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Let X be an irreducible Hermitian symmetric space of non-
compact type and rank r. Let p ∈ X and let K be the isotropy
group of p in the group of biholomorphic transformations. Let
S denote the symmetric algebra in the holomorphic tangent
space to X at p. Then S is multiplicity free as a representa-
tion of K and the irreducible constituents are parametrized
by r-tuples, (m1, . . . , mr) with m1 ≥ · · · ≥ mr ≥ 0. That is,
the same parameters as the irreducible polynomial represen-
tations of GL(r). Let S[m1, . . . , mr] be the corresponding iso-
typic component. In this article we show that the product in
S, S[m1, . . . , mr]S[k, 0, 0, . . . , 0] is a direct sum of constituents
following precisely the classical Pieri rule.

1. Introduction

In the classical theory of representations of GL(r, C) the irreducible poly-
nomial representations are parametized by r-tuples (m1, . . . ,mr) of integers
with m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. Denoting the corresponding irreducible
representation by Fm1,...,mn then the Pieri rule [F] or [M] says that the
tensor product Fm1,...,mr⊗F k,0,...,0 is a direct sum of irreducible representa-
tions with parameters (m1 + a1, . . . ,mr + ar) with a1 + · · · + ar = k and
m1 + a1 ≥ m1 ≥ m2 + a2 ≥ m2 ≥ · · · ≥ mr + ar ≥ mr, each occuring
with multiplicity one. In this article we will show that there is a completely
analogous formula for every irreducible Hermitian symmetric space. We will
now describe the result.

Let X be an irreducible Hermitian symmetric space of noncompact type.
This means that X is a complex manifold such that, G, the group of biholo-
momrphic transformations of X is simple, noncompact and acts transitively
and if K is the stability group of a point p ∈ X then K is a maximal
compact subgroup. Thus we may think of X = G/K. We note that the
general theory implies that Lie (K) has a one dimensional center, Z. We set
g = Lie (G)

⊗
C and k = Lie (K)

⊗
C ⊂ g. Then Z = RiH and adH has

eigenvalues 0, 1,−1 with eigenspace for 0 being k and the eigenspace for 1
identified with the holomorphic tangent space. We will use the standard no-
tation p± = {X ∈ g|[H,X] = ±X}. Thus the holomorphic tangent space is
identified with p+. Using the Killing form of g we can identify p− with (p+)∗.
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Thus the ring of polynomials on the holomorphic tangent space is identified
with S(p−). It is a theorem of Schmid [S] that as a K-representation S(p−)
is multiplicity free and if r is the rank of X (the dimension of a maximal
abelian subalgebra of g contained in k⊥ relative to the Killing form) then
the irreducible constituents are labeled (in a natural manner, see the next
section for details) by r-tuples as in the classical case. We will denote the
isotypic component corresponding to (m1, . . . ,mr) by S(p−)[m1, . . . ,mr].
Then our main result asserts that relative to the multiplication in the alge-
bra S(p−) we have S(p−)[m1, . . . ,mr] ·S(p−)[k, 0, . . . , 0] is the direct sum of
the S(p−)[m1 + a1, . . . ,mr + ar] with the a1, . . . , ar following the classical
Pieri rule above. In the last section of this article we show how one can use
the classical theory of Littlewood–Richardson combined with the Schmid
result to determine that the constituents that can appear in the product
are contained in the set described by the Pieri rule in the cases when G
is locally isomorphic with SU(p, q), SO∗(2n) and Sp(n, R). However, even
in these cases the fact that the constituents actually occur is not a clear
implication of the classical theory (since the classical theory involves tensor
products and not multiplication in a symmetric algebra).

This paper is an extension of some of the results in [EHW] although it
is independent of that article.

