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Let M be a hypersurface in Cn that is the graph over a
(2n − 1)-linear real space. The main result of the paper is
that any CR function on M can be uniformly approximated
on compact subsets by entire functions on Cn.

1. Introduction

In [BT], Baouendi and Treves prove a local CR approximation result that
says (in particular) that CR functions on a CR submanifold can be locally
approximated by entire functions. The global version of this theorem is
false, as seen by the example M = {(z, w) ∈ C2; |z| = 1} — the function
f(z, w) = 1/z is clearly CR on M but cannot be approximated uniformly on
compact subsets of M by entire functions. A natural question is whether a
global version of the CR approximation theorem holds in cases where there
are no topological obstructions. In this work, we establish a partial answer
to this question by showing that the global CR approximation theorem holds
on any smooth real hypersurface that is globally presented as a graph.

To precisely state our theorem, let Cn be given coordinates (z, w) ∈
C×Cn−1. Let h : R×Rn−1×Rn−1 → R be a smooth real-valued function
and let M be its graph:

M =
{
(z, w) = (h(y, u, v) + iy, u+ iv) ∈ C×Cn−1

}
.

Our goal is to prove the following theorem:

Theorem 1. Given a compact set K ⊂ Cn, there is a compact set K ′ ⊂ Cn

(with K ⊂ K ′), such that if f is continuous and CR on a neighborhood of
M ∩K ′, then there is a sequence of entire functions on Cn that converges
to f uniformly on M ∩K.

Earlier work (see [B]) established this theorem in the case where the
graphing function h is rigid (i.e., independent of y) and has polynomial
growth. Earlier results on global CR approximation, see for example [DG],
required additional technical assumptions (including certain convexity re-
strictions). Global approximation on totally real submanifolds of smooth
functions by holomorphic functions has been considered by many authors,
including [HW] and [Ch].
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This work only handles the hypersurface case. The analogous theorem for
higher codimension is still open and it does not appear that the techniques
in this work can be easily modified to handle the case of higher codimension.

2. Outline of proof

As with the local version of the CR approximation theorem, the idea is to
first integrate the given CR function f(z, w) against a kernel that approxi-
mates the identity. The kernel will be entire in all variables, but is supported
along a slice of M that moves as the point (z, w) moves (in a sort of Radon
transform style). Since the slices don’t depend holomorphically on (z, w),
the resulting approximating sequence is not a priori holomorphic. Thus, the
next step is to show (with the help of Stokes’ Theorem) that the slice can be
fixed, independently of the point (z, w). All of this analysis is done locally at
first and then pieced together globally with a correction term that involves
solving a ∂ problem with estimates (in a Cousin-type fashion).

3. Definition of kernel

In [BT], an approximation to the identity kernel is used that somewhat
looks like a heat kernel in Cn. Our kernel also looks like a heat kernel but
with the new feature of involving an extra complex parameter that gets
integrated along an infinite ray in C (somewhat like a complex version of
the Laplace transform). This extra parameter will allow us to handle global
approximation. More specifically, for a continuous function f on M , we
consider the sequence

Eε(f)(z, w) =
C

εn

∫
(ζ,η)∈Mu

∫
α∈Cθ

f(ζ, η)Eε(ζ, η, α, z, w)αn dα dζdη

where the kernel Eε is given by

Eε(ζ, η, α, z, w) = exp
(
α2

(ζ − z

ε

)2
+ α2Λ

(w − η

ε

)2
− αp

)
.

Here, α, ζ ∈ C and η ∈ Cn−1 will be the variables of integration; (z, w) is a
point in C × Cn−1 = Cn; ε is a real parameter that will later converge to
zero; and Λ is a fixed positive real number (chosen below). The term (w−η)2
stands for the sum of the squares of the components of w−η ∈ Cn−1 (without
any conjugates). The power p will be a real number slightly larger than 2
and will be chosen below. The domain of integration involves Mu, which is
the intersection of M with the slice {(ζ, η) ∈ C × Cn−1; Re η = u} where
u is the real part of w. The other component of the domain of integration
is the ray Cθ = {α = reiθ; r > 0}, where the angle θ will be between −π

4
and π

4 and its choice below will be determined by the desire to make the
real part of the exponent of the kernel as negative as possible (so that the
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resulting integral will converge). One angle will not work for all (ζ, η) and
(z, w) and so a localization argument with many angles must be used.

4. Main estimate

In order to obtain convergence results, we will need an estimate on the real
part of the exponent of our kernel. Various constants will emerge in the
statement and proof of this estimate that depend on the compact set K or
K ′. We denote the dependency of a constant, such as δ, on a set A by writing
δA. We also use the following coordinates: the variable of integration (ζ, η)
will always lie on M and will be written as

(ζ, η) = (h(s, u′, t) + is, u′ + it) ∈M with s ∈ R, u′, t ∈ Rn−1.

