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Let MHL and MS respectively denote the Hardy–Littlewood
and strong maximal operators, and let Mx and My respec-
tively denote the one-dimensional Hardy–Littlewood maximal
operators in the horizontal and vertical directions in R2. It
is well known that if f and f̃ are equidistributed functions
supported on Q = [0, 1] × [0, 1], then

∫
Q

MHLf ∼
∫

Q
MHLf̃ .

This article examines the relationships between
∫

Q
Myf̃ and∫

Q
Myf ,

∫
Q

MyMxf̃ and
∫

Q
MyMxf , and

∫
Q

MSf̃ and
∫

Q
MSf

in the scenario in which f̃ and f are horizontal rearrange-

ments of one another, meaning that f̃ (·, y) and f (·, y) are
equidistributed on [0, 1] for any value of y.

The rearrangement results provided are not only of intrinsic
interest, but also yield tools for more detailed examinations
involving the local integrablility of maximal functions. They
are used in a companion paper to prove that if f is supported
on Q,

∫
Q

MyMxf < ∞, and
∫

Q
MxMyf = ∞, then there

exists a set A of finite measure in R2 such that
∫

A
MSf = ∞.

We begin with the following definitions:

Definition 1 (Hardy–Littlewood maximal function). Let f be a measur-
able function defined on Rn. Let B(p, r) denote the Euclidean ball in Rn

centered at p of radius r, and let |B(p, r)| denote the Lebesgue measure of
B(p, r). The Hardy–Littlewood maximal function of f is defined on Rn by

MHLf(p) = sup
r>0

1
|B(p, r)|

∫
B(p,r)

|f(z)| dz.(1)

Definition 2 (Strong maximal function). Let f be a measurable function
defined on R2. The strong maximal function of f is defined on R2 by

MSf(x, y) = sup
x1<x<x2
y1<y<y2

1
(x2 − x1)(y2 − y1)

∫ x2

x1

∫ y2

y1

|f(u, v)| dv du.(2)

Definition 3 (Horizontal maximal function). Let f be a measurable func-
tion defined on R2. The horizontal maximal function of f is defined on R2
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by

Mxf(u, v) = sup
u1<u<u2

1
u2 − u1

∫ u2

u1

|f(w, v)| dw.(3)

Definition 4 (Vertical maximal function). Let f be a measurable function
defined on R2. The vertical maximal function of f is defined on R2 by

Myf(u, v) = sup
v1<v<v2

1
v2 − v1

∫ v2

v1

|f(u, w)| dw.(4)

The first rearrangement result we consider is a simple consequence of the
following result due to E. M. Stein [6]:

Theorem 5. Let f be a measurable function supported on In, the unit n-
cube in Rn. There exist positive, finite constants c, C (depending on n) such
that

c‖f‖L log L(In) ≤
∫

I(n)

MHLf ≤ C‖f‖L log L(In).(5)

Inequalities such as (5) will often be denoted by

‖f‖L log L(In) ∼
∫

In

MHLf

for the remainder of this paper. Also, the unit square I2 in R2 will be
denoted by Q.

Corollary 6. Let f and f̃ be equidistributed functions supported on In.
Then ∫

In

MHLf ∼
∫

In

MHLf̃ .(6)

Proof. As ‖f‖L log L(In) = ‖f̃‖L log L(In), this follows directly from Theorem 5.
�

Corollary 7. Suppose f and f̃ are functions supported on Q and also sup-
pose that f( · , y) and f̃( · , y) are equidistributed for each y ∈ [0, 1]. Then∫

Q
Mxf̃ ∼

∫
Q

Mxf.

Proof. This is an application of Corollary 6 and the Fubini theorem. �

Far more interesting is the relationship between
∫
Q Myf and

∫
Q Myf̃ when

f and f̃ are horizontal rearrangements of each other, i.e., f̃( · , y) and f( · , y)
are equidistributed on [0, 1] for any value of y. In general these integrals are
not comparable. For example, define g by

g(x, y) =
1

|x− y|(log |x− y|)2
χQ.
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Let g̃ be the function supported on Q which is a horizontal rearrangement
of g and such that g̃(x, y) is nonincreasing in x, i.e., g̃ (x1, y) ≥ g̃ (x2, y) for
any 0 ≤ x1 ≤ x2 ≤ 1 and any value of y. One can readily compute that∫
Q My g̃ < ∞ but

∫
Q Myg = ∞. We do have the following result, however:

Theorem 8. Let f be a nonnegative measurable function supported on Q.
Let f̃ be the function supported on Q which is nonincreasing in x and such
that, for each y ∈ [0, 1], f̃( · , y) and f( · , y) are equidistributed.

Then ∫
Q

Myf̃ ≤ c

∫
Q

Myf,

where c is a universal constant.

