consider the linear
map ψ : VA → VB defined by the matrix E:

ψ(ai)
def=

∑
j

εi,jbj , so ψ

(∑
i

λiai

)
=

∑
j

( ∑
i

λiεi,j

)
bj .

Here and below, (ai) is the basis of VA associated to A = {ai} and (bj) is
the basis of VB associated to B = {bj}.

The following lemma follows directly from the definition (and does not
depend on transitivity).

Lemma 7.10. The map ψ : VA → VB is a C[G]-module morphism.

Now we investigate some of the consequences of transitivity.

Lemma 7.11. If Γ is nonempty, restricting ψ to 111A gives an isomorphism
111A → 111B of C[G]-modules.

Proof. Check that ψ sends
∑

i ai to C
∑

j bj , where, for each bj , C = Cj is
the number of ai ∈ A with the property that (ai, bj) ∈ Γ. (Cj is independent
of j by transitivity). �

Lemma 7.12. Restricting ψ to V ′
A gives a C[G]-module morphism

ψ′ : V ′
A → V ′

B.

Proof. Check that ηB ◦ ψ = D · ηA, where ηA and ηB are the augmentation
maps and, for each ai, D = Di is the number of bj ∈ B with the property
that (ai, bj) ∈ Γ. (Di is independent of i by transitivity). �

Lemma 7.13. If Γ ⊆ A × B is neither empty nor all of A × B, then
ψ′ : V ′

A → V ′
B (defined above) has nontrivial image.

Proof. Fix a basis vector ai of VA. Since Γ is nonempty, εi,j1 = 1 for some
j1. Since Γ is a proper subset of A×B, εi,j2 = 0 for some j2. Let σ ∈ G be
an element such that σ(bj1) = bj2 . Then ψ′(σ(ai)− ai) 6= 0. �
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Lemma 7.14. Suppose that G acts doubly transitively on A and that Γ is
neither empty nor all of A×B. Then ψ : VA → VB is injective.

Proof. By Corollary 7.5, V ′
A is irreducible, and by the previous lemma, the

map ψ′ : V ′
A → V ′

B is not trivial. Thus ψ′ is injective. By Lemma 7.11, the
map 111A → 111B induced by ψ is an isomorphism. Thus ψ : 111A⊕V ′

A → 111B⊕V ′
B

is injective. �

Proposition 7.15. Suppose that:
(i) G acts doubly transitively on A.
(ii) |A| = |B|.
(iii) Γ is a nonempty proper subset of A×B invariant under G.

Then ψ : VA → VB is an isomorphism.

Proof. By the previous lemma, ψ is injective. Since VA and VB have the
same dimension, ψ is an isomorphism. �

Also of interest is the following [Fri73, Lemma 2]:

Lemma 7.16. Suppose G acts doubly transitively on A, and |A| = |B| ≥ 2.
Suppose also that, for all σ ∈ G, χA(σ) > 0 if and only if χB(σ) > 0.
Then χA = χB.

Proof. Recall χ′A = χA − 1 and χ′B = χB − 1. By hypothesis, for all σ ∈ G,
χ′A(σ) < 0 if and only if χ′B(σ) < 0. If σ = 1 then χ′A(σ) > 0 and χ′B(σ) > 0.
Thus 〈χA, χB〉 = 〈χ′A, χ′B〉+ 1 ≥ 2. The result follows from Lemma 7.4 and
Corollary 7.8. �

Remark 7.17. This shows that if (f, g) is an SDP and if Ĝf acts doubly
transitively on {xi}, then (f, g) is actually an SDP with multiplicity. (This
can also be seen as a corollary of Proposition 7.26 and Theorem 3.13.)

Remark 7.18. Lemma 7.16 uses this hypothesis: For all σ ∈ G, χA(σ) > 0
if and only if χB(σ) > 0. We can replace it with this hypothesis: For all
σ ∈ G, χA(σ) ≤ 1 if and only if χB(σ) ≤ 1.

We end with one more consequence of double transitivity which we need
later.

Lemma 7.19. Let Γ be an orbit of A × B where G is transitive on A and
B. Suppose that G acts doubly transitively on A, where |A| ≥ 2. Then

|A| |B|
(
|A| − 1

) ∣∣ |Γ| (|Γ|−|B|).
Proof. For b ∈ B, let Γb

def= {a | (a, b) ∈ Γ}. Note that k def= |Γb| is
independent of b ∈ B since G acts transitively on B.