The point (z, w) lies in C×Cn−1 (not necessarily inM) and will be written as

(z, w) = (h(y, u, v) + q + iy, u+ iv) with y, q ∈ R, u, v ∈ Rn−1.

Note that q represents the vertical distance from the point (z, w) to M . In
particular (z, w) belongs to M if and only if q = 0.

We now state the main estimate on the exponent of our kernel.

Lemma 1 (Main estimate). Suppose K ⊂ K ′ are given compact sets in
Cn. There exist constants ΛK′ , CK′ , dK , δK , δK′ , CK > 0 and p = pK′

with 2 < p < 2/(1−δK′) and an open cover Qj (j = 1, . . . , N) of K and
an open cover Q′k (k = 1, . . . , N ′) of K ′ with diameters less than dK/2 and
angles θj,k such that for all α ∈ Cθj,k

= {reiθj,k ; r > 0} and for all

(ζ, η) = (h(s, u′, t) + is, u′ + it) ∈ Q′k ∩M and

(z, w) = (h(y, u, v) + q + iy, u+ iv) ∈ Qj

(with u, u′, t, v ∈ Rn−1 and s, y, q ∈ R) we have:
1) If |s− y| < 2dK for all (z, w) ∈ Qj and (ζ, η) ∈ Q′k ∩M , then θj,k can

be chosen with |θj,k| < π
4 − δK and

Re
(
α2

(ζ−z
ε

)2
+ ΛK′α2

(w−η
ε

)2
−αp

)
(1)

≤ −δK
(∣∣∣s−y

ε

∣∣∣2r2 +
∣∣∣ t−v
ε

∣∣∣2r2 + rp
)

+ CK′

∣∣∣u−u′
ε

∣∣∣2r2 + CK

(q
ε

)2
r2.

2) If |s− y| ≥ dK for all (z, w) ∈ Qj and (ζ, η) ∈ Q′k ∩M , then θj,k can
be chosen with |θj,k| < π

4 − δK′ and

Re
(
α2

(ζ − z

ε

)2
+ ΛK′α2

(w − η

ε

)2
− αp

)
(2)

≤ −δK′

(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 + rp
)

+ CK′

∣∣∣u− u′

ε

∣∣∣2r2.
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Remark. Since the diameters of Qj and Q
′
k are less than dK/2, each Qj

and Q
′
k falls under either case 1 or case 2. In the second case, the constant,

δK′ , depends on K ′ (as opposed to K for the constant in the first case).
Since K ⊂ K ′, δK′ will generally be smaller than δK . Also note that the
estimate in the second case does not involve q2.

Proof of the lemma. If Ŵ is a complex number with |Arg (Ŵ )| ≥ 3δ1 > 0,
there is an angle θ with |θ| < π

4 − δ1 such that Re {e2iθŴ} < 0. If we let
Cθ = {reiθ; r > 0}, there is a δ2 > 0 such that Re {α2Ŵ} ≤ −δ2|Ŵ ||α|2 for
all α ∈ Cθ. This observation will be used below to choose the angles θj,k.

We first examine the term (ζ − z)2 that appears in the exponent of
Eε(ζ, η, α, z, w). We write

(ζ, η) = H(s, u′, t) = (h(s, u′, t) + is, u′ + it),

(z, w) = H(y, u, v) + (q, 0) = (h(y, u, v) + iy + q, u+ iv).

Note that (ζ, η) belongs to M ; but (z, w) belongs to M if and only if q = 0.
We wish to rotate (ζ − z)2 so that its real part is negative. For technical

reasons that will be clear later, the rotation angle must be less than π
2 .

Thus, the troublesome case to handle is when ζ−z is a positive real number
(which would then require a rotation angle greater than π

2 to make its real
part negative). Therefore, we will handle separately the cases when s− y =
Im{ζ − z} is small and not so small.

First, observe that there is a δ̃K > 0 such that

|Arg (hy(y, u, v) + i) | ≥ δ̃K for all (y, u, v) ∈ K.

By choosing dK > 0 small enough and by shrinking δ̃K > 0, we can arrange

(3)
∣∣∣∣Arg

(
h(s, u, v)− h(y, u, v)

s− y
+ i

)∣∣∣∣ ≥ δ̃K

for all (y, u, v) ∈ K, and |s− y| ≤ 2dK .

Choose a smooth function φ : R → [0, 1] such that φ(s − y) = 0 for
|s− y| ≤ dK/2 and φ(s− y) = 1 for |s− y| ≥ dK .

