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THE MONGE–AMPÈRE EQUATION WITH
INFINITE BOUNDARY VALUE

Bo Guan and Huai-Yu Jian

Volume 216 No. 1 September 2004



PACIFIC JOURNAL OF MATHEMATICS
Vol. 216, No. 1, 2004
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This article concerns the Monge–Ampère equations with
infinite boundary value in convex domains in Euclidean space.
We were able to characterize the growth rate conditions, which
are nearly optimal, for the existence/nonexistence of solutions
to the problem.

1. Introduction

Let Ω be a domain in Rn and ψ a positive function defined on Ω×R×Rn. In
this paper we study the Dirichlet problem for the Monge–Ampère equation

detD2u = ψ(x, u,Du) > 0 in Ω,(1.1)

with the infinite boundary value condition

u = +∞ on ∂Ω.(1.2)

We will look for strictly convex solutions in C∞(Ω); it is necessary to assume
the underlying domain Ω to be convex for such solutions to exist.

This problem was first considered by Cheng and Yau ([5], [6]) for ψ(x, u) =
eKuf(x) in bounded convex domains and for ψ(u) = e2u in unbounded do-
mains. More recently, Matero [11] treated the case ψ = ψ(x, u) for bounded
strictly convex domains, generalizing a result of Keller [8] and Osserman [12]
for the Laplace operator; his results were further extended by Salani [13]
to some Hessian equations. (See also [9], where problem (1.1)–(1.2) was
studied for ψ(x, u) = euf(x) and ψ(x, u) = upf(x).) For the complex
Monge–Ampère equation with ψ(z, u) = eKuf(z) the corresponding problem
was also treated in [5] in connection with the problem of finding complete
Kähler–Einstein metrics on pseudoconvex domains. In this article we will
consider more general cases, including allowing domains that are unbounded
and not strictly convex when ψ = ψ(x, u). Our main results are stated as
follows:

Theorem 1.1. Let Ω be a bounded strictly convex domain. Suppose that
ψ ∈ C∞(Ω× R× Rn) satisfies ψ > 0,

M(z+)p ≤ ψ(x, z,p), ∀ (x, z,p) ∈ Ω× R× Rn,(1.3)
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where p > n, M > 0, z+ = max{z, 0}, and finally

ψ(x, z,p) ≤ Ψ(z)(1 + |p|n), ∀ (x, z,p) ∈ Ω× R× Rn,(1.4)

where Ψ is a smooth positive function and

sup
z≤0

e−εzΨ(z) < +∞(1.5)

for some ε > 0. Then there exists a strictly convex solution u ∈ C∞(Ω) to
(1.1)–(1.2). Moreover, there exist functions h, h ∈ C(R+) with h(r), h(r) →
∞ as r → 0, such that

h
(
d(x)

)
≤ u(x) ≤ h

(
d(x)

)
, ∀x ∈ Ω,(1.6)

where d is the distance function to ∂Ω.

When ψ does not depend on Du, Theorem 1.1 holds under weaker con-
ditions. In particular, Ω need not be bounded or strictly convex:

Theorem 1.2. Let Ω ⊂ Rn be a convex domain not containing a straight
line. Suppose ψ ∈ C∞(Ω × R) satisfies ψ > 0, as well as (1.3) for some
p > n and also

sup
x∈Ω, z≤0

e−εzψ(x, z) < +∞(1.7)

for some ε > 0. Then (1.1)–(1.2) has a strictly convex solution u ∈ C∞(Ω)
that satisfies (1.6). In addition, when Ω is bounded, assumption (1.7) can
be weakened to allow ε = 0.

Remark 1.3. Suppose ψz ≥ 0 and there exists a convex supersolution u ∈
C2(Ω) satisfying

detD2u ≤ ψ(x, u,Du) in Ω,(1.8)
u = ∞ on ∂Ω.

Theorems 1.1 and 1.2 then remain valid, with u(x) in place of the function
h(d(x)) in (1.6), without assumption (1.3).

The following nonexistence results complement Theorems 1.1 and 1.2 and
indicate that the growth conditions in Theorems 1.1 and 1.2 are nearly
optimal.

Theorem 1.4. Let Ω be a bounded convex domain in Rn. If

0 ≤ ψ(x, z,p) ≤M
(
1 + (z+)p

)(
1 + |p|q

)
, ∀ (x, z,p) ∈ Ω× R× Rn,(1.9)

for some p, q ≥ 0, p+ q ≤ n, there exists no convex solution to (1.1)–(1.2).

Theorem 1.5. Let Ω be a convex domain in Rn. If

ψ(x, z,p) ≥M(1 + |p|n)α, ∀ (x, z,p) ∈ Ω× R× Rn,(1.10)

where α > 1 and M > 0, and Ω contains a ball of radius a >
(
M(α−1)

)−1/n,
there exists no convex solution to (1.1)–(1.2).
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Note that Ω is not assumed to be bounded in Theorem 1.5.

Theorem 1.6. Assume Ω is an unbounded convex domain that contains
a straight line. If ψ > 0 satisfies (1.3), where p > n, there is no convex
solution to (1.1)–(1.2) in C2(Ω).

