
Pacific
Journal of
Mathematics

INDUCTIVE ALGEBRAS FOR TREES

Giovanni Stegel

Volume 216 No. 1 September 2004



PACIFIC JOURNAL OF MATHEMATICS
Vol. 216, No. 1, 2004

INDUCTIVE ALGEBRAS FOR TREES

Giovanni Stegel

Let G be a locally compact group and π : G → U(H) a uni-
tary representation of G. A commutative subalgebra of BH
is called π-inductive when it is stable through conjugation
by every operator in the range of π. This concept general-
izes Mackey’s definition of a system of imprimitivity for π;
it is expected that studying inductive algebras will lead to
progress in the classification of realizations of representations
on function spaces. In this paper we take as G the automor-
phism group of a locally finite homogeneous tree; we consider
the principal spherical representations of G, which act on a
Hilbert space of functions on the boundary of the tree, and
classify the maximal inductive algebras of such representa-
tions. We prove that, in most cases, there exist exactly two
such algebras.

1. Introduction. Inductive algebras

Let G be a separable locally compact group and π : G → B(H) a unitary
representation of G on a Hilbert space H. A classical tool for studying the
realizations of π on function spaces is the concept of a system of imprimi-
tivity for π. In Mackey’s formulation a self-adjoint, weakly closed commu-
tative subalgebra A of B(H) is called a system of imprimitivity for π when
π(g−1)Aπ(g) = A for every g ∈ G. Given such an algebra, by Mackey’s
imprimitivity theorem [8, Theorem 3.10] there exist a G-space X, a measure
µ on X, a cocycle A and a Hilbert space H̃ such that:

• π is equivalent to the representation πX on L2(X, dµ, H̃) defined in
the following way:

(
πX(g)f

)
(x) = A(g, x)

(
dµ(g−1x)
dµ(x)

)1/2

f(g−1x).(1.1)

• Through the equivalence, A corresponds to L∞(X, dµ), regarded as
an algebra of multiplication operators on L2(X, dµ, H̃).

More generally, given π : G → B(H) as above, define a (not necessar-
ily self-adjoint) subalgebra of B(H) to be π-inductive algebras when it is
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commutative and stable through conjugation by π. An operator T ∈ B(H)
belongs to some π-inductive algebra if and only if

[T, π(g)Tπ(g−1)] = 0 for all g ∈ G.(1.2)

If π can be realized as acting on a space of functions on X (not necessarily
an L2-space) it often happens that there is an associated π-inductive algebra
of multipliers (not necessarily an L∞ one). Vice versa, a systematic search
for π-inductive algebras is one way to identify possible realizations of π.

Through Mackey’s theorem and the replacement a system of imprimitivity
by a strictly smaller one we get a quotient of the first realization. So it is
usually enough to study maximal systems of imprimitivity (those contained
in no strictly bigger one relative to the same representation). Accordingly,
we restrict ourselves here to the identification of maximal inductive algebras.

This approach to the identification of realizations was proposed by Tim
Steger. Although no result is known making the correspondence between
realizations and inductive algebras precise, or ensuring that restriction to
maximal algebras causes no loss of generality, this method precisely recovers
the classical realizations in examples about matrix groups studied by Vemuri
and Steger, suggesting that the failure of the approach must be connected
with the existence of somewhat unnatural realizations. For other represen-
tations unexpected maximal inductive algebras might exist, associated with
hitherto unknown realizations.

We review Steger and Vemuri’s work more closely, highlighting the dis-
tinction between systems of imprimitivity and inductive algebras found in
those cases. In [13], Vemuri dealt with the standard representation of the
Heisenberg group, where he found that all maximal inductive algebras are
self-adjoint, hence imprimitivity systems. For the three-dimensional Heisen-
berg group he confirms that no realization exists besides the standard one
on L2(R2), those obtained from it through Fourier transform and (more
generally) through the metaplectic group, and finally those on L2((R/Z)2).
In [12], Steger and Vemuri dealt with representations of SL(2,R); see [7,
Chapter II, 5-6]. The principal series can be realized in two different ways
on L2(∂D), where D is the unit disc. Correspondingly, there exist exactly
two maximal inductive algebras, each identifiable in the corresponding real-
ization with the self-adjoint multiplier space L∞(∂D).

For the discrete series the natural realization is an L2-space of holomor-
phic functions on D and the multiplier algebra is H∞(D), which is the
only maximal inductive algebra. For the complementary series exactly two
maximal inductive algebras exist, and they are adjoint to each other. They
correspond to the two known realizations: a Sobolev space on the circle ∂D
and its dual.
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In this paper we take as G the full automorphism group of a homogeneous
tree and classify maximal inductive algebras for its spherical principal series
representations, which are realized on the boundary of the tree. There is
a close analogy here (see [1], [2]) with the principal series of SL(2,R), the
role of L2(∂D) being played now by L2(Ω) (where Ω is the boundary of the
tree) on which L∞(Ω) acts by multiplication.

As in Steger and Vemuri’s work our results show, by ruling out the exis-
tence of unexpected maximal inductive algebras, that the list of realizations
seems to be complete. A forthcoming paper will deal with further results
about the principal series representation. For example, there exists exactly
one more maximal inductive algebra for the midpoint representation. The
new algebra is still self-adjoint but, unlike the previous examples, it is not
maximal abelian. For general representations it will be shown in the same
paper that restricting to the subgroup of even automorphisms does not in-
crease the number of maximal inductive algebras.

A natural extension of this work would deal with complementary series
representations ([10]) of the automorphism group, which are obtained by
analytic continuation of the principal series. Since these representations
are realized on Sobolev-like completions of the space of locally constant
functions on the boundary it is easy to forecast, as in the case of SL(2,R),
that non-self-adjoint maximal inductive algebras (corresponding to spaces
of Sobolev space multipliers) do exist.

For cuspidal series representations ([10]), instead, one knows of realiza-
tions on discrete spaces. Indeed such a representation is constructed by
inducing from a compact open subgroup H of G. It remains to discover how
many inductive algebras exist for a given cuspidal series representation; also
whether inductive algebras other than `∞(G/H) exist, and what sorts of
realizations are associated to them.

Finally, we remark that these results ought to be extended to the principal
series of PGL(2,F) (for F a nonarchimedean local field such as the p-adics),
regarded as a group of automorphisms of its tree ([1], [2]).