Proof. Let α > 0. Let λ(α) =
∣∣{(u, v) ∈ Q : Myf(u, v) > α}

∣∣. Define λ̃(α)
similarly. It suffices to show that λ̃(α) ≤ 400 λ (α/64).

Without loss of generality, assume f is smooth on Q. Take the Calderón–
Zygmund decomposition of f with respect to α on each vertical segment
in {s × [0, 1], s ∈ [0, 1]} of Q, yielding for each x ∈ [0, 1] disjoint sets
Qx,j,α ⊆ [0, 1] such that α < |Qx,j,α|−1 ∫

Qx,j,α
f(x, z) dz ≤ 2α. (In the case

that
∫ 1
0 f(x, z) dz > 2α, set Qx,1,α = [0, 1].) Note that f(p) ≤ α for almost

every p in the complement of
⋃

x∈[0,1], j∈Z+
(x×Qx,j,α). For f̃ one may

produce the associated sets Q̃x,j,α in a similar fashion.
Let Eα =

{
(x, y) ∈ Q : y ∈

⋃
x∈[0,1], j∈Z+

Qx,j,α

}
. Define Ẽα similarly.

It suffices to show that |Ẽ4α| ≤ 2|Eα|. To see this, recall from the theory
of the Hardy–Littlewood maximal operator MHL that if g is a measurable
function supported on the unit interval [0, 1], g ≥ 0,

∫ 1
0 g ≤ 2α,

λHL(α) =
∣∣{x ∈ [0, 1] : MHLg(x) > α}

∣∣,
and EHL,α =

⋃
Qj,α, where the Qj,α are the intervals obtained by taking the

Calderón–Zygmund decomposition of g with respect to α, then |EHL,α| ≤
λHL(α/2) ≤ 200 |EHL,α/8|. This readily yields that, if |Ẽ4α| ≤ 2 |Eα|, then
λ̃(α) ≤ 200 |Ẽα/8| ≤ 400 |Eα/32| ≤ 400 λ(α/64). Hence λ̃(α) ≤ 400 λ(α/64),
as desired.

To show that |Ẽ4α| ≤ 2 |Eα| we proceed as follows:
First we consider the special case in which

∫ 1
0 f(x, y) dy ≤ α for any

x ∈ [0, 1]. Having taken the Calderón–Zygmund decomposition of f with
respect to α described above, we obtain the disjoint sets Qx,j,α ⊂ [0, 1]
for each x ∈ [0, 1] and the associated set Eα. Now, f(p) ≤ α for almost
every p in the complement of Eα. So if S is a measurable subset of Q and
|S| > 2 |Eα|, then

∫
S f ≤ 2α|S|. Now let φ : Q → Q be a measure-preserving

bijection such that f̃(φ(p)) = f(p) for any p ∈ Q. Using φ we see that
|Ẽ4α| ≤ 2 |Eα|. Otherwise, if |Ẽ4α| > 2 |Eα| we would have |Ẽ4α|−1

∫ eE4α
f̃ =
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|Ẽ4α|−1
∫
φ−1( eE4α)

f ≤ 2α by the above. But |Ẽ4α|−1
∫ eE4α

f̃ > 4α by the

construction of Ẽ4α. So |Ẽ4α| ≤ 2|Eα| if
∫ 1
0 f(x, y) dy ≤ α for all x ∈ [0, 1].

Now we let f be an arbitrary nonnegative smooth function on Q. Without
loss of generality assume there exists c ∈ (0, 1) such that

∫ 1
0 f(x, y) dy > α

if x < c, and
∫ 1
0 f(x, y) dy ≤ α if x ≥ c. Form the Calderón–Zygmund

decomposition of f with respect to α as before, obtaining the Qx,j,α and Eα.
Note that Qx,1,α = [0, 1] if x < c.

For each y ∈ [0, 1] we define the functions fy(x) on [0, 1] by fy(x) =
f(x, y). We construct a function f ′y(x) on [0, 1] equidistributed to fy(x)
such that f ′y (x2) ≤ f ′y (x1) if x2 ≥ c ≥ x1 and f ′y(x) ≤ fy(x) if x ≥ c as
follows:

Let By =
{
x ∈ [0, c) : fy(x) < f̃y(c)

}
.

Let Ay ⊂
{
x ∈ [c, 1] : fy(x) ≥ f̃y(c)

}
be such that the measure of its

interior is equal to |By|. Let A◦
y and B◦

y respectively denote the interiors of
Ay and By. Let φy : A◦

y → B◦
y be a measure-preserving bijection such that

if x ∈ A◦
y,

∣∣{b ∈ B◦
y : b < φy(x)}

∣∣ =
∣∣{a ∈ A◦

y : a < x}
∣∣. Define f ′y(x) by

f ′y(x) =


fy(x) if x /∈ A◦

y ∪B◦
y ,

fy(φ−1
y (x)) if x ∈ B◦

y ,

fy(φy(x)) if x ∈ A◦
y.