The article is organized as follows: we start with some comparison prin-
ciple and uniqueness results in Section 2. In Section 3 we construct some
radially symmetric functions that will be used as barriers in proving our
theorems. Section 3 also contains the proofs of Theorems 1.4–1.6, while
Theorems 1.1 and 1.2 are proved in Sections 4 and 5.

2. The comparison principle and uniqueness

Throughout this section Ω ⊂ Rn is assumed to be a bounded convex domain
and u, v ∈ C2(Ω) are convex functions satisfying

detD2u ≥ ψ(x, u,Du) and detD2v ≤ φ(x, v,Dv) in Ω,(2.1)

where ψ, φ ∈ C2(Ω× R× Rn) and

ψ(x, z,p) ≥ φ(x, z,p) ≥ 0, ∀(x, z,p) ∈ Ω× R× Rn.(2.2)

For later reference we recall the following comparison principle, which will
be used repeatedly:

Lemma 2.1. Assume u, v ∈ C(Ω) and u ≤ v on ∂Ω. If either ψz(x, z,p) >
0 or φz(x, z,p) > 0 for any (x, z,p) ∈ Ω× R× Rn, then u ≤ v in Ω.

Proof. Assume that

u(y)− v(y) = max
Ω

(u− v) > 0

for some y ∈ Ω. Then detD2u(y) ≤ detD2v(y), as the Hessian D2(v− u) is
positive semidefinite at y. On the other hand, we have

detD2v(y) ≤ φ
(
y, v(y), Dv(y)

)
< ψ

(
y, u(y), Du(y)

)
≤ detD2u(y),

since u(y)> v(y) and Du(y) =Dv(y). This contradiction shows u≤ v in Ω.
�

We have the following comparison principle and uniqueness for solutions
of problem (1.1)–(1.2):

Theorem 2.2. Assume u = +∞, v = +∞ on ∂Ω and v is strictly convex
in Ω. Suppose Ω contains the origin in Rn and ψ satisfies

x ·Dxψ(x, z,p) ≤ 0, p ·Dpψ(x, z,p) ≥ 0, ∀ (x, z,p) ∈ Ω× R× Rn.
(2.3)

If, in addition, either

ψ(x, λz+,p) ≥ λpψ(x, z,p), ∀ λ ≥ 1, (x, z,p) ∈ Ω× R× Rn,(2.4)
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where p > n, or there exists ε > 0 such that

ψz(x, z,p) ≥ εψ(x, z,p), ∀(x, z,p) ∈ Ω× R× Rn,(2.5)

then u ≤ v in Ω. In particular, problem (1.1)–(1.2) admits at most one
strictly convex solution in C2(Ω).

Remark 2.3. Assumption (2.4) implies that ψ = 0 where z ≤ 0. Thus
any strictly convex solution of (1.1)–(1.2) must be positive when (2.4) is
satisfied. Note also that ψz > 0 wherever ψ > 0 if either (2.4) or (2.5) holds.

Remark 2.4. If ψz(x, z,p) ≥ 0, then (z+)pψ(x, z,p) satisfies (2.4) and
eεzψ(x, z,p) satisfies (2.5).

Proof of Theorem 2.2. Let u ∈ C2(Ω) be a convex solution of (1.1)–(1.2).
Consider for 0 < λ ≤ 1,

uλ(x) := λαu(λx)− a, x ∈ Ωλ,

where Ωλ = {x ∈ Rn : λx ∈ Ω} and{
a = 0, α = 2n/(p− n), if (2.4) holds,
α = 0, a = ε−1λ−(2+α)n, if (2.5) holds.

We calculate

detD2uλ(x) = λ(2+α)n detD2u(λx)(2.6)

= λ(2+α)nψ
(
λx, u(λx), Du(λx)

)
= λ(2+α)nψ

(
λx, λ−α(uλ(x) + a), λ−(1+α)Duλ(x)

)
≥ λ(2+α)nψ

(
x, λ−α(uλ(x) + a), Duλ(x)

)
≥ ψ

(
x, uλ(x), Duλ(x)

)
by assumption (2.3), when either (2.4) or (2.5) holds.

Now note that Ω ⊂ Ωλ and v − uλ = +∞ on ∂Ω for all 0 < λ < 1. We
claim that v ≥ uλ on Ω for all 0 < λ < 1. Indeed, assume that

uλ(y)− v(y) = max
Ω

(uλ − v) > 0

for some y ∈ Ω. Then

ψ
(
y, uλ(y), Duλ(y)

)
≥ ψ

(
y, v(y), Dv(y)

)
≥ φ

(
y, v(y), Dv(y)

)
≥ detD2v > 0.

It follows that ψz

(
y, uλ(y), Duλ

)
(y) > 0; see Remark 2.3. Consequently, we

obtain a contradiction as in the proof of Lemma 2.1. This proves our claim,
that is, v ≥ uλ on Ω for all 0 < λ < 1. Letting λ→ 1 we obtain v ≥ u. �
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3. Barriers

The main purpose of this section is to construct some radially symmetric
strictly convex functions that will be used as barriers in proving our main
results. Using these barriers we present proofs of Theorems 1.4–1.6 at the
end of this section.

