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For prime rings containing nontrivial idempotents, we de-
scribe the bijective additive maps which preserve zero prod-
ucts. Also, we describe the additive maps which behave like
derivations when acting on zero products.

1. Introduction

In the last decade considerable works have been done concerning local prop-
erties of maps; see [1], [7], and [9]–[32], where other references can be found.
The goal of this paper is to show that automorphisms and derivations of
prime rings with nontrivial idempotents can be “almost” determined by the
action on the zero-product elements.

Our first theorem generalizes a similar result of Wong [34, Corollary D]
for simple algebras with nontrivial idempotents, as well as some other results
obtained for operator algebras [1, 13, 16, 33].

Let R be a prime ring. The definitions and some basic properties of the
maximal right quotient ring Q(R) and extended centroid C(R) of R can be
found in [6]. Recall that an element x in Q(R) is said to be algebraic of
degree ≤ n over C(R) if there exist c0, c1, c2, . . . , cn−1 ∈ C(R) such that∑n−1

i=0 cix
i + xn = 0. By deg R ≥ n we mean that there exists an element

x in R that is not algebraic of degree ≤ n− 1 over C(R). The condition
that deg R ≥ n is equivalent to that R can not be embedded in the ring of
(n−1)× (n−1) matrices over a field.

Theorem 1. Let A and B be prime rings and θ : A → B a bijective additive
map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that the
maximal right quotient ring Q(A) of A contains a nontrivial idempotent e
such that eA ∪Ae ⊆ A.

(i) If 1 ∈ A, then θ(xy) = λθ(x)θ(y) for all x, y ∈ A, where λ = 1/θ(1)
and θ(1) ∈ Z(B), the center of B. In particular, if θ(1) = 1, then θ is
a ring isomorphism from A onto B.

(ii) If deg B ≥ 3, then there exists λ ∈ C(B), the extended centroid of B,
such that θ(xy) = λθ(x)θ(y) for all x, y ∈ A.
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It is clear that Theorem 1 can not be extended to arbitrary prime rings,
since these rings may not have “enough” zero-divisors. The condition that
the idempotent e be an element of Q(A) (instead of A) enables us to consider
matrix rings over arbitrary prime rings (not necessarily with units).

Our second result is an analog of Theorem 1 for derivations. In particular,
it generalizes [19, Theorem 6].

Theorem 2. Let A be a prime ring with center Z, maximal right quotient
ring Q and extended centroid C. Let δ : A → A be an additive map such
that δ(x)y+xδ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that Q contains
a nontrivial idempotent e such that eA ∪Ae ⊆ A.

(i) If 1 ∈ A, then δ(xy) = δ(x)y + xδ(y) − λxy for all x, y ∈ A, where
λ = δ(1) ∈ Z. In particular, if δ(1) = 0, then δ is a derivation on A.

(ii) If deg A ≥ 3, there exists λ ∈ C such that δ(xy) = δ(x)y +xδ(y)−λxy
for all x, y ∈ A.

2. Isomorphisms

We start with a key result of the paper.

Theorem 3. Let A and B be prime rings and θ : A → B a bijective additive
map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that the
maximal right quotient ring Q(A) of A contains a nontrivial idempotent e
such that eA ∪ Ae ⊆ A. Then θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.
Moreover, if A contains the unity 1, then:

(i) θ(1) lies in the center Z(B) of B.
(ii) θ(1)θ(xy) = θ(x)θ(y) for all x, y ∈ A. In particular, if θ(1) = 1, then

θ is a ring isomorphism from A onto B.
(iii) θ preserves commutativity, that is, θ(x)θ(y) = θ(y)θ(x) for all x, y ∈ A

with xy = yx.

Proof. Set f = 1 − e. Then f is a nontrivial idempotent in Q(A) such
that e + f = 1, ef = fe = 0 and fA ∪ Af ⊆ A. Since θ is additive and
y = eye+ eyf + fye+ fyf for all y ∈ A, it suffices to show that the identity
θ(x)θ(yz) = θ(xy)θ(z) holds for y in eAe, eAf , fAe and fAf , respectively.

Let x, z ∈ A. Since θ preserves zero products, (xe)(z − ez) = 0 implies
that θ(xe)θ(z − ez) = 0 and hence

θ(xe)θ(z) = θ(xe)θ(ez).

