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Kentaro Hamachi

We study quantum moment maps of G-invariant star prod-
ucts, a quantum analogue of the moment map for classical
Hamiltonian systems. Introducing an integral representation,
we show that any quantum moment map for a G-invariant
star product is differentiable. This property gives us a new
method for the classification of G-invariant star products on
regular coadjoint orbits of compact semisimple Lie groups.

1. Introduction

Deformation quantization was introduced in the 1970s by Bayen, Flato,
Fronsdal, Lichnerowicz and Sternheimer [2]. It is one of the important meth-
ods for quantizing classical systems. This quantization scheme provides an
autonomous theory based on deformations of the ring of classical observables
on a phase space (Poisson algebra), and does not involve a radical change
in the nature of the observables.

Star products invariant under the action of a Lie group G have been
studied with increasing generality from the beginning of the deformation
quantization. They appear naturally in the quantization of classical systems
with group symmetries, or in the star representation theory of Lie groups.

Quantum moment maps have been introduced in [21], and are the natural
quantum analogue of moment maps on Hamiltonian G-spaces [16]; see Defi-
nition 3.1. A quantum moment map plays an important role for the study of
G-invariant star products, similar to the one played by a (classical) moment
map for classical systems. One of the interesting applications of quantum
moment maps is to provide an example of quantum dual pair [21, 20]. An-
other remarkable result is the quantum reduction theorem, which says that
a quantization commutes with reduction [9]. We also give an application of
quantum moment map by providing an invariant, called c∗ in [12], for a G-
invariant star product ∗ on a G-transitive symplectic manifold [12]. This c∗
is computed with the help of a quantum moment map and depends only on
the class of G-equivalent star products. In [12, 13], we give a few examples
of c∗ for a SO(3)-invariant star product on the coadjoint orbit S2.

But there are serious problems with quantum moment maps. First, there
is no obvious way to compute an explicit expression for a quantum moment
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map for a given G-invariant star product. We provide a partial answer to
this problem in [13]. Another important problem is the differentiability
of quantum moment maps. Originally, a quantum moment map is defined
only on the universal enveloping algebra U(gλ), that is, the set of polynomi-
als on g∗. But this definition of quantum moment maps does not directly
imply its differentiability. A priori, a quantum moment map has only an
algebraic meaning, and cannot be studied in the category of differentiable
deformations, which can be inconvenient.

In this article, we give another expression for quantum moment maps
which is differentiable. This expression is an analogue of Weyl correspon-
dence that can be formally written as

Φ∗(u) =
∫

Fu(ξ) exp∗(iξΦ∗(X)) dξ,

where Fu and Φ∗ denote the Fourier transform of u and the quantum moment
map of ∗ on g respectively. To make sense of this formula, it is necessary
to address two questions: defining the function exp∗(iξΦ∗(X)) and giving a
meaning to the integral.

For the first, we simply define exp∗(iξΦ∗(X)) by power series with respect
to the star product. We show that this naive definition of exp∗(iξΦ∗(X))
is well-defined and it is a product of eiξΦ0(X) and a polynomial in ξ. This
is an ingredient to make the quantum moment map differentiable. For the
second question, since the domain of a quantum moment map contains any
polynomial, u in the formula above should be considered as a tempered dis-
tribution. In fact, for any slowly increasing infinitely differentiable function
u, one can provide the integration as

F−1
x

[
Fξ[u](ξ) exp∗(iξΦ∗(X))e−iξΦ0(X)

]
|x=Φ0(X) [18].

We prefer to use oscillatory integrals rather than tempered distributions in
order to make computations easier. We give a brief review on oscillatory
integrals in Appendix A; see also [15].

As an application of the differentiability of a quantum moment map we
give a structure theorem for G-invariant star products on a coadjoint orbit
of compact semisimple Lie groups. The class of G-invariant star products is
parametrized by G-invariant Weyl curvature, that is, the second G-invariant
de Rham cohomology [3]. However, this classification does not give enough
information on the structure of these star products.

Regarding the structure of star products, there is an interesting study in
[10]. It provides a family of algebraic star products on a coadjoint orbit of
semisimple Lie group by a quotient algebra of the Gutt star product. This
work has the advantage of giving an explicit representation for this kind of
star products.
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We provide here a similar structure theory of G-invariant star products on
such orbits in the differentiable category as an application of the differentia-
bility of quantum moment maps. So we have another classification of such
star products by using quantum moment maps. Moreover, as a corollary of
the structure theorem, we answer the problem we introduced in [13]: Does
c∗ parametrize the class of G-invariant star products? The answer is yes for
regular coadjoint orbits of compact semisimple Lie groups.

The paper is organized as follows: in Section 2, we recall basic concepts
and results in deformation quantization, λ-formal analytic functions and the
Gutt star product on g. The main results are in Section 3: the exponential
exp∗(iξΦ∗(X)), an integral expression for Φ∗, and a proof of the differen-
tiability of Φ∗. In Section 4, we show the structure theorem of G-invariant
star products on a coadjoint orbit.

2. Preliminaries

2.1. Star products. Let (M,ω) be a symplectic manifold and C∞(M) the
set of smooth functions on M . The Poisson bracket on C∞(M) associated
to ω is denoted by { , }. Let C∞(M)[[λ]] be the space of power series in a
formal parameter λ with coefficients in C∞(M).

A (differentiable) star product is an associative multiplication ∗ on the
space C∞(M)[[λ]], having the form

u ∗ v = uv +
∞∑

n=1

(λ

2

)n
Cn(u, v) for any u, v ∈ C∞(M),

where each Ck is a bidifferential operator annihilating constants and

C1(u, v)− C1(v, u) = 2{u, v}.

In the situation where a Lie group G acts on M , a star product ∗ is said to
be G-invariant if g(u ∗ v) = gu ∗ gv for any u, v ∈ C∞(M)[[λ]] and g ∈ G,
where gu(x) = u(g−1x) for x ∈ M . There exists a star product on any
symplectic manifold [5, 17, 7], and the existence of G-invariant star products
is equivalent to the existence of a G-invariant connection on M [21, 8]. When
G is compact, G-invariant connections always exist and consequently there
always exist G-invariant star products on M .

