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In this paper we develop a wave equation for graphs that
has many of the properties of the classical Laplacian wave
equation. This wave equation is based on a type of graph
Laplacian we call the “edge-based” Laplacian. We give some
applications of this wave equation to eigenvalue/geometry in-
equalities on graphs.

1. Introduction

The main goal of this paper is to develop a “wave equation” for graphs that
is very similar to the wave equation utt = ∆u in analysis. Whenever this
type of wave equation is involved in a result in analysis, our graph theoretic
wave equation seems likely to provide the tool to link the result in analysis
to an analogous result in graph theory.

Traditional graph theory defines a Laplacian, ∆, as an operator on func-
tions on the vertices. This gives rise to a wave equation utt = −∆u (since
graph theory Laplacians are positive semidefinite). However, this wave equa-
tion fails to have a “finite speed of wave propagation”. In other words, if
u = u(x, t) is a solution, we may have u(x, 0) = 0 for all vertices x within
a distance d > 0 to a fixed vertex, x0, without having u(x0, ε) vanishing for
any ε > 0. As such, this graph theoretic wave equation cannot link most
results in analysis involving the wave equation to a graph theoretic analogue.

In this paper we study what appears to be a new type of wave equation on
graphs. This wave equation (1) involves a reasonable analogue of utt = ∆u
in analysis, (2) has “finite speed of wave propagation” and many other basic
properties shared by its analysis counterpart, and (3) seems to be a good
vehicle for translating results in analysis to those in graph theory, and vice
versa. This wave equation cannot be expressed in the language of tradi-
tional graph theory; it requires some of the notions of “calculus on graphs”
in [FT99]. It does, however, have a simple physical interpretation— namely,
the edges are taut strings, fused together at the vertices. And in fact, the
type of Laplacian we use has appeared in the physics literature as the “lim-
iting case” of a “quantum wire” (see [Hur00, RS01, KZ01] for example);
but our type of development of the wave equation and its applications to
graph theory seem to have escaped the interest of physicists.
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A second goal of this paper is to point out that whereas in analysis there is
really one fundamental Rayleigh quotient, heat equation, and wave equation,
in graph theory there are always two. These two fundamental types for an
equation or concept result from the fact that graph theory involves two differ-
ent volume measures. So while in analysis there is usually one fundamental,
top (space) dimension volume, in graph theory one has a “vertex-based”
measure, V (a type of vertex counting measure), and an “edge-based” mea-
sure, E (essentially Lebesgue measure on edges viewed as real intervals) (see
below and Section 2 for details); both V, E seem to play a volume measure
type of role. So we get a “vertex-based” Rayleigh quotient, heat equation,
wave equation, etc. and their “edge-based” counterpart. (We can also form
“mixed” equations and concepts from these two pure types, as well as vary
coefficients, add lower order terms, etc.) However, sometimes it turns out
that one of the two types of equation or concept is less interesting. This
definitely seems to be the case in the wave equation, where the vertex-based
equation does not have finite propagation speed.

A third goal of this paper is to give some examples of how to translate
results in analysis to graphs and vice versa using the edge-based Laplacian
(including the wave equation). As an example, we give a simple proof of a re-
lation between distances of sets, their sizes, and the first nonzero edge-based
eigenvalue; our result can be better (or worse) than that of Chung–Faber–
Manteuffel; our proof also works in analysis, and rederives the results in
[FT] with a simpler proof. As another example, we show that the optimal
generalized Alon–Milman type bound is essentially achieved by a gener-
alized Chung–Faber–Manteuffel bound derived by Chung–Grigor’yan–Yau.
We briefly describe how to convert graph theoretic results into analysis re-
sults. The results in analysis turn out to be independent of any discussion
of edge-based Laplacians, and hence appear as a short, separate article [FT]
(especially for analysts who wish to learn as little graph theory as possible).

In this paper we at times restrict ourselves to finite graphs; at other times
we insist that the graphs be locally finite, i.e., that each vertex meets only
finitely many edges; finally, some discussion is valid for arbitrary graphs.
We will indicate at the beginning of each section and/or subsection when
assumptions are made on the graphs therein.