After adding and subtracting terms, we obtain

ζ − z = h(s, u′, t)− h(y, u, v)− q + i(s− y)

=
(
h(s, u, v)− h(y, u, v)

s− y
− φ(s− y)q

s− y
+ i

)
(s− y)(4)

+
(
h(s, u′, v)− h(s, u, v)

)
+

(
h(s, u′, t)− h(s, u′, v)

)
− (1− φ(s− y))q

= W · (s− y) +
(
h(s, u′, v)− h(s, u, v)

)
+

(
h(s, u′, t)− h(s, u′, v)

)
−

(
1− φ(s− y)

)
q,
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where

W =
h(s, u, v)− h(y, u, v)

s− y
− φ(s− y)q

s− y
+ i.

In view of (3) and the fact that φ(s − y) = 0 for |s − y| ≤ dK/2, δ̃K
can be shrunk, if necessary, so that |ArgW | ≥ δ̃K for (y, u, v) ∈ K and
|s− y| ≤ 2dK . If |s− y| ≥ dK with H(s, u, v) belonging to the compact set
K ′, then the inequality above holds with a constant δ̃K′ depending on K ′.
We can then find an open cover (in Cn) Q1, . . . , QN of K and an open cover
Q′1, . . . , Q

′
N ′ of K ′∩M with diameter smaller than dK/2 and angles θj,k and

constants δK > 0 and δK′ > 0 such that:

Case 1. IfH(y, u, v)+(q, 0) ∈ Qj andH(s, u, v) ∈ Q′k∩M with |s−y| ≤ 2dK ,
then |θj,k| ≤ π

4 − δK and

Re {e2iθj,kW 2} ≤ −δK |W |2 ≤ −δK .(5)

Case 2. If H(y, u, v)+(q, 0) ∈ Qj and H(s, u, v) ∈ Q′k∩M with |s−y| ≥ dK ,
then |θj,k| ≤ π

4 − δK′ and

Re {e2iθj,kW 2} ≤ −δK′ |W |2 ≤ −δK′ .(6)

For shorthand in the next set of calculations, we let θ = θj,k. From (4),
we obtain

Re
(
e2iθ(ζ − z)2

)
= Re

(
e2iθW 2(s− y)2 + e2iθ

(
h(s, u′, v)− h(s, u, v)

)2(7)

+ e2iθ
(
h(s, u′, t)− h(s, u′, v)

)2 + e2iθ(1− φ)2q2 + cross terms
)
.

For (z, w) = H(y, u, v) + (q, 0) ∈ Qj and (ζ, η) = H(s, u′, t) ∈ Q′k ∩M with
|s− y| ≤ 2dK , we have

|h(s, u′, v)− h(s, u, v)|2 ≤ CK′ |u− u′|2,
|h(s, u′, t)− h(s, u′, v)|2 ≤ CK′ |t− v|2,

for some constant CK′ depending only on K ′. Therefore, in view of (5),

Re
(
e2iθ(ζ − z)2

)
≤ −δK

2
|W |2|s− y|2 + CK′

(
|u− u′|2 + |t− v|2

)
+ CKq

2.

(8)

In this estimate we have handled the cross terms in the usual manner. For
example, the cross term W (s− y)(1− φ)q is estimated as follows:

|W (s−y)(1−φ)q| =
√
δK
4
W |s−y|·

√
4
δK

|q| |1−φ| ≤ δK
4
|W |2|s−y|2+ 4

δK
q2.

The first term on the right can be absorbed by the −δK |W |2 term in (5).
The second term on the right contributes to CKq

2 appearing in (8). Other
cross terms are handled similarly.
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In the case when |s − y| ≥ dK , we have φ(s − y) = 1, so the term
in (7) involving (1 − φ)q is zero. Therefore the preceding analysis can be
repeated (using (6)) but without the term on the right involving q; that is,
if (z, w) = H(y, u, v) + (q, 0) ∈ Qj and (ζ, η) = H(s, u′, t) ∈ Q′k ∩M with
|s− y| ≥ dK then

Re
(
e2iθ(ζ − z)2

)
≤ −δK′

2
|W |2|s− y|2 + CK′

(
|u− u′|2 + |t− v|2

)
.(9)

In (8), the angle θ is θjk, satisfying |θ| = |θj,k| ≤ π
4 − δK . In (9), the angle

θ = θjk satisfies |θ| ≤ π
4 − δK′ (depending on the larger set K ′).

We now turn our attention to the terms involving η − w in the exponent
Eε(ζ, η, α, z, w). If |θ| ≤ π

4 − δ, then

Re
(
e2iθ(η − w)2

)
(10)

= Re
(
e2iθ(u′ − u+ i(t− v))2

)
≤ − cos(π

2 − 2δ)(t− v)2 + (u− u′)2 + 2 sin(π
2 − 2δ) |u− u′| |t− v|

≤ −(δ)(t− v)2 + (u− u′)2 +
2
√

2 |u− u′|√
δ

|t− v|
√
δ√

2

≤ −δ
2
|t− v|2 +

(
1 +

2
δ

)
|u− u′|2 (using 2 |a| |b| ≤ a2 + b2)

for all η and w. In the case |s− y| ≤ 2dK the constant δ = δK depends on
K, whereas in the case |s − y| ≥ dK the constant δ = δK′ depends on the
larger set K ′.