2. K-decomposition of products

We continue with the Hermitian symmetric setting and the notation of the
introduction. Fix a Cartan subalgebra h of k and a system of positive roots
Φ+ such that if α ∈ Φ+ then α(H) ≥ 0. We set Φ+

n = {α ∈ Φ | α(H) = 1}.
Let Φ+

c = Φ+ − Φ+
n . Then Φ+

c is a system of positive roots for k on h. Let
γ1 < γ2 < · · · < γr denote Harish–Chandra’s strongly orthogonal roots [HS]
which are defined as follows: Let γ1 denote the unique minimal element of
Φ+

n . Inductively define γi, for 1 < i ≤ r, to be the unique minimal element
in {δ ∈ Φ+

n |(δ, γj) = 0, 1 ≤ j < i}. Schmid [S] has shown that as a K-module
under the restriction of the adjoint representation S(p−) is multiplicity free
and the irreducible constituents are exactly the K-modules with highest
weights of the form

−(n1γ1 + · · ·+ nrγr), n1 ≥ n2 ≥ · · · ≥ nr ≥ 0, ni ∈ Z.

We write S(p−)[n1, . . . , nr] for the corresponding isotypic component.
Note that if d =

∑
ni then S(p−)[n1, . . . , nr] ⊂ Sd(p−), the homogeneous

elements of degree d. For each positive integer k and multi-index n =
(n1, n2, · · · , nr) with n1 ≥ n2 ≥ · · · ≥ nr ≥ 0, define a set of multi-indices:
Ik(n) = {m|m1 ≥ n1 ≥ m2 ≥ n2 ≥ · · · ≥ nr−1 ≥ mr ≥ nr ≥ 0 and

∑
mi =∑

ni + k}.
The main result of this article is:
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Theorem 1. Let n1 ≥ n2 ≥ · · · ≥ nr ≥ 0, ni ∈ Z. Then

S(p−)[n1, . . . , nr] S(p−)[k, 0, . . . , 0] =
⊕

m∈Ik(n)

S(p−)[m],(2.1)

with multiplication in S(p−).

We begin with some preliminary definitions and results which will be the
basis for a proof by induction on the rank of g and the integer k. First we
recall four well-known results on the strongly orthogonal roots [Mo] and
[W1]. Let B denote the Killing form of g. Then B induces a perfect pairing
between p+ and p−. Thus we can look upon the symmetric algebra S(p−)
as polynomials on p+ and S(p+) as differential operators with constant co-
efficients on p+. Let (., .) denote the dual form to B|h.

(2.2) (γi, γi) = (γj , γj) for all i, j.

(2.3) If α ∈ Φ+ then (α, α) ≤ (γ1, γ1).

Let h− denote the linear span of the coroots, γ∨i , of the γi. Then dim h− = r
and the γ∨i form an orthogonal basis of h−.

(2.4) If α ∈ Φ+
n and α 6= γi for any i, then α|h− is either of the form

1
2(γi + γj) with i < j or 1

2γi.

(2.5) If α ∈ Φ+
c then α|h− is either of the form −1

2(γi − γj) with i ≤ j or
−1

2γi.
Let n+

c denote the sum of the root spaces for the elements of Φ+
c . We

choose a nonzero element ui in S(p−)n+
c ∩ S(p−)[n1, . . . , nr] with nj = 1 for

j ≤ i and nj = 0 for j > i. Then one can easily see from Schmid’s result
that:

(2.6) S(p−)n+
c is the polynomial ring on the algebraically independent el-

ements u1, . . . , ur.

We will now analyze these covariants in further detail. For each j, 1 ≤
j ≤ r, let Φ+

0,j denote the set of elements α of Φ+ such that α|h− is of the
form 1

2(γp±γq) with q ≤ p ≤ j. Then Φ0,j = Φ+
0,j∪−Φ+

0,j is a subrootsystem
of Φ. Let g0,j denote the subalgebra of g generated by the root spaces for
the roots in Φ0,j . If uj is the sum of all ideals of g0,j contained in g0,j ∩ k
then (g0,j/uj , (k∩g0,j)/uj) is also an irreducible symmetric pair of Hermitian
type [W1]. Set p±0,j = g0,j ∩ p±.