Similarly, it follows from (x− ex)(ez) = 0 that

θ(x)θ(ez) = θ(xe)θ(ez).

Thus we have

θ(x)θ(ez) = θ(xe)θ(ez) = θ(xe)θ(z) for all x, z ∈ A.(1)
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By the symmetry of e and f , we also have

θ(x)θ(fz) = θ(xf)θ(fz) = θ(xf)θ(z) for all x, z ∈ A.(2)

Note that

(xe + xeyf)(eyfz − fz) = 0 for all x, y, z ∈ A,

so
θ(xe + xeyf)θ(eyfz − fz) = 0 for all x, y, z ∈ A.

Since θ(xe)θ(fz) = 0 and θ(xeyf)θ(eyfz) = 0, this results in

θ(xe)θ(eyfz) = θ(xeyf)θ(fz) for all x, y, z ∈ A,

and hence

θ(x)θ(eyfz) = θ(xeyf)θ(z) for all x, y, z ∈ A(3)

in light of (1) and (2). By the symmetry of e and f , we also have

θ(x)θ(fyez) = θ(xfye)θ(z) for all x, y, z ∈ A.(4)

Thus it remains to show that

θ(x)θ(eyez) = θ(xeye)θ(z) for all x, y, z ∈ A(5)

and

θ(x)θ(fyfz) = θ(xfyf)θ(z) for all x, y, z ∈ A.(6)

Applying (1), (2), (3) and (4) we shall rewrite the product

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

in two ways, via the following sequences of steps (read down each column;
each entry can be seen to be equal to the one immediately above):

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

θ(x(eyezeufv1f))θ(fv2)θ(fv3)θ(ew)

θ(x)θ(eyezeufv1fv2)θ(fv3)θ(ew)

θ(x)θ(eyeze(eufv1fv2f))θ(fv3)θ(ew)

θ(x)θ(eyeze)θ(eufv1fv2fv3)θ(ew)

θ(x)θ(eyeze)θ(u(fv1fv2fv3e))θ(ew)

θ(x)θ(eyeze)θ(u)θ(fv1fv2fv3ew)

θ(xeyezeufv1)θ(fv2)θ(fv3)θ(ew)

θ(xeye(ezeufv1f))θ(fv2)θ(fv3)θ(ew)

θ(xeye)θ(ezeufv1fv2)θ(fv3)θ(ew)

θ(xeye)θ(ze(eufv1fv2f))θ(fv3)θ(ew)

θ(xeye)θ(ze)θ(eufv1fv2fv3)θ(ew)

θ(xeye)θ(ze)θ(u(fv1fv2fv3e))θ(ew)

θ(xeye)θ(ze)θ(u)θ(fv1fv2fv3ew)

Comparing the two expressions on the last line, we get(
θ(x)θ(eyeze)− θ(xeye)θ(ze)

)
θ(u)θ(fv1fv2fv3ew) = 0

for all x, y, z, u, vi, w ∈ A. Since A and B are prime and θ is bijective, we
obtain

θ(x)θ(eyeze) = θ(xeye)θ(ze) for all x, y, z ∈ A.(7)
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Similarly we express the product

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

in two other ways:

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

θ(x(eyezfufv1f))θ(fv2)θ(ev3)θ(ew)

θ(x)θ(eyezfufv1fv2)θ(ev3)θ(ew)

θ(x)θ(eyezf(fufv1fv2e))θ(ev3)θ(ew)

θ(x)θ(eyezf)θ(fufv1fv2ev3)θ(ew)

θ(x)θ(eyezf)θ(u(fv1fv2ev3e))θ(ew)

θ(x)θ(eyezf)θ(u)θ(fv1fv2ev3ew)

θ(xeyezfufv1)θ(fv2)θ(ev3)θ(ew)

θ(xeye(ezfufv1f))θ(fv2)θ(ev3)θ(ew)

θ(xeye)θ(ezfufv1fv2)θ(ev3)θ(ew)

θ(xeye)θ(zf(fufv1fv2e))θ(ev3)θ(ew)

θ(xeye)θ(zf)θ(fufv1fv2ev3)θ(ew)