Now choose a p with 2 < p < 2/(1−δ), where δ is either δK or δK′ . Then
since |θ| ≤ π

4 − δ, we have p|θ| < π
2 ; so there is a δ̃ > 0 such that

if α = reiθ, with r ≥ 0, then Reαp ≥ δ̃rp.(11)

Here, δ̃ depends either on K, in the case |s−y| ≤ 2dK , or on K ′, in the case
|s− y| ≥ dK .

In the case |s − y| ≤ 2dK , we can combine the estimates given in (8)
(noting that |W | ≥ 1), (10), and (11), to obtain, with α = reiθ:

Re
(
α2

(ζ−z
ε

)2
+ Λα2

(w−η
ε

)2
− αp

)
≤ −δK

2

∣∣∣s−y
ε

∣∣∣2r2 + CK′

(∣∣∣u−u′
ε

∣∣∣2 +
∣∣∣ t−v
ε

∣∣∣2)r2
+ CK

(q
ε

)2
r2 − δK

2
Λ

∣∣∣ t−v
ε

∣∣∣2r2 + Λ
(
1+

2
δK

)∣∣∣u−u′
ε

∣∣∣2r2 − δ̃Kr
p.

Choosing Λ (= ΛK′) large enough so that ΛδK/2 > CK′ + δK/2 we obtain
(1) after relabeling δK to be the smaller of δK/2 and δ̃K and relabeling as
CK′ the quantity CK′ + Λ(1 + 2/δK).
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For the case when |s − y| ≥ dK , we use estimate (9) instead of (8) and
the constant δ = δK′ now depends on the larger set K ′. The only difference
in the estimates above is that the right side no longer involves the term q2

(compare (9) with (8)). Thus, (2) is obtained and this completes the proof
of the main estimate given in the lemma.

5. Approximation to the identity

We restate the definition of our basic kernel:

Eε(ζ, η, α, z, w) = exp
(
α2

(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

)
.

Let Q = Qj and Q′ = Q′k be the open sets and let θ = θj,k be the angle
provided by Lemma 1. Suppose f is continuous with compact support in
Q′ ∩M . Define

Eε(f)(z, w) =
C

εn

∫
(ζ,η)∈Mu

∫
α∈Cθ

f(ζ, η)Eε(ζ, η, α, z, w)αn dα dζdη,

where C is a normalizing constant to be chosen later, u = Rew and

Mu = {(ζ, u+ it) ∈M} = {Re η = u} ∩M

is a totally real n-dimensional submanifold of M parameterized by

(s, t) ∈ R×Rn−1 7→ (h(s, u, t) + is, u+ it).

Here and below, dη = dη1 ∧ · · · ∧ dηn−1. The domain of integration in
Eε(f)(z, w) is Mu, which depends on Rew = u. Since p > 2 in the main
estimate (Lemma 1), and since f has compact support in Q′ ∩M , the ex-
pression Eε(f)(z, w) is well-defined for (z, w) ∈ Q. This main estimate will
also allow us to prove the following approximation result:

Lemma 2. Suppose f is continuous with compact support in Q′∩M . Then

Eε(f) → f as ε→ 0

uniformly on Q ∩M (here, Q = Qj and Q′ = Q′k are the open sets as in
Lemma 1).

Proof. We analyze the exponent

Z = α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

in the case where

(ζ, η) = (h(s, u, t) + is, u+ it) ∈Mu

(in particular, u′ = u on Mu) and

(z, w) = (h(y, u, v) + iy, u+ iv)
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(i.e., (z, w) belongs to M and so q = 0). We obtain

ζ − z = h(s, u, t)− h(y, u, v) + i(s− y) ∈ C,

η − w = i(t− v) ∈ Cn−1.

With α = reiθ, the exponent of our kernel is

Z = α2
(ζ−z

ε

)2
+ α2ΛK′

(w−η
ε

)2
− αp

= e2iθr2
(
h(s, u, t)−h(y, u, v)+ i(s−y)

ε

)2

− ΛK′

( t−v
ε

)2
e2iθr2 − eipθrp.

Now let

ŝ =
s− y

ε
∈ R, t̂ =

t− v

ε
∈ Rn−1.