2. Homogeneous trees and their automorphisms

The results quoted in this section are taken from [3, Chapter I], where
detailed proofs can be found.

2.1. Chains and geodesics on trees. A tree is a connected graph with
no circuits. This means that, given two vertices y, z, there exists exactly
one finite sequence {x0 = y, . . . , xn = z} (n ≥ 1) such that {xj , xj+1} is an
edge for j < n and xj 6= xj+2 for j < n − 1. Such a sequence is said to
be a chain of length n and is denoted by (x0, x1, . . . , xn) or [y, z]. Setting
d(y, z) = n if the chain connecting y with z has length n one defines an
integer-valued distance on the tree. The set {x ∈ X : d(x, y) ≤ k} (the
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sphere of radius n centered in y) will be denoted by B(y, k). If a reference
vertex O is fixed we will put |x| := d(x, O).

We shall suppose that, for some positive integer q, each vertex of the tree
has exactly q + 1 neighbours. Such a tree is said to be homogeneous and
locally finite with degree of homogeneity q + 1. Both the tree and its set
of vertices will be denoted by X ; note that X is infinite if q ≥ 1. We shall
always assume that q ≥ 2.

The concept of a chain can be generalized in a natural way by letting the
index j range over all of N or Z. One obtains, respectively, infinite and
doubly infinite chains. A doubly infinite chain is also called a geodesic.

Two infinite chains (xi)∞i=0 and (yi)∞i=0 are declared to be equivalent when,
for some n, we have xi = yn+i infinitely often (or, which is the same, from
some i on). This is indeed an equivalence relation on the set of infinite
chains; the quotient space Ω is called the boundary of the tree. Given a
vertex z, every class ω ∈ Ω contains exactly one infinite chain through z;
one can think of ω as its limit point.

Given two vertices x, y, we denote by X (x, y) the subset of X that can be
reached by chains starting in x and having [x, y] as a subchain. Call Ω(x, y)
the set of limit points of infinite chains contained in X (x, y). Varying x, y,
and considering intersections with Ω, one obtains a basis for a compact
topology on Ω. The family of all sets X (x, y)∪Ω(x, y) (x, y ∈ X ), together
with the singletons of X , is a basis for a compact topology on X ∪Ω. With
respect to this topology Ω is closed. Functions defined on Ω will be rep-
resented as in Figure 1. That particular example shows the function equal
to η on Ω(O, x), to θ on Ω(O, y) and to ε on Ω(x, O) ∼ Ω(O, y). When
no value is specified for some subset of Ω, it will be understood that the
function is zero there.

• • •............................................................................................................................................................................
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η

ε

θ

Figure 1.

2.2. The automorphism group G. A distance-preserving bijection of
the set of vertices of X is called an automorphism of X . The group of such
maps will be denoted by G. Notice that G also acts naturally on Ω.

Now, given O ∈X , let O′ be a neighbour of O. For x ∈X , let d(x, {O, O′})
= min(d(x,O), d(x,O′)) and{

µ (Ω(O, x)) = 1
2q
−d(x, {O, O′}) if x /∈ {O, O′}

µ (Ω(O, O′)) = µ (Ω(O′, O)) = 1
2 .

(2.1)
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It is easy to see that µ can be extended to a Borel probability measure on
Ω which is invariant through the subgroup K ′ that stabilizes {O, O′}. In
other words, given k ∈ K ′, the measure µk such that µk(A) = µ(k−1A) for
every Borel set A is equal to µ.

Remark 1. From now on we depart slightly from the line of [3], where a
different measure ν is considered. That measure is invariant through the
subgroup that fixes O. However ν ∼= µ and every result about ν applies,
with minor modifications, to the present case.

For general g, µg need not be equal to µ; the argument in [3, Section II.1]
nonetheless shows that µg

∼= µ, and the Radón-Nikodým derivative dµg/dµ
takes only finitely many values on Ω.

2.3. Spherical representations of G. Fix s ∈ R; for g ∈ G let P (g, ·) :=
(dµg/dµ) and put, for f ∈ H := L2(Ω, µ),

πs(g)f(ω) = P (g, ω)1/2+isf(g−1ω) for almost every ω ∈ Ω.(2.2)

The cocycle identity P (gh, ω) = P (g, ω)P (h, g−1ω) implies that πs is a
unitary representation of G on H. The family {πs : s ∈ R} is called the
principal spherical series of G.

Proposition 2.1. Let πs be a spherical representation of the principal series
and M the algebra of multiplication operators on H. Then M is a maximal
πs-inductive algebra.

Proof. For φ ∈ L∞(Ω), f ∈ H let Mφf := φ · f . Let (λ(g)φ)(ω) = φ(g−1ω)
for every g ∈ G. A computation shows that πs(g)Mφπs(g−1) = Mλ(g)φ, so
that M is πs-inductive. It is well-known that M is maximal commutative
(see [11, Proposition 4.7.6]), hence maximal πs-inductive. �

We recall now (see [3, Section II.3]) that πs is equivalent to π−s for every
value of s. Let Is be a unitary intertwining operator: then π−s |K′ fixes Is1
since πs |K′ fixes 1. So Is1 is constant, and by unitarity its modulus is one.
Since we are mainly interested in conjugation by Is, we may well assume
that Is1 = 1 for every s. With this normalization I−s = I−1

s for every s.
Since πs(g)1 = P 1/2+is(g, ·), the intertwining property of Is also gives

Is
(
P 1/2+is(g, ω)

)
= P 1/2−is(g, ω) for almost every ω ∈ Ω.(2.3)

It follows from Proposition 2.1 that, for every s, the algebra I−sMIs is
maximal πs-inductive. We will see in Corollary 3.4 that for most values of s
the new πs-inductive algebra is different from M, though clearly isomorphic
to it.
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3. Classification of maximal inductive algebras

3.1. Operators that transform according to a character. As will
soon be clear, the classification of maximal πs-inductive algebras can be
accomplished by studying their elements that transform in a simple way
under conjugation by πs (when the latter is restricted to certain compact
subgroups of G).

Definition 1. Fix two adjacent vertices O, O′; let K := KO ∩ KO′ (the
compact subgroup of automorphisms that fix both O and O′). Furthermore,
fix j ∈ G that exchanges O with O′, and let K ′ be, as in Section 2.2, the
compact subgroup of automorphisms that stabilize {O, O′}. Then K ′ =
K ∪ jK.