Now consider the set

Γ′ = {(a, a′, b) | (a, b), (a′, b) ∈ Γ and a 6= a′ }.
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For distinct elements a, a′ of A, let

Γ′a,a′
def= {b | (a, a′, b) ∈ Γ′}.

Note that l def= |Γ′a,a′ | is independent of a and a′ since G acts doubly transi-
tively on A.

We count the number of element of Γ′ in two ways:

|Γ′| = |A|(|A| − 1)l = |B|k(k − 1).

Now multiply both sides by |B| and use the equation k|B| = |Γ|. �

7.2. Reducibility. In this section, unless otherwise stated, F is a general
field and f, g ∈ F [T ]. Remark 4.9 describes the factorization of f(T )− g(S)
in F [S, T ] in terms of Ĝf,g(yj)-orbits of {xi}. There is, however, another
description of the factorization of f(T ) − g(S) in F [S, T ] that follows from
Remark 4.9.

Proposition 7.20. Consider the action of Ĝf,g on {xi} × {yj} induced
by the natural actions of Ĝf,g on {xi} and {yj}. Irreducible factors of
f(T ) − g(S) in F [S, T ] naturally correspond to the orbits of {xi} × {yj}.
This correspondence sends an irreducible factor Φ of f(T ) − g(S) to the
orbit consisting of all pairs (xi, yj) satisfying Φ(xi, yj) = 0 in Ωf,g. For
O ⊆ {xi} × {yj} such an orbit, with Φ ∈ F [S, T ] the corresponding factor
of f(T )− g(S):

|O| = deg f · degS Φ = deg g · degT Φ.(7.10)

Corollary 7.21. Let w = gcd(deg f,deg g). The T -degree (resp. S-degree)
of any irreducible factor of f(T )− g(S) is a multiple of (deg f)/w (resp. of
(deg g)/w). So, w bounds the number of irreducible factors of f(T ) − g(S)
in F [S, T ]. This result holds even if f and g are rational functions (see
Remark 6.4).

Proof. By assumption, gcd(deg(g)/w,deg(f)/w) = 1. So, (7.10) shows
deg(f)/w divides the T -degree of any irreducible factor of f(T ) − g(S).
Let r be the number of irreducible factors of f(T )− g(S). Then, the sum of
their respective T degrees (each a multiple of deg(f)/w) adds up to deg f .
Therefore r ≤ w. �

Remark 7.22. The above corollary generalizes the well-known result of
Ehrenfeucht that gcd(deg f,deg g) = 1 implies f(T )− g(S) is irreducible.

Corollary 7.23. Let Φ be an irreducible divisor of f(T ) − g(S) in the
ring F [S, T ]. If deg f = deg g, then

deg Φ = degT Φ = degS Φ,

where the first of these is is the total degree of Φ.
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Now consider the special case F = Fq. Factoring f(T ) − g(S) over Fq

amounts to describing the orbits of {xi} × {yj} under the action of the
arithmetic monodromy group Ĝf,g. Now use the canonical isomorphism
between Gal

(
Ωf,gFq/Fq(T )

)
and Gf,g, and then apply Proposition 7.20 with

F = Fq. Conclude that factoring f(T )−g(S) over Fq amounts to describing
the orbits of {xi} × {yj} under the action of the geometric monodromy
group Gf,g.

In what follows, let d = [F̂f,g : Fq].

Proposition 7.24. Let Φbe an irreducible factor off(T )−g(S)over Fq[S, T ],
and let (xi0 , yj0) be in the corresponding orbit under Gf,g. Then a nonzero
constant multiple of Φ is defined over Fqt if and only if t is in the subgroup
of Z/d generated by the image of Ĝf,g(xi0 , yj0) under Ĝf,g → Z/d.

Proof. Let Gt consist of the elements in Ĝf,g whose image in Z/d is in the
subgroup generated by t. Note: Gt is isomorphic to Gal

(
FqtΩf,g/Fqt(T )

)
and the action on {xi} and {yj} are preserved by this isomorphism. Thus,
by Proposition 7.20, irreducible factors of f(T )−g(S) in Fqt [S, T ] correspond
to Gt-orbits of {xi} × {yj}.