The rest of this introduction, aside from closing remarks, is devoted to
giving an informal overview of the simplest form of our wave equation. If this
overview seems cryptic, the reader may wish to consult [FT99] or Section 2
of this paper.

Let G = (V,E) be a graph. Let G be its geometric realization, i.e.,
the metric space consisting of V with a real interval of length 1 joining u
and v “glued in” for edge {u, v}. Let V be the vertex counting measure,
and E be Lebesgue measure on the edges. Then the (positive semidefinite)
Laplacian, as in [FT99], takes a function, f , and returns an “integrating
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factor” (essentially a measure, see Section 2),

∆f = (∆V f) dV + (∆Ef) dE
where ∆E is minus the usual real Laplacian (i.e., second derivative), and
∆V is essentially a sum of normal derivatives along edges incident with each
vertex. It therefore makes no sense to write a wave equation1

utt = −∆u,

for the left-hand side should be a function, and the right-hand side an inte-
grating factor.

The vertex-based wave equation is

utt dV = −∆u.

This means that ∆Eu = 0, and so u is “edgewise linear” (i.e., a linear
function when restricted to any edge). For such a u, ∆V u coincides with
the traditional graph theoretic Laplacian, and we recover the wave equation
based on traditional graph theory.

The edge-based wave equation is the equation

utt dE = −∆u,

or ∆V u = 0 and utt = −∆Eu. This equation has wave propagation speed 1,
and has many other properties befitting a wave equation.

When using an edge-based concept, one may speak of Laplacian eigen-
values. In this case one is referring to the set ΛE of λ with ∆Ef = λf
and ∆V f = 0. However, traditional graph theory deals with ΛV , defined
analogously. Fortunately, it is easy to relate the two notions of eigenval-
ues, assuming we “normalize” the Laplacian ∆V (see Section 3). Namely,
assuming ∆V is normalized and our graph has all edge lengths one, we have

λ ∈ Λ̃E ⇐⇒ 1− cos
√

λ ∈ ΛV

where Λ̃E is ΛE with some “less interesting” eigenvalues (certain squares of
multiples of π) discarded. ΛV is a finite set of values between 0 and 2, and
ΛE is an infinite set of nonnegative values (whose square roots are periodic,
and whose values satisfy a one-dimensional Weyl’s asymptotic law).

In this paper we will mildly generalize this setup, allowing for edges of
variable “length” and “weight,” and vertices of various “weight.”

The rest of this paper is organized as follows: in Section 2 we review some
notions from the calculus on graphs of [FT99]. In Section 3 we discuss the
edge-based eigenfunction theory; it closely resembles standard eigenfunction
theory. In Section 4 we discuss the wave equation and its basic properties.
In Section 5 we give some applications of the edge-based Laplacian and the
wave equation.

1Recall that the minus sign appears in the wave equation since the Laplacian is positive
semidefinite.
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2. Calculus on graphs

2.1. The setup. We use a similar setting as in [Fri93], and we recall this
setting here. Let G = (V,E) be a graph (undirected), such that with each
edge, e ∈ E, we have associated a length, `e > 0. We form the geometric
realization, G, of G, which is the metric space consisting of V and a closed
interval of length `e from u to v for each edge e = {u, v}. When there is no
confusion, we identify a v ∈ V with its corresponding point in G and identify
an e ∈ E with its corresponding closed interval in G. By an edge interior
we mean the interior of an edge in G.

Definition 2.1. The boundary, ∂G, of a graph, G, is simply a specified
subset of its vertices. By the interior of G, denoted G̊, we mean G \ ∂G;
similarly the interior vertices, denoted V̊ , we mean V \ ∂G. We say that ∂G
is separated if each boundary vertex is incident upon exactly one edge.

Boundary separation is a property whose analogue for manifolds is always
true. In most practical situations one can assume the boundary is separated.

Convention 2.2. Unless specified, in this article we assume all graphs have
a separated boundary.