For k ∈ K ′, we put

χ(k) :=
{

1 if kO = O,
−1 if kO = O′.

(3.1)

Finally, we say that an operator T ∈ B(H) transforms according to χ when

πs(k)Tπs(k−1) = χ(k)T for every k ∈ K ′.(3.2)

If πs(k)Tπ(k−1) = T for every k ∈ K ′, we simply call T a K ′-invariant
operator. Denote by F the subalgebra of K ′-invariant operators and by E
the subspace of operators that transform according to χ.

It is easy to see that

M∩F = CM1 = CI,(3.3)

M∩ E = CMW ,(3.4)

where W := 1Ω(O, O′)−1Ω(O′, O). Indeed, for φ ∈ L∞, the condition Mφ ∈ F
means that, for any k ∈ K ′, φ(kω) = φ(ω) almost everywhere. Let dk be
the normalized Haar measure on K ′. Then, by Fubini’s Theorem,

0 =
∫

K′

∫
Ω
|φ(kω)− φ(ω)| dµ dk =

∫
Ω

∫
K′
|φ(kω)− φ(ω)| dk dµ

≥
∫

Ω

∣∣∣∣φ(ω)−
∫

K′
φ(kω) dk

∣∣∣∣ dµ.
The last integral over K ′ is independent of ω by transitivity, so φ must be
constant. The second statement is proved by applying the first one to the
function W · φ.

Lemma 3.1. Let A be a maximal πs-inductive algebra. If MW ∈ A, then
A = M.

Proof. Let T ∈ A and g ∈ G; since 1Ω(O′, O) = 1
2(W + I) we have[

Mλ(g)1Ω(O′, O)
, T

]
=

[
M1Ω(O′, O)

, π(g−1)Tπ(g)
]

= 0.
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Translates of 1Ω(O′, O) span a dense subspace of C(Ω), so T commutes with
the subalgebra

N = {Mφ : φ ∈ C(Ω)}
of M. But N ′ = M (see again [11, Section 4.7]), hence A = M by maxi-
mality. �

The next result describes, for any maximal inductive algebra A, the sub-
spaces A ∩ E and A ∩ F . This is the crucial step towards the classification
of maximal inductive algebras, which will be summarized in Section 3.3.

Theorem 3.2. Let πs be a representation of the principal spherical series,
with Re qis 6= 0, and let A be a maximal πs-inductive algebra. Then:

(i) A ∩ F = CI.
(ii) Either A ∩ E ⊆ CMW or A ∩ E ⊆ C(IsMW I−s).

Remark 2. One could be tempted to prove part (ii) only and then deduce
part (i) on the following grounds: if T1 ∈ E and T2 ∈ F , then T1T2 ∈ E .
Unfortunately T2 and T1 need not belong to the same maximal inductive
algebra, so in general part (ii) does not apply to T1T2. The reasoning can
be justified because any maximal inductive algebra containing T2 must also
contain some nontrivial element of E , but our proof of this fact (Theorem 4.1)
relies on Theorem 3.2.

Remark 3. It will be clear that part (i) holds regardless of the value of
Re qis.

In the proof of Theorem 3.2 we will use the following orthogonal decom-
position of the Hilbert space H, which provides an easy description of the
relevant operators as infinite matrices:

Definition 2. For n ≥ 1, let Mn be the subspace of H generated by the
set {

1Ω(O, x) : d(x, {O, O′}) = n
}
.

In other words, Mn is the subspace of locally constant functions on Ω that
depend only of the first n steps from {O, O′}.

Moreover, let

Hn+1 = Mn+1 	Mn (n ≥ 1),(3.5)
H0 = C1,

K = CW := C(1Ω(O, O′) − 1Ω(O′, O)),
M0 = H0 ⊕K,
H1 = M1 	 (H0 ⊕K).

See Figure 2 for examples. Notice that the mean of elements ofHn (n ≥ 1)
on each half of the boundary is zero while the function W , which generates
K, is orthogonal to 1 but not to 1Ω(O, O′) and 1Ω(O′, O).
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Figure 2. General elements of M1 and of H1 (q = 2).

We let H+
n be the subspace of functions of Hn whose support lies in

Ω(O′, O). Now dimH0 = dimK = 1, while dimMn = 2qn and dimHn =
2(q − 1)qn−1 (n ≥ 1). It follows that, for n ≥ 1, Mn = H0 ⊕K ⊕

⊕n
j=1Hj .

Since locally constant functions are dense in H we conclude that

H = H0 ⊕K ⊕
∞⊕

j=1

Hj .

We compute, for later use, the action of the intertwining operator on K:

Lemma 3.3. Let W be as in (3.4) and let Is be, as in Section 2.3, the
unitary intertwiner of πs and π−s such that Is1 = 1. Let

ψ(s) :=
q − 1 + 2 Im q1/2+is

q − 1− 2 Im q1/2+is
.(3.6)

Then IsW = ψ(s)W .

Proof. We have

Is

(dµg

dµ

)1/2+is
= Is(πs(g)1) = π−s(g)I−1

s 1 = π−s(g)1 =
(dνg

dν

)1/2−is
.(3.7)
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Figure 3. dµg/dµ.

Take a geodesic (xi)i∈Z containing O and O′, and suppose that gxi = xi+1

for all i. In this case g is called a one step translation along [O, O′]. The
Radón–Nikodým derivative dµg/dµ can be evaluated as in [3, Chapter II];
see Figure 3 for an example with gO′ = O. The sum of all the functions
(dµg/dµ)1/2+is, with g ranging over the set of translations just described,
equals (q− 1− 2 Im q1/2+is)W , and the thesis follows from the two previous
equalities. �

Corollary 3.4. With the same notation as in Lemma 3.3, I−sMIs 6= M if
and only if q2is 6= 1.
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Proof. Let T = I−sMW Is, and suppose that T = Mf . Since Is1 = 1 by
definition, Lemma 3.3 gives T1 = ψ(−s)W , hence f = ψ(−s)W . On the
other hand TW = I−sMWψ(s)W = ψ(s)I−s1 = ψ(s)1, because W 2 = 1.
So we also get f = ψ(s)W . But ψ(s) 6= ψ(−s) when q2is 6= 1. This
contradiction shows that IsMW I−s is not a multiplication operator.