Let Φ′ ∈ Fqt [S, T ] be the irreducible factor corresponding to the Gt-orbit
containing (xi0 , yj0). The nature of the correspondence in Proposition 7.20
implies that Φ divides Φ′ in Fq[S, T ]. The degrees of Φ and Φ′ are determined
by the sizes of the associated orbits, so Φ′ is a nonzero constant multiple
of Φ if and only if these orbits are the same size. This in turn is equivalent to

|Gt|
|Gt(xi0 , yj0)|

=
|Gf,g|

|Gf,g(xi0 , yj0)|
,

or yet to

d

a
=

|Gt|
|Gf,g|

=
|Gt(xi0 , yj0)|
|Gf,g(xi0 , yj0)|

,

where a = gcd(d, t). The ratio |Gt(xi0 , yj0)|/|Gf,g(xi0 , yj0)| determines the
image of Gt(xi0 , yj0) in Z/d, and the above equation holds if and only if this
image is the subgroup generated by t. Finally, this occurs if and only if the
image of Ĝf,g(xi0 , yj0) in Z/d contains t. �

We return to the case that F is a general field. Let Vf and Vg, respectively,
be the C[Ĝf,g]-modules associated to the action of Ĝf,g on {xi} and {yj}.
Let χf and χg be the associated characters. Lemma 7.4 and Proposition 7.20
give the following:

Proposition 7.25. The number of irreducible factors of f(T ) − g(S) in
F [S, T ] is equal to 〈χf , χg〉.

Corollary 7.8 and Proposition 7.20 give the following:
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Proposition 7.26. Suppose that the degrees of f and g are equal and greater
than one, and that the action of Ĝf,g on {xi} is doubly transitive. Then the
following are equivalent:
(7.11) χf = χg.
(7.12) f(T )− g(S) is reducible in F [S, T ].
(7.13) f(T )− g(S) factors into exactly two irreducible factors in F [S, T ].
(7.14) Vf and Vg are isomorphic as C[Ĝf,g]-modules.

We note that if F = Fq and χf = χg, then Corollary 3.12 (together with
the observation in Lemma 7.1) implies that (f, g) is an SDP. Thus we get:

Corollary 7.27. Let F = Fq. Suppose:
(i) The degrees of f and g are equal.
(ii) The action of Ĝf,g on {xi} is doubly transitive.
(iii) f(T )− g(S) is reducible in Fq[S, T ].

Then (f, g) is an SDP with multiplicity.

We can also use Proposition 7.26 to prove the following:

Lemma 7.28. Suppose f, g ∈ F [T ] are polynomials of degree at least three
which are linearly related on the inside over the separable closure F sep. Sup-
pose also that the action of Ĝf,g on {xi} is doubly transitive. Then f and g
are linearly related on the inside over F .

Proof. Let E be a finite Galois extension of F over which f and g are linearly
related on the inside. This implies that f(T )−g(S) has a linear factor defined
over E. Proposition 7.26 implies f(T )−g(S) has exactly two factors defined
over E, one of which is linear, so the other must be of total degree greater
than 1. Hence the factors are invariant under the natural Gal(E/F ) action.
Since f(T )− g(S) has a linear factor defined over F , the polynomials f and
g are linearly related on the inside over F . �

Lemma 7.19 gives the following:

Proposition 7.29. Let Φ be a factor of f(T ) − g(S) of total degree k > 1
which is irreducible in F [S, T ]. Suppose that the degrees of f and g are
both equal to n > 1. Suppose also that the action of Ĝf,g on {xi} is doubly
transitive. Then

n− 1 | k(k − 1).

Proof. Let O be the orbit corresponding to Φ via Proposition 7.20. Note that
degS Φ = deg Φ = k by Corollary 7.23. Apply Lemma 7.19 with A = {xi},
B = {yj} and Γ = O. By Proposition 7.20, |O| = nk. �

Corollary 7.30. Suppose the degrees of f and g both equal n > 2, the action
of Ĝf,g on {xi} is doubly transitive, and f(T ) − g(S) is reducible over F .
Then the two irreducible factors of f(T )− g(S) have nonequal degrees.
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Proof. There are exactly two factors by Proposition 7.26. Suppose they both
have degree k, i.e., n = 2k. Then n−1 = 2k−1 is prime to k and k−1. Thus
n− 1 cannot divide k(k − 1), contradicting the previous proposition. �

7.3. Polynomials with doubly transitive monodromy groups. Many
of the above results (Proposition 7.26 to Corollary 7.30) depend on the dou-
ble transitivity of monodromy groups. The classification of polynomials
with doubly transitive geometric monodromy groups is well-known, at least
when the degree is prime to the characteristic. We describe this classifica-
tion. Throughout this section, let f ∈ F [T ] have degree n at least 2, and let
Vf be the associated C[Gf ] module with character χf .