In this article we will give “boundary condition” for functions to satisfy
at the boundary. Neumann or mixed boundary conditions (see the next
section) behave bizarrely unless the boundary is separated.2

Convention 2.3. By a traditional graph we mean an undirected graph G =
(V,E). In this article we assume our graphs are always given with:

(1) lengths associated to each edge,
(2) a specified boundary (i.e., a specified subset of vertices).

Whenever an edge length is not specified, it is taken to be one. Whenever a
boundary is not specified, it is taken to be empty. We refer to the geometric
realization, G, of the graph as the graph, when no confusion may arise.

An edge e = {u, v} of length, `, is a real interval of length `, and as such
has two standard coordinates, one that sets u to 0 and v to `, and the other
vice versa. Whenever we speak of a property such as differentiability, we
always mean with respect to these standard coordinates.

Definition 2.4. By Ck(G), the set of k-times continuously differentiable
functions on G, we mean the set of continuous functions on G whose restric-
tion to each edge interior is k-times uniformly continuously differentiable

2It is not hard to see that the Neumann condition for a function, f , on a boundary
vertex, v, is equivalent to ∆V f = 0 at v (see this section and the next). This is only
equivalent to the normal derivative at f vanishing along all boundary edges if v is incident
upon only one edge.
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(as a function on that real interval). The same definition applies with G
replaced by Ck(G \ V ).

We cannot differentiate functions on G without orienting the edges; how-
ever, we can always take the gradient of a differentiable function as long as
we know what is meant by a vector field. Recall that a vector field on an
interval is a section of its tangent bundle or, what is the same, a function
on the interval with an orientation of the interval, where we identify f plus
an orientation with −f with the opposite orientation.

Definition 2.5. By Ck(TG), the set of k-times continuously differentiable
vector fields on G, we mean those data consisting of a k-times uniformly
continuously differentiable vector field on each open interval corresponding
to each edge interior.

Notice that a vector field is not defined at a vertex, only on edge interiors.

Definition 2.6. For f ∈ Ck(G) we may form, by differentiation, its gradi-
ent, ∇f ∈ Ck−1(TG). For X ∈ Ck(TG) we can form, by differentiation, its
calculus divergence, ∇calc ·X ∈ Ck−1(TG \ V ).

Definition 2.7. A subset Ω ⊂ G is of finite type if it lies in the union
of finitely many vertices and edges. A function on G is of finite type if
its support (i.e., the closure of the set where it does not vanish) is of finite
type. We set Ck

fn(G) to be those elements of Ck(G) of finite type; we similarly
define Ck

fn(G \ V ) and Ck
fn(TG).

Definition 2.8. An f ∈ Ck
fn(G) is said to satisfy the Dirichlet condition if

f vanishes on ∂G. We let Ck
Dir(G) denote the set of such functions.

Definition 2.9. Lip(G) denotes the class of Lipschitz continuous functions
on G, i.e., those f ∈ C0(G) whose restriction to each edge interior is uni-
formly Lipschitz continuous. We similarly define Lipfn(G) and LipDir(G).
2.2. Two volume measures. In analysis concepts such as Laplacians,
Rayleigh quotients, and isoperimetric constants are defined using one volume
measure; in calculus on graphs we use two “volume” measures.

Definition 2.10. A vertex measure, V, is a measure supported on V with
V(v) > 0 for all v ∈ V . An edge measure, E , is a measure with E(v) = 0
for all v ∈ V and whose restriction to any edge interior, e ∈ E, is Lebesgue
measure (viewing the interior as an open interval) times a constant ae > 0.

Traditional graph theory usually works with the traditional vertex and
edge measures, VT and ET, given by VT(v) = 1 for all v ∈ V and ae = 1 for
all e ∈ E, i.e., ET is just Lebesgue measure at each edge.

Convention 2.11. Henceforth we assume that any graph has an associated
vertex measure, V, and an edge measure, E . When V is not specified we take
it to be VT; similarly, when unspecified we take E to be ET.
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In this article we write
∫

f dE and
∫

f dV for
∫
G

f dE and
∫
G

f dV.

2.3. Integrating factors. In this paper a somewhat formal notion will
become extremely important.

Definition 2.12. By an integrating factor on G we mean a formal expres-
sion of the form µ = α dV + β dE where α is a function defined (at least) on
the vertices of G, and β ∈ C0(G \ V ).