Two star products ∗1 and ∗2 on C∞(M)[[λ]] are said to be formally equiv-
alent if there is a formal series

T = Id +
∞∑

n=1

λnTn

of differential operators on C∞(M) annihilating constants such that u∗2v =
T (T−1u ∗1 T−1v). In this case, T is called an equivalence between ∗1 and
∗2, and ∗2 is denoted by ∗T

1 . If ∗1 and ∗2 are equivalent G-invariant star



130 KENTARO HAMACHI

products and if the equivalence T is G-invariant, then ∗1 and ∗2 are said to
be formally G-equivalent and T is called G-equivalence; see also [4, 3].

2.2. Formal analytic functions. We now make some simple but useful
remarks on the convergence of the power series valued in C[[λ]], that will be
needed for calculus of functions in Cω(Rn)[[λ]].

Definition 2.1. A function u = u0+λu1+· · · ∈ C∞(Rn)[[λ]] is called formal
analytic if each ui is analytic on Rn. We denote the set of formal analytic
functions by Cω(Rn)[[λ]].

Let u and v be formal analytic functions. We define the composition u(v).
If u is a polynomial, there is no difficulty: just substitute v in u. For the
general case, we define the composition by using power series. We begin
with the following definition:

Definition 2.2. Let aJ =
∑∞

k=0 aJ,kλ
k ∈ C[[λ]] be a multi-indexed sequence

with respect to J = (j1, . . . , jn). The series
∑

J aJ is said to converge
formally absolutely if, for any k, the series

∑
J aJ,k converges absolutely.

If a power series
∑

J aJyJ converges formally absolutely for some radius
ρ > 0, it defines a formal analytic function on |y| < ρ.

Let pj(x) =
∑∞

k=1 pj
k(x)λk : Rm → λRn[[λ]], j = 1, . . . n, be a formal

analytic map. A formal differential operator p∂ is defined by ((p∂)u)(y) =∑
pj(x)(∂ju)(y) for any smooth function u : Rn → R. We define a formal

operator ep∂ for u by

(ep∂u)(y) = u(y) +
∑
0<|J |

1
|J |!

pJ(x)(∂Ju)(y).(1)

Here |J | = j1+· · ·+jn, pJ = (p1)j1 . . . (pn)jn and ∂J = (∂/∂y1)j1 . . . (∂/∂yn)jn .
Note that the right-hand side converges with respect to the filtration of λ
since deg p > 0. It is easy to show that ep∂u is an automorphism, that is,
ep∂(u1u2) = (ep∂u1)(ep∂u2).

If u is a polynomial on Rn then u(y +p(x)) is a function of (x, y) that can
be defined by substituting y+p(x) in u, and we have u(y+p(x)) = (ep∂u)(y).
If u is given by a power series, u(y) =

∑
J aJyJ , one can see that the series∑

J aJ(y + p(x))J is equal to (ep∂u)(y) as formal power series in y. Since
(ep∂u)(y) converges formally absolutely on the same domain of y ∈ Rn where∑

J aJyJ converges, we can define u(y+p(x)) =
∑

J aJ(y+p(x))J as a formal
analytic function. Therefore we can define u(v) for any formal analytic map
v : Rm → Rn[[λ]], and u(v) = (e(v−v0)∂u)(v0) holds, where v = v0 +v1λ+ · · · .
Definition 2.3. Let u : Rn → R be an analytic map and v : Rm → Rn[[λ]]
a formal analytic map. Then we define a formal analytic map u(v) : Rm →
R[[λ]] by the power series

u(v(x)) =
∑
J

aJ(v(x))J ,
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where u =
∑

J aJyJ .

Remark. The equation

u(v(x)) = (e(v−v0)(x)∂u)(v0(x))(2)

holds for any formal analytic map, and it gives the Taylor theorem for formal
analytic functions.

2.3. The Gutt star product. Let g be a real Lie algebra and g∗ its dual.
The universal enveloping algebra of g is denoted by U(g), and the universal
symmetric algebra of g by S(g). We also denote the space of polynomials on
g∗ by Pol(g∗). Let g[[λ]] be the set of formal power series in λ with coefficients
in g. We define a Lie algebra structure [ , ]λ on g[[λ]] by [ξ, η]λ = λ[ξ, η] for
any ξ, η ∈ g and extend it by λ-linearity, where [ , ] is the Lie bracket of g.
We denote this Lie algebra by gλ. One can introduce a grading on gλ by
assigning degree 2 to ξ ∈ g and to λ, and [ , ]λ has degree 0. This grading
induces a grading on the universal enveloping algebra U(gλ) of gλ.

It is well-known that the space of smooth functions on g∗ admits a natural
Poisson structure defined by the Kirillov–Poisson bracket Π. For any smooth
functions u and v on g∗, Π is given by Π(u, v)(µ) =

〈
[du(µ), dv(µ)], µ

〉
, where

du(µ) is an element of g considered as 1-form on g∗.
S. Gutt has defined a star product on g∗ [11]. We shall call this product

the Gutt star product, denoted by ∗G. The Gutt star product can be directly
obtained by transposing the algebraic structure of U(gλ) to C∞(g∗)[[λ]]. This
is achieved through the natural isomorphism between Pol(g∗)[[λ]] and S(gλ)
and with the help of the symmetrization map s : S(gλ) → U(gλ). For
polynomials u and v, the Gutt star product is given by

u ∗G v = s−1(s(u) · s(v)),(3)

where · is the product of U(gλ). Formula (3) defines an associative differen-
tiable deformation of the usual product on Pol(g∗) which admits a unique
extension to C∞(g∗)[[λ]].

As a direct consequence of Equation (3) ∗G is a Weyl star product, that is,
for any linear function ξ on g∗, we have ξ∗

Gk = ξk, where ξ∗
Gk = ξ ∗G · · ·∗G ξ

(k factors). Moreover, ∗G is g-covariant,

ξ ∗G η − η ∗G ξ = 2λΠ(ξ, η) for ξ, η ∈ Lin(g∗),

and Ad∗(G)-invariant,

g(u ∗G v) = (gu) ∗G (gv) for u, v ∈ C∞(g∗)[[λ]], g ∈ G.

There is a characterization of the Gutt star product:

Proposition 2.1 ([6]). The Gutt star product is the unique g-covariant
Weyl star product on (g∗,Π). Any g-covariant star product on (g∗,Π) is
equivalent to the Gutt star product.
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Let ξ =
∑∞

k=0 ξkλ
k ∈ Lin(g∗)[[λ]] ∼= gλ. Then a power series

eξ =
∞∑

k=0

1
k!