Let u(x) = u(|x|) be a radially symmetric function. A straightforward
calculation shows that

detD2u =
(u′
r

)n−1
u′′, r = |x|.(3.1)

Thus Equation (1.1) takes the form

(u′)n−1u′′ = rn−1ψ(x, u, u′)(3.2)

for radially symmetric functions.

Lemma 3.1. Let η ∈ C1(R) satisfy η(z) > 0, η′(z) ≥ 0 for all z ∈ R. Then,
for any a > 0, there exists a strictly convex radially symmetric function
v ∈ C2(Ba(0)) satisfying

detD2v ≥ evη(v)(1 + |Dv|n) in Ba(0),(3.3)

v = +∞ on ∂Ba(0).

Proof. Consider the initial value problem

ϕ′ =
(
exp(rneϕη(ϕ))− 1

)1/n
, r > 0(3.4)

ϕ(0) = 0.

Let [0, R) be the maximal interval on which the solution to (3.4) exists. We
claim that R is finite. Indeed, by (3.4) we have

ϕ′(r) ≥ r
(
eϕ(r)η(ϕ(r))

)1/n ≥ r
(
eϕ(r)η(0)

)1/n
, 0 < r < R,

since η′ ≥ 0, ϕ′ ≥ 0 and ϕ(0) = 0. It follows that

n ≥ n
(
1− e−ϕ(ρ)/n

)
≥

∫ ρ

0
ϕ′(r)e−ϕ(r)/ndr ≥ (η(0))1/n

∫ ρ

0
r dr

= 1
2(η(0))1/nρ2

for any ρ < R. This proves that R < ∞. Moreover, by the theory of
ordinary differential equations we see that ϕ ∈ C2[0, R) and ϕ(R) = +∞ as
ϕ is strictly increasing. Rewriting (3.4) in the form

log
(
1 + (ϕ′)n

)
= rneϕη(ϕ),

we obtain by differentiation

n(ϕ′)n−1ϕ′′

1 + (ϕ′)n
=

(
rneϕη(ϕ)

)′ ≥ nrn−1eϕη(ϕ), 0 < r < R.(3.5)

In particular, ϕ′′(r) > 0 for 0 < r < R.
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For given a > 0, let v be defined by

v(x) := ϕ(λ|x|)− 2n(− log λ)+, x ∈ Ba(0),

where λ = R/a. Note that ϕ′(0) = 0. We see that v lies in C2(Ba(0)) and is
strictly convex since ϕ ∈ C2[0, R) and ϕ′′ > 0. By (3.1) and (3.5) we obtain
in Ba(0)

detD2v(x) = λ2n (ϕ′(λ|x|))n−1ϕ′′(λ|x|)
(λ|x|)n−1

≥ λ2neϕ(λ|x|)η
(
ϕ(λ|x|)

)(
1 + (ϕ′(λ|x|))n

)
≥ λ2nev(x)+2n(− log λ)+η

(
v(x) + 2n(− log λ)+

)(
1 + λ−n|Dv(x)|n

)
≥ ev(x)η

(
v(x)

)(
1 + |Dv(x)|n

)
.

In the last inequality we used the fact that η is nondecreasing. The proof of
Lemma 3.1 is complete. �

Remark 3.2. In the sequel we will denote the function v ∈ C2(Ba(0)) in
Lemma 3.1 by va,η. We will also write va,η(x) = va,η(|x|), since it is radially
symmetric.

By Lemma 2.1 we have:

Lemma 3.3. Let u ∈ C2(Ω) be a strictly convex solution of (1.1)–(1.2),
where Ω is a bounded convex domain contained in a ball Ba(x0). Suppose

ψ(x, z,p) ≤ ezη(z)(1 + |p|n), ∀(x, z,p) ∈ Ω× R× Rn,

where η ∈ C1(R) satisfies η(z) > 0 and η′(z) ≥ 0. Then u(x) ≥ va,η(x− x0)
for all x ∈ Ω.

Proof. We may assume x0 = 0. For any r > a, note that u − vr,η = +∞
on ∂Ω. Lemma 2.1 implies that u ≥ vr,η in Ω. Letting r → a we obtain
u ≥ va,η. �

We next construct a function on Ba(0) that will serve as an upper barrier
when ψ satisfies (1.3) with p > n. A straightforward calculation shows that
when p > n the function

w(x) :=
(
1− |x|2

)(n+1)/(n−p)

is strictly convex and satisfies the inequality

detD2w ≤ C(n, p)wp in B1(0),

where C(n, p) = p[2(n+ 1)/(p− n)]n+1. By rescaling, we have:

Lemma 3.4. Let a,M > 0 and p > n and define wa,M ∈ C∞(Ba(0)) by

wa,M (x) := λw
(x
a

)
, x ∈ Ba(0),
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where

λ =
(
C(n, p)
a2nM

)1/(p−n)

.

Then

detD2wa,M ≤M(wa,M )p in Ba(0).