Lemma 7.31. Suppose the arithmetic monodromy group Ĝf acts doubly
transitively on {xi}. Then f is indecomposable over F .

Proof. Assume f = f1 ◦ f2 with f1, f2 ∈ F [T ] of degrees at least two. Then

f(T )− f(S) = (T − S) Φ1(f2(S), f2(T ))Φ2(S, T ),

where

Φi(S, T ) def=
fi(T )− fi(S)

T − S
.

Thus f(T )−f(S) has at least three irreducible factors, contradicting Propo-
sition 7.26. �

The following argument of [Fri70] gives a partial converse.

Lemma 7.32. Suppose f ∈ F [T ] is indecomposable over F with n = deg f
composite and prime to the characteristic of F . Then the arithmetic and
geometric monodromy groups of f act doubly transitively on {xi}.

Proof. A theorem of Fried and MacRae implies that, since n is prime to the
characteristic of F , f is indecomposable over F . Thus Gf acts primitively
on {xi}. By Corollary 5.3, there is an element of Gf which acts as an n-cycle
on {xi}. Schur proved that a finite group G acting on a set with N elements
acts doubly transitively if:

(i) The action is primitive.
(ii) G contains an element acting as an N -cycle.
(iii) N is composite. �

The above lemmas allow us to concentrate on the case n a prime. In
the case n = 2 the action is trivially doubly transitive, thus we can restrict
deg f = n to odd primes (different from the characteristic of F ). Before
finishing the classification, we describe important families of polynomials
whose geometric monodromy groups do not act doubly transitively on {xi}.

Consider the cyclic polynomials f(T ) = Tn. Here Gf is a cyclic group of
order n with generator acting on the zeros {xi} as an n-cycle. Furthermore,
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〈χf , χf 〉 = n and f(T )− g(S) factors into n linear factors. So, when n > 2,
the action of Gf on {xi} is not doubly transitive.

The other main family of examples is the Chebyshev polynomials:

Definition 7.33. The Chebyshev polynomial τn of degree n is defined to
be the polynomial in F [T ] satisfying

τn

(
T +

1
T

)
= Tn +

1
Tn

.

The following well-known result is easily verified (the recursion can be
used to prove existence).

Lemma 7.34. For every n ≥ 1 the n-th Chebyshev polynomial τn exists, is
unique (for any given characteristic), and is monic. Moreover τ1(T ) = T ,
τ2(T ) = T 2 − 2, and

τn+2(T ) = T · τn+1(T )− τn(T ) for all n ≥ 1.

Remark 7.35. When F = Q we get τn ∈ Z[T ]. Such Chebyshev polyno-
mials arise from the trigonometric identity 2 cos(nT ) = τn(2 cos(T )).

The following is well-known, and the second part is easily verified.

Lemma 7.36. Let n be an odd prime which is prime to the characteristic
of F . Then the n-th Chebyshev polynomial τn ∈ F [T ] has a dihedral geo-
metric monodromy group of order 2n, and this group acts on {xi} via the
standard dihedral action.

In particular, τn(T )−τn(S) has 〈χτn , χτn〉 = (n+1)/2 irreducible factors.
All are quadratic, except for the linear factor T − S. So the action of the
geometric monodromy group on {xi} is doubly transitive only for n = 3.

The following result of Burnside is an important piece in the classification.

Lemma 7.37. Suppose G acts effectively and transitively, but not doubly
transitively, on a set S of prime order l. Then G is isomorphic to a subgroup
of the affine group Fl o F×l .

The last piece is provided by the following:

Lemma 7.38. Let f ∈ F [T ] be a polynomial whose degree l is a prime
distinct from the characteristic of F . If Gf ⊆ Fl o F×l , then f is linearly
related, over F , to either a cyclic polynomial or a Chebyshev polynomial.

Remark 7.39. See [Fri70] for the tame case. [FGS93] strengthens the
result to general polynomials. See also [Mül97] (under the hypothesis that
Gf is solvable).

Putting all this together gives the following classification.
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Proposition 7.40. Suppose f ∈ F [T ] has degree prime to the characteristic
of F . Then the geometric monodromy group acts doubly transitively on the
zeros {xi} if and only if one of the following hold:
(7.15) f is indecomposable of composite degree.
(7.16) f has degree 2.
(7.17) f has degree 3 and is not linearly related to the cyclic polynomial T 3.
(7.18) f has prime degree n > 3 and is not linearly related over F to either

the cyclic polynomial or the Chebyshev polynomial of degree n.