ξk(4)

can be defined in the sense of formal absolute convergence, and satisfies
Equation (2). A simple computation implies that there are polynomials
pk(ξ1, ξ2, . . . , ξk) such that

eξ = eξ0

∞∑
k=0

pk(ξ1, ξ2, . . . , ξk)λk.(5)

Since ∗G is a Weyl star product, we also have

eξ = exp∗G(ξ) ≡
∞∑

k=0

1
k!

ξ∗
Gk.

For any ξ, η ∈ gλ, we denote by CHλ(ξ, η) the Campbell–Hausdorff series
of a Lie algebra gλ. We note that CHλ(ξ, η) is an element of gλ since [ , ]λ
has degree 0 and CHλ converges with respect to the filtration of λ.

Since ∗G is g-covariant, we have exp∗G(ξ)∗Gexp∗G(η) = exp∗G(CHλ(ξ, η)),
that is,

eξ ∗G eη = eCHλ(ξ,η) for ξ, η ∈ gλ.(6)

Therefore, the set Gλ ≡ {eξ : ξ ∈ gλ} ⊂ Cω(g∗)[[λ]] is closed under multipli-
cation by ∗G. It is also easy to show that Gλ is a group.

2.4. Oscillatory integral formula for star products. For later use, we
provide an oscillatory integral expression of the Gutt star product. We shall
use the notations and the definitions given in Appendix A for oscillatory
integrals; see also [15].

Definition 2.4. A function u ∈ C∞(Rn) has polynomial growth of degree
τ > 0 if for any multi-index I = (i1, i2, . . . , in), there is a constant CI such
that

|∂I
ζ u(ζ)| ≤ CI〈ζ〉τ ,

where 〈ζ〉 =
√

1 + |ζ|2. We denote the set of such functions by A0
τ .

Let A0 =
⋃

τ≥0Aτ . If we identify g∗ with Rn, A0[[λ]] is a subalgebra of
(C∞(g∗)[[λ]], ∗G), which contains all polynomials.

Definition 2.5. Let u ∈ A0. The oscillatory integral expression of u is
given by

u(ζ) = Os-
∫

eiα(ζ−β)u(α) dα dβ,

where the right-hand side means oscillatory integral.
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Since ∗G is differentiable, the ∗G operation commutes with integration.
Therefore we have the oscillatory integral expression of the Gutt star product
as follows: for any u, v ∈ A0,

u ∗G v(x) = Os-
∫

e−i(αβ+α′β′)f(α)g(α′)eiβx ∗G eiβ′x dα dα′ dβ dβ′

= Os-
∫

e−i(αβ+α′β′)f(α)g(α′)eCHλ(iβx,iβ′x) dα dα′ dβ dβ′.

We remark that eCHλ(iβx,iβ′x) ∈ A0[[λ]] × A0[[λ]] because of Equation (5).
Hence the computation above makes sense and A0[[λ]] is a subalgebra of
(C∞(g∗)[[λ]], ∗G).

3. Differentiability of quantum moment maps

This section is devoted to the study of quantum moment maps, a main
subject of this paper. The definition of quantum moment maps adopted
here is given in [21]; see Definition 3.1. This definition is a natural analogue
of the definition of classical moment maps in Hamiltonian systems.

However, quantum moment maps differ from their classical counterparts
in a significant feature, locality. In the classical case, giving a ring morphism
of C∞(g∗) into C∞(M) is equivalent to giving a differential map of M into
g∗; this is a consequence from the locality of the ring of functions and its
ring morphisms. So this implies that any ring morphism of Pol(g∗) into
C∞(M) has a natural extension to C∞(g∗). But the problem is not clear
for the quantum case. There is no guarantee that a homomorphism of star
algebras is local or differentiable.

We show here that any quantum moment map is differentiable.

3.1. Definition of quantum moment maps. Let (M,ω) be a symplectic
G-space and ∗ a G-invariant star product. We denote the star commutator
by [a, b]∗ = a ∗ b− b ∗ a.

Definition 3.1 ([21]). A quantum moment map is a homomorphism of as-
sociative algebras

Φ∗ : U(gλ) → C∞(M)[[λ]](7)

that satisfies

[Φ∗(ξ), u]∗ = λξu,(8)

where the right-hand side of (8) is the infinitesimal action of ξ ∈ g on
C∞(M)[[λ]].

It is easy to see that (7) is equivalent to

Φ∗([ξ, η]λ) = [Φ∗(ξ),Φ∗(η)]∗ for any ξ, η ∈ g.(9)
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On the existence and the uniqueness of quantum moment maps, some
simple criteria are known.

Theorem 3.1 ([21]). Let H∗
dR(M) be the de Rham cohomology group and

H∗(g, R) the Lie algebra cohomology group with coefficients in R. There
exists a quantum moment map if H1

dR(M) = 0 and H2(g, R) = 0.

Theorem 3.2 ([21]). The set of quantum moment maps of a G-invariant
star product is parametrized by H1(g, R).

The following proposition says that quantum moment maps are natural
analogues of the classical ones.

Proposition 3.1 ([21]). Let Φ∗ : Pol(g∗[[λ]]) → C∞(M)[[λ]] be a quantum
moment map. Then M is a Hamiltonian G-space. Moreover Φ∗ satisfies

Φ∗(u) = Φ0(u) + O(λ) for any u ∈ Pol(g∗),

where Φ0 : Pol(g∗) → C∞(M) is the corresponding classical moment map.

An important property of Φ∗ is its covariance under G-equivalence.

Proposition 3.2. Let ∗ be a G-invariant star product and Φ∗ a quantum
moment map of ∗. If ∗′ is a G-invariant star product which is G-equivalent
to ∗, then TΦ∗ is a quantum moment map of ∗′, where T is a G-equivalence
between ∗ and ∗′.

Proof. It is enough to show that
[
TΦ∗(X), f

]
∗′ = λXf , since TΦ∗ is an

algebra homomorphism from (Pol(g∗)[[λ]], ∗G) to (C∞(M)[[λ]], ∗′).

[TΦ∗(ξ), f ]∗′ = T
[
Φ∗(ξ), T−1f

]
∗ = T (λξT−1f) = λξf. �

Since quantum moment maps are parametrized by H1(g, R) we have:

Corollary 3.1. Assume H1(g, R) = {0}. Let ∗, ∗′ be G-invariant star prod-
uct and Φ∗,Φ∗′ quantum moment maps of ∗, ∗′ respectively. If ∗′ is G-
equivalent to ∗ then TΦ∗ = Φ∗′.