Proof. One calculates directly

detD2wa,M (x) =
λn

a2n
detD2w

(x
a

)
≤ λn

a2n
C(n, p)

(
w

(x
a

))p
= M

(
wa,M (x)

)p
.

This completes the proof. �

From Lemmas 3.4 and 2.1 we derive the following comparison lemma:

Lemma 3.5. Let u ∈ C2(Ω) be a strictly convex solution of (1.1). Suppose
that ψ satisfies (1.3) with p > n and that Ω contains a ball Ba(x0). Then
u(x) ≤ wa,M (x− x0) for all x ∈ Ω.

The second inequality in (1.6) now follows from Lemma 3.5:

Corollary 3.6. Let u ∈ C2(Ω) be a strictly convex solution of (1.1) where
Ω is a convex (not necessarily bounded) domain in Rn. Suppose ψ satisfies
(1.3) with p > n and M > 0. Then

u(x) ≤ h(d(x)), ∀ x ∈ Ω,

where d is the distance function to ∂Ω and h ∈ C∞(R+) is given by

h(r) := wr,M (0), r > 0.(3.6)

We next construct subsolutions to (1.1) defined on the whole space Rn

when ψ satisfies (1.9) with p+ q ≤ n.

Lemma 3.7. Assume p, q ≥ 0, p + q ≤ n and M > 0. Then there exists a
strictly convex radially symmetric positive function ũ ∈ C∞(Rn) satisfying

detD2ũ(x) ≥M
(
1 + (ũ(x))p

)(
1 + |Dũ(x)|q

)
, ∀ x ∈ Rn.(3.7)

Proof. Without loss of generality we may assume M = 1. Let us consider
separately three cases: q = 0, q = n and 0 < q < n.

Case i: q = 0. Consider the initial value problem

ϕ′ = r
(
1 + ϕp

)1/n
, r > 0,(3.8)

ϕ(0) = 1.
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It is easy to see that when p ≤ n there exists a unique smooth solution ϕ
to (3.8) defined for all r ≥ 0 and strictly increasing. Indeed, suppose ϕ is
defined on [0, R). For any ρ < R, by (3.8) we have

ρ2 = 2
∫ ρ

0
rdr = 2

∫ ρ

0

ϕ′(r)(
1 + (ϕ(r))p

)1/n
dr

≥
∫ ρ

0

ϕ′(r)
(ϕ(r))p/n

dr =

logϕ(ρ), p = n;
n

n− p
(ϕ(ρ))(n−p)/n, p < n.

It follows that limρ→R ϕ(ρ) = +∞ if and only if R = +∞. We rewrite (3.8)
in the form

(ϕ′)n = rn(1 + ϕp)

and take derivatives of both sides to obtain

(ϕ′)n−1ϕ′′ ≥ rn−1(1 + ϕp).

By (3.1) we see that the function ũ(x) := ϕ(|x|) is strictly convex and

detD2ũ ≥ (1 + ũp) in Rn.

Case ii: q = n. In this case p = 0. Let ϕ ∈ C∞(R+) be given by

ϕ(r) :=
∫ r

0

(
exp(rn)− 1

)1/n
dr, r ≥ 0.

Then

ϕ′(r) = (exp(rn)− 1)1/n > 0, r > 0.(3.9)

Moreover ϕ is strictly convex and ϕ(0) = ϕ′(0) = 0. Rewriting (3.9) as

log
(
1 + (ϕ′)n

)
= rn

and taking derivatives, we obtain

(ϕ′)n−1ϕ′′ = rn−1
(
1 + (ϕ′)n

)
.

Consequently, the function ũ(x) := 1 +ϕ(|x|), x ∈ Rn, which is smooth and
strictly convex, satisfies

detD2ũ = (1 + |Dũ|n) in Rn.

Case iii: 0 < q < n. Let ϕ be the solution defined in some interval [0, R) of
the initial value problem

ϕ′ =
((

1 + rn(1+ϕp)
)n/n−q − 1

)1/n
, r > 0(3.10)

ϕ(0) = 1.



MONGE–AMPÈRE EQUATION 85

Then ϕ′(0) > 0 and ϕ′(r) > 0 for r > 0. Moreover,

ϕ′ ≤
(
1 + rn(1 + ϕp)

)1/(n−q)

≤ (1 + ϕp)1/(n−q)(1 + rn)1/(n−q) ≤ cϕp/(n−q)(1 + rn)1/(n−q).

Since p+ q ≤ n, we see that ϕ is defined for all r ≥ 0. Rewriting (3.10) as(
1 + (ϕ′)n

)(n−q)/n = 1 + rn(1 + ϕp)

we obtain by differentiation

(n− q)(ϕ′)n−1ϕ′′ = rn−1
(
1 + ϕp

)(
1 + (ϕ′)n

)q/n

≥ 1
2r

n−1
(
1 + ϕp

)(
1 + (ϕ′)q

)
.

Consequently the function ũ(x) := cϕ(|x|), where c is a constant, is smooth,
strictly convex and satisfies (3.7) when c is large enough. �

We conclude this section with proofs of Theorems 1.4–1.6.