Next we introduce a flag of parabolic subalgebras needed for an induction
argument. For any root α write α|h− = 1

2

∑
1≤i≤r aiγi. Then we call α an

even (odd) root if the sum
∑

1≤i≤r ai is even (odd). We say α has level
j, 1 ≤ j ≤ r, if j is the maximal integer with aj 6= 0. Otherwise we say α
has level 0. Set mj = h ⊕

∑
gα with the sum taken over all even roots of

level ≤ j. Set nj = ne,j ⊕ nodd, where ne,j =
∑

gα with the sum taken over
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all even positive roots of level greater than j and nodd =
∑

gα with the sum
taken over all positive odd roots. Finally set qj = mj ⊕ nj and let b denote
the Borel subalgebra with weight spaces corresponding to Φ+.

Lemma 1. For 1 ≤ j ≤ r, qj = mj ⊕ nj is a parabolic subalgebra of g
containing b with Levi component mj and nilradical nj. Moreover mj =
h + go,j.

Proof. By parity mj is a subalgebra of g. From (2.4) and (2.5), ne,j is
a subalgebra and infact an ideal in mj ⊕ ne,j . Next we chech that nodd

is abelian. Split nodd into a direct sum of root spaces for compact and
noncompact roots nodd = nc,odd⊕nn,odd. Since p+is abelian, nn,odd is as well.
Suppose α is a positive, odd noncompact root and β is positive, odd and
compact. But then α + β if a root must be positive, even, noncompact and
with (α + β)|h− = 1

2(γi − γl). This violates (2.5) and so [nn,odd, nc,odd] = 0.
Similarly assume α and β are both positive, odd and compact. Then if a
root α + β is positive, even, compact and with (α + β)|h− = 1

2(−γi − γl).
This violates (2.5) and so [nc,odd, nc,odd] = 0. Combining these we conclude
that nodd is abelian.

Next we show that nodd is an ideal in mr ⊕ nodd. Suppose α is a positive,
even root and β is positive odd. Then clearly if a root, α + β is positive
and odd. What remains to show is that if −α + β is a root, it also must
be positive odd. We proceed in cases. First assume α is noncompact. Then
(−α+β)|h− = 1

2(−γi−γl)+β|h. So if this is a root we must have cancellation
and thus β must be noncompact. But then −α + β is compact and so the
form of (−α+β)|h− implies −α+β is positive. This proves our claim when α
is noncompact. Now suppose α is compact, even and positive. We consider
two cases for β. First assume β is positive, odd and compact. If −α+β is a
root then (−α+β)|h− = 1

2(γi−γl)+β|h = 1
2(−γl). Since −α+β is compact

this identity implies −α + β is positive odd proving the claim in this case.
Finally suppose β is positive, odd and noncompact. Then if −α + β is a
root, (−α + β)|h− = 1

2(γi − γl) + β|h = 1
2(γi). Since −α + β is noncompact

this identity implies −α + β is positive odd proving the claim in this last
case.

To check that nj is an ideal in qj we note:

[qj , nj ] ⊂ [mj ⊕ ne,j , ne,j ]⊕ nodd ⊂ ne,j ⊕ nodd = nj .

This proves nj is an ideal in qj . It follows that the simple roots of (mj , h)
must also be simple for (g, h). This completes the proof of the lemma.

As an immediate corollary which also follows directly from (2.4) we have:

Suppose βi ∈ Φ+
n for 1 ≤ i ≤ j and

∑
1≤i≤j

βi =
∑

1≤i≤j

γi. Then βi ∈ Φ0,j .

(2.7)
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(2.8) Fix j and let E and F be irreducible mj-modules with highest weights
ξ and ν. Let N(E) and N(F ) denote the g-modules obtained by inducing
up from qj to g; i.e., N(E) = U(g)⊗U(qj) E and N(F ) = U(g)⊗U(qj) F . For
µ ∈ h∗ let a subscript µ denote the weight space for weight µ. The following
weight space identity is an easy consequence of Lemma 1:

(2.9) Suppose µ = ξ + ν +
∑

1≤i≤j aiγi with ai ∈ Z. Then we have an
identity of weight spaces:

(N(E)⊗N(F ))µ = (E ⊗ F )µ.