3.2. Exponential function of a quantum moment map. We define a
function exp∗(Φ∗(X)) in C∞(M)[[λ]] for X ∈ gλ. This function “generates”
Φ∗(Pol(g∗)), and we will use it to obtain another expression for Φ∗. An
important property of exp∗(Φ∗(X)) is that it is a product of eX and a
polynomial of X. This is essential for the differentiability of Φ∗.

Assume that ∗ is a G-invariant star product of Fedosov type. Recall that
Q, σ and ◦ denote the Fedosov quantization procedure corresponding to
∗, the projection of WD onto C∞(M)[[λ]] and the Weyl product on ΓW
respectively. See also Appendix B, where we give a brief summary of these
terms.
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Lemma 3.1. Let ξ = ξ0 + ξ1λ + · · · ∈ gλ. The series
∞∑

k=0

1
k!

Q(Φ∗(ξ))◦k(10)

converges λ-formally absolutely and uniformly on any compact subset of M ,
and defines an element of WD. Moreover, (10) has the expression

∞∑
k=0

1
k!

Q(Φ∗(ξ))◦k = eΦ0(ξ0)
∑
I,j

pI,j(Φ∗(ξ), ∂Φ∗(ξ), . . . )yIλj ,(11)

where the pI,j are polynomials in {Φ∗(ξ), ∂Φ∗(ξ), . . . }.

Proof. Decompose Q(Φ∗(ξ)) = Φ0(ξ0) + R(ξ), where Φ0 is the classical mo-
ment map, and deg R(ξ) ≥ 1. Since Φ0(ξ0) is a central element of ΓW , we
have [Φ0(ξ0), R(ξ)]◦ = 0, where [·, ·]◦ denotes the Weyl product commutator.
Therefore we have the (formal) equation

∞∑
k=0

1
k!

Q(Φ∗(ξ))◦k =
∞∑

k=0

1
k!

Φ0(ξ0)k
∞∑

k=0

1
k!

R(ξ)◦k.(12)

The last sum on the right converges with respect to the filtration of ΓW since
deg R(ξ) ≥ 1. So, it is easy to see that the right-hand side of (12) converges
absolutely and uniformly on any compact subset of M . Applying the Weyl
derivation D on (10) term by term, we see that (10) is a flat section.

To show the last statement, we express R(ξ) as

R(ξ) =
∑

|I|+j≥1

rI,j(Φ∗(ξ), ∂Φ∗(ξ), . . . )yIλj .(13)

Each rI,j is a polynomial in {Φ∗(ξ), ∂Φ∗(ξ), . . . }, since it is obtained by the
Fedosov quantization procedure. Thus each coefficient of yIλj in the series

∞∑
k=0

1
k!

R(ξ)◦k(14)

is also a polynomial. �

Definition 3.2. For any ξ ∈ gλ, the function exp∗(Φ∗(ξ)) in C∞(M)[[λ]] is
defined by

exp∗(Φ∗(ξ)) = σ

( ∞∑
k=0

1
k!

Q(Φ∗(ξ))◦k
)

.

In the proof of Lemma 3.1, setting ξ = αlXl, where {αl} ∈ Cn[[λ]] and
{Xl} is a basis of g, we have:

Corollary 3.2. exp∗(Φ∗(αlXl)) is a product of eαl
0Φ0(Xl) and a polynomial

in αl taking values in C∞(M)[[λ]].
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Proof. Since a quantum moment map is linear with respect to ξ = αlXl ∈
g[[λ]], each rI,j in (13) is also linear with respect to ξ and (14) is a polynomial
in αl. �

Lemma 3.2. Assume ξ, η ∈ gλ. Then

exp∗(Φ∗(ξ)) ∗ exp∗(Φ∗(η)) = exp∗
(
Φ∗(CHλ(ξ, η))

)
.(15)

Proof. By the definition of exp∗(Φ∗(ξ)),

Q
(
exp∗(Φ∗(CHλ(ξ, η)))

)
=

∑ 1
k!

Q
(
Φ∗(CHλ(ξ, η))

)◦k
=

∑ 1
k!

(
CH◦(Q(Φ∗(ξ)), Q(Φ∗(η)))

)◦k
,

where CH◦ denotes the Campbell–Hausdorff series with respect to the Weyl
product ◦ of the Weyl bundle ΓW . Since∑ 1

k!
(
CH◦(Q(Φ∗(ξ)), Q(Φ∗(η)))

)◦k
=

∑ 1
k!

(
Q(Φ∗(ξ))

)◦k ◦∑ 1
k!

(
Q(Φ∗(η))

)◦k
in ΓW , we have the lemma. �

For each multi-index J = (j1, j2, . . . , jn), define a differential operator

DJ
α =

(
−i

∂

∂α1

)j1
· · ·

(
−i

∂

∂αn

)jn

.

Lemma 3.3. Assume {αl} ∈ Rn. Then(
DJ exp∗(Φ∗(iαlXl))

)
|α=0 = Φ∗(XJ).(16)

Proof. Let X̃l = Q(Φ∗(Xl)).

DJ
(
Q(exp∗(Φ∗(iαlXl)))

)
|α=0 = DJ

( ∞∑
k=0

1
k!

(iαlX̃l)◦k
)∣∣∣

α=0

= DJ

(
1
|J |!

(iαlX̃l)◦|J |
) ∣∣∣

α=0

= Q(Φ∗(XJ)). �

3.3. Oscillatory integral expression for Φ∗. We shall provide another
expression for a quantum moment map Φ∗ by using exp∗(Φ∗(X)) and an os-
cillatory integral. This expression gives us a clear understanding of quantum
moment maps and enables us to show the differentiability of Φ∗.

Definition 3.3. Let {Xl} be a basis of g and {X l} its dual basis. We define
the map Φ∗ from A0 into C∞(M)[[λ]] as follows:

Φ∗(u) = Os-
∫

u(µX)e−iνµ exp∗(Φ∗(iνX)) dµ dν, u ∈ A0,(17)



DIFFERENTIABILITY OF QUANTUM MOMENT MAPS 137

where µX = µlX
l and νX = νlXl.

This definition makes sense since u(µX) exp∗(Φ∗(iνX)) ∈ A. It is easy
to see that the definition does not depend on a choice of a basis {Xl}.