Estimates (1) and (2) with u = u′ and q = 0 essentially reduce to the same
estimate except that the δ-constant depends on K in the first estimate and
on K ′ in the second estimate. Since K ⊂ K ′, we will assume that δK ≥ δK′ .
In the hat-variables, these estimates (with u = u′ and q = 0) become

ReZ ≤ −δK′
(
|ŝ|2r2 + |t̂|2r2 + rp

)
.

The function

e(ŝ, t̂, r) = rnexp
(
−δK′

(
|ŝ|2r2 + |t̂|2r2 + rp

))
is an integrable function on the set {(ŝ, t̂, r) ∈ R×Rn−1 ×R+; r ≥ 0} (to
see this, integrate ŝ and t̂ and then integrate r).

The Dominated Convergence Theorem now allows us to let ε→ 0 in the
integrand. The resulting exponent becomes

Z = e2iθr2
((

∂h(y, u, v)
∂y

+ i

)
ŝ+

∂h

∂v
(y, u, v) · t̂

)2

− ΛK′ t̂2r2e2iθ − rpeipθ.

In addition, ζ = (h(y+εŝ, u, v+εt̂)+i(y+εŝ)) converges to h(y, u, v)+iy = z
uniformly for (z, w) ∈ K as ε→ 0. Likewise, αnε−ndζ ∧ dη ∧ dα approaches
in−1rnei(n+1)θ(hy(y, u, v) + i) dŝ dt̂ dr.

Now we rewrite the first part of the exponent involving ŝ as

e2iθr2
((

∂h(y, u, v)
∂y

+ i

)
ŝ+

∂h

∂v
(y, u, v) · t̂

)2

= −r2
(
(−i)eiθWŝ+ (−i)eiθ ∂h

∂v
(y, u, v) · t̂

)2
,
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where W =
∂h(y, u, v)

∂y
+ i ∈ C. We have

lim
ε→0

Eε(f)(z, w) = ei(n+1)θCf(z, w)

×
∫

ŝ,t̂

∫
r≥0

exp
(
−r2

(
−ieiθWŝ− ieiθ ∂h

∂v
(y, u, v) t̂

)2
−ΛK′ t̂2r2e2iθ − rpeipθ

)
× rnin−1(hy(y, u, v) + i) dŝ dt̂ dr.

Using the limiting case as s → y in (5), we obtain Re
(
e2iθ(W )2

)
< 0.

Therefore

Re
(
−ieiθWŝ

)2
> 0.(12)

The idea now is to view the ŝ-integral in Eε(f) as a contour integral over
the contour C given by

ŝ 7→ z = −ieiθWŝ for ŝ ∈ R,

with dz = −ieiθ(hy(y, u, v) + i) dŝ.

The integral is
∫
C e

−r2(z+c)2 dz, where c = −ieiθhv(y, u, v) t̂. In view of (12),
e−r2(z+c)2 is negatively exponentially decreasing on C. Cauchy’s theorem
implies that this contour integral is the same as

∫∞
−∞ e−r2(s+c)2 ds. Therefore,

lim
ε→0

Eε(f)(z, w) = −in−2einθCf(z, w)

×
∫

s,t̂

∫
r≥0

exp
(
−r2

(
s− ieiθ

∂h

∂v
(y, u, v) t̂

)2
− ΛK′ t̂2r2e2iθ − rpeipθ

)
rn ds dt̂ dr.

Now we make a change of variables:

s̃ = s+ a t̂, with a = (−i)eiθ ∂h
∂v

(y, u, v) ∈ Cn−1,

t̃ = t̂ ∈ Rn−1.

The Jacobian of the derivative of this change of variables is 1. If a were
a real number, we could change variables in the usual manner and obtain
(after dropping the tilde)∫

s,t̂
e−r2(s+at̂)2−r2ΛK′ t̂2e2iθ

ds dt̂ =
∫

s,t
e−r2s2−r2ΛK′ t2e2iθ

ds dt.

Increasing ΛK′ if necessary, the left side is an analytic function of a in a
neighborhood of the ball |a| ≤ R, where R = sup |hv| over K. Therefore the
preceding equality holds (by the identity theorem for analytic functions) for
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complex a as well. We thus obtain

lim
ε→0

Eε(f)(z, w)

= −in−2einθCf(z, w)
∫

s,t

∫
r≥0

exp
(
−r2s2−ΛK′t2r2e2iθ−rpeipθ

)
rn ds dt dr.

We can now replace eiθt ∈ Cn−1 by t̃ ∈ Rn−1 and ei(n−1)θdt by dt̃. This
change of variables is justified, again, by Cauchy’s Theorem and the fact
that |θ| < π

4 . The result is (dropping the tilde)

lim
ε→0

Eε(f)(z, w)

= −in−2eiθCf(z, w)
∫

s,t

∫
r≥0

exp
(
−r2s2 − ΛK′t2r2 − rpeipθ

)
rn ds dt dr.