Proof of Theorem 1.4. Let u ∈ C2(Ω) be a convex solution of (1.1)–(1.2),
where Ω is bounded and ψ satisfies (1.9). Let ũ ∈ C∞(Rn) satisfy (3.7) in
Lemma 3.7. Note that u− Cũ = ∞ on ∂Ω for any C > 0. Since ũ > 0, we
can choose C > 1 such that

u(y)− Cũ(y) = min
Ω

(u− Cũ) < 0

for some y ∈ Ω.
By (1.9) we have

detD2u(y) ≤M(1 +
(
u+(y))p

)(
1 + |Du(y)|q

)
≤M

(
1 + (Cũ(y))p

)(
1 + Cq|Dũ(y)|q

)
< CnM

(
1 + (ũ(y))p

)(
1 + |Dũ(y)|q

)
≤ Cn detD2ũ(y),

since C > 1, p + q ≤ n and Du(y) = Dũ(y), contradicting the fact that
D2(u−Cũ)(y) is a positive semidefinite matrix. The proof is complete. �

Proof of Theorem 1.6. We follow an idea of Cheng and Yau [6]. Assume Ω
contains the line

L : x1 = · · · = xn−1 = 0.

Since Ω is convex, it contains a solid cylinder {x := (x′, xn) ∈ Rn : |x′| < δ},
for some δ > 0, where x′ = (x1, . . . , xn−1). For any λ > 0, let Eλ be the
ellipsoid

|x′|2

δ2
+

x2
n

(δλ)2
≤ 1

and consider the function

wλ(x) := λαwδ,M (x′, λ−1xn), x ∈ Eλ
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where α = 2/(n− p) and wδ,M is as in Lemma 3.4. We have

detD2wλ(x) = λnα−2 detD2wδ,M (x′, λ−1xn)
≤M

(
λαwδ,M (x′, λ−1xn)

)p = M
(
wλ(x)

)p
, ∀x ∈ Eλ.

Now assume that u ∈ C2(Ω) is a convex solution of (1.1)–(1.2) in Ω, where
ψ satisfies (1.3). Since wλ = +∞ on ∂Eλ ⊂ Ω, Lemma 2.1 yields

wλ ≥ u in Eλ.

Note that α < 0. Letting λ → ∞, we see that u = 0 on L. It follows that
uxnxn = 0 on L, contradicting the positivity of detD2u everywhere in Ω. �

Finally, Theorem 1.5 follows from the comparison principle (Lemma 2.1)
and the following lemma:

Lemma 3.8. Let α > 1 and a > 0. There exists a strictly convex radially
symmetric function u ∈ C2(Ba(0)) satisfying

detD2u =
1

an(α− 1)
(
1 + |Du|n

)α in Ba(0),(3.11)

∂u

∂ν
= +∞ on ∂Ba(0),

where ν is the unit normal to ∂Ba(0). Moreover, if α > (n + 1)/n then
u ∈ C0(Ba(0)).

Proof. Let β > 0 and consider the function ϕ defined by

ϕ(r) :=
∫ r

0

(
(1− rn)−β − 1

)1/n
dr, 0 ≤ r < 1.

Then

1 + (ϕ′)n =
1

(1− rn)β

and

(ϕ′)n−1ϕ′′ = βrn−1
(
1 + (ϕ′)n

)(β+1)/β
.

We see that ϕ(0) = ϕ′(0) = 0, that ϕ′′(r) > 0 for all 0 ≤ r < 1 and that
limr→1 ϕ

′(r) = ∞. Note also that if β < n,

ϕ(r) ≤
∫ r

0
(1− rn)−β/ndr ≤

∫ r

0
(1− r)−β/ndr ≤ n

n− β
, ∀ r < 1.

Taking β = 1/(α− 1), we obtain the desired function u(x) := aϕ(a−1|x|),
for x ∈ Ba(0). �
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4. Proof of Theorem 1.1

By assumption (1.5) we may find a positive nondecreasing function η in
C∞(Rn) satisfying

eεzη(z) ≥ max
y≤z

Ψ(y), ∀ z ∈ R.(4.1)

For simplicity we will assume throughout this section that ε = 1; this may
be achieved by rescaling.

We first assume Ω to be smooth. For each integer k ≥ 1, consider the
Dirichlet problem

detD2u = ψ(x, u,Du) > 0 in Ω,(4.2)
u = k on ∂Ω.

Since Ω is bounded, we may choose r > 0 sufficiently large that Ω ⊂ Br(0)
and vr,η ≤ 1 on ∂Ω. It follows from Lemma 2.1 that vr,η ≤ u ≤ k in Ω, so

|u| ≤ Ck

for any convex solution u of (4.2), where Ck is a constant depending on k.
By a result of Lions [10] (see also [4]), there exists for each k a strictly
convex function uk ∈ C2(Ω) satisfying

detD2uk ≥ Ψ(Ck)(1 + |Duk|n) in Ω,(4.3)
uk = k on ∂Ω.