Remark 7.41. Suppose f ∈ F [T ] has degree n prime to the characteristic
of F . It is easy to show that if f is linearly related over F to a cyclic poly-
nomial, then f is linearly related over F to a cyclic polynomial. However,
f ∈ F [T ] can be linearly related over F to the Chebyshev polynomial τn but
not be linearly related over F .

This motivates the introduction of Dickson polynomials. For any a ∈ F×

and any positive integer n define the Dickson polynomial

Dn,a(T ) = an/2τn(a−1/2T ).

Then, for n odd, f ∈ F [T ] is linearly related over F to the Chebyshev poly-
nomial τn if and only if it is linearly related over F to a Dickson polynomial.

Note that if F is a finite field of odd characteristic then there are two
nonlinearly related Dickson polynomials of each degree (n > 2); if F is a
finite field of characteristic 2 there is only one.

Remark 7.42. The result quoted in the previous remark has been known
for some time (see [Fri70] and [FGS93]; it can also be deduced from
[Turn95, Lemma 1.9]). For the convenience of the reader we sketch an
argument. Assume n > 1 since n = 1 is trivial.

First assume the characteristic of F is not 2, and check that the branch
points of the covering map τn : F → F (the elements b ∈ F where τn(T )− b
has multiple roots) are b1 = 2 and b2 = −2. Next, check that the unique
point unramified above b1 = 2 is a1 = 2 and the unique point unramified
above b2 = −2 is a2 = −2. So, if f is linearly related over F to τn, there
are a1, a2, b1, b2 ∈ F such that b1, b2 are the branch points for the cover f :
F → F and such that ai is unramified over bi.

If a1 and a2 are in the base field F , observe that the linear polynomials
of F [T ] sending {a1, a2} to {−2, 2} are in F [T ]. If ai ∈ F then bi = f(ai) is in
F , so the linear polynomials of F [T ] sending {b1, b2} to {−2, 2} are in F [T ].
Conclude that f is linearly related over F to τn. So assume that some ai 6∈ F .
The derivative τ ′n has distinct roots of the form ζ + 1/ζ, where ζ 6= −1, 1
is a 2n-th root of unity. Thus the derivative f ′ has distinct zeros. This
implies that all ramification points are separable over F , and so a1, a2, b1, b2
are also in the separable closure of F . Since f has coefficients in F , a1 and
a2 must be conjugate and contained in a quadratic extension F ′ of F . After
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composing on the right by a linear polynomial in F [T ], we reduce to the
case where a1 = α and a2 = −α where α2 ∈ F . Note that the images b1, b2
cannot be in F , and are in fact conjugate elements of F ′. After composing
on the left with an element of F [T ] we can assume f is monic and b2 = −b1.
Finally, check that such f must be a Dickson polynomial.

Now, if the characteristic of F is 2, then τn : F → F has a single branch
point b = 0, and a = 0 is the unique point unramified above b. So any
polynomial map f : F → F which is linearly related to τn must have a
single branch point b, and a single point a unramified over b. Since f is
defined over F , both a and b must be in the base field F . After linear
compositions, we can assume a = b = 0 and f is monic. Thus f = l1 ◦ τn ◦ l2
where l1(T ) = c1T and l2 = c2T . A simple consequence of the recursion
for τn is that τn(T ) = Tn + Tn−2 plus lower order terms. This implies that
(c2)2 ∈ F . Conclude that f is a Dickson polynomial.
7.4. A special class of Davenport pairs. Recall that one way to con-
struct a DP (f, g) is as an SDP-Ex composition (Definition 1.1). Such DP’s
have the property that 1 ∈ Df,g.

How does one construct DP’s (f, g) with 1 6∈ Df,g? One strategy is to
consider f, g ∈ Fq[T ] with g = f ◦ l for some linear polynomial l ∈ Fq[T ] not
in Fq[T ]. We see the only examples of this type, when f is indecomposable of
degree prime to the characteristic of Fq, are essentially of the form (Tn, aTn)
where a ∈ Fq is not an n-th power in Fq (Corollary 7.45). In this case
f(T ) = Tn and l(T ) = a1/nT .