θ(xeye)θ(zf)θ(u(fv1fv2ev3e))θ(ew)

θ(xeye)θ(zf)θ(u)θ(fv1fv2ev3ew)

Comparing both expressions, we get(
θ(x)θ(eyezf)− θ(xeye)θ(zf)

)
θ(u)θ(fv1fv2ev3ew) = 0

for all x, y, z, u, vi, w ∈ A. Since A and B are prime and θ is bijective, we
obtain

θ(x)θ(eyezf) = θ(xeye)θ(zf) for all x, y, z ∈ A.(8)

Then (5) follows immediately from the identities (7) and (8). By the sym-
metry of e and f , we obtain (6) too. Therefore,

θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.(9)

Suppose that A contains the unity 1. Setting x = z = 1 in (9), we have

θ(1)θ(y) = θ(y)θ(1)

for all y ∈ A. Since θ is surjective, θ(1) lies in the center of B. This
establishes statement (i) of Theorem 3.

Setting z = 1 in (9), we get

θ(x)θ(y) = θ(xy)θ(1) = θ(1)θ(xy)

for all x, y ∈ A. In particular, if θ(1) = 1, then θ is a ring isomorphism from
A onto B. This establishes (ii).

Finally, by (ii) we have

θ(x)θ(y)− θ(y)θ(x) = θ(1)(θ(xy)− θ(yx)) = θ(1)θ(xy − yx)

for all x, y ∈ A. Then (iii) follows immediately. �

In view of the preceding theorem, we see that the zero-product preserving
map θ satisfies the functional identity

θ(x)θ(yz) = θ(xy)θ(z) for all x, y, z ∈ A.

This enables us to apply the recently developed theory of functional identi-
ties. Instead of introducing complicated definitions and notations, we shall
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present some special cases of the results in [3, 4]. The first one follows from
[3, Theorem 2.4] and [4, Theorem 1.2].

Lemma 4. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C such that deg R ≥ 3. Let S be a set, θ : S → R a
surjective map and M : S × S → Q a map. Suppose that

α1θ(x)M(y, z) + α2θ(y)M(x, z) + α3θ(z)M(x, y)

+ β1M(y, z)θ(x) + β2M(x, z)θ(y) + β3M(x, y)θ(z) = 0

for all x, y, z ∈ S, where the αi and βi are constants in C, not all zero. Then
there exist λ1, λ2 ∈ C, µ1, µ2 : S → C and ν : S × S → C such that

M(x, y) = λ1θ(x)θ(y) + λ2θ(y)θ(x) + µ1(x)θ(y) + µ2(y)θ(x) + ν(x, y)

for all x, y ∈ S.

The second one follows from [3, Theorem 2.4] and [4, Theorem 1.1].

Lemma 5. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C, such that deg R ≥ 3. Let S be a set and θ : S → R a
surjective map. Suppose that∑

σ∈Sym(3)

ασθ(xσ(1))θ(xσ(2))θ(xσ(3)) +
∑

σ∈Sym(3)

βσ(xσ(1))θ(xσ(2))θ(xσ(3))

+ γ1(x2, x3)θ(x1) + γ2(x1, x3)θ(x2) + γ3(x1, x2)θ(x3) = 0

for all x1, x2, x3 ∈ S, where Sym(3) is the symmetric group on 3 letters,
the ασ are constants in C, the βσ are maps S → C and the γi are maps
S × S → C. Then the constants ασ and the maps βσ and γi are all zero.

With these results at hand, we are ready to prove our first main theorem.

Proof of Theorem 1. Since (i) follows from Theorem 3, it remains to prove
(ii).