From [W1] we have:

Lemma 2. For 1 ≤ j ≤ r, uj ∈ S(p−0,j).
Moreover, for any multi-index m with mj+1 = · · · = mr = 0, then:

(S(p−[m]))nc = (S(p−0,j [m]))nc∩g0,j .

By Lemma 2 the highest weight vectors although not the full k-modules
are contained in S(p−0,r). As a first reduction we claim it is sufficient to
prove Theorem 1 when g = g0,r. To this end set E = S(p−0,j)[n1, . . . , nj ] and
F = S(p−0,j)[k, 0, . . . , 0]. If µ is a highest weight of the form µ =

∑
1≤i≤j aiγi

then by (2.9), we obtain:

(S(p−)[n1, . . . , nj , 0, . . . , 0] S(p−)[k, 0, . . . , 0])µ(2.10)

= (S(p−0,j)[n1, . . . , nj ] S(p−0,j)[k, 0, . . . , 0])µ,

where on the right the bracket designates the k ∩ g0,j isotypic subspaces.
From this identity (2.10) with j = r and Lemma 2 we conclude that

Theorem 1 holds for g if and only if it holds for g0,r.
From this point forward we assume g = g0,r. This reduction has several

simplifying features which we now summarize. By (2.5) for any compact root
δ, δ|h− = 1

2(γi−γl). This implies that the k-module S(p−)[n, n, . . . , n] is one
dimensional. If δ is positive and compact then for some i < j, δ|h− + γr =
1
2(−γi + γl) + 2γr which contradicts (2.5). This proves γr is a maximal root
with respect to k. This same identity shows that the weight spaces gγr and
g−γr are one dimensional k ∩ g0,r−1-modules. Since p+ is abelian, γr is the
maximal weight in Φ+.

From the one dimensionality of S(p−)[n, n, . . . , n], we obtain:

S(p−)[n1, . . . , nr] = S(p−)[n1 − nr, . . . , nr−1 − nr, 0]unr
r .(2.11)

Lemma 3. Suppose Theorem 1 holds for g0,r−1, nr = 0 and m is a multi-
index not in Ik(n) whose K-type occurs in the product in the left-hand side
of Equation (2.1). Then mr ≥ 1.

Proof. Let E = S(p−0,r−1)[n1, . . . , nr−1, 0] and F = S(p−0,r−1)[k, 0, . . . , 0] and
let v be a highest weight vector of the K-type indexed by m. By hypothesis
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the k ∩ g0,r−1-decomposition of E · F shows that v is not in E · F . So by
(2.10) with j = r − 1, we have a contradiction unless mr ≥ 1.

We denote by x 7→ x the conjugation of g with respect to Lie(G). Then
p− = p+. If x ∈ p+ then we denote by ∂(x) the derivation of S(p−) defined
by ∂(x)y = B(x, y) for y ∈ p−. We will also denote the extension of ∂
to S(p+) by ∂. In addition we will use the notation u 7→ u(0) for the
augmentation map of S(p−) to C given as the extension to a homomorphism
of y 7→ 0 for y ∈ p−. We define for u, v ∈ S(p−), 〈u, v〉 = (∂(v)u)(0). For
any root β let Xβ denote an element in the root space gβ normalized so that
Xβ = X−β.

The following observation is well-known and easily checked:

(2.12) The Hermitian form 〈., .〉 is positive definite and K-invariant. Fur-
thermore, if u, v, w ∈ S(p−) then〈uv, w〉 = 〈v, ∂(u)w〉 . If n1 ≥ · · · ≥ nr ≥ 0
then we note that un1−n2

1 un2−n3
2 · · ·unr−1−nr

r−1 unr
r is a basis of the highest

weight space of S(p−)[n1, . . . , nr]. Let D = ∂(ur). Then

D : S(p−)[n1, . . . , nr] → S(p−)[n1 − 1, . . . , nr − 1].(2.13)

Here if nr < 0 then we write S(p−)[n1, . . . , nr] = {0}.
The maps D and multiplication by ur are semi-invariant maps and the

product urD is a K-invariant map which plays an important role below.
The eigenvalues of this operator are given in:

Lemma 4. For each multi-index n the operator urD is diagonalizable and
there are nonzero constants c and C2 such that urD restricted to S(p−)[n]
equals

C2

r∏
i=1

(
r − i

2
c + ni

)
· I.(2.14)

Proof. This is the first case of Theorem 3.3 in [W2].