We change variables by letting t̂ = rt ∈ Rn−1 and ŝ = rs ∈ R (with
rn ds dt = dŝ dt̂). After integrating ŝ and t̂, the right side becomes

Cf(z, w) · ConstΛK′

∫ ∞

0
exp

(
−rpeipθ

)
eiθ dr

where ConstΛK′ ∈ C is a constant depending only on ΛK′ . We can view the
preceding integral as an integral over the contour

Cθ = {r 7→ z = reiθ}, with dz = eiθdr.

Since |θ| < π
4 , this contour lies in the right half-plane. Using the principal

branch of zp, the contour integral becomes

Cf(z, w) · ConstΛK′

∫
z∈Cθ

e−zp
dz.

Since the integrand is analytic and rapidly decreasing at infinity (recall that
|pθ| < π

2 ), Cauchy’s Theorem can be used to transform this integral into the
following one over the positive real axis:

Cf(z, w) · ConstΛK′

∫ ∞

0
e−r̂p

dr̂.

This is now independent of θ. Since the r̂-integral converges, we may choose
C (as a normalizing constant) so that the expression above becomes f(z, w).
This completes the proof of Lemma 2.

6. Fixing the slice Mu

So far, the function f is only required to be continuous (not CR). However,
the domain of integration in Eε(f)(z, w) is Mu = {Re η = u}, which depends
on u = Rew. So despite the fact that the kernel is entire in (z, w), the
expression Eε(f)(z, w) is not holomorphic in w. The next major step is to
show that if f is CR, then the domain can be fixed at a particular slice Mu0

(independent of w). Then, the resulting integral will be holomorphic in both
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z and w. Since f is assumed to only have support on a small neighborhood
of a fixed point (see Lemma 1), a localization argument with a partition
of unity is needed. This adds some complicating facets since a partition of
unity is not CR.

To get started with the next step, we first cover M ∩ K ′ with an open
cover Q′k (k = 1, 2, . . . , N ′), where each Q′k satisfies the properties given in
Lemma 1. Let φk be a partition of unity subordinate to this cover. Fix any
(z, w) ∈ K and let Qj be an open set that satisfies Lemma 1 and is of the
form Qj = I × J , where I ⊂ Rn−1 is an open set containing Rew and J is
an open set in C ×Rn−1 containing (z, Im w). Let θj,k be the angle given
in Lemma 1 corresponding the open sets Q′k in the coordinates (ζ, η) and
Qj in the coordinates (z, w). For the moment, the index j will be fixed and
k will vary. Therefore, we will suppress the index j and write Q = Qj and
θQ,k = θj,k. For any u0 ∈ I, define

F u0,Q
ε (f)(z, w) =

N ′∑
k=1

∫
(ζ,η)∈Mu0

∫
α∈CθQ,k

(φkf)(ζ, η)Eε(ζ, η, α, z, w)αn dζ dη dα.

From Lemma 2, F u0,Q
ε (f) → f as ε→ 0 uniformly on the set Q ∩Mu0 .

The next lemma contains the key step in fixing the domain of integration
independently of Rew. In this lemma, the size of K ′∩M (the set on which f
is CR) will be determined based on the size of the original set K. Increasing
the size of K ′ will add terms to the sum above (i.e., additional open sets, Q′k,
and additional partition of unity functions φk may be required). However
as long as K ′ is compact (which it will be), the sum will be finite.

Lemma 3. Suppose K is a compact set in Cn; then K ′ ⊂ Cn can be chosen
large enough (containing K) so that the following holds: suppose f is CR
on K ′ ∩M . Let Q = I × J be the open set described above. There exists
∆K′ > 0 such that if the diameter of I is less than ∆K′ and if u0, u1 ∈ I, then∣∣(F u1,Q

ε − F u0,Q
ε )(f)(z, w)

∣∣ → 0 as ε→ 0 uniformly for (z, w) ∈ Q = I × J .

Proof. Assume that K ′ is a closed ball of radius R′+1 in Cn. Since f is CR
on K ′∩M , we can multiply f by an appropriate cut-off function and assume
that f has compact support in K ′ ∩M and is ∂-closed on the intersection
of M with the ball of radius R′.
Mu0 and Mu1 are totally real n-dimensional slices of M that naturally

form the boundary of a real n + 1-dimensional submanifold M̃0,1 ⊂ M . In
fact, just connect u0 and u1 by a real line segment and let M̃0,1 be the graph
of h over the n+ 1 real-dimensional strip spanned by this line segment and
the n-dimensional subspace {Re η = u0} of R2n−1.