Conversely, if q2is = 1, the same reasoning shows that IsMW I−s ∈ M.
Subtracting I we get IsM1Ω(O′, O)

I−s ∈ M. Conjugating by πs we find that
IsMλ(g)1Ω(O′, O)

I−s ∈ M for every g. We conclude that IsMI−s = M as in
the proof of Lemma 3.1. �

Definition 3. For two representations π1, π2 of a group H, let cH(π1, π2)
denote the dimension of the space of unitary intertwining operators.

Let

πK := Res(πs, K
′)|K and πn := Res(πs, K

′)|Mn (n ≥ 0).(3.8)

Lemma 3.5. The representations πK, πn (n ≥ 0) defined as in (3.8) are
irreducible and inequivalent.

Proof. Let τ be a finite chain of length n, such that τ ∩ {O, O′} = {O′},
and let Kτ be the subgroup of K ′ which fixes every vertex of τ . Then πn

is isomorphic to the representation Ind(Kτ , K
′,1) induced on K ′ from the

trivial representation 1 of Kτ . By Frobenius’ reciprocity theorem ([6, VI.11,
Theorem 7]),

cK′
(
Ind(Kτ , K

′,1), Ind(Kτ , K
′,1)

)
= cKτ

(
1, πn

)
(3.9)

and the last number is the dimension of the subspace of πn|Kτ -invariant
elements of Mn. This subspace is easily seen to be n + 2-dimensional. So
we have proved that n + 2 = c(πn, πn). Since πn = π|K ⊕

⊕n
j=0 π|Hj , it

follows that the summands are irreducible and inequivalent. �

Definition 4. For n ∈ N define ιn to be the projection on Hn, and ιK to
be the projection on K. Given an operator T ∈ B(H), let Tm, n := ιmTι

∗
n.

If one thinks of T as an infinite matrix A, then Tn, n corresponds to a block
Am, n. Define similarly, for every n, the operators TK, n, Tn,K and the blocks
AK, n, AK, n of A.

When T belongs to an inductive algebra, some information about its
matrix A can be obtained from Lemma 3.5.

Proposition 3.6. Let A ⊂ B(H) be a maximal inductive algebra and T ∈
A∩E. Consider the matrix A of T and its finite blocks Ai, j as in Definition 4.
Then:

(i) For i, j ≥ 1, Ai, j is a multiple of MW |Hi when i = j, and zero other-
wise.

(ii) Ai,K, AK, i are zero unless i = 0.
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Proof. Since T transforms according to χ, for every n, m ≥ 1 ιnTι
∗
m in-

tertwines Res(πs, K
′)|Hn with χ⊗Res(πs, K

′)|Hm , while ιjTι∗K intertwines
Res(πs, K

′)|Hj with χ ⊗ Res(πs, K
′)|K. A similar result holds for ιKTι∗j ,

and the thesis follows from Lemma 3.5 and Schur’s Lemma. �

We are now ready to classify the operators of A that are K-invariant or
transform according to the character χ.

3.2. Proof of Theorem 3.2.

Part (i). Let T ∈ A ∩ F . By Proposition 3.6 there exists a sequence
{λ0, λK, λ1, λ2, . . . } such that

T = λ0IH0 ⊕ λKIK ⊕
⊕
j≥1

λjIHj .(3.10)

Refer to Definition 2 for details about the subspaces of H involved. To prove
that the relevant sequence is constant, we remark first that [T, T ∗] = 0, and
so eigenspaces of different eigenvalues of T are orthogonal. Put

T g := π(g−1)Tπ(g)(3.11)

and suppose that there exist vl ∈ Hl, vm ∈ Hm and g ∈ G such that〈
Tπ(g)vl, π(g)vm

〉
= 〈T gvl, vm〉 6= 0.

Then vm is an eigenvector of λm; since [T, T g] = 0, T gvl is an eigenvector
of λl. Hence λl = λm.

Keeping this in mind, we prove that λ0 = λK. By maximality T−λ0I ∈ A,
so we may assume that λ0 = 0. As in the proof of Lemma 3.3, let g be a
translation by −l along a geodesic (xj)∞j=−∞, with x−1 = O and x0 = O′,
and choose vl as in Figure 4. Using v1 ∈ H1 as in Figure 5, write
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(q−1)qlz

−qlz

Figure 4. vl ∈ Hl.

π(g)vl =
(q − 1)(q − qz)

2q
1 +

(q − 1)(q + qz)
2q

W +
qz

q
v1.(3.12)

Since λ0 = 0, we have

Tπ(g)vl = λK
(q − 1)(q + qz)

2q
W + λ1

qz

q
v1.(3.13)
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Figure 5.

Then

ζ :=
(
Tπ(g)vl

)
|Ω(O, x−2) = −λK

(q − 1)(q + qz)
2q

+ λ1
(q − 1)qz

q

=
q − 1
2q

(
−λK(q + qz) + 2λ1q

z
)
.

Refer to Figure 6 for pictures of π(g)1 and π(g)W .
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Figure 6.

If ζ 6= 0 we can choose vl in such a way that
〈
Tπ(g)vl, π(g)1

〉
6= 0 and〈

Tπ(g)vl, π(g)W
〉
6= 0 and then conclude that λK = λl = λ0 = 0 using the

reasoning explained above.
Now suppose that ζ = 0. Then, unless λK = 0, we will have

λ1

λK
=
q + qz

2qz
=
q1−z + 1

2
.(3.14)

If this is the case then (λ1/λK)2 6= λ1/λK, since q > 1, so applying these
same arguments to T 2 instead of T we find λ2

K = 0, hence λK = 0.
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Now we prove that λj = λ0 for j ≥ 1, given that λ0 = λK. By maximality,
again, we can subtract λ0I. So we reduce to prove that λ1 = λ2 = · · · = 0
when λ0 = λK = 0. Suppose, by induction, that λ0 = λK = λ1 = · · · =
λl−1 = 0. We wish to show that λl = 0. If we can find g ∈ G, v ∈ Ml−1,
and vl ∈ Hl so that

〈T gv, vl〉 =
〈
π(g−1)Tπ(g)v, vl

〉
= 〈Tπ(g)v, π(g)vl〉 6= 0(3.15)

then T gv, like v, is in the 0-eigenspace of T , while vl is in the λl-eigenspace,
so λl = 0.

Consider first the case l = 1. Let g be a translation one step to the left
along the usual geodesic, (xj)∞j=−∞, and choose v and v1 as in Figure 7.
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Figure 7. The case l = 1.