Note that f ′y(x) ≤ fy(x) if x > c. Define the function f ′ on Q by f ′(x, y) =
f ′y(x). For the Calderón–Zygmund decomposition of f ′ with respect to α
as above, obtaining the associated sets Q′

x,j,α, E′
α. Note that Eα ⊇ E′

α, so
without loss of generality we may assume f = f ′. Hence, without loss of
generality, f (x1, y) ≥ f (x2, y) if 0 ≤ x1 < c ≤ x2 ≤ 1, and

∫ 1
0 f(x, y) dy > α

if and only if x < c.
Let f1 = f χ[0≤x<c], f2 = f χ[c≤x≤1]. So f = f1 + f2. Let f̃1 be a

rearrangement of f1 such that, for each y ∈ [0, 1], f1( · , y) and f̃1( · , y)
are equidistributed and f̃1(x, y) is nonincreasing in x. Define f̃2 to be the
rearrangement of f2 within {Q ∩ {(x, y) : c ≤ x ≤ 1}} such that, for each
y ∈ [0, 1], the functions f2( · , y) and f̃2( · , y) are equidistributed and such
that f̃2(x, y) is nonincreasing in x in {x : c ≤ x ≤ 1}. Now f̃ = f̃1 + f̃2. Let

E1,α =
⋃

x∈[0,c)
j∈Z+

(x×Qx,j,α) , E2,α =
⋃

x∈[c,1]
j∈Z+

(x×Qx,j,α) .

Define Ẽ1,α and Ẽ2,α similarly. Note that |Ẽ1,4α| ≤ 2|E1,α| trivially (as
Qx,1,α = [0, 1] if x < c) and |Ẽ2,4α| ≤ 2|E2,α| by the special case argument,
since

∫ 1
0 f(x, y) dy ≤ α for x ≥ c. As |Eα| = |E1,α| + |E2,α| and |Ẽα| =

|Ẽ1,α|+ |Ẽ2,α|, we see that |Ẽ4α| ≤ 2|Eα|, as desired. �
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Theorem 8 yields the following two easy but useful corollaries:

Corollary 9. Let f be a nonnegative measurable function supported on Q.
Let f̃(x, y) be the function supported on Q which is nonincreasing in x and
such that, for each y ∈ [0, 1], f̃( · , y) and f( · , y) are equidistributed. Then∫

Q
MHLMyf̃ ≤ c

∫
Q

MHLMyf ,

where c is a universal constant.

Proof. Define λ(α), λ̃(α) as in the proof of Theorem 8. As the proof of
Theorem 8 indicated that λ̃(α) . 400 λ(α/64), we see that ‖Myf̃‖L log L .
‖Myf‖L log L. Hence Theorem 5 yields

∫
Q MHLMyf̃ .

∫
Q MHLMyf . �

Corollary 10. Let f be a nonnegative measurable function supported on Q.
Let f̃ be a function on Q which is nonincreasing in x and such that, for each
y ∈ [0, 1], f̃( · , y) and f( · , y) are equidistributed. Then∫

Q
MyMxf̃ ≤ c

∫
Q

MyMxf,

where c is a universal constant.

Proof. By Theorem 8,
∫
Q My

(
M̃xf

)
≤ c

∫
Q MyMxf . So it suffices to show

that
∫
Q MyMxf̃ ≤ c

∫
Q My

(
M̃xf

)
. To do this, it suffices to show that,

given a nonnegative function g supported on [0, 1] and p ∈ (0, 1), we have
M̃HLg(p) ≥ cMHLg̃(p), where c is independent of g and p, and g̃ is the
function supported on [0, 1] which is equidistributed to g and such that
g̃ (x1) ≥ g̃ (x2) whenever 0 < x1 ≤ x2 < 1. Well, suppose MHLg̃(p) = α.
Then on a set A ⊆ [0, 1] of measure |A| = |p|, we have |A|−1

∫
A |g| = α.

Assuming without loss of generality that
∫ 1
0 g ≤ α/2, we take a Calderón–

Zygmund decomposition of g with respect to α/4, yielding intervals Qj,α/4.
Now

∣∣⋃ Qj,α/4

∣∣ ≥ |A|. Otherwise we would have
∣∣⋃ Qj,α/4

∣∣ < |A|, imply-
ing that if E is a set contained in [0, 1] such that |E| ≥ |A|,

1
|E|

∫
E
|g| ≤ 1

|E|

(
|E| α

2
+

∣∣∣⋃ Qj, α
4

∣∣∣ α

2

)
=

α

2

(
1 +

∣∣⋃ Qj, α
4

∣∣
|E|

)
<

α

2
(1 + 1) = α,

contradicting the fact that |A|−1
∫
A |g| = α.