Note that uk is a subsolution of of (4.2). By a theorem of Caffarelli–
Nirenberg–Spruck [4] there exists a strictly convex solution uk ∈ C∞(Ω)
of (4.2) satisfying uk ≥ uk in Ω for each k ≥ 1. Moreover, uk satisfies the
a priori estimate

‖uk‖C2,α(Ω) ≤ C(k), k ≥ 1,(4.4)

where C(k) > 0 depends on k. We next need to derive a priori interior
estimates which are independent of k.

Proposition 4.1. For an arbitrary compact subset K of Ω, there exists a
constant C independent of k such that

‖uk‖C2,α(K) ≤ C, ∀ k ≥ 1.(4.5)

The proof of this estimate is based on the following lemma and some
well-known results in the theory of Monge–Ampère and more general fully
nonlinear elliptic equations.

Lemma 4.2. There exists a > 0 depending only on Ω and a decreasing
sequence ak → a (k →∞) such that

vak,η(a− d(x)) ≤ uk(x) ≤ h(d(x)), ∀ x ∈ Ω, k ≥ 1,(4.6)
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where d is the distance function to the boundary of Ω. (For the definitions
of h and vak,η, see (3.6) and Remark 3.2.)

Proof. The second inequality follows from Corollary 3.6. Next, let a > 0 be
the smallest number such that for any point x ∈ ∂Ω there is a ball Ba(x0)
of radius a with Ω ⊂ Ba(x0) and Ω ∩ ∂Ba(x0) = {x}; such a number exists
since Ω is bounded and strictly convex. Choose a1 > a2 > · · · > ak > · · · ,
ak → a as k → ∞, such that vak,η(a) = k for each k ≥ 1. For x ∈ Ω,
choose x ∈ ∂Ω and a ball Ba(x0) such that d(x) = |x− x|, Ω ⊂ Ba(x0) and
Ω ∩ ∂Ba(x0) = {x}. Since vak,η(x− x0) ≤ uk(x) for all x ∈ ∂Ω, Lemma 2.1
gives

vak,η(x− x0) ≤ uk(x), ∀ x ∈ Ω.

This proves the first inequality in (4.6). �

For convenience let us now introduce some notation. Let h, vk denote the
functions defined in Ω by

h(x) := h(d(x)), vk(x) := vak,η(a− d(x)), x ∈ Ω.

For l > 0 and k ≥ 1 write
Hl :=

{
x ∈ Ω : h(x) < l

}
,

Uk,l :=
{
x ∈ Ω : uk(x) < l

}
,

Vk,l :=
{
x ∈ Ω : vk(x) < l

}
.

By (4.6) we have Hl ⊂ Uk,l ⊂ Vk,l for each k ≥ 1.

Proof of Proposition 4.1. Let K be a compact subset of Ω. We may choose
l > 0 and then k0 sufficiently large so that K ⊂ Hl/2 and V k0,4l ⊂ Ω. From
(4.6) we see that

|uk| ≤ C0 in Uk,2l, ∀ k ≥ k0,(4.7)

where C0 is independent of k. Moreover, by the strict convexity of uk,

max
Uk,2l

|Duk| = max
∂Uk,2l

|Duk| ≤ max
x∈∂Vk0,4l

uk(x)− 2l
dist(Uk,2l, ∂Vk0,4l)

(4.8)

≤ max
x∈∂Vk0,4l

h(x)− 2l
dist(V k,2l, ∂Vk0,4l)

≤ max
x∈∂Vk0,4l

h(x)− 2l
dist(V k0,2l, ∂Vk0,4l)

≡ C1

for all k ≥ k0, where the last two inequalities follow from the relations uk < h
and Uk,2l ⊂ Vk,2l ⊂ Vk0,2l, since vk ≥ vk0 for k ≥ k0.

Next, applying Pogorelov’s interior estimates (see [7]) we obtain

|D2uk(x)| ≤
C2

dist(x, ∂Uk,2l)
, ∀ x ∈ Uk,2l, k ≥ k0,(4.9)
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where C2 depends on C0, C1 and the C2 norm of ψ, as well as minψ, in
Ω×{z ≤ C0}×{|p| ≤ C1}, but is independent of k. Since Hl ⊂ H2l ⊂ Uk,2l,

dist(Hl, ∂Uk,2l) ≥ dist(Hl, ∂H2l).

It follows from (4.9) that

‖D2uk‖C0(Hl)
≤ C2

dist(Hl, ∂H2l)
.(4.10)

Finally, by the Evans–Krylov theorem (see [3]) we have

‖D2uk‖Cα(Hl/2) ≤ C3, ∀ k ≥ k0(4.11)

where C3 is independent of k. Now (4.5) follows from (4.7), (4.8), (4.10)
and (4.11), combining with (4.4) for k ≤ k0. �

By Proposition 4.1, there exists a subsequence {ukj
} and u ∈ C2,α(Ω)

such that

lim
j→∞

‖ukj
− u‖C2,α(K) = 0

for any compact subset K of Ω. We see that u is strictly convex and solves
(1.1). From (4.6) we obtain

h(d(x) := va,η(a− d(x)) ≤ u(x) ≤ h(d(x)), ∀ x ∈ Ω.(4.12)

Consequently, u = +∞ on ∂Ω. This completes the proof of Theorem 1.1
when Ω is smooth.