Under the hypothesis λ0=λK=0, one easily calculates
〈
Tπ(g)v, π(g)v1

〉
=

λ1(q − 1)/2q2. Therefore, if λ1 were nonzero, the reasoning following (3.15)
would show that it was zero after all.

Now consider the case of general l. Let g be a translation by 2l− 1 steps
to the left along the usual geodesic, and choose v and vl as in Figure 8.
Figure 8 also shows the exact form of π(g)v. The form of π(g)vl is sim-
ilar and all one needs to know of it is that π(g)vl |Ω(O,x−l−1)= 0 and
π(g)vl |Ω(O,x−l)∼Ω(O,x−l−1)= 1, exactly as for π(g)v. Under the hypothe-
sis that T |Ml−1

= 0 one calculates that 〈Tπ(g)v, π(g)vl〉 = λl(q − 1)/2ql+1

and then applies the reasoning following (3.15).

Part (ii). By Proposition 3.6, again, every operator T ∈ A ∩ E can be
decomposed as

T = λK0MW |H0 ⊕λ0KMW |K ⊕
⊕
j≥1

λjMW |Hj(3.16)
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Figure 8. To prove λl = 0.

for some sequence {λK0, λ0K, λ1, λ2, . . . }. Obviously T ∈ CMW if and only
if the relevant sequence is constant. We will show that this is indeed the
case, up to replacing possibly T with IsTI

−1
s . By specializing Equations

(1.2), (3.2) to matrix coefficients we get, for every v ∈ H+
1 ,

λ0K 〈T g1, W 〉 = 〈T gTW, W 〉 = 〈T gW, T ∗W 〉 = λK0 〈T gW, 1〉(3.17)

λ0K 〈T gW, W 〉 = 〈T gW, T ∗1〉 = 〈T gTW, 1〉 = λ0K 〈T g1, 1〉
λ1 〈T g1, v〉 = 〈T g1, T ∗v〉 = 〈T gT1, v〉 = λK0 〈T gW, v〉
λ1 〈T gW, v〉 = 〈T gW, T ∗v〉 = 〈T gTW, v〉 = λ0K 〈T g1, v〉 .

If

〈T gW, v〉 〈T g1, v〉 6= 0 for some g ∈ G, v ∈ H+
1 ,(3.18)

we multiply the last two equations in (3.17) and get

λK0λ0K = λ2
1.(3.19)

Suppose now that condition (3.18) fails. Observe that, if exactly one of
the factors in (3.18) (the first one, say) vanishes, Equations (3.17) give
λ1 = λK0 = 0, so that (3.19) still holds. So we reduce to the case in which

〈T gW, v〉 = 〈T g1, v〉 = 0(3.20)

for all v ∈ H+
1 and g ∈ G. In particular, let g be a translation one step

on the left along the usual geodesic. Take v ∈ H1 such that 〈v, π(g)1〉 6= 0
and renormalize v so that ‖v‖2 = (q − 1)/2. Refer again to Figure 6 for a
representation of π(g)1, π(g)W .
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Put z = 1/2 + is and

α :=
q − 1
2q

; β := Re
qz

q
; γ := Im

qz

q
.(3.21)

Then, for a suitable v′ ∈ 〈{1, W, v}〉⊥,

π(g)1 = (α+ β)1 + (α+ iγ)W + q−1(qz − 1)v(3.22)

π(g)W = (α− iγ)1 + (α− β)W − q−1(qz + 1)v

π(g)v = (2q)−1{(1− qz)1 + (1 + qz)W − 2(q − 1)−1v}+ v′.
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Figure 9.

Looking at the action of T , and assuming (3.20), we get the system

λ0K(α+ iγ)(qz − 1) + λK0(α+ β)(−qz − 1) + λ1q
−1(qz − 1) = 0,(3.23)

λ0K(β − α)(qz − 1) + λK0(−α+ iγ)(−qz − 1) + λ1q
−1(qz + 1) = 0.

Since q ≥ 2, we readily obtain

λ0K = λ1
qz(−2α− qzq−1 − q−1)

qz − 1
(3.24)

λK0 = λ1
qz(qzq−1 − 2α− q−1)

qz + 1

(recall that |qz| ≥
√

2) and finally, by a simple computation,

λ0KλK0 = λ2
1.(3.25)

We will now use for the first time the condition β 6= 0, that is, Re q1/2+is 6=
0; under this condition we will find a further, linear relation between the
first coefficients of T . Indeed, taking g ∈ G, v ∈ H+

1 as in (3.22), the second
equation in (3.17) reads, with the same notation as in (3.21),

λ0K
(
λK0(α−iγ)(α−β)+λ0K(α+iγ)(α−β)+

λ1

2
q−2(q−1)|qz+1|2

)
(3.26)

= λ0K
(
λK0(α−iγ)(α+β)+λ0K(α+iγ)(α+β)+

λ1

2
q−2(q−1)|qz−1|2

)
.
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If λ0K = 0 then λ1 = 0 by (3.19). Moreover, by (3.22) and the first equation
in (3.17),

0 = λ0K 〈T g1, W 〉 = λK0 〈T gW, 1〉 = λ2
K0|α− iγ|2;(3.27)

that is, λK0 = 0, since γ ∈ R and α = (q−1)/(2q) > 0 by hypothesis.
Therefore, excluding the case in which λK0 = λ0K = λ1 = 0 we can divide
both sides in (3.26) by λ0K. Since β 6= 0 (equivalently, |qz + 1| 6= |qz − 1|),
the resulting relation

2β
(
λK0(α− iγ) + λ0K(α+ iγ)

)
=
λ1

2
q−2(q − 1)

(
|qz + 1|2 − |qz − 1|2

)(3.28)

is nontrivial. Taking λ1 as a parameter one sees that the solutions to the
system of equations (3.28) and (3.25) are

λK0 = λ0K = λ1(3.29)

and

λK0 = ψ(s)λ1, λ0K = (ψ(s))−1λ1,(3.30)

with ψ(s) as in (3.6). Under condition (3.29), T = λ1I on C1 ⊕ K. By
Lemma 3.3, T satisfies (3.30) if and only if I−1

s TIs satisfies (3.29). Since
ψ(s) 6= 1 the same solution must be chosen for every T ∈ A; else the product
of two elements of A ∩ E would fail to be scalar, contradicting part (i).