So MHLg > α/8 on a set contained in [0, 1] of measure greater than or
equal to |A|. So M̃HLg(p) > α/8. Hence M̃HLg(p) ≥ 1

8MHLg̃(p). �

The statement of Corollary 10 is false if the operator MyMx is replaced
by either MxMy or MS. To exhibit a counterexample, we first define the
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functions h2n as follows:

h2n(x, y) =
2n−1∑
m=0

22n−m−1χ[0,2−2n+m+1](y) χ[m·2−n,(m+1)·2−n](x).(7)

Let now the function h be defined by

h =
∞∑

k=1

1
2k+1

1
24k−1 h

24k−1 .(8)

One can show that, if h̃(x, y) is a horizontal rearrangement of h which is
nonincreasing in x, then

∫
Q MxMyh =

∫
Q MSh < ∞, but

∫
Q MxMyh̃ and∫

Q MSh̃ are infinite. More details in this regard are found in [4].

We now consider rearrangement results involving sums of maximal oper-
ators. A good example of such a result is the following:

Theorem 11. Let f and f̃ be equidistributed functions supported on Q.
Then ∫

Q
(Mxf + Myf) ∼

∫
Q

(Mxf̃ + Myf̃) .(9)

Proof. In [3] it is shown that if f is supported on Q, then∫
Q

MHLf ∼
∫

Q
Mxf + Myf .(10)

The result then follows from Theorem 5. �

We now strengthen this result. Define the maximal operators M , M as
follows:

Definition 12. Let f be a measurable function supported on Q. The as-
sociated maximal function Mf is defined on Q by

Mf (p1, p2) = sup
x1<p1<x2

1
x2 − x1

∫ x2

x1

∫ 1

0
|f(x, y)| dy dx.

The associated maximal function Mf is defined on Q by

Mf (p1, p2) = sup
y1<p2<y2

1
y2 − y1

∫ 1

0

∫ y2

y1

|f(x, y)| dy dx.

Theorem 13. Let f and f∗ be equidistributed functions supported on Q.
Then ∫

Q
(Mf + Myf) ∼

∫
Q

(Mf∗ + Myf
∗) .(11)
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Moreover, ∫
Q

MHLf ∼
∫

Q
(Mf + Myf) .(12)

Proof. By Theorem 5, we need only to show (12). Now, by a theorem of
Jessen, Marcinkiewicz, and Zygmund [5] we already know that∫

Q
(Mf + Myf) ≤

∫
Q

(Mxf + Myf) . ‖f‖L log L(Q) ∼
∫

Q
MHLf.

So it suffices to show that
∫
Q MHLf .

∫
Q Mf + Myf .

We may assume without loss of generality that f is smooth and nonneg-
ative. Let f̃(x, y) be the function supported on Q which is nonincreasing in
x and such that, for each y ∈ [0, 1], f̃( · , y) and f( · , y) are equidistributed.
It is enough to show that

∫
Q Mf̃ .

∫
Q (Mf + Myf). For then

‖f‖L log L(Q) = ‖f̃‖L log L(Q)

∼
∫

Q
MHLf̃ (by Theorem 5)

∼
∫

Q
(Mxf̃ + Myf̃) (by (10))

=
∫

Q
Mf̃ +

∫
Q

Myf̃

.
∫

Q
(Mf + Myf) +

∫
Q

Myf̃

.
∫

Q
(Mf + Myf) (by Theorem 8).

We now show
∫
Q Mf̃ .

∫
Q (Mf + Myf). To do this, it suffices to show

that ∣∣{p ∈ Q : Mf̃(p) > 2α}
∣∣ ≤ 2 |{p ∈ Q : Mf(p) + Myf(p) > α}|

for each α > 0.
Now, let A = {p ∈ Q : Mf(p) > α}.
Let B = {p ∈ Q : p /∈ A,Myf(p) > α}. If A = Q, we’re done. Otherwise,

1
|A|

∫
A |f | ≤ 2α. Also, if p /∈ A∪B, then f(p) ≤ α. Note also that 1

|B|
∫
B f ≤

2α.
Now, let f ′ be a function supported on Q which is equidistributed to f

and such that f ′ (x1, y1) ≥ f ′ (x2, y2) whenever 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ 1,
and 0 ≤ y2 ≤ 1. Note if p ∈ Q, Mf ′(p) ≥ Mf̃(p). So it suffices to show∣∣{p ∈ Q : Mf ′(p) > 2α

}∣∣ ≤ 2 |{p ∈ Q : Mf(p) + Myf(p) > α}| .
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Let D =
[
0, |A ∪ B|

]
× [0, 1] be a subset of Q. Note that |D|−1

∫
D f ′ ≤ 2α.