Lemma 7.43. Let f ∈ F [T ] be linearly related over F to a Chebyshev
polynomial of odd degree prime to the characteristic of F . Suppose that
f(αT + β) ∈ F [T ] for some α, β ∈ F , α 6= 0. Then α, β ∈ F .

Proof. See [Turn95, Lemma 1.9]: Our τn(T ) is equal to Turnwald’sDn(1,T ).
�

Proposition 7.44. Let f, g ∈ F [T ] be indecomposable polynomials of de-
gree n prime to the characteristic of F . Suppose F is a perfect field. If f
and g are linearly related on the inside over F then either:

(i) f and g are linearly related on the inside over F , or
(ii) f and g are both linearly related over F to the cyclic polynomial of

degree n.
In either case, f and g are linearly related over F .

Proof. Observe that n < 3 is trivial. If Gf,g acts doubly transitively on {xi},
use Lemma 7.28. Otherwise, use Proposition 7.40 to reduce to the Cheby-
shev or cyclic case. In the case where f and g are linearly related over F to
the Chebyshev polynomial and n is an odd prime, use the previous lemma.
Finally, in the cyclic case, Remark 7.41 says that f and g are linearly related
to Tn over the base field F . �



DAVENPORT PAIRS 33

Corollary 7.45. Suppose that f ∈ F [T ] is indecomposable of degree n
prime to the characteristic of F where F is a perfect field. If g ∈ F [T ]
is linearly related to f on the inside over F , but not over F , then there are
linear l1, l2, l3 ∈ F [T ] such that l1 ◦ f ◦ l2 = Tn and l1 ◦ g ◦ l3 = aTn with
a ∈ F not an n-th power in F .

8. Main results concerning indecomposability

The following results hold when one of the polynomials, f say, of the pair
(f, g) is indecomposable with degree prime to the characteristic. There are
essentially two cases, depending on whether or not f is linearly related to a
cyclic polynomial. Recall f is linearly related to a cyclic polynomial over Fq

if and only if it is linearly related to a cyclic polynomial over Fq.

Theorem 8.1. Let f ∈ Fq[T ] be indecomposable over Fq, nonexceptional,
and of degree prime to the characteristic of Fq. Let g ∈ Fq[T ] be any polyno-
mial where (f, g) forms a Davenport Pair, and let g = g1 ◦ g2 be the induced
decomposition over Fq associated to (f, g).

If f is not linearly related to a cyclic polynomial, (f, g1) is an SDP with
multiplicity: the associated characters χf , χg1 are equal.

If f is linearly related to a cyclic polynomial, g = f ◦h for some h ∈ E[T ]
with E a finite extension of Fq. Also, g = l ◦ f ◦ h′ for some l, h′ ∈ Fq[T ]
with l linear, and f and l ◦ f are linearly related on the inside over Fq.

Proof. Let g = h1 ◦h2 be the induced decomposition over Fq associated with
the pair (f, g). (It turns out, at least in the noncyclic cases, that the two
induced decompositions, g = g1 ◦ g2 and g = h1 ◦ h2, are equivalent.)

Since (f, g) is a DP and f is nonexceptional, f(T ) − g(S) is reducible
in Fq[S, T ] (Corollary 4.12). So f(T ) − h1(S) is also reducible in Fq[S, T ]
(Lemma 6.2). Since f is indecomposable over Fq, f is indecomposable
over Fq (Theorem 3.5 of [FM69]). Thus the induced decompositions of both
f and h1, associated to the pair (f, h1) over Fq, are trivial. Lemma 6.1, espe-
cially property (6.2), implies FqΩf = FqΩh1 and Gf = Gh1 = Gf,h1 . Finally,
deg f = deg h1 (Corollary 6.3).

Now we show, assuming that f(T ) − g(S) is reducible over Fq, that we
can take hi to be gi for i = 1, 2. Note: The argument that deg f = deg h1

modifies to show deg f = deg g1 under this reducibility assumption. Now,
by Lemma 6.1,

Fq(y1) ∩ Ωf = Fq(g2(y1)) and Fq(y1) ∩ (FqΩf ) = Fq(h2(y1)).

Since Fq(Fq(y1) ∩ Ωf ) ⊆ Fq(y1) ∩ (FqΩf ),

Fq(g2(y1)) ⊆ Fq(h2(y1)).