Suppose now that Ω is not smooth. We choose a sequence of smooth
strictly convex domains

Ω1 ⊆ · · · ⊆ Ωk ⊆ Ωk+1 ⊆ · · · ⊆ Ω

such that

Ω =
∞⋃

k=1

Ωk.

For each k ≥ 1, let uk ∈ C∞(Ωk) be a strictly convex solution of the problem

detD2u = ψ(x, u,Du) in Ωk,(4.13)
u = ∞ on ∂Ωk.

We have

va,η(a− d(x)) ≤ uk(x) ≤ h(dk(x)), ∀ x ∈ Ωk,(4.14)

where a is as in (4.12) and dk is the distance function to ∂Ωk. Using this in
place of Lemma 4.2 we can derive the estimate (4.5) as before, and therefore
obtain a subsequence that converges to a solution u ∈ C2,α(Ω) of (1.1)–
(1.2) satisfying (4.12). That u lies in C∞(Ω) follows from elliptic regularity
theory. The proof of Theorem 1.1 is complete.
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Remark 4.3. As an alternative approach, one may first prove the existence
of a convex weak solution and then apply the strict convexity and regularity
theorems of Caffarelli [1], [2] to prove Theorem 1.1.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 follows that of Theorem 1.1, except that we have
to reconstruct lower barriers when Ω is unbounded or not strictly convex.
To this end we consider the equation

detD2u = F (u) in Γ+ := {x ∈ Rn : xi > 0},(5.1)

where F is a positive nondecreasing function. When F (u) = e2u, Cheng and
Yau [6] observed that u(x) := − log(x1 . . . xn) is a strictly convex solution
of (5.1) in Γ+. Inspired by this we look for solutions to (5.1) of the form

u(x) = ϕ
(
a− log(x1 . . . xn)

)
, x = (x1, . . . , xn) ∈ Γ+,

for some function ϕ, where a is a constant. We calculate

uxi =
−ϕ′

xi
, uxixj =

1
xixj

(ϕ′′ + ϕ′δij).

It follows that

detD2u =
1

(x1 . . . xn)2
(ϕ′)n−1(nϕ′′ + ϕ′).

Equation (5.1) thus reduces to

(ϕ′)n−1(nϕ′′ + ϕ′) = e2(a−t)F (ϕ).(5.2)

Lemma 5.1. Let a > 0 and F ∈ C∞(R) satisfy F > 0, F ′ ≥ 0 and

F (z) ≥M(z+)p, ∀ z ∈ R,(5.3)

where p > n. There exists a strictly increasing function ϕ ∈ C∞(R+) with

(ϕ′)n−1(nϕ′′ + ϕ′) ≥ e2(a−t)F
(
ϕ(t)

)
, ∀ t ≥ 0,(5.4)

and

lim
t→+∞

ϕ(t) = +∞.(5.5)

Proof. We construct ϕ from F . For convenience we write f := A(e2aF )1/n,
where A is an undetermined constant, and define

g(z) :=
∫ z

0

dz

f(z)
.(5.6)

We see that g is a strictly increasing function defined for all z ∈ R. Let g−1

denote the inverse function of g and define

ϕ(t) := g−1(B − e−βt),(5.7)
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where β is a constant to be determined and

B :=
∫ ∞

0

dz

f(z)
<∞

by assumption (5.3). It is clear that ϕ satisfies (5.5). We calculate

ϕ′(t) =
βe−βt

g′(ϕ(t))
= βe−βtf(ϕ(t)) > 0, ∀ t ∈ R,

and

ϕ′′(t) = βe−βt
(
f ′(ϕ(t))ϕ′(t)− βf(ϕ(t))

)
(5.8)

= β2e−βtf(ϕ(t))
(
e−βtf ′(ϕ(t))− 1

)
≥ −β2e−βtf(ϕ(t)),

since f ′(ϕ(t)) ≥ 0. It follows that

(ϕ′)n−1(nϕ′′ + ϕ′) ≥ βn(1− nβ)e−nβt
(
f(ϕ(t))

)n
.(5.9)

Taking β < 1/n and A = β−1(1− nβ)−1/n we obtain (5.4). �

A slight modification of this proof yields the following:

Lemma 5.2. Let a > 0 and F (z) = eεzη(z), where ε > 0 and η ∈ C∞(R) is
a positive nondecreasing function. There exists a strictly increasing function
ϕ ∈ C∞(R+) satisfying (5.4) for all t ∈ R and (5.5). Moreover, ϕ is a convex
function.