Remark 1. The referee has noted that Lemma 4 is employed only to show
that (2.13) is a bijective map for all nr ≥ 1. An alternative argument can
be given since D is the adjoint to multiplication by ur.

Lemma 5. Suppose n is a multi-index with nr = 0, set

v = un1−n2
1 un2−n3

2 · · ·unr−1

r−1 .

Then

D(vXk
−γr

) = C1u
n1−n2
1 un2−n3

2 · · ·unr−2−nr−1

r−2 u
nr−1−1
r−1 Xk−1

−γr
,(2.15)

with C1 = 0 if and only if nr−1 = 0.
Moreover D is a K-intertwining operator that carries a cyclic vector for

the product S(p−)[n1, . . . , nr−1, 0]S(p−)[k, 0, . . . , 0] to a cyclic vector for the
product S(p−)[n1 − 1, . . . , nr−1 − 1, 0] S(p−)[k − 1, 0, . . . , 0].
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Proof. The identity (2.15) is a consequence of calculations found in [W1]
(see the proofs of Lemmas 5.7 and 5.8). Since the identity is so essential in
our proof of Theorem 1 we repeat the argument here.

Expanding with respect to noncompact root vectors we choose constants
aβ1,...,βr with

ur =
∑

aβ1,...,βrX−β1 · · ·X−βr and(2.16)

ur = uX−γr + w where w =
∑

aβ1,...,βrX−β1 · · ·X−βr ,

and the first sum is over all β1 ≤ · · · ≤ βr with
∑

1≤i≤r βi =
∑

1≤i≤r γi

and the second sum is over the subset where βi 6= γr for all i. The identity
(2.7) implies that u ∈ S(p−0,r−1). Moreover from our reduction g = g0,r we
know u is a semi-invariant for k ∩ g0,r−1. This implies that u is a scalar
multiple of ur−1. Computing the action of D = ∂ur on vXk

−γr
, we obtain:

D(vXk
−γr

) = k∂u(v)Xk−1
−γr

. Since u is a scalar multiple of the k∩ g0,r−1 semi-
invariant ur−1 ∈ S(p−0,r−1), we may apply (2.13) with r replaced with r − 1
to obtain the identity (2.15).

The highest weight space times the lowest weight space is cyclic for the
tensor product of any two irreducible finite dimensional representations. So
the second assertion follows from the identity.

Proof of Theorem 1. We will prove the theorem by induction on r and then
by induction on k. If r = 1 then by an earlier reduction g = g0,1

∼= sl(2)
and the result is trivial in this case. Now assume the theorem for r− 1 ≥ 1.
If k = 0 there is nothing to prove so assume the theorem for k − 1 ≥ 0. We
now prove the result for k.

As above we may assume g = g0,r. By identity (2.11) we may assume
nr = 0. If nr−1 = 0 as well we restrict our attention to g0,r−1. By the
induction hypothesis the theorem holds for g0,r−1 so we obtain by Lemma 2
the inclusion

S(p−)[n1, . . . , nr] S(p−)[k, 0, . . . , 0] ⊃
⊕

m∈Ik(n)

S(p−)[m].

Now we prove equality here. Suppose not. Then by Lemma 3, there is an
index m /∈ Ik(n) with mr ≥ 1 whose K-type contains a vector z occurring
on the left side. By Lemma 4, z is an eigenvector for urD with nonzero
eigenvalue. However by Lemma 5 and especially the cyclicity of vXk

−γr
, D

acts by zero on the left side of (2.1) in Theorem 1, which is a contradiction.
This proves the case nr−1 = nr = 0.