In particular, g2 = h′◦h2 for some polynomial h′ ∈ Fq. Since deg h1 = deg g1,
deg h′ = 1. So, after adjusting h1 and h2 by a linear map, hi = gi, for i = 1, 2.
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We divide the remaining proof into three cases, using Proposition 7.40.
Case 1: Gf acts doubly transitively on the zeros {xi} and deg f > 2. By
Proposition 7.26 and Corollary 7.30, f(T ) − h1(S) has exactly two irre-
ducible factors over Fq, and these factors have nonequal degrees. Substitute
h2(S) for S in the factorization of f(T ) − h1(S) to get the factorization
of f(T )− g(S) (Lemma 6.2). Thus the two irreducible factors of f(T )−g(S)
have nonequal T -degrees, so the action of Gal(Fq/Fq) fixes them. Conclude
that the factorization of f(T ) − g(S) is defined over Fq. As above, this
means we can take h1 = g1. The result follows from Proposition 7.26 and
Corollary 7.27.

Case 2: f is linearly related over Fq to a Chebyshev polynomial and n =
deg f is an odd prime. Let G = Gf = Gh1 . By Lemma 7.36, G is isomorphic
to a dihedral group of order 2n. Note: G acts transitively on both {xi}
and on the zeros {uj} of h1(T ) − z. Clearly, any two transitive actions
of such a dihedral group on sets of order n are equivalent as permutation
representations. Thus G(x1) is G(uj) for some j. Use the description of
factorization of Remark 4.9 applied to G(uj) = G(x1) acting on {xi} to
conclude that the factorization of f(T )−h1(S) has exactly one linear factor Φ
and (n−1)/2 irreducible quadratic factors in Fq[S, T ].

Recover the factorization of f(T )−g(S) by substituting h2(S) for S in the
factorization of f(T )− h1(S) (Lemma 6.2). Since Φ(T, h2(S)) is the unique
irreducible factor of f(T )− g(S) of T -degree one, the action of Gal(Fq/Fq)
fixes it. So f(T )− g(S) is reducible in Fq[S, T ]. As discussed above, we can
conclude that h1 = g1. Also, Φ, the only linear factor of f(T )− g1(S), must
be defined over Fq. The existence of Φ implies f and g1 are linearly related
on the inside over Fq. Thus (f, g1) forms a trivial SDP.

Case 3: f is linearly related over Fq to a cyclic polynomial. (This automati-
cally includes the case deg f = 2.) Let G = Gf = Gh1 . So G is isomorphic to
a cyclic group of order n acting transitively on both {xi} and on zeros {uj}
of h1(T )− z. Clearly, any two transitive actions of G on sets of order n are
equivalent as permutation representations. Thus G(x1) is G(uj) for some j.
Use Remark 4.9 to conclude that f(T )− h1(S) factors over Fq as the prod-
uct of n linear factors. This implies that h1 = f ◦ l0 for some l0 ∈ Fq[T ] of
degree 1. So g = f ◦ h, where h = l0 ◦ h2.

Using [FGS93, Lemma 4.1] and that deg f is prime to p, we get a linear
polynomial l′ ∈ Fq[T ] such that f ′ = f ◦ l′ and h′ = (l′)−1 ◦ h are in Fq[T ],
giving a decomposition g = f ′◦h′ over Fq. By Proposition 7.44, f ′ = l◦f ◦l′′
for some linear l, l′′ ∈ Fq[T ]. By replacing h′ with l′′ ◦ h′, we obtain the
decomposition g = l ◦ f ◦ h′. �
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Remark 8.2. If we replace the hypotheses (f, g) is a DP and f is not excep-
tional with the alternate hypothesis f(T )− g(S) reducible over Fq (keeping
all the other hypotheses as they are) we get a variant of Theorem 8.1.

Remark 8.3. This paper has adopted the convention that polynomials
have nonzero derivatives. Theorems 8.1 and 8.4 hold for g with zero de-
rivative (with a suitable definition of induced decomposition).

Theorem 8.4. Let f, g ∈ Fq[T ] be two polynomials with Vg(Fqt) ⊆ Vf (Fqt)
for all t. Suppose f is indecomposable over Fq and has degree prime to the
characteristic of Fq. Then there are g1, g2 ∈ Fq[T ] with g = g1 ◦ g2 and
(f, g1) is an SDP with multiplicity.

Proof. Consider Remark 8.2 together with Proposition 4.16. The case where
f is not linearly related to a cyclic polynomial follows immediately.