Define a map M : A × A → B by M(x, y) = θ(xy) for x, y ∈ A. By
Theorem 3, we have

θ(x)M(y, z)−M(x, y)θ(z) = 0 for all x, y, z ∈ A.(10)

Then it follows from Lemma 4 that there exist λ1, λ2 ∈ C, µ1, µ2 : A → C
and ν : A×A → C such that

M(x, y) = λ1θ(x)θ(y) + λ2θ(y)θ(x) + µ1(x)θ(y) + µ2(y)θ(x) + ν(x, y)

for all x, y ∈ A. Substituting this into (10), we obtain

λ2θ(x)θ(z)θ(y)−λ2θ(y)θ(x)θ(z)+µ2(z)θ(x)θ(y)+
(
µ1(y)−µ2(y)

)
θ(x)θ(z)

− µ1(x)θ(y)θ(z) + ν(y, z)θ(x)− ν(x, y)θ(z) = 0,
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for all x, y, z ∈ A. By Lemma 5, the constant λ2 and the maps µ1, µ2 and ν
are all zero. In other words, M(x, y) = θ(xy) = λ1θ(x)θ(y) for all x, y ∈ A.
Thus the proof is complete. �

3. Derivations

Next we prove a result analogous to Theorem 3. The idea is essentially the
same as in the proof of Theorem 3, although the computations are a bit
more complicated.

Theorem 6. Let A be a prime ring with maximal right quotient ring Q and
δ : A → A an additive map such that δ(x)y + xδ(y) = 0 for all x, y ∈ A
with xy = 0. Suppose that Q contains a nontrivial idempotent e such that
eA ∪ Ae ⊆ A. Then δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) for all x, y, z ∈ A.
Moreover, if A contains the unity 1, then

δ(xy) = δ(x)y + xδ(y)− λxy,

where λ = δ(1) is a central element of A. In particular, if δ(1) = 0, then δ
is a derivation on A.

Proof. As before, we set f = 1− e. Then f is a nontrivial idempotent in Q
such that e + f = 1, ef = fe = 0 and fA∪Af ⊆ A. Since δ is additive and
y = eye+ eyf + fye+ fyf for all y ∈ A, it suffices to show that the identity
δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) holds for y in eAe, eAf , fAe and fAf
respectively.

Let x, z ∈ A. Since (xe)(z−ez) = 0, we have δ(xe)(z−ez)+xeδ(z−ez) = 0
by assumption and hence

δ(xe)z + xeδ(z) = δ(xe)ez + xeδ(ez).

Similarly, it follows from (x− xe)(ez) = 0 that

δ(x)ez + xδ(ez) = δ(xe)ez + xeδ(ez).

Thus

δ(x)ez + xδ(ez) = δ(xe)z + xeδ(z) = δ(xe)ez + xeδ(ez) for all x, z ∈ A.
(11)

By the symmetry of e and f , we also have

δ(x)fz + xδ(fz) = δ(xf)z + xfδ(z) = δ(xf)fz + xfδ(fz) for all x, z ∈ A.
(12)

Note that for x, y, z ∈ A, we have

(xe)(fz) = 0,

(xeyf)(eyfz) = 0,

(xe + xeyf)(eyfz − fz) = 0,



ACTION ON ZERO PRODUCTS 223

so
δ(xe)fz + xeδ(fz) = 0,

δ(xeyf)eyfz + xeyfδ(eyfz) = 0,

δ(xe + xeyf)(eyfz − fz) + (xe + xeyf)δ(eyfz − fz) = 0.

Combining these three identities, we get

δ(xe)eyfz + xeδ(eyfz) = δ(xeyf)fz + xeyfδ(fz),

and hence

δ(x)eyfz + xδ(eyfz) = δ(xeyf)z + xeyfδ(z) for all x, y, z ∈ A,(13)

in light of (11) and (12). By the symmetry of e and f , we also have

δ(x)fyez + xδ(fyez) = δ(xfye)z + xfyeδ(z) for all x, y, z ∈ A.(14)

Thus it remains to show that

δ(x)eyez + xδ(eyez) = δ(xeye)z + xeyeδ(z) for all x, y, z ∈ A(15)

and

δ(x)fyfz + xδ(fyfz) = δ(xfyf)z + xfyfδ(z) for all x, y, z ∈ A.(16)

Applying (11), (12), (13) and (14), we shall express the sum

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

in two other ways. On the one hand, we have

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

= δ(x)eyezfufvew + xδ(eyez(fufve))ew + xeyez(fufve)δ(ew)

= δ(x)eyezfufvew + xδ(eyez)fufvew + xeyezδ(fufvew).