The continuity assumption on β is not essential, but it makes things nicer
for the following reason: an integrating factor as above determines a linear
functional Lµ, on C0

Dir(G) via

Lµ =
∫

fµ =
∫

fα dV +
∫

fβ dE .

We say that two integrating factors µi = αi(x) dV + βi(x) dE for i = 1, 2 are
equal if the Lµi are equal; clearly this amounts to α1 = α2 at the interior
vertices and β1 = β2 everywhere on G\V (since the βi are continuous there).

We will sometimes wish to insist that α1 = α2 on boundary vertices as
well; this corresponds to viewing integrating factors as linear functionals on
C0(G). In this case we will speak of boundary inclusive equality.

In the calculus on graphs we have two measures, and thus a need for inte-
grating factors, i.e., the need to mark functions with a dV or dE to remind
us how to integrate the function against other functions. For example, we
shall soon see that the divergence of a vector field or the Laplacian of a
function is an integrating factor. Consequently, any wave or heat equation
is most correctly regarded as an equation between integrating factors. (In
traditional graph theory, all integrating factors have a vanishing dE compo-
nent, i.e., β = 0 in the above, and they may be considered as functions on
the vertices, i.e., they may be identified with α’s values on the vertices.)
2.4. Regular graphs. In this article, r-regularity has a slightly more gen-
eral meaning than in traditional graph theory where all vertices and edges
have weight 1 (in other words E = ET and V = VT).

Here we mean the following:

Definition 2.13. We say that a graph G is r-regular if for any v ∈ V̊ we
have ρ(v) = r, where

ρ(v) = V(v)−1
∑
e3v

E(e).

Clearly graphs that are r-regular in the traditional sense are regular with
our definition. The quantity ρ(v) arises quite naturally when we consider
edgewise linear functions, i.e., continuous functions whose restriction to each
edge is a linear function. For these functions we clearly have∫

e
f dE = 1

2

(
f(u) + f(v)

)
E(e)
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for each edge e = {u, v}. Hence∫
f dE =

∫
1
2fρ dV.(2.1)

2.5. The divergence. The divergence of a vector field and the Laplacian
of a function can be defined in terms of concepts that are already fixed,
namely a graph (encompassing measures E and V) and the gradient. Inter-
estingly enough, the divergence turns out to be different from the “calculus
divergence” described earlier.

Before defining the divergence we record a “divergence theorem” for the
calculus divergence.

Let X ∈ C1(TG). For any edge e = {u, v} let X|e denote X restricted
to the interior of e and then extended to u and v by continuity. We clearly
have ∫

e
∇calc ·X dE = ae

(
ne,u ·X|e(u) + ne,v ·X|e(v)

)
,

where ne,u,ne,v denote outward pointing unit (normal) vectors. Hence we
obtain:

Proposition 2.14. For all X ∈ C1
fn(G) we have∫

∇calc ·X dE =
∫

ñ ·X dV,(2.2)

where
(ñ ·X)(v) = V(v)−1

∑
e3v

aene,v ·X|e(v).

Let Ck
Dir(G) denote those functions in Ck

fn(G) that vanish on the boundary
of G.

Definition 2.15. For a vector field, X, its divergence functional is the lin-
ear functional LX : C∞

Dir(G) → R given by

LX(g) = −
∫

X · ∇g dE .

Proposition 2.16. For any X ∈ C1(TG) and g ∈ C∞
Dir(G) we have

LX(g) =
∫

(∇calc ·X)g dE −
∫

(ñ ·X)g dV,

i.e., the divergence functional of X is represented by (∇calc·X) dE−(ñ·X) dV
(viewed as a linear functional via integration).

Proof. We substitute Xg for X in Equation (2.2), and note that

∇calc · (Xg) = g∇calc ·X + X · ∇g.
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Definition 2.17. For X ∈ C1(TG) we define its divergence, ∇ · X, to be
the integrating factor

(∇calc ·X) dE − (ñ ·X) dV.