Since Eε is holomorphic, Stokes’ Theorem implies

(F u1,Q
ε − F u0,Q

ε )(f)(z, w) = S1 + S2
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with

S1 =
N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα,(13)

S2 =
N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(φk∂f)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.(14)

We first show that the sum in (14) converges to zero as ε→ 0. The point
(ζ, η) = (h(s, u′, t) + is, u′ + it) must lie in the support of ∂f , which lies
outside the ball of radius R′ ≈ radius(K ′). Also note that u′ belongs to the
line segment connecting u0 and u1, which in turn belongs toK (or rather, the
projection ofK onto the u-axis). The point (z, w) = (h(y, u, v)+q+iy, u+iv)
lies in the smaller compact set K. We are at liberty to take R′ as large as
we please (relative to the diameter of K) in order to make the integrand in
(14) converge to zero as ε→ 0. Since (z, w) and u, u′ belong to K, we may
choose R′ large enough so that either

|s− y| ≥ R′

2
or |t− v| ≥ R′

2
(15)

for all (ζ, η) belonging to the support of ∂f .
We have two cases to consider on the exponent

Z = α2
(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp.

The first is |s− y| ≤ 2dK , in which case we repeat the estimate (1):

ReZ ≤ −δK
(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 +rp

)
+ CK′

∣∣∣u− u′

ε

∣∣∣2r2 + CK

(q
ε

)2
r2.

Now u, u′ belong to I and we will require the diameter of I to be less than
∆K′ (where ∆K′ will be chosen below). In view of the inequality above and
(15), we have

ReZ ≤
−δK(R′/2)2r2 + CK′∆2

K′r2 + CKq
2r2

ε2
.

Choose R′ large enough that −δK(R′/2)2 +CKq
2 < −2 for all q in K. This

choice of R′ fixes the constant CK′ . Now choose ∆K′ small enough that
CK′∆2

K′ < 1. Then the real part of exponent is at most −r2/(ε2).
In the case where |s− y| ≥ dK , (2) implies

ReZ ≤ −δK′

(∣∣∣s− y

ε

∣∣∣2r2 +
∣∣∣ t− v

ε

∣∣∣2r2 + rp

)
+ CK′

∣∣∣u− u′

ε

∣∣∣2r2.
In view of (15)

ReZ ≤ −δK
′R′2r2

4ε2
+
CK′∆2

K′r2

ε2
.
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By shrinking ∆K′ we can arrange

ReZ ≤ −δK
′R′2r2

8ε2
.

In either case (|s − y| ≥ dK or |s − y| ≤ 2dK), the integrand of each term
in (14) is dominated by Ce−r2/ε2 or Ce−δK′R′2r2/(8ε2) provided u, u′ ∈ I and
the diameter of I is less than ∆K′ .

Since
∫∞
0 e−r2/ε2 dr → 0 and

∫∞
0 e−δK′R′2r2/(8ε2) dr → 0 as ε → 0, we

conclude that the sum in (14) converges to zero.
Now we examine the sum S1 in (13), which we restate as

N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.

We have already determined the compact set K ′ (the size of which had to
be chosen large enough to make the term in (14) converge to zero as ε→ 0).
Thus, all the constants in our integral kernels (i.e., ΛK′ and p = pK′ > 2)
are now determined.

Note that the kernel Eε(ζ, η, α, z, w) in the sum immediately above is the
same for all k. The only terms that appear to vary with k are the cutoff
functions φk and the contours CθQ,k

. The following lemma states that the
integral of the kernel is independent of this contour.

Sublemma 1. Let Q′1 and Q′2 be intersecting open sets from our cover. Let
θ1 and θ2 be any two angles that satisfy the requirements of Lemma 1 relative
to Q′1 and Q′2 (in particular, |θ1|, |θ2| < π

4 − δK′). Then∫
α∈Cθ1

Eε(ζ, η, α, z, w)αndα =
∫

α∈Cθ2

Eε(ζ, η, α, z, w)αndα.(16)

To prove this, recall that Cθ is a ray in the complex plane that makes an
angle θ with the positive real axis. For R > 0, let AR,θ1,θ2 be the arc of a
circle of radius R that lies between Cθ1 and Cθ2 :

Cθ2

Cθ1

AR,θ1,θ2
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Since Eε(ζ, η, α, z, w) is holomorphic in α, Equation (16) will follow from
Cauchy’s Theorem provided we show that

sup
α∈AR,θ1,θ2

Rn+1
∣∣Eε(ζ, η, α, z, w)

∣∣ → 0 as R→∞.(17)

We restate the kernel:

Eε(ζ, η, α, z, w) = exp
(
α2

(ζ − z

ε

)2
+ α2ΛK′

(w − η

ε

)2
− αp

)
.