If p /∈ D, then f ′(p) ≤ α. So if p /∈ D, Mf ′(p) ≤ 2α. So∣∣{p ∈Q : Mf ′(p) > 2α}
∣∣≤ |A|+ |B|
≤

∣∣{p ∈Q : Mf(p) > α}
∣∣ +

∣∣{p ∈Q : Myf(p) > α}
∣∣

≤ 2
∣∣{p ∈Q : Mf(p) + Myf(p) > α}

∣∣. �

We now turn to a substantially more sophisticated rearrangement result
involving sums of iterated maximal operators. The following result, besides
being of intrinsic interest, is used in [4] to show that for any measurable
function f supported on Q,

‖f‖L(log L)2(Q) ∼
∫

Q

(
MMf + MMf + MyMxf

)
.

This is in turn used to show that if f is a function supported on Q such that∫
Q MyMxf < ∞ but

∫
Q MxMyf = ∞ (such functions do exist: the function

f(x, y) = h(y, x), where h is defined as in (7), (8) provides an example),
then there exists a set A of finite measure in R2 such that

∫
A MSf = ∞.

This result is particularly striking considering that there exists a function g
constructed by M. E. Gomez [2] such that g is supported in Q,

∫
Q MxMyg =

∞, and
∫
Q MyMxg = ∞, but MSg is integrable over every set of finite

measure in R2.

Theorem 14. Let f be a measurable function supported on Q. Let f ′ be
a function supported on Q such that f ′( · , y) and f( · , y) are equidistributed
for each y ∈ [0, 1]. Then∫

Q

(
MMf ′ + MyMxf ′

)
∼

∫
Q

(MMf + MyMxf) .

Proof. Without loss of generality, assume f is nonnegative. Let f̃ be a
function supported on Q which is nonincreasing in x and such that f̃( · , y)
and f( · , y) are equidistributed for each y ∈ [0, 1]. It suffices to show that∫

Q
(MMf̃ + MyMxf̃) ∼

∫
Q

(MMf + MyMxf) .

Well,∫
Q

(MMf + MyMxf) .
∫

Q
(MxMxf + MyMxf) ∼

∫
Q

MHLMxf (by (10))

∼
∫

Q
MHLMxf̃
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(the last step by Theorem 5, since ‖Mxf‖L log L ∼ ‖Mxf̃‖L log L). Further,∫
Q

MHLMxf̃ ∼
∫

Q
(MxMxf̃ + MyMxf̃) (by (10))

=
∫

Q
(MMf̃ + MyMxf̃) .

So ∫
Q

(MMf + MyMxf) .
∫

Q
(MMf̃ + MyMxf̃) .

It suffices then to prove the reverse of this last inequality. This step is
somewhat involved and will be the focus of the remainder of this paper.

It will be technically convenient to work with the dyadic analogues of the
maximal operators MHL, M , M , Mx, and My. Recall that a dyadic interval
in [0, 1] is an interval of the form

[
k · 2j , (k + 1) · 2j

]
, where j is a nonpositive

integer and k is a nonnegative integer such that (k + 1) · 2j ≤ 1. We denote
the set of dyadic subintervals of [0, 1] by I∆. A dyadic square in Q is a set
of the form I × J , where I and J are dyadic intervals in [0, 1] of the same
length. We denote the set of dyadic squares in Q by S∆. We formally define
the dyadic maximal operators MHL

∆, M∆, M∆, M∆
x , and M∆

y as follows:

Definition 15. Let f be a measurable function supported on Q. The dyadic
Hardy–Littlewood maximal function M∆

HLf is defined on Q by

M∆
HLf(p) = sup

p∈S∈S∆

1
|S|

∫
S
|f |.

The maximal function M∆f is defined by

M∆f (p1, p2) = sup
p1∈I∈I∆

1
|I|

∫
I

∫ 1

0
|f(x, y)| dy dx.

Similarly, we define M∆f , M∆
x f and M∆

y f by

M∆f (p1, p2) = sup
p2∈I∈I∆

1
|I|

∫ 1

0

∫
I
|f(x, y)| dy dx,

M∆
x f (p1, p2) = sup

p1∈I∈I∆

1
|I|

∫
I
|f (x, p2)| dx,

M∆
y f (p1, p2) = sup

p2∈I∈I∆

1
|I|

∫
I
|f (p1, y)| dy.

The dyadic Hardy–Littlewood maximal function M∆
HLf of a measurable

function f supported on [0, 1] is defined on [0, 1] by

M∆
HLf(p) = sup

p∈I∈I∆

1
|I|

∫
I
|f |.
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We will also require the following definition and theorem introduced in [3]:

Definition 16. Let β be a countable collection of Lebesgue measurable
subsets of the unit n-cube In in Rn of positive measure. A (possibly finite)
subset {Ri} of β is said to be a Córdoba–Fefferman collection with respect to
β if there exists an enumeration R̃1, R̃2, R̃3, . . . of the elements of {Ri} such
that

∣∣R̃i∩
⋃

j<i R̃j

∣∣ ≤ 1
2 |R̃i| for each i. In this case we write {Ri} ∈ CFC(β).