In the cyclic case, consider the decomposition g = l◦f ◦h′ of Theorem 8.1,
where f and f ′ = l ◦ f are linearly related on the inside over Fq. We claim
f and f ′ are linearly related on the inside over Fq, and so we can take
g1 = f . Suppose otherwise and use Corollary 7.45 to reduce to the case
f = Tn and f ′ = aTn, where a ∈ Fq is not an n-th power. Choose t so that
qt > deg h′ and a is not an n-th power in Fqt . Then Vf (Fqt) contains only
n-th powers, but if c ∈ Fqt is not a zero of h′ then g(c) is not an n-th power,
a contradiction. �

Remark 8.5. In the above theorems, we can often conclude that (f, g1) is
actually a trivial SDP. In other words, we can choose the decomposition
g = g1 ◦ g2 in such a way that g1 = f itself.

For example, in case 2 of the above proof we concluded that (f, g1) is
a trivial SDP if n = deg f is an odd prime, and f is linearly related to a
Chebyshev polynomial. In this case Gf is dihedral. In fact, from Proposi-
tion 7.44, having (f, g1) a nontrivial SDP requires Gf to have two nonequiva-
lent permutation representations on n elements whose associated characters
are equal. This excludes most Gf .

Part of the classification of finite simple groups includes the classifica-
tion of doubly transitive representations [CKS76]. This applies to classify
groups G with two nonequivalent faithful permutation representations act-
ing on a set with n elements such that:

(i) The characters of the two actions are equal.
(ii) The actions are doubly transitive.
(iii) Some element of G acts as an n-cycle under the two actions.

The conclusion is that

G = PSL2(F11) and n = 11, or

PSLk(Fs) ⊆ G ⊆ PΓLk(Fs) and n = (sk − 1)/(s− 1) for some k ≥ 3.
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[Fri73] conjectured this; [Fri99, Thm. 2.7 and §9] has complete details,
including historical information. The field Fs appearing in the above list is
called the characteristic field of the Chevalley group G.

This result allows us to strengthen the above theorems: if G = Gf and
n are not of the above form, then the conclusion (f, g1) is an SDP, can be
replaced by the stronger conclusion g = f ◦ h for some h ∈ Fq[T ].

Not all of the above groups are expected to occur as geometric mon-
odromy groups of polynomials for a given Fq. Guralnick has conjectured
the following: the finite simple groups appearing as composition factors of
geometric monodromy groups Gf as f varies over all polynomials, or even
all rational functions, are, with finitely many exceptions (depending on the
characteristic), the cyclic groups, the alternating groups, and the Cheval-
ley groups with characteristic field containing Fp. Thus, we can expect
among f ∈ Fq[T ] with Fq of fixed characteristic p, that the fields Fs ap-
pearing as Gf as in the above classification should, with a finite number of
exceptions depending on p, also be of characteristic p.

By way of contrast, in the case where Fq and Fs have the same character-
istic, examples abound. [Fri99, Thm. 5.2] (dependent on [Abh97]) states
that, for any finite field Fq, any s a power of the characteristic of Fq, and
any k ≥ 3, there is a nontrivial SDP (f, g) with χf = χg whose geometric
monodromy group is Gf = Gg = PSLk(Fs).
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[Frö67] A. Frölich, Local Fields, Algebraic Number Theory (ed. J. W. S. Cassels, A.
Fröhlich), Academic Press, London, 1967, 1–41, MR 0236145 (38 #4443).

[GW97] R. Guralnick and D. Wan, Bounds for fixed point free elements in a transitive
group and applications to curves over finite fields, Israel J. Math., 101 (1997),
255–287, MR 1484879 (98j:12002), Zbl 0910.11053.

[Mül97] P. Müller, A Weil-bound free proof of Schur’s conjecture, Finite Fields Appl.,
3(1) (1997), 25–32, MR 1429041 (98d:11143), Zbl 0904.11040.

[Mül98] P. Müller, Kronecker conjugacy of polynomials, Trans. Amer. Math. Soc., 350(5)
(1998), 1823–1850, MR 1458331 (98h:11032), Zbl 0894.11006.

[Ser79] J.-P. Serre, Local Fields, Graduate Texts in Mathematics, vol. 67, Springer-
Verlag, 1979, MR 0554237 (82e:12016), Zbl 0423.12016.

[Turn95] G. Turnwald, On Schur’s conjecture, J. Austral. Math. Soc. Ser. A, 58(3) (1995),
312–357, MR 1329867 (96a:11135), Zbl 0834.11052.

[vdW35] B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutations-
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