Lemma 3.4. Φ∗ coincides with Φ∗ on polynomials.

Proof. Let XJ be a monomial on g∗. Then

Φ∗(XJ) = Os-
∫

βJe−iαβ exp∗(Φ∗(iαX)) dα dβ

= Os-
∫

e−iαβDJ
α exp∗(Φ∗(iαX)) dα dβ

= DJ
α exp∗(Φ∗(iαX))|α=0 = Φ∗(XJ),

where we have applied Equation (16) in the last line. �

So we shall also use the notation Φ∗ for Φ∗.
The following proposition says that exp∗(Φ∗(X)) can be considered as the

image of eX under a quantum moment map.

Proposition 3.3. Assume that pk = pk
j λ

j ∈ C[[λ]] satisfies pk
0 ∈ iR. Then

epX = epkXk ∈ A and Φ∗(epX) = exp∗(Φ∗(pX)).

Proof. Let pX = iaX + rX, where ak ∈ R and r ∈ λC[[λ]]. Then epX ∈ A
by Equation (5). By the definition of Φ∗,

Φ∗(epX) = Os-
∫

epµe−iµν exp∗(Φ∗(iνX)) dµ dν

= Os-
∫

eiaµerµe−iµν exp∗(Φ∗(iνX)) dµ dν

= Os-
∫

ei(a−ν)µ(erDν exp∗(Φ∗(iνX))) dµ dν

= Os-
∫

ei(a−ν)µ exp∗(Φ∗(i(ν − ir)X)) dµ dν

= exp∗(Φ∗(i(a− ir)X)) = exp∗(Φ∗(pX)),

where we have applied Equation (2). �

As a corollary of Proposition 3.3 and Lemma 3.2, we have

Φ∗(eiξ) ∗ Φ∗(eiη) = Φ∗(eiξ ∗G eiη).

Theorem 3.3. The quantum moment map Φ∗ is differentiable. Moreover,
if ∗ is of Fedosov type, there are functions SI,j ∈ C∞(M), I = (i1, . . . , in),
j = 0, 1, . . . such that

Φ∗(u) =
∞∑

j=0

λj
∑

0≤|I|≤2j

SI,jΦ0(DI
µu) for any u(µ) ∈ C∞(g∗).(18)
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Proof. First we assume that ∗ is of Fedosov type. By Corollary 3.2, we have
an expression for exp∗(Φ∗(iαlXl)):

eiαlΦ0(Xl)
∞∑

j=0

λj
∑

0<|I|≤2j

SI,jα
I ,

where SI,j ∈ C∞(M) depends on Φ∗(Xi) and on the Weyl connection D of
∗. By the definition of Φ∗, we have

Φ∗(u) = Os-
∫

u(µ)e−iµlν
l
exp∗(Φ∗(iνlXl)) dµ dν

=
∞∑

j=0

λj
∑

0<|I|≤2j

Os-
∫

u(µ)e−iµlν
l
eiνlΦ0(Xl)SI,jν

I dµ dν

=
∞∑

j=0

λj
∑

0<|I|≤2j

Os-
∫

u(µ)e−iνl(µl−Φ0(Xl))SI,jν
I dµ dν

=
∞∑

j=0

λj
∑

0<|I|≤2j

Os-
∫

SI,j(DI
µu)(µ)e−iνl(µl−Φ0(Xl)) dµ dν

=
∞∑

j=0

λj
∑

0<|I|≤2j

SI,jΦ0(DI
µu).

For a general G-invariant star product ∗′, we have a G-invariant star product
∗ of Fedosov type which is G-equivalent to ∗′ by Theorem B.3. If T denotes
a G-equivalence between ∗ and ∗′, then any quantum moment map Φ∗′ of ∗′
has the form TΦ∗. Therefore Φ∗′ is differentiable. �

By Theorem 3.3, Φ∗ admits a unique extension to C∞(g∗)[[λ]]. Since Φ∗
is an algebra homomorphism on polynomials on g∗, the differentiability of
Φ∗ implies that Φ∗ is an algebra homomorphism on C∞(g∗)[[λ]].

It is not difficult to compute SI,j for lower degrees in I, j. For instance,
S0,0 = 1, Sl,1 = Φ1(Xl), Slm,1 = {Φ0(Xl),Φ0(Xm)}, and so on. Therefore
Φ∗(u) = Φ0(u) + o(λ) for any u ∈ C∞(g∗).

3.4. Properties of Φ∗.

Proposition 3.4. A quantum moment map is a g-equivariant map from
C∞(g∗)[[λ]] to C∞(M)[[λ]]. Therefore, Φ∗ is G-equivariant if G is connected.

Proof. This is a direct consequence of the definition of quantum moment
maps and the G-invariance of ∗G and ∗: for any u ∈ C∞(g∗) and ξ ∈ g,

Φ∗(λξu) = Φ∗([ξ, u]∗G) = [Φ∗(ξ),Φ∗(u)]∗ = λξΦ∗(u). �

Proposition 3.5. If f ∈C∞(M)[[λ]] commutes with any Φ∗(u), u ∈C∞(g∗),
then f is a G-invariant function.
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Proof. It is easy. �

Proposition 3.6. A quantum moment map Φ∗ is surjective if and only if
its classical part Φ0 is surjective.

Proof. Assume that Φ0 is surjective. For u =
∑

uiλ
i ∈ C∞(g∗)[[λ]] and

ϕ ∈ C∞(M) the equation Φ∗(u) = ϕ is equivalent to

Φ0(u0) = ϕ,(19)

Φ0(uk) = −
k∑

j=1

Φj(uk−j) for any k > 0.(20)

One can solve this system of equations by induction, since Φ0 is surjective.
The converse is trivial. �

Lemma 3.5. Let ϕ be a smooth function on M . Assume there exists a
solution u ∈ C∞(g∗)[[λ]] of the equation Φ∗(u) = ϕ. Then u depends locally
on ϕ. More precisely, the dependence of u at J(q) on ϕ is described by
differentials of ϕ at q ∈ M , where J : M → g∗ is the dual form of Φ∗, that
is, (Φ0(u))(q) = u(J(q)).

Proof. Equation (19) says that u0(J(q)) depends on ϕ(q). Since Φ∗ is differ-
entiable, the right-hand side of Equation (20) also depends on differentials
of ϕ if u0, . . . , uk−1 depend on differentials of ϕ. �

3.5. Invariants for G-invariant star products on transitive spaces.
In this subsection we review the results of [12, 13], where we define invariants
for G-invariant star products on G-transitive symplectic manifolds.