Theorem 17. Let β be a countable collection of Lebesgue measurable sub-
sets of the unit n-cube In in Rn of positive measure. Let β be such that for
any point x in In, x ∈ R for some R ∈ β. Define the maximal operator Mβ

on L1(In) by

Mβf(x) = sup
x∈R∈β

1
|R|

∫
R
|f(y)| dy.(13)

Suppose Mβ satisfies the (Tauberian) condition∣∣{x ∈ In : MβχE(x) ≥ 1
2}

∣∣ ≤ Cβ |E|(14)

for all measurable sets E ⊂ In. Then if f ∈ L1(In),∫
In

Mβf ∼ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .(15)

In particular,

1
2 sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi ≤
∫

In

Mβf ≤ 4 Cβ sup
{Ri}∈CFC(β)

∫
In

|f |
∑

i

χRi .

The maximal operators M , M , MHL, MS, and their corresponding dyadic
analogues satisfy the desired Tauberian condition, since MHL is of weak type
(1, 1). Also, as a matter of notation, if a given maximal operator Mβ is
naturally associated to a collection β, as, say, MS is associated to the set
of rectangles with sides parallel to the axes, we will frequently denote the
Córdoba–Fefferman collection CFC(β) by CFC (Mβ).

We will need the the following lemma:

Lemma 18. Suppose f is a measurable function supported on Q. Then∫
Q

M∆M∆
x f .

∫
Q

M∆M∆f +
∫

Q
M∆

y M∆
x f.(16)

Proof. By Equations (10) and (12) we realize∫
Q

Mxf .
∫

Q
Mf +

∫
Q

Myf .

Since
∫
Q Mxf ∼

∫
Q M∆

x f , and in view of the inequality∣∣{p ∈ Q : Mxf(p) > α}
∣∣ < 100

∣∣{p ∈ Q : M∆
x f(p) > 1

100α
}∣∣(17)
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valid for all α > 0, we see by symmetry and the Fubini theorem that∫
Q

M∆
x f .

∫
Q

M∆f +
∫

Q
M∆

y f .(18)

Hence ∫
Q

M∆
x M∆

x f .
∫

Q
M∆M∆

x f +
∫

Q
M∆

y M∆
x f .(19)

If
∫
Q M∆

x M∆
x f .

∫
Q M∆

y M∆
x f we’re done, since

∫
Q M∆M∆

x f .
∫
Q M∆

x M∆
x f .

So we may assume without loss of generality that∫
Q

M∆
x M∆

x f .
∫

Q
M∆M∆

x f.

Hence it is enough to prove the following:

Lemma 19. Suppose f is a measurable function supported on Q such that∫
Q M∆

x M∆
x f .

∫
Q M∆M∆

x f . Then
∫
Q M∆

x M∆
x f .

∫
Q M∆M∆f .

Proof. We first prove the following claim:

Claim 20. Suppose f ∈ L∞([0, 1]). Let ε > 0. Then there exists {Ri} ∈
CFC(M∆

HL) such that:

(i) M∆
HLf ∼

∑
i

1
|Ri|

(∫
Ri
|f |

)
χRi in [0, 1] except on a set of measure less

than ε; and
(ii)

∫ 1
0 M∆

HLM∆
HLf ∼

∫ 1
0 |f |

(∑
i χRi

)2.

Proof. We may assume without loss of generality that f is a smooth non-
negative function and ‖f‖L(log L)2([0,1]) = 1. Hence ‖f‖1 ≤ 1. Let ` be
the largest integer such that 2` < ‖f‖1. Take the Calderón–Zygmund
decomposition of f with respect to 2`, yielding intervals {Q′

1,i}i∈Z+ . Let
{Q1,i}i=1,...,j1 ⊂ {Q′

1,i}i∈Z+ such that∣∣⋃∞
i=1 Q′

1,i\
⋃j1

i=1 Q1,i

∣∣ < ε/2.

(Note here that Q1,1 = [0, 1], and j1 = 1.)
We continue by induction. Suppose {Qk,i}i=1,...,jk

has been selected. Take
the Calderón–Zygmund decomposition of f with respect to 2`+2k, yielding
intervals {Q′

k+1,i}i∈Z+ . Let {Qk+1,i}i=1,...,jk+1
⊂ {Q′

k+1,i}i∈Z+ be such that⋃
j Qk+1,j ⊂

⋃
j Qk,j and

∣∣⋃
j Q′

k+1,j\
⋃

j Qk+1,j

∣∣ < ε/2k+1.
In this manner, we obtain intervals

Q1,1, . . . , Q1,j1 , Q2,1, . . . , Q2,j2 , . . . , Qm,1, . . . , Qm,jm ,(∗)

where m is the largest integer such that 2`+2(m−1) < ‖f‖∞. Let N be the
union of all the Q′

i,j that are not on the list (∗). Note |N | < ε.
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Let p ∈ [0, 1]\N . Let Qp be the smallest interval on the list (∗) that
contains p. Note that

M∆
HLf(p) ∼ 1

|Qp|

∫
Qp

f ∼
∑
i,j

1
|Qi,j |

(∫
Qi,j

f

)
χQi,j (p).