On the other hand,

δ(x)eyezfufvew + xδ(eyezfufv)ew + xeyezfufvδ(ew)

= δ(x)(eyezfuf)fvew + xδ((eyezfuf)fv)ew + xeyezfufvδ(ew)

= δ(xeyezfuf)fvew + xeyezfufδ(fv)ew + xeyezfufvδ(ew)

= δ(xey(ezfuf))fvew + xey(ezfuf)δ(fv)ew + xeyezfufvδ(ew)

= δ(xey)ezfufvew + xeyδ(ezfufv)ew + xeyezfufvδ(ew)

= δ(xey)ezfufvew + xeyδ(ez(fufve))ew + xeyez(fufve)δ(ew)

= δ(xey)ezfufvew + xeyδ(ez)fufvew + xeyezδ(fufvew)

= δ(xeye)zfufvew + xeyeδ(z)fufvew + xeyezδ(fufvew).

Comparing both expressions, we get(
δ(x)eyez + xδ(eyez)− δ(xeye)z − xeyeδ(z)

)
fufvew = 0
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for all x, y, z, u, v, w ∈ A. Since A is prime, we obtain(
δ(x)eyez + xδ(eyez)

)
f =

(
δ(xeye)z + xeyeδ(z)

)
f.(17)

for all x, y, z ∈ A. Similarly we express the sum

δ(x)eyezeufvfwft + xδ(eyezeufvfw)ft + xeyezeufvfwδ(ft)

in two other ways. On the one hand, we have

δ(x)eyezeufvfwft + xδ(eyezeufvfw)ft + xeyezeufvfwδ(ft)

= δ(x)eyezeufvfwft + xδ(eyez(eufvfwf))ft + xeyez(eufvfwf)δ(ft)

= δ(x)eyezeufvfwft + xδ(eyez)eufvfwft + xeyezδ(eufvfwft).

On the other hand,

δ(x)eyezeufvfwft + xδ(eyezeufvfw)ft + xeyezeufvfwδ(ft)

= δ(x)(eyezeuf)vfwft + xδ((eyezeuf)vfw)ft + xeyezeufvfwδ(ft)

= δ(xeyezeuf)vfwft + xeyezeufδ(vfw)ft + xeyezeufvfwδ(ft)

= δ(xey(ezeuf))vfwft + xey(ezeuf)δ(vfw)ft + xeyezeufvfwδ(ft)

= δ(xey)ezeufvfwft + xeyδ(ezeufvfw)ft + xeyezeufvfwδ(ft)

= δ(xey)ezeufvfwft + xeyδ(ez(eufvfwf))ft + xeyez(eufvfwf)δ(ft)

= δ(xey)ezeufvfwft + xeyδ(ez)eufvfwft + xeyezδ(eufvfwft)

= δ(xeye)zeufvfwft + xeyeδ(z)eufvfwft + xeyezδ(eufvfwft).

Comparing both expressions, we get(
δ(x)eyez + xδ(eyez)− δ(xeye)z − xeyeδ(z)

)
eufvfwft = 0

for all x, y, z, u, v, w, t ∈ A. Since A is prime, we obtain(
δ(x)eyez + xδ(eyez)

)
e =

(
δ(xeye)z + xeyeδ(z)

)
e(18)

for all x, y, z ∈ A. Then (15) follows immediately from the identities (17)
and (18). By the symmetry of e and f , we have (16) too. Therefore,

δ(x)yz + xδ(yz) = δ(xy)z + xyδ(z) for all x, y, z ∈ A.(19)

Suppose that A contains the unity 1. Setting x = z = 1 in (19), we get
δ(1)y = yδ(1) for all y ∈ A. That is, λ = δ(1) is a central element of A.
Setting z = 1 in (19) we get

δ(xy) = δ(x)y + xδ(y)− λxy for all x, y ∈ A.