Let M be a G-transitive symplectic manifold and ∗ a G-invariant star
product on M . We assume that there is a unique quantum moment map
Φ∗ for ∗. Let Z be the center of C∞(g∗), that is, the set of functions that
commute with any smooth function on g∗ with respect to the Gutt star
product. One can show that Z is equal to the set of G-invariant functions
on g∗. For any l ∈ Z we have

[
Φ∗(l),Φ∗(C∞(g∗))

]
∗ = Φ∗

(
[l, C∞(g∗)]∗G

)
= 0,

so that Proposition 3.5 implies Φ∗(l) is a G-invariant function on M . Since
M is transitive, Φ∗(l) is constant. Consequently, we make the following
definition:

Definition 3.4. Let M be a G-transitive symplectic manifold and ∗ a G-
invariant star product admitting a unique quantum moment map Φ∗. Define
a map c∗ : Z → C[[λ]] by c∗(l) ≡ Φ∗(l) for any l ∈ Z.

The following simple proposition is important:

Proposition 3.7. If ker Φ∗ = kerΦ∗′ then c∗ = c∗′.

Proof. Any function on C∞(g∗)[[λ]] of the form l − c∗(l) for l ∈ Z is an
element of ker Φ∗. Therefore if kerΦ∗ = kerΦ∗′ , we have Φ∗′(l − c∗(l)) = 0,
that is, c∗′(l) = c∗(l). �
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Corollary 3.3. If ∗′ is G-equivalent to ∗ then c∗ = c∗′.

This means that c∗ depends only on the class of G-equivalent star prod-
ucts. We have computed c∗ for a few examples in [13].

There is a natural question to ask: Does c∗ parametrize the class of G-
invariant star products on a G-transitive space? In the next section, we give
a complete answer of this question when M is a coadjoint orbit of a compact
semisimple Lie group.

4. Star products on regular coadjoint orbits of compact
semisimple Lie groups

Let G be a real compact semisimple Lie group andO ⊂ g∗ a regular coadjoint
orbit of G. O has a natural symplectic structure that is induced from the
Kirillov–Poisson structure Π.

Recall that there is a G-invariant star product on O since G is compact.
Since G is semisimple, Theorems 3.1 and 3.2 imply that for each G-invariant
star product ∗ on O there is a unique quantum moment map of ∗.

We study here G-invariant star products on O, and our goal is to present
a structure theory for them.

4.1. Structure theory. Let ∗ be a G-invariant star product on O and
Φ∗ = Φ0 + Φ1λ

1 + · · · a quantum moment map of ∗. The classical moment
map Φ0 is given simply by the pullback of the embedding map of O in g∗;
that is, Φ0 is surjective. Therefore, Proposition 3.6 implies that the quantum
moment map Φ∗ is also surjective. As a direct consequence:

Proposition 4.1. We have a G-equivariant isomorphism

C∞(g∗)[[λ]]/ ker Φ∗ ∼= C∞(O)[[λ]].(21)

Let ∗ and ∗′ be G-invariant star products. If we assume kerΦ∗ = kerΦ∗′ ,
Proposition 4.1 defines a morphism S : (C∞(O)[[λ]], ∗) → (C∞(O)[[λ]], ∗′).
Let ϕ be a smooth function on O. There exists u ∈ C∞(g∗)[[λ]] such that
Φ∗(u) = ϕ, and we define S(ϕ) ≡ Φ∗′(u). Lemma 3.5 and the differentiabil-
ity of Φ∗′ imply that the morphism S is differentiable. Therefore:

Lemma 4.1. ker Φ∗ = kerΦ∗′ if and only if ∗ is G-equivalent to ∗′.

As we have seen, kerΦ∗ = ker Φ∗′ implies c∗ = c∗′ . The next proposition
shows that if there are “good coordinates” on g∗, the converse also holds:

Proposition 4.2. Assume there are functionally independent G-invariant
functions pi : g∗ → R, 1 ≤ i ≤ r, such that O is given by the level set
{ξ ∈ g∗ : pi(ξ) = ci} for some regular value {ci} of {pi}. Then ker Φ∗ is
equal to the ideal of (C∞(g∗)[[λ]], ∗G) generated by {pi − c∗(pi) : 1 ≤ i ≤ r}.
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Proof. Let f = f0 + f1λ + · · · ∈ ker Φ∗. It is easy to see that f0 ∈ ker Φ0,
that is, f0 is null on O. So there are functions gi ∈ C∞(g∗) such that

f0 =
r∑

i=1

gi(pi − ci).(22)

Setting

f (0) =
r∑

i=1

gi ∗G (pi − c∗(pi)),(23)

we have f (0) ∈ ker Φ∗ and f
(0)
0 = f0. Applying the same argument to

(f−f (0))/λ inductively we find a sequence of functions f (k) satisfying

f =
∞∑

k=0

f (k)λk.(24)

Since each f (k) has the form (23), this completes the proof. �

Let I ⊂ Pol(g∗) be the set of polynomials on g∗ invariant under G. By
Chevalley’s theorem [19] one has I = C[p1, . . . , pr], where p1, . . . , pr are
algebraically independent homogeneous polynomials and r is the rank of g.
One can also see that any regular coadjoint orbit O is given by the level
set {ξ ∈ g∗ : p1(ξ) = c1, . . . , pr(ξ) = cr} for some regular value {cj} [14].
Therefore, {pj} satisfies the condition of Proposition 4.2. So we have the
inverse of Proposition 3.7.

Proposition 4.3. Let ∗, ∗′ be G-invariant star products and let Φ∗,Φ∗′ be
quantum moment maps of ∗, ∗′ respectively. Then c∗ = c∗′ implies ker Φ∗ =
ker Φ∗′. Moreover, if we take {pj} as the algebraically independent homoge-
neous polynomials obtained from Chevalley’s theorem, we have

ker Φ∗ = 〈pj − Φ∗(pj)〉,

where 〈pj−Φ∗(pj)〉 denotes the ideal of C∞(g∗)[[λ]] generated by pj−Φ∗(pj).

And we have also the following structure theorem:

Theorem 4.1. For any G-invariant star product ∗ on O, there are con-
stants c∗,j ∈ C[[λ]], j = 1, 2, . . . , r such that

(C∞(O)[[λ]], ∗) ∼= C∞(g∗)[[λ]]/〈pi − c∗,j〉.
Moreover, this isomorphism is G-equivariant.