Now assume nr−1 > 0, nr = 0. Set n′ = (n1 − 1, n2 − 1, · · · , nr−2 −
1, nr−1 − 1, 0). By Lemma 5 we obtain:

D(S(p−)[n]S(p−)[k, 0, . . . , 0]) = S(p−)[n′]S(p−)[k − 1, 0, . . . , 0].(2.17)
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Also by the induction hypothesis for k,

S(p−)[n′]S(p−)[k − 1, 0, . . . , 0] ∼=
∑

m∈Ik−1(n′)

S(p−)[m].(2.18)

Now combining these identities and multiplying by ur, we conclude:

S(p−)[n] S(p−)[k, 0, . . . , 0] ⊃ urD(S(p−)[n]S(p−)[k, 0, . . . , 0])(2.19)

=
⊕

m∈Ik(n),mr≥1

S(p−)[m].

Since nr = 0 we can restrict to g0,r−1. From Lemma 2 we have:

S(p−)[n] S(p−)[k, 0, . . . , 0] ⊃
⊕

m∈Ik(n),mr=0

S(p−)[m].(2.20)

Combining these two inclusions we get:

S(p−)[n] S(p−)[k, 0, . . . , 0] ⊃
⊕

m∈Ik(n)

S(p−)[m].(2.21)

We now prove equality. Suppose not and choose m with the correspond-
ing K-type containing a vector z occurring on the left but not on the right
in (2.1) in Theorem 1. Applying Lemma 3 we find mr ≥ 1. This inequal-
ity implies that urDz is a nonzero multiple of z. So z is contained in the
K-representation generated by D(vXk

−γr
). By (2.19) m ∈ Ik(n), a contra-

diction. This completes the proof of the theorem.

3. Connections with the classical Pieri rule

For the classical cases of Sp(n, R), SO∗(2n) and U(p, q), the decomposition
of products given by Theorem 1 is related to the Pieri rule for Gl(n) for
the first and third cases and to the Littlewood–Richardson rule for Gl(n)
in the case of SO∗(2n). We handle each case separately and keep in place
the earlier notation. For these classical cases we use the standard Euclidean
coordinates ei as in Bourbaki.

Case 1, Sp(n, R). Here k ∼= u(n) and for 1 ≤ i ≤ n, γi = 2en+1−i. Set
E = S(p−)[m1, . . . ,mn] and F = S(p−)[k, 0, . . . , 0]. Let a ∗ denote the dual
representation. Then E∗ and F ∗ have highest weights (2m1, . . . , 2mn) and
(2k, 0, 0, . . . , 0) respectively. Then applying the Pieri rule, we obtain:

E∗ ⊗ F ∗ ∼=
∑

Eb,

where the sum is over all n-tuples b = (b1, b2, · · · , bn) with b1 ≥ 2m1 ≥
b2 ≥ 2m2 ≥ · · · ≥ bn ≥ 2mn and

∑
bi − 2mi = 2k. From Schmid’s result

combined with this identity we obtain the inclusion in S(p−):

E · F ⊂
∑

E∗
b ,
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where the sum is over all n-tuples b = (b1, b2, . . . , bn) with even entries,
b1 ≥ 2m1 ≥ b2 ≥ 2m2 ≥ · · · ≥ bn ≥ 2mn and

∑
bi − 2mi = 2k. Applying

Theorem 1 in this setting we conclude that the inclusion is an equality. So
the multiplicative product is as large as it could be.

Case 2, SO∗(2n). Here k ∼= u(n) and for 1 ≤ i ≤ r = [n2 ], γi = en+1−2i +
en+2−2i. Set E = S(p−)[m1,m2, . . . ,mr] and F = S(p−)[k, 0, . . . , 0]. Then
E∗ and F ∗ have highest weights (m1,m1,m2,m2, . . . ) and (k, k, 0, . . . , 0)
respectively. The Littlewood–Richardson rule [F] or [M] gives the decom-
position of E∗ ⊗ F ∗.