Also, for almost every p ∈ [0, 1]\N , if f(p) > 4j ≥ 1 then p ∈ ∪iQj,i. Hence
p lies in at least j intervals listed in (∗).

Let R1 = Qm,1, R2 = Qm,2, . . . , Rjm = Qm,jm , Rjm+1 = Qm−1,1, . . . ,
Rjm+jm−1 = Qm−1,jm−1 , . . . , Rj1+···+jm = Q1,j1 .

If j < k, we have
∣∣Rk ∩

⋃k−1
j=1 Rj

∣∣ ≤ 1
2 |Rk| by the Calderón–Zygmund

construction of the Qi,j . To see this consider, say, Q1,1 = [0, 1]. Now

1
|Q1,1|

∫
Q1,1

f ≤ 2`+1.

Suppose
∣∣Q1,1 ∩

⋃
i Q2,i

∣∣ > 1
2 |Q1,1|. Then

1
|Q1,1|

∫
Q1,1

f ≥ 1
|Q1,1|

∑
i:

|Q2,i∩Q1,1|6=0

∫
Q2,i

f

>
1

|Q1,1|
∑

i:
|Q2,i∩Q1,1|6=0

∫
Q2,i

2`+2

=
1

|Q1,1|
2`+2

∣∣∣Q1,1 ∩
⋃

i Q2,i

∣∣∣ > 2`+2 · 1
2 = 2`+1,

contradicting
1

|Q1,1|
∫
Q1,1

f ≤ 2`+1. Likewise, if Qj,k is on the list (∗),∣∣Qj,k ∩ union of the Qr,s following Qj,k on the list (∗)
∣∣ ≤ 1

2 |Qj,k| .

Hence {Ri} ∈ CFC
(
M∆

HL

)
.

So there exists {Ri} ∈ CFC(M∆
HL) such that

M∆
HLf(p) ∼

∑
i

1
|Ri|

( ∫
Ri

f

)
χRi(p)

except on a set of measure less than ε. Condition (i) is thus satisfied by {Ri}.
We now show that condition (ii) is satisfied by the same Córdoba–Fefferman
collection {Ri} as well.

We have already demonstrated that, if p ∈ [0, 1]\N and 4j+1 ≥ f(p) ≥
4j > 1, then p lies in at least j of the Ri. Because in this case

f(p)(log(3 + f(p)))2 ∼ f(p) (log(3 + 4j))2 ∼ f(p) j2,
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we obtain

f(p)(log(3 + f(p)))2 . f(p)
(∑

i

χRi(p)
)2

.

If f(p) < 4, then

f(p)(log(3 + f(p)))2 . f(p) . f(p)
(∑

i

χRi(p)
)2

,

since [0, 1] is one of the Ri.
Let ε be small enough that∫ 1

0
f (log(3 + f))2 ∼

∫
[0,1]\N

f (log(3 + f))2.

Since∫
[0,1]\N

f (log(3 + f))2 .
∫

[0,1]\N
f

(∑
i

χRi

)2

. ‖f‖L(log L)2([0,1])

(the latter inequality holding by duality), ‖f‖L(log L)2([0,1]) = 1, and∫ 1

0
M∆

HLM∆
HLf ∼ ‖f‖L(log L)2([0,1]),

we see that
∫ 1
0 M∆

HLM∆
HLf ∼

∫ 1
0 f

(∑
i χRi

)2, as desired. �

Corollary 21. Let ε > 0 and f ∈ L∞(Q). There exists {Ri} ∈ CFC(M∆)
such that:

(i) M∆f ∼
∑

i

1
|Ri|

(∫
Ri
|f |

)
χRi on Q except on a set of measure less

than ε; and
(ii)

∫
Q M∆M∆f ∼

∫
Q |f |

(∑
i χRi

)2.

Proof. Apply Claim 20 and the Fubini theorem. �

Lemma 22. Let {Ri}, {Si} be in CFC(M∆). Then∑
j

1
|Rj |

( ∫
Rj

∑
i

χSi

)
χRj .

(∑
i

χSi + 1
)(∑

i

χRi + 1
)

.

Proof. Let j ∈ Z+. It is enough to show that if p ∈ Rj , then

1
|Rj |

∫
Rj

∑
i

χSi .

(∑
i

χSi(p) + 1
)

.