Proof. Let Φ∗ be a quantum moment map of ∗. If we set c∗,j = Φ∗(pj), the
theorem is a direct consequence of Propositions 4.1 and 4.3. �

Corollary 4.1. There is a one-to-one correspondence between the classes
of G-invariant star products on O and c∗.
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4.2. Example. Coadjoint orbits of SO(3). Let O be a regular coadjoint
orbit of SO(3). It is well-known that O is a two-dimensional sphere in so(3)∗

given by the Casimir polynomial p(x, y, z) = x2 + y2 + z2 on so(3)∗ = R3;
that is, there is a real number r > 0 such that

O =
{
(x, y, z) ∈ g∗ : p(x, y, z) = r2

}
.

The class of SO(3)-invariant star products is parametrized by the second
equivariant de Rham cohomology H2

dR(O,R)SO(3). Let ∗ be a SO(3)-invariant
star product on O. Then p satisfies the conditions of Proposition 4.2, so that
ker Φ∗ is described by c∗(p) and we obtain(

C∞(O)[[λ]], ∗
) ∼= (

C∞(g∗)[[λ]], ∗G
)
/
〈
p− c∗(p)

〉
.(25)

Hence, G-invariant star products on O have the form of the right-hand side
of (25) and are parametrized by c∗(p). This gives another classification of
G-invariant star products on O.

Appendices

A. Oscillatory integrals

We provide here a brief review on oscillatory integrals in order to fix some
definitions and notations. The following is based on [15], with little modi-
fications adapted to our problem:

Definition A.1. A function a(ξ, x) ∈ C∞(Rn
ξ × Rn

x) is said to be of Am
τ -

class, where −∞ < m < ∞ and 0 ≤ τ , if for any multi-indices I and J ,
there exists a constant CI,J such that∣∣∂I

ξ ∂J
x a(ξ, x)

∣∣ ≤ CI,J〈ξ〉m〈x〉τ ,

where 〈ξ〉 =
√

1 + |ξ|2. Set

A =
⋃

−∞<m<∞

⋃
0≤τ

Am
τ .

For a(ξ, x) ∈ Am
τ , we define a family of seminorms |a|l, l = 0, 1, . . . , by

|a|l = max
|I+J |≤l

sup
(ξ,x)

{
|∂I

ξ ∂J
x a(ξ, x)|〈ξ〉−m〈x〉−τ

}
.

Then Am
τ becomes a Fréchet space. A subset B of A is called bounded if

there is a Am
τ such that B ⊂ Am

τ and supa∈B{|a|l} < ∞ for any l = 0, 1, . . . .
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Definition A.2. For any a(ξ, x) ∈ A, we define the oscillatory integral
Os[e−iξxa] by

Os[e−iξxa] ≡ Os-
∫

e−iξxa(ξ, x) dξ dx

=
1

(2π)n
lim
ε→0

∫
χ(εξ, εx)e−iξxa(ξ, x) dξ dx,

where χ(ξ, x) is any function of S(R2n
ξ,x) satisfying χ(0, 0) = 1.

Lemma A.1. If χ(x) ∈ S(Rn) satisfies χ(0) = 1 then

χ(εx) →
ε→0

1 (uniformly on compact sets),(26)

∂I
xχ(εx) →

ε→0
0 (uniformly on Rn, |I| > 0),(27)

and for any multi-index I there is a constant CI independent of 0 < ε < 1
such that for any σ such that 0 ≤ σ ≤ |I|,∣∣∂I

xχ(εx)
∣∣ ≤ CIε

σ〈x〉−(|I|−σ).(28)

Proof. (27) is clear since ∂I
xχ(εx) = ε|I|∂I

yχ(y)|y=εx. If |x| ≤ 1 then (28) is
obtained from the equality

∣∣∂I
xχ(εx)

∣∣ = εσ
(
ε(|I|−σ)|∂I

yχ(y)||y=εx

)
. If |x| > 1

and 0 ≤ σ ≤ |I|, we have

ε(|I|−σ)
∣∣∂I

yχ(y)|y=εx

∣∣ =
(
|y|(|I|−σ)|∂I

yχ(y)|
)
|y=εx

|x|−(|I|−σ)

≤ CI〈x〉−(|I|−σ) �

Theorem A.1. For any a ∈ A, Os[e−iξxa] is independent of the choice of
χ ∈ S satisfying χ(0, 0) = 1. For a ∈ Am

τ , if we take integers l, l′ satisfying

−2l + m < −n, −2l′ + τ < −n,(29)

then ∣∣〈x〉−2l′〈Dξ〉2l′{〈ξ〉−2l〈Dx〉2la(ξ, x)}
∣∣ ∈ L1(R2n)

and

Os[e−iξxa] = Os-
∫

e−iξx〈x〉−2l′〈Dξ〉2l′
(
〈ξ〉−2l〈Dx〉2la(ξ, x)

)
dξ dx.

Moreover, for a ∈ Am
τ there is a constant C such that∣∣Os[e−iξxa]

∣∣ ≤ C|a|2(l+l′).(30)
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Proof. Fix 0 < ε < 1. Integrating by parts, we have

Iε ≡
∫

e−iξxχ(εξ, εx)a(ξ, x) dξ dx

=
∫

e−iξx〈ξ〉−2l〈Dx〉2l(χ(εξ, εx)a(ξ, x)) dξ dx

=
∫

e−iξx〈x〉−2l′〈Dξ〉2l′
(
〈ξ〉−2l〈Dx〉2l(χ(εξ, εx)a(ξ, x))

)
dξ dx.

Lemma A.1 implies the set {χ(εξ, εx)}0<ε<1 is a bounded subset of A0
0, so

that for any I and J there is a constant CI,J independent of ε, a ∈ Am
τ such

that ∣∣∂I
ξ ∂J

x (χ(εξ, εx)a(ξ, x))
∣∣ ≤ CI,J |a|(|I|+|J |)〈ξ〉m〈x〉τ .

On the other hand, for any s, there is a constant Cs,I such that∣∣∂I
ξ 〈ξ〉s

∣∣ ≤ Cs,I〈ξ〉s−|I|,

obtained by induction from ∂ξj
〈ξ〉s = sξj〈ξ〉s−2. From these facts we deduce

that there is for any I a constant Cl,I independent of ε and a ∈ Am
τ and

such that∣∣∂I
ξ {〈ξ〉−2l〈Dx〉2l(χ(εξ, εx)a(ξ, x))}

∣∣ ≤ Cl,I |a|(2l+|I|)〈ξ〉m−2l〈x〉τ .