E∗ ⊗ F ∗ ∼=
∑

mbEb,

where the multiplicity of Eb, denoted mb equals the number of ways the
diagram m = (m1,m1,m2,m2, . . . ) can be expanded to the diagram b by a
strict (k, k, 0, · · · , 0)-expansion. Such an expansion is determined by aug-
menting the diagram m by adding k boxes each labeled with a 1 and then
adding k boxes each labeled with a 2 so that the following three conditions
hold:

(i) The labels in each row of are nondecreasing,
(ii) the labels in each column of are strictly increasing and
(iii) if we read the labels from top right to bottom left at every stage the

number 1 must have occured at least as many times as the number 2.

As an example, suppose m = (3, 3, 1, 1) and k = (2, 2, 0, 0). Then all the
multiplicities are one and the k-modules which occur are: (5, 5, 1, 1) (5, 4, 2, 1)
(5, 3, 3, 1) (4, 4, 2, 2) (4, 3, 3, 2) (3, 3, 3, 3).

From Schmid’s theorem, the k-modules in S(p−) have duals with highest
weights whose diagrams have columns of even length. Since m has columns
of even length, the rules (i), (ii), and (iii) imply that the only placements of
k1′s and k2′s which yield a diagram with columns of even length will have
the form b = (b1, b1, b2, b2, . . . ) with

∑
bi − mi = k and b1 ≥ m1 ≥ b2 ≥

m2 ≥ · · · ≥ br ≥ mr. So here the Littlewood–Richardson rule and Schmid’s
Theorem combine to give the inclusion:

E∗ · F ∗ ⊂
∑

Eb,

where the sum is over all b with b = (b1, b1, b2, b2, . . . ),
∑

bi − mi = k and
b1 ≥ m1 ≥ b2 ≥ m2 ≥ · · · ≥ br ≥ mr. Our Theorem 1 asserts that this
inclusion is equality.

Case 3, U(p, q). Set n = p + q and assume p ≤ q. Here k ∼= u(p) ⊕ u(q)
and for 1 ≤ i ≤ p, γi = ep+1−i − ep+i. Set E = S(p−)[m1,m2, . . . ,mp] and
F = S(p−)[k, 0, . . . , 0]. Since k is a product of ideals k = k(1)⊕ k(2) and every
irreducible k-module splits into a tensor product. We write E ∼= E(1)∗ ⊗
E(2), F ∼= F (1)∗ ⊗F (2) where the highest weights of E(1), E(2), F (1), F (2) are
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respectively:

m(1) = (m1,m2, . . . ,mp), m(2) = (m1,m2, . . . ,mp, 0, · · · , 0),

(k, 0, . . . , 0), (k, 0, . . . , 0).

Here the first and third are p-tuples and the second and forth are q-tuples.
Applying the Pieri rule for each factor we obtain:

(E(1) ⊗ E(2))⊗ (F (1) ⊗ F (2)) ∼=
∑

E
(1)
b ⊗ E(2)

c ,

where the sum is over all p-tuples b and all q-tuples c which satisfy the
conditions:∑

1≤i≤p

bi −mi = k, b1 ≥ m1 ≥ b2 ≥ m2 ≥ · · · ≥ bp ≥ mp, and

∑
1≤i≤q

ci −mi = k, c1 ≥ m1 ≥ c2 ≥ m2 ≥ · · · ≥ cp ≥ mp ≥ cp+1 ≥ 0,

with 0 = cp+2 = · · · = cq.
By Schmid’s Theorem the only summands which occur in S(p−) are those

E
(1)∗
b ⊗ E

(2)
c for which bi = ci, 1 ≤ i ≤ p and ci = 0, p + 1 ≤ i ≤ q. So

taking the product in S(p−) we obtain the inclusion:

(E(1)∗ ⊗ E(2)) · (F (1)∗ ⊗ F (2)) ⊂
∑

E
(1)∗
b ⊗ E(2)

c ,

where
∑

1≤i≤p bi − mi = k, b1 ≥ m1 ≥ b2 ≥ m2 ≥ · · · ≥ bp ≥ mp, bi =
ci, 1 ≤ i ≤ p and ci = 0, p + 1 ≤ i ≤ q. Finally as before Theorem 1 asserts
the inclusion is equality.
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