Let {Si,int} denote the set of the Si contained in Rj . Let {Si,ext} denote
the set of the Si strictly containing Rj . Note that, for some positive finite
constant C,

1
|Rj |

∫
Rj

∑
i

χSi,int ≤ C
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since
∫ 1
0 | log x| dx = 1. Now, 1

|Rj |
∫
Rj

∑
χSi,ext equals the number of Si,ext

strictly containing Rj , which equals
∑

χSi,ext(p). So

1
|Rj |

∫
Rj

∑
i

χSi,ext .
∑

i

χSi,ext(p) .
∑

i

χSi(p).

Hence, as desired,

1
|Rj |

∫
Rj

∑
i

χSi =
1
|Rj |

∫
Rj

(∑
i

χSi,int +
∑

i

χSi,ext

)
.

∑
i

χSi(p) + 1. �

Lemma 23. Suppose f , g, and h are nonnegative measurable functions on
[0, 1]. Also suppose

∫ 1
0 fg2 ≤

∫ 1
0 fgh. Then

∫ 1
0 fg2 ≤

∫ 1
0 fh2.

Proof.
∫ 1
0 fg2 ≤

∫ 1
0 fgh implies

∥∥f1/2g
∥∥2

2
≤

∫ 1

0
fgh ≤

∥∥f1/2g
∥∥

2

∥∥f1/2h
∥∥

2
.

Hence ∥∥f1/2g
∥∥

2
≤

∥∥f1/2h
∥∥

2
.

So
∫ 1
0 fg2 ≤

∫ 1
0 fh2. �

We now finish the proof of Lemma 19, and hence the proof of Lemma 18
as well. Without loss of generality, we assume f is a nonnegative smooth
function supported on Q.

Let 0 < ε = 2−k < 1, k ∈ Z+. Let Rx,ε denote the set of dyadic rectangles
in Q of height ε. Let the maximal operator M∆

x,ε be given by

M∆
x,εf(p) = sup

p∈R∈Rx,ε

1
|R|

∫
R
|f |.

For sufficiently small ε, M∆
x,εf ∼ M∆

x f . Assume ε is indeed sufficiently small.
Now, since

∫
Q M∆

x M∆
x f ≤

∫
Q M∆M∆

x f by hypothesis, we realize by
Theorem 17 and Claim 20 that for some {Ri} ∈ CFC

(
M∆

x,ε

)
and some
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{Ai} ∈ CFC
(
M∆

)
,∫

Q
M∆

x M∆
x f ∼

∫
Q

f

(∑
i

χRi

)2

.
∫

Q

(∑
i

χAi

)(∑
j

1
|Rj |

(∫
Rj

f

)
χRj

)

∼
∫

Q
f

(∑
j

1
|Rj |

∫
Rj

∑
i

χAi

)
χRj

.
∫

Q
f

(∑
j

χRj

)(∑
j

χAj

)
,

the latter inequality being justified by Lemma 22 and the fact that, letting
Bj,k = [0, 1]× [j · 2−k, (j + 1)2−k], we have

{Ai ∩Bj,k}i∈Z+,0≤j≤2k−1 ∈ CFC
(
M∆

x,ε

)
.

(Recall here that ε = 2−k.)
By Lemma 23, we see that the above result∫

Q
f

(∑
i

χRi

)2

.
∫

Q
f

(∑
j

χRj

)(∑
j

χAj

)
implies ∫

Q
f

(∑
i

χRi

)2

.
∫

Q
f

(∑
i

χAi

)2

.
∫

Q
M∆M∆f .

Hence
∫
Q M∆

x M∆
x f .

∫
Q M∆M∆f , as desired. �

Corollary 24. Suppose f is a measurable function supported on Q. Then∫
Q

MxMxf .
∫

Q
MMf +

∫
Q

MyMxf .

Proof. By (19) we have∫
Q

M∆
x M∆

x .
∫

Q
M∆M∆

x f +
∫

Q
M∆

y M∆
x f .

Applying Lemma 19, we see that∫
Q

M∆
x M∆

x .
∫

Q
M∆M∆f +

∫
Q

M∆
y M∆

x f .

Hence, by (17) we have∫
Q

MxMxf .
∫

Q
MMf +

∫
Q

MyMxf . �
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We are now in position to complete the proof of Theorem 14 by showing
that ∫

Q
(MMf̃ + MyMxf̃) .

∫
Q

(MMf + MyMxf) .

We have
∫
Q MyMxf̃ .

∫
Q MyMxf by Corollary 10, and∫

Q
MMf̃ =

∫
Q

MxMxf̃ ∼
∫

Q
MxMxf .

∫
Q

(MMf + MyMxf)

by Corollary 24. So∫
Q

(MMf̃ + MyMxf̃) .
∫

Q
(MMf + MyMxf) ,

as desired. �

References
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