Finally, when (3.29) holds, the same reasoning as in part (i) shows that
λj = λ1 for all j ≥ 1. Indeed, the proof of the analogous fact for K ′-invariant
operators only involves vectors in H0 ⊕K ⊕

⊕
j≥1H

+
j . So the method also

applies to operators in A ∩ E , which act scalarly on any H+
j .

We conclude that either T ∈ CMW or IsTI−1
s ∈ CMW . �

3.3. Proof of the main classification result. Suppose that Im qis 6= 0
and Re qis 6= 0. Take a maximal πs-inductive algebra A and assume, for a
moment, that A ∩ E 6= {0}. By Theorem 3.2, either A or I−sAIs contains
a nonzero scalar multiple of MW . Hence, by Lemma 3.1, either A = M
or I−sAIs = M. So, for these values of s, the classification of maximal
inductive algebras is achieved, up to verifying that any such algebra must
contain operators that transform according to χ. The latter turns out to be
true, but the proof — to be found in the next section— is not trivial.

4. Nontrivial operators that transform according to χ

4.1. Nonscalar K-invariant operators.

Theorem 4.1. Let πs be a spherical representation of the principal series,
with q2is 6= −1, and let A be a maximal πs-inductive algebra. Then:

(i) A ∩ F contains a nonscalar operator.
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(ii) A ∩ E contains a nonzero operator.

We prove first that (i) implies (ii). Indeed, given a nonscalar K-invariant
element of A, say T , take j ∈ K ′ such that χ(j) = −1. Then, obviously:

• T1 := T + π(j)Tπ(j−1) is K ′-invariant.
• T2 := T − π(j)Tπ(j−1) transforms according to χ.

Now T1, T2 ∈ A, and by Theorem 3.2, T1 must be scalar. Since T is non-
scalar, T2 = 2T − T1 6= 0, so part (ii) of Theorem 4.1 holds.

The proof of part (i) is harder and will be accomplished in several steps.
We recall that K is the stabilizer of the subtree {O, O′}, and set about
proving first a weaker statement, replacing {O, O′} with a bigger subtree.
More precisely, we fix O ∈ X and let Kn (n ∈ N) be the compact subgroup
of G that stabilizes the subtree B(O, n) = {x ∈ X : d(x, O) ≤ n} (a sphere
of radius n). The normalized Haar measure on Kn will be denoted by dk.
Given S ∈ A, we let

Sn :=
∫

Kn

π(k)Sπ(k−1) dk.(4.1)

Then Sn is Kn-invariant and Sn ∈ Aw = A. We know from Proposition 2.1
that CI is not maximal, so we can take as S a nonscalar element of A. In
this case Sn is also nonscalar for some n. To see this, consider two locally
constant functions ξ, η: then, for n large enough, π|Kn fixes both ξ and η,
so that 〈Snξ, η〉 = 〈Sξ, η〉. Since locally constant functions are dense in
H and {Sn} is uniformly bounded, Sn weakly approaches S and so Sn is
nonscalar for some n. We conclude that part (i) of Theorem 4.1 holds when
K is replaced by the stabilizer of a suitable sphere.

4.2. Complete subtrees. Note that every vertex of a sphere B has either
one or q + 1 neighbours in B. With the notation of [3, Chapter III], we
can say that every vertex is either a boundary vertex or an interior vertex.
This is also trivially true for the one-edge subtree. Subtrees verifying this
condition are said to be complete (see Figure 10 for an example). We will now
prove that part (i) of Theorem 4.1 holds for the stabilizer of a finite complete
subtree J , of more than one edge, only if it also holds for the stabilizer of
some smaller complete subtree. This, by induction, will conclude the proof.

Given a complete subtree J , we denote by ∂J the set of its boundary
vertices. We say that a vertex x ∈ J is almost terminal if it is interior and
exactly q of its neighbours are boundary vertices. See again Figure 10.

Remark 4. From now on, given a terminal vertex P of a complete subtree
J , we denote by P ′ its unique neighbour in J . The subtree J ′ obtained as
in Figure 11 by erasing from J
the neighbours of P ′ that lie in ∂J is also complete, and P ′ ∈ ∂J ′.
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Figure 10. A complete subtree, with almost terminal ver-
tices A, B, and a subtree which is not complete.
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Figure 11. To obtain J ′ from J .

Consider the subgroup

HP :=
{
g ∈ G : g fixes X (P, P ′)

}
(4.2)

of the automorphisms that only affect the vertices lying in the subtree of
X ∼ J sprouting from P . It is shown in [3, Section III.3] that

KJ =
∏

R∈∂J
HR.(4.3)

In particular, if R ∈ ∂J and R 6= P , then HR lies in the centralizer of HP .
When J is replaced by J ′ as in Remark 4, formula (4.3) becomes

KJ ′ =
( ∏

R∈∂J
d(R, P ′)>1

HR

)
×HP ′ ;(4.4)

of course, all the relevant subgroups are still defined by (4.2), but with
respect to the new subtree J ′.

It follows from (4.4) that, given a KJ -invariant operator T ,

T̃ :=
∫

H′
P

k(T ) dk,(4.5)

defined as in (4.1) is KJ ′-invariant. Moreover, if T lies in some maximal
inductive algebra A, then also T̃ ∈ A. The trouble is that starting from
a nonscalar operator T does not guarantee that T̃ will be nonscalar. We
will show, however, that this is true for a suitable choice of P in ∂J ; to this
purpose we will describe more precisely the nonscalar KJ -invariant elements
of maximal inductive algebras.
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4.3. The Hilbert spaces HP . Recall from (2.1) the definition of the sub-
sets X (P1, P2) ⊂ X for P1, P2 ∈ X . Consider a complete subtree I, and
associate to every P ∈ ∂I a sequence of subspaces of H in the following way:

HP := {f ∈ H : f = f · 1Ω(P ′, P )},(4.6)

HP
0 := MP

0 = C1Ω(P ′, P ),

MP
n :=

〈{
1Ω(P ′, Q) : Q ∈ X (P ′, P ) and d(Q, P ) = n

}〉
(n ≥ 1),

HP
n+1 = MP

n+1 	MP
n (n ≥ 1).

This construction should be compared with (3.5); one can say that MP
n is

the space of locally constant functions, with support in Ω(P ′, P ), that only
depend on the first n steps along some finite chain in X (P ′, P ). Note that
definition (4.6) does depend on the choice of the subtree.