Proof. As in the proof of Lemma 5.1 we define ϕ by (5.7). Note that here
we still have B :=

∫∞
0 dz/f(z) < +∞. Write s = ϕ(t). By (5.7) we have

e−βt = B − g(s) =
∫ ∞

s

dz

f(z)
≥ 1
A(e2aη(s))1/n

∫ ∞

s
e−εz/ndz =

n

εf(s)
,

since η is nondecreasing. Next,

f ′(s) =
Ane2aF ′(s)
n(f(s))n−1

=
Ane2aeεs(εη(s) + η′(s))

n(f(s))n−1
≥ εAne2aF (s)

n(f(s))n−1
=
εf(s)
n

,

since η′ ≥ 0. Consequently, ϕ′′(t) ≥ 0 by (5.8). Finally, taking β = A−1 = 2
n

we have

(ϕ′)n−1(nϕ′′ + ϕ′) ≥ (ϕ′(t))n = βne−nβt(f(ϕ(t)))n = e2(a−t)F (ϕ(t))

for all t ∈ R. �

Remark 5.3. Let ϕ be the unique solution of (5.2) satisfying the initial
data

ϕ(0) = ϕ(0), ϕ′(0) = ϕ′(0).(5.10)
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We have ϕ(t) ≤ ϕ(t) for all t > 0 where ϕ(t) is defined. Equation (5.2) can
be recast as

(et(ϕ′)n)′ = e2a−tF (ϕ),(5.11)

so 0 < ϕ′(t) ≤ ϕ′(t) for all t > 0 where ϕ(t) is defined. By the extension
theorem we see that ϕ is defined for all t > 0. However, ϕ may be bounded
above on all of R+, so we cannot replace ϕ by ϕ in the construction below.

Proof of Theorem 1.2. As in the last part of the proof of Theorem 1.1 we
choose a sequence of bounded smooth strictly convex domains Ω1 ⊆ Ω2 ⊆
· · · ⊆ Ωk ⊆ · · · ⊆ Ω such that Ω =

⋃
Ωk and we consider, for each k,

detD2u = ψ(x, u) in Ωk,(5.12)
u = k on ∂Ωk.

Let uk ∈ C∞(Ωk) be a strictly convex solution of (5.12); the existence of uk

follows from [4]. By assumption (1.3) and Corollary 3.6 we have

uk(x) ≤ h(dk(x)), ∀ x ∈ Ωk,(5.13)

where dk is the distance function to ∂Ωk. We need an a priori lower bound
for uk, which is derived below (Lemma 5.4). With the aid of such estimates,
the rest of proof proceeds as that of Theorem 1.1. �

Lemma 5.4. There exists an increasing sequence of functions hk ∈ C(R+)
such that

lim
k→∞

lim
r→0

hk(r) = +∞(5.14)

and

uk(x) ≥ hk(d(x)), ∀ x ∈ Ωk,(5.15)

for all k sufficiently large, where d(x) = dist(x, ∂Ω).

Proof. By assumption (1.7) we may find a function η ∈ C∞(R) with η > 0,
η′ ≥ 0 and F (z) := eεzη(z) ≥ ψ(x, z) for all (x, z) ∈ Ω× R, where ε ≥ 0 as
in Theorem 1.2. We consider two cases.

Case i: ε > 0. We apply Lemma 5.2 with a = 0 to obtain ϕ ∈ C∞(R)
satisfying (5.4) and (5.5). By the assumption that Ω contains no straight
lines we may assume Ω ⊂ Γ+ =

{
x ∈ Rn : xi > 0

}
. For a fixed point x0 ∈ Ω

let x be a point on ∂Ω such that d(x0) = dist(x0, x). We may assume x lies
on the hyperplane x1 = 0. For each integer k ≥ 1 let

uk(x) := ϕ
(
− log

(
(x1 + bk) · · · (xn + bk))

)
, x ∈ Γ+,

where bk satisfies ϕ(−n log bk) = k. Then uk ∈ C∞(Γ+) is strictly convex
and

detD2uk(x) ≥ F (uk(x)) ≥ ψ(x, uk(x)), x ∈ Ω.
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Note that uk ≤ uk on ∂Ωk. By Lemma 2.1 we obtain

uk ≤ uk in Ω.(5.16)

In particular, uk(x0) ≤ uk(x0) if k is sufficiently large and x0 ∈ Ωk. The
function

hk(r) := min
|x−x|=r, x∈Γ+

uk(x)

then has the desired properties.

Case ii: ε = 0 and Ω is bounded. We may assume that

Ω ⊆ Q :=
{
x ∈ Rn : 0 < xi < ρ, 1 ≤ i ≤ n

}
⊂ Rn

and x =
(
0, 1

2ρ, . . . ,
1
2ρ

)
, where ρ is the diameter of Ω. Applying Lemma 5.1

to F with a = ak := n log(ρ + bk), where bk > 0 is to be determined, we
obtain ϕk ∈ C∞(R+) satisfying (5.4) for t ≥ 0 and (5.5). Let

uk(x) := ϕk

(
ak − log((x1 + bk) · · · (xn + bk))

)
, x ∈ Q,

and choose a decreasing sequence bk such that ϕk(ak − n log bk) ≤ k for all
k sufficiently large. We now can proceed as in the previous case. �

This completes the proof of Theorem 1.2. Finally, it is clear that with
minor modifications the proof yields Theorems 1.1 and 1.2 with assumption
(1.8) in place of (1.3) when ψz ≥ 0. (See Remark 1.3.)
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