Hence there is a constant Cl,l′ independent of ε, a ∈ Am
τ such that

〈x〉−2l′〈Dξ〉2l′
{
〈ξ〉−2l〈Dx〉2l(χ(εξ, εx)a(ξ, x))

}
≤ Cl,l′ |a|(l+l′)〈ξ〉m−2l〈x〉τ−2l′ .

(31)

The right-hand side of (31) is in L1(R2n
ξ,x) because of (29). Hence Lebesgue’s

convergence theorem gives

Os[eiξxa] = lim
ε→0

Iε

(2π)2

=
1

(2π)2

∫
e−iξx〈x〉−2l′〈Dξ〉2l′{〈ξ〉−2l〈Dx〉2la(ξ, x))} dξ dx,

and proves (30). �

Theorem A.2. Assume {aj}∞j=1 is a bounded set of A and there is a ∈ A
such that

aj(ξ, x) → a(ξ, x) uniformly on compact sets of R2n.

Then

lim
j→∞

Os[e−iξxaj ] = Os[e−iξxa].
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Theorem A.3. The oscillatory integral satisfies the following formulas:

Os[e−iξxa(ξ, x)] = Os
[
e−i(ξ−ξ0)(x−x0)a(ξ−ξ0, x−x0)

]
, (ξ0, x0) ∈ R2n,

Os[e−iξxxIa] = Os[(−Dξ)Ie−iξxa] = Os[e−iξxDI
ξa],

Os[e−iξxξIa] = Os[(−Dx)Ie−iξxa] = Os[e−iξxDI
xa].

Theorem A.4. Let a = a(x) ∈ A be a function depending only on x. Then

Os-
∫

e−iξ(x−y)a(x) dξ dx = a(y).

B. The Fedosov construction of star products

We provide here a brief summary of the Fedosov construction, which is one
of the most useful method of constructing a star product on a symplectic
manifold (M,ω). For details see [7, 8].

A formal Weyl algebra Wx associated with TxM for x ∈ M is an asso-
ciative algebra with unit over C defined as follows: each element of Wx is a
formal power series in λ with coefficients being formal polynomials in TxM ,
that is, each element has the form

a(y, λ) =
∑
k,J

λkak,JyJ ,

where y = (y1, . . . , y2n) are linear coordinates on TxM , J = (j1, . . . , j2n) is
a multi-index and yJ = (y1)j1 · · · (y2n)j2n . The product ◦ is defined by the
Moyal–Weyl rule,

a ◦ b =
∞∑

k=0

(λ

2

)k 1
k!

ωi1j1 · · ·ωikjk
∂ka

∂yi1 · · · ∂yik

∂kb

∂yj1 · · · ∂yjk
,

where the ωlm are the coefficients of ω with respect to yj . If we assign
deg yj = 1 and deg λ = 2, the algebra Wx becomes a filtered algebra.

Let W =
⋃

x∈M Wx. Then W is a bundle of algebras over M , called the
Weyl bundle over M . Each section of W has the form

a(x, y, λ) =
∑
k,α

λkak,α(x)yα,(32)

where x ∈ M . We call a(x, y, λ) smooth if each coefficient ak,α(x) is smooth
in x. We denote the set of smooth sections by ΓW . It constitutes an
associative algebra with unit under the fibrewise multiplication.

Let ∇ be a torsion-free symplectic connection on M , which always exists
and ∂ : ΓW → ΓW ⊗ Λ1 be its induced covariant derivative. Consider a
connection on W of the form

Da = −δa + ∂a− 1
λ

[γ, a] for a ∈ ΓW(33)
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with γ ∈ ΓW ⊗ Λ1, where

δa = dxk ∧ ∂a

∂yk
.

Clearly, D is a derivation for the Moyal–Weyl product. A simple computa-
tion shows that

D2a =
1
λ

[Ω, a] for any a ∈ ΓW,

where

Ω = ω −R + δγ − ∂γ +
1
λ

γ2.

Here R = 1
4 iRijkly

iyj dxk ∧ dxl and Rijkl = ωimRm
jkl is the curvature tensor

of the symplectic connection.
A connection of the form (33) is called Abelian if Ω is a scalar 2-form,

that is, Ω ∈ Λ2[[λ]]. We call D a Fedosov connection if it is Abelian and
deg γ ≥ 3. For an Abelian connection, the Bianchi identity implies that
dΩ = DΩ = 0, that is, Ω is closed. In this case, we call Ω a Weyl curvature.

Theorem B.1 ([7]). Let ∇ be any torsion-free symplectic connection, and
Ω = ω + λω1 + · · · ∈ Z2(M)[[λ]] a perturbation of the symplectic form ω.
There exists a unique γ ∈ ΓW ⊗ Λ1 such that D given by Equation (33) is
a Fedosov connection which has Weyl curvature Ω and satisfies δ−1γ = 0.

We denote WD the set of smooth and flat sections, that is, sections a in
ΓW satisfying Da = 0. The space WD becomes a subalgebra of ΓW . Let σ
denote the projection of WD onto C∞(M)[[λ]] defined by σ(a) = a|y=0.

Theorem B.2 ([7]). Let D be an Abelian connection. For any a0(x, λ) ∈
C∞(M)[[λ]] there exists a unique section a ∈ WDsuch that σ(a) = a0. Thus
σ establishes an isomorphism between WD and C∞(M)[[λ]] as C[[λ]]-vector
spaces.

We denote the inverse map of σ by Q and call it a quantization procedure.
The Weyl product ◦ on WD is translated to C∞(M)[[λ]], yielding a star
product ∗. Namely, we set for a, b ∈ C∞(M)[[λ]]

a ∗ b = σ(Q(a) ◦Q(b)).

For G-invariant star products, there is a simple criterion.

Proposition B.1 ([8]). Let ∇ be a G-invariant connection, Ω a G-invari-
ant Weyl curvature and D the Fedosov connection corresponding to (∇,Ω).
The star product corresponding to D is G-invariant.

We study mainly star products of Fedosov type because of the following
theorem:
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Theorem B.3 ([3]). Every G-invariant star product is G-equivalent to a
Fedosov star product.
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