As in the reasoning following (3.5), we see that

HP =
∞⊕

j=0

HP
j .(4.7)

From this decomposition we will get more information about the action of
KI-invariant operators on the subspaces {HP : P ∈ ∂I}.

Lemma 4.2. Take a finite complete subtree I and two vertices P, Q ∈ ∂I.
If T ∈ B(H) is KI-invariant, then T (HP 	 HP

0 ) ⊆ (HQ)⊥ and T (HP ) ⊆
(HQ

1 )⊥.

Proof. Consider HP as in (4.2). Then HP 	HP
0 is generated by

{v ∈ HP : π(h)v = −v for some h ∈ HP }.(4.8)

At the same time, π(h)w = w for all w ∈ HQ and h ∈ HP . Thus any v as
in (4.8) is orthogonal to HQ. The second inclusion follows by applying the
first to T ∗. �

4.4. The inductive step.

Theorem 4.3. Let A be a maximal inductive algebra, and I ⊂ X a finite
complete subtree with at least two edges, such that A contains a nonscalar
KI-invariant operator. Then, for some complete subtree J ( I, there exists
in A a nonscalar KJ -invariant operator. In other words, I is not minimal
among the complete subtrees verifying Theorem 4.1.

The proof of Theorem 4.3 will take up the remainder of the paper, and
will be divided into several steps. To begin with, we deduce from (4.7) and
Lemma 4.2 that, for any nonscalar KI-invariant operator T , exactly one of
the following holds:

(a) For every P ∈ ∂J there exists λP ∈ C such that T |HP ′= λP IHP ′ , but
P 7→ λP is not constant.
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(b) Every subspace HP ′
is T -invariant, but the restriction of T to some

HP ′
is nonscalar.

(c) THP ′ 6⊥ HQ′
for some pair of different terminal vertices P, Q. In this

case
〈
T1Ω(P ′, P ), T1Ω(Q′, Q)

〉
6= 0.

Case (b) is easily dealt with. Indeed, suppose P ∈ ∂I is such that T |HP

is nonscalar. Let H be the subgroup of G that fixes all vertices in X (P ′, P ).
Then

T ] :=
∫

H
π(h)Tπ(h−1) dh(4.9)

agrees with T on HP . Consequently, T ] is nonscalar. Moreover, since T ]

is fixed by H and by HP , it is fixed by K{P, P ′}. So T ] and the nontrivial
complete subtree I ∼ B(P ′, 1) ∩ ∂I (as in Figure 11) satisfy the thesis.

For case (a), suppose first that I is not a sphere of radius one. Take
Q ∈ ∂I and its almost terminal neighbourQ′; put J := I ∼ (B(Q′, 1)∩ ∂I).
Then J is a nontrivial complete subtree. Take HQ, HQ′ and T̃ as in (4.2)
and (4.5). Since T acts as a scalar on each subspace HP (P ∈ ∂I), we have
T̃HQ′ ⊆ HQ′

and

T̃ |HQ′ =
1
q

( ∑
R∈∂I∩B(Q′, 1)

λR

)
IHQ′ ,(4.10)

so that T̃ acts as a scalar on HR for every R in the boundary of the smaller
complete subtree J . As remarked above, T̃ may be scalar, but in that case∑

R∈∂I∩B(Q′, 1)

λR = qβ for every β ∈ {λP : P ∈ ∂I}.(4.11)

If I is a sphere of radius one, with interior vertex O, consider P ∈ ∂I and
the subgroup KO,P that fixes O and P . Construct T̃ as in (4.5). If T̃ is
scalar then λP = (1/q)

∑
R∈∂I; R 6=P λR. This must fail for some P ∈ ∂I,

because P 7→ λP is not constant on ∂I. So only case (c) remains to be
considered.

4.5. Proof of Theorem 4.3 in case (c). If I satisfies the additional
hypothesis that there exist at least three almost terminal vertices P ′, Q′, R′,
the proof still runs easily. Indeed, let P, Q, R be boundary neighbours of
P ′, Q′, R′, respectively. Then the operator

T̂ :=
∫

HR′

π(h)Tπ(h−1) dh,(4.12)

defined as in (4.2), but relatively to the subtree I ∼ (B(R′, 1) ∩ ∂I), is
invariant with respect to the stabilizer of some proper complete subtree;
moreover T̂ = T on HP and HQ, so that T̂1Ω(P ′, P ) 6⊥ 1Ω(Q′, Q). Hence T̂ is
nonscalar.
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In order to achieve the proof of Theorem 4.3 we must finally consider
the finite complete subtrees which fail to satisfy the additional hypothesis
stated just before (4.12). It is clear that any such subtree belongs to one of
the following classes:

(i) unit spheres,
(ii) unions of pairs of unit spheres, with centers at distance 1, or
(iii) unions of families of unit spheres, with centers on a given chain (other

than an edge).
We first deal with case (ii). Let O be an interior vertex of the subtree. Call
P1, Ps, . . . , P2q the boundary vertices of I, with d(Pi, O) > d(Pi, O

′) if and
only if i ≤ q; let fi := 1Ω(O, Pi). We know from Lemma 4.2 that T acts on
the subspace of H generated by {f1, f2, . . . , f2q}. With respect to this basis
T is represented by a nonscalar matrix

A :=
(
B C
D E

)
.(4.13)

If, for example, 〈Tfi, fj〉 6= 0 for some i, j ≤ q (i 6= j), then, just as in
the first remark in this subsection, we see that the operator

T̃ :=
∫

HO′

π(h)Tπ(h−1) dh(4.14)

is still nonscalar and is invariant through the smaller subgroup that fixes
the sphere of radius one with center in O′. The same reasoning applies if
Tfh 6⊥ fk with h, k ≥ q + 1 (h 6= k). So we restrict to the case in which
the blocks B and D are both diagonal. We consider T̃ as in (4.14) and
compute its matrix Ã with respect to {f1, f2, . . . , f2q}. Since HO′ acts on
{f1, f2, . . . , f2q} as a permutation group, it turns out, with the notation of
(4.13), that

Ã =
(
B̃ C̃

D̃ Ẽ

)
,(4.15)

with

B̃ = q−1(B11 + · · ·+Bqq)Iq,(4.16)

Ẽ = E,

C̃ij = q−1
∑

h

Chj for every i, j,

D̃ij = q−1
∑

h

Dih for every i, j.