Keep in mind that ε, ζ, η, z and w are fixed. Since p > 2, the dominant term
in the exponent is αp as |α| = R→∞. Let α = Reiφ be an arbitrary point
on the arc AR,θ1,θ2 , so θ1 ≤ φ ≤ θ2. Since |pφ| ≤ p |max(θ1, θ2)| < π

2 by the
choice of p, there exists δ > 0 such that −Reαp ≤ −δRp for α ∈ AR,θ1,θ2 .
Equation (17) now follows since Rn+1e−δRp → 0 as R→∞. This concludes
the proof of the sublemma.

Using the fact that
∑

j φj = 1, the sum in (13) can be rewritten as

N ′∑
j=1

N ′∑
k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,k

φj(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.(18)

The support of φj∂φk is contained in Q′j ∩ Q′k ∩M . Using Equation (16),
the integral over CθQ,k

can be replaced by the integral over CθQ,j
. Therefore

(18) becomes
N ′∑

j,k=1

∫
(ζ,η)∈fM01

∫
α∈CθQ,j

φj(∂φkf)(ζ, η)Eε(ζ, η, α, z, w)αndζ dη dα.

Summing out k we see that this term is zero because
∑

k ∂φk = 0 on M∩K ′.
Thus the term in (13) is zero. Since the terms in (14) converge to zero as
ε→ 0, the proof of Lemma 3 is now complete.

Lemmas 2 and 3 imply:

Corollary 1. With the notation of Lemma 3, suppose f is CR on K ′ ∩M
and suppose that Q = I × J , where the diameter of I is less than ∆K′. If
u0 belongs to I, then

F u0,Q
ε (f)(z, w) → f as ε→ 0,

uniformly for (z, w) ∈ Q ∩M .

7. Globalization

Now F u0,Q
ε (f) is holomorphic on Q and F u0,Q

ε (f) → f on Q ∩M . The set
Q is an appropriately small open set about an arbitrary point (z, w) in K.
Our next and final step is to piece together these locally defined holomorphic
functions into a sequence of functions that are globally holomorphic on K
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with the corresponding convergence to f on K∩M . This will require solving
a ∂ problem on K with estimates.

To get started, we will assume K is a ball (in particular, K is a convex
domain and so we can solve ∂ on K). We cover K with open sets Qj

(j = 1, . . . , N) of the form Qj = Ij × Jj where Ij is an open set in Rn−1

(with coordinates u) and Jj is an open set in Rn+1 = R×R×Rn−1 (with
coordinates x ∈ R, y ∈ R, v ∈ Rn−1). We assume that Qj is small enough
to satisfy the requirements of Lemma 3 and that the diameter of each Ij is
smaller than ∆K′ (from Lemma 3). Choose points uj ∈ Ij , j = 1 . . . N . We
let ψj be a partition of unity for K subordinate to the cover Qj . We define

Fε(f)(z, w) =
( ∑

j

ψjF
uj ,Qj
ε (f)(z, w)

)
− vε(z, w)

=
∑
j,k

ψj(z, w)
∫

(ζ,η)∈Muj

∫
α∈CθQj,k

(φkf)(ζ, η)

× Eε(ζ, η, α, z, w)αndζ dη dα− vε(z, w),

(19)

where vε will be chosen so that Fε(f) is holomorphic in K. We will also show
that |vε| converges to zero uniformly on K as ε→ 0. Then, Corollary 1 will
imply that Fε(f) → f uniformly on M ∩K, as desired.

In order to arrange that Fε(f) is holomorphic on K, we must require

∂vε(z, w) =
∑

j

∂{ψj}F uj ,Qj (f)(z, w)(20)

=
∑

l

ψl

∑
j

∂{ψj}F
uj ,Qj
ε (f)(z, w),

using
∑

l ψl = 1 on K. If ψl∂{ψj} is nonzero, Ql and Qj must overlap.
We wish to change F

uj ,Qj
ε to F ul,Ql

ε in the sum above. Changing Qj to
Ql involves changing the angle of the contour from CθQj,k

to CθQl,k
on the

second line of (19), which Sublemma 1 allows us to do. Changing uj to ul

is allowed by Lemma 3 but with a resulting error that tends to zero with ε.
Therefore, (20) becomes

∂vε(z, w) =
∑

l

ψl

∑
j

∂{ψj}F ul,Ql
ε (f)(z, w) +O(ε),

where O(ε) stands for terms that converge to zero uniformly on K as ε→ 0.
Summing out j and using the fact that

∑
j ∂{ψj} = 0, we conclude that

∂vε = O(ε) on K. Solving this ∂ equation with sup-norm estimates on
K, we can find a solution with |vε| = O(ε). Now returning to (19) and
using Corollary 1, we conclude that Fε(f) is analytic on K and converges
uniformly to f on M ∩K. Since K is convex, it is also polynomially convex.
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Therefore, there is also a sequence of polynomials that converge uniformly
on K ∩M to f . This concludes the proof of our main theorem.
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