Clearly, if δ(1) = 0, then δ is a derivation. �

Now we need some lemmas to deal with the functional identity δ(x)yz +
xδ(yz) = δ(xy)z + xyδ(z). The following two results are special cases of
[5, Corollary 2.9]. The first one also appears in [2, Theorem 1.2], where
bi-additivity of the maps Fi and Gi is assumed.
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Lemma 7. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C, such that deg R ≥ 3. Let Fi, Gi : R×R → Q, i = 1, 2, 3,
be maps. Suppose that

x1F1(x2, x3) + x2F2(x1, x3) + x3F3(x1, x2)

+ G1(x2, x3)x1 + G2(x1, x3)x2 + G3(x1, x2)x3 = 0

for all x1, x2, x3 ∈ R. Then there exist unique maps pi,j : R → Q, for
1 ≤ i 6= j ≤ 3, with pi,j = pj,i, and maps λi : R × R → C, for i = 1, 2, 3,
such that

Fi(xj , xk) = pi,j(xk)xj + pi,k(xj)xk + λi(xj , xk),

Gj(xi, xk) = −xipi,j(xk)− xkpj,k(xi)− λj(xi, xk)

for all xi, xj , xk ∈ R, where i, j, k are distinct, and λi = 0 if either Fi = 0
or Gi = 0.

The next result also appears in [8, Lemma 4.5], where additivity of the
maps fi and gi is assumed.

Lemma 8. Let R be a prime ring with maximal right quotient ring Q and
extended centroid C. Let fi, gi : R → R, for i = 1, 2, be maps. Suppose that

f1(x)y + f2(y)x + xg1(y) + yg2(x) = 0

for all x, y ∈ R. Then there exist unique constants c1, c2 ∈ Q and maps
λ1, λ2 : R → C such that

f1(x) = xc1 + λ1(x),

g1(y) = −c1y − λ2(y),

f2(y) = yc2 + λ2(y),

g2(x) = −c2x− λ1(x)

for all x, y ∈ R, where λi = 0 if either fi = 0 or gi = 0.

Now we are ready to conclude the paper by proving our second main
result.

Proof of Theorem 2. Since (i) follows from Theorem 6, it remains to prove
(ii).

Define two maps F,G : A × A → A by F (x, y) = δ(xy) − xδ(y) and
G(x, y) = δ(xy)− δ(x)y for x, y ∈ A. By Theorem 6, we have

xF (y, z)−G(x, y)z = 0 for all x, y, z ∈ A.

Then it follows from Lemma 7 that there exists a map p : R → Q such that

F (x, y) = δ(xy)− xδ(y) = p(x)y,

G(x, y) = δ(xy)− δ(y)x = xp(y)

for all x, y ∈ A. Thus,

δ(xy) = xδ(y) + p(x)y = δ(x)y + xp(y),(20)
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and hence (
δ(x)− p(x)

)
y − x

(
δ(y)− p(y)

)
= 0,

for all x, y ∈ A. By Lemma 8, there exist constants c1, c2 ∈ Q such that
δ(x)− p(x) = xc1 and δ(y)− p(y) = c2y for all x, y ∈ R. Then c1 = c2 is an
element in C. Denote this element by λ. Thus

p(x) = δ(x)− λx

for all x ∈ R. Substituting this into (20), we get

δ(xy) = xδ(y) + δ(x)y − λxy

for all x, y ∈ R. The proof is complete. �

References

[1] J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal.
Appl., 282(1) (2003), 48–55, MR 2000328.

[2] K.I. Beidar, On functional identities and commuting additive mappings, Comm. Al-
gebra, 26 (1998), 1819–1850, MR 1621755 (99f:16023), Zbl 0901.16011.

[3] K.I. Beidar and M.A. Chebotar, On functional identities and d-free subsets of rings I,
Comm. Algebra, 28 (2000), 3925–3951, MR 1767598 (2001j:16046), Zbl 0991.16017.

[4] K.I. Beidar and M.A. Chebotar, On functional identities and d-free subsets of rings II,
Comm. Algebra, 28 (2000), 3953–3972, MR 1767598 (2001j:16046), Zbl 0991.16018.

[5] K.I. Beidar and W.S. Martindale, On functional identities in prime rings with invo-
lution, J. Algebra, 203 (1998), 491–532, MR 1622795 (99f:16024), Zbl 0904.16012.

[6] K.I. Beidar, W.S. Martindale and A.V. Mikhalev, Rings with Generalized Identities,
Pure and Applied Mathematics 196, Marcel Dekker, New York, 1996, MR 1368853
(97g:16035), Zbl 0847.16001.
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[8] M. Brešar, On generalized biderivations and related maps, J. Algebra, 172 (1995),
764–786, MR 1324181 (96c:16046), Zbl 0827.16024.
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