By replacing HO′ with HO in (4.14) we obtain yet another element T̃ ′ of A.
It is easy to see that its matrix Ã′ satisfies an analogue of (4.16) (where B
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and C interchange their roles, respectively, with E and D). If T̃ and T̃ ′ are
both scalar, we obtain from (4.16) the following conditions about A:

(i) B = E = λIq for some λ ∈ C.
(ii) Each row and column in C and D adds up to zero (hence detC =

detD = 0).
We digress for a moment to prove the following simple result:

Lemma 4.4. Let C be a q × q complex matrix such that every row and
every column adds up to zero. For σ, τ ∈ Sq, the group of permutations
on q objects, let Cσ,τ be the matrix such that (Cσ,τ )ij = Cσ(i)τ(j). Suppose,
finally, that CCσ,τ = 0 for every σ, τ . Then C = 0.

Proof. By hypothesis
q∑

i=1

ChiCσ(i)τ(j) = 0 for every h, j ∈ {1, . . . , q}, σ, τ ∈ Sq.(4.17)

Since τ is bijective we can replace it by the identity. Setting

ρ(σ)
(
(v1, . . . , vq)

)
= (vσ−1(1), . . . , vσ−1(q)), σ ∈ Sq,(4.18)

defines an irreducible representation of Sq on the space

{v ∈ Cq : v1 + v2 + · · ·+ vq = 0}
(see [5, §1.3]). Therefore, if Chl 6= 0 for some pair of indexes, a combina-
tion of vectors of the form (Cσ(1)j , . . . , Cσ(q)j) gives (Ch1, . . . , Chq). This
contradicts (4.17). �

Now, resuming the proof of Theorem 4.3, consider the set of automor-
phisms

GS :=
{
g ∈ G : g({f1, f2, . . . , fq}) = {fq+1, f2, . . . , f2q}

}
;(4.19)

that is, with the notation of Definition 1 in Section 3, the coset jK ′. When
g ∈ GS , KIg is contained in gKI , so that T g is KI-invariant (since T is).
For g ∈ GS there exist σ, τ ∈ Sq such that

π(g)fi =

{
fq+σ(i) if i ≤ q,

fτ(i−q) if i ≥ q + 1.
(4.20)

From the hypotheses on T we see that T g, as an operator on the span of
{f1, . . . , f2q}, is represented by the block matrix

Ag :=
(

λIq Dτ,σ

Cσ,τ λIq

)
,(4.21)

with Cσ,τ , Dτ,σ defined as in Lemma 4.4. Hence

AgA =
(
λ2Iq +DDτ,σ λDτ,σ + λC

λD + λCσ,τ λ2Iq + CCσ,τ

)
.(4.22)
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Repeating the reasoning above for T g and T gT we find that T̃ gT is nonscalar
for some g ∈ GS , unless the blocks along the diagonal of AgA are scalar.
Then CCσ,τ and DDτ,σ are also scalar, and since detC = detD = 0 we get
CCσ,τ = DDτ,σ = 0 for every σ, τ ∈ Sq. By Lemma 4.4, C = D = 0, which
is impossible because T is nonscalar. This concludes the proof in case (ii).

Case (iii) is dealt with much like case (ii). Indeed, let (x1, x2, . . . , xn)
(n ≥ 3) be the central chain of the subtree:

• • • • •
•

•

•

•

•

•

............................................................................................................................................................................

.................

.................

..................

.................

.................

.................

.................

..................

.................

.................

. . . . . . . ......................................................................................

.................

.................

..................

.................

.................

x1 x2 x3 xn−1 xn

Figure 12. A subtree of the kind considered in case (iii).

and recall the notations set in Sections 4.2 and 4.3. If P ′ or Q′ can be chosen
in {x2, . . . , xn−1} then a boundary vertex R with P ′ 6= R′ 6= Q′ is easily
found (for example, if Q′ = x1, it suffices to choose R ∈ B(xn, 1) ∼ {xn−1}).
So we restrict to the case in which {P ′, Q′} = {x1, xn} and T (HR) ⊆ HR

for P 6= R 6= Q. Now the subspace⊕
R 6=P, Q

HR(4.23)

is invariant under conjugation by Hx1 , Hxn (defined as in (4.2)) and also by
the subgroup of inversions that switch x1 with xn. So T can be represented
by a diagonal block matrix, the two diagonal blocks corresponding to the
orthogonal subspaces ⊕

R 6=P, Q

HR and HP ′ ⊕HQ′
.(4.24)

Next, we consider the operators

T̃ :=
∫

HP

π(h)Tπ(h−1) dh and T̃ ′ :=
∫

HQ

π(h)Tπ(h−1) dh(4.25)

and apply the same reasoning as in point (ii) to the block along the diagonal
which corresponds to HP ′ ⊕HQ′

.
We deal finally with case (i). Let O be the unique interior vertex of I,

and let A be the (q + 1) × (q + 1) matrix of T with respect to the basis
{1Ω(O, P ) : P ∈ ∂I}. Suppose that, for every P ∈ ∂I,

(4.26) T̃ :=
∫

HOP

π(h)Tπ(h−1) dh,

where HOP := {h ∈ G : gO = O and hP = P}

is scalar. Then, as in case (ii), the following conditions on A are found:
• In every row and column, nondiagonal entries add up to zero.
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• Every diagonal entry is the average of the q remaining ones. Hence,
all the diagonal entries are equal.

We can write A as λIq+1 + A0, where A0 satisfies the last two conditions
and every diagonal element is zero. Now let g be an automorphism that
fixes O, and hence acts on ∂I as a permutation σ on q + 1 elements. The
matrix of T g is λIq+1 +Aσ, σ

0 . Apply construction (4.26) to TT g. If a scalar
operator results for all P ∈ ∂I, then TT g satisfies the same conditions as T .
Consideration of the action of TT g on the vector (1, 1, . . . , 1) shows that
the common value of the diagonal elements is λ2. It follows that A0A

σ,σ
0 = 0

for every permutation σ. As in case (iii), Lemma 4.4 gives A0 = 0, hence
A ∈ CIq+1, a contradiction.

This completes the proof of Theorem 4.3 and hence of Theorem 4.1. �

Acknowledgements. The results of this paper are contained in the au-
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