If X is edgewise constant, so that ∇calc ·X = 0, we will also refer to

−ñ ·X

(a function defined only on vertices) as its divergence, and write it ∇ ·X.

We conclude:

Proposition 2.18. For any g ∈ C1
fn(G) and X ∈ C1

fn(TG) we have∫
G
(∇ ·X)g +

∫
X · ∇g dE = 0.

To make this look more like analysis we can write this as:∫
G\∂G

(∇ ·X)g +
∫

X · ∇g dE =
∫

∂G
(ñ ·X)g dV.

2.6. The Laplacian. In graph theory we usually define positive semidefi-
nite Laplacians. So we define

∆f = −∇ · (∇f).

As integrating factors we have

∆f = (∆Ef) dE + (∆V f) dV,

with ∆Ef = −∇calc · ∇f and ∆V f = ñ · ∇f . It is easy to see that:

Proposition 2.19. For all f ∈ C2
fn(G) and g ∈ C1

fn(G) we have∫
(∆f)g =

∫
∇f · ∇g dE .(2.3)

If also g ∈ C2
fn(G) we have ∫

(∆f)g =
∫

(∆g)f.(2.4)

The link with the traditional graph theoretic Laplacian is as follows:

Proposition 2.20. For f ∈ C2
fn(G) edgewise linear we have

∇calc · ∇f = 0, hence ∆f = ñ · ∇f dV.

Viewing ∆f as a function on vertices we therefore have:

(∆f)(v) = V(v)−1
∑

e∼{u,v}

ae
f(v)− f(u)

`e
.(2.5)
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When restricting to edgewise linear functions, it is common (in graph
theory) to write ∆ as D − A, where D is the diagonal matrix or operator
(classically the “degree” matrix) whose v, v entry is

L(v) = V(v)−1
∑

e∼{u,v}

ae/`e,

where we omit e’s that are self-loops from the summation, and where A is
the “adjacency” matrix or operator given by

(Af)(v) = V(v)−1
∑

e∼{u,v}

(ae/`e)f(u),

again omitting self-loops, e.

2.7. Variable integrals. We shall wish to consider the derivative at t = t0
of the function

I(t) =
∫

S(t)
f(x, t) dE(x),

where t is a real parameter, S(t) is a decreasing family of open subsets of
G, and f(x, t) is continuous in x (taking values in G) and differentiable in t
(taking values near t0).

For this paper we only need consider S(t) given by the set of points within
a distance τ − ct from a fixed set A ⊂ G, with τ fixed and 0 ≤ t0 < τ . We
will assume S(t) is of finite type for t near t0, and that ∂S(t0) is finite and
contains no vertices.

With the above assumptions, the formula for I ′(t0) is very easy. We
will discuss more general variants of these formulas later. These more gen-
eral variants are not needed in this paper, but are interesting to consider
and compare with the co-area formula and its problems at the vertices as
described in [FT99].

Calculus says that if a, b, c are constants with c > 0, and f = f(x, t) :
R2 → R is continuous in x and differentiable in t, then

d

dt

∫ b−ct

a+ct
f(x, t) dx = −c

(
f(a + ct, t) + f(b− ct, t)

)
+
∫ b−ct

a+ct
ft(x, t) dx,

where ft = ∂f/∂t. If we replace a + ct by a in the above integral, the
f(a + ct, t) drops out, and similarly for b− ct replaced by b.

Summing the above calculus equality over all edges yields the following
easy proposition:

Proposition 2.21. Let S(t), f(x, t), t0, I(t) be as above. Then

I ′(t0) = −
∑

(x,e) s.t. e3x,
x∈∂S(t0)

f(x, t0)cae +
∫

S(t0)
ft(x, t0) dE(x).(2.6)

In other words, the above sum is over all boundary points, x, of S(t0), and
involves the edge, e, on which x lies.
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Finally, we remark that if S(t) does not decrease “linearly” with speed c
everywhere, then we simply replace c by the speed at with ∂S(t) moves at
x in the summation of any of the above formulas.

We finish this subsection by describing what happens when ∂S(t0) con-
tains vertices. If so, then the left and right derivatives of I(t) at t0 will exist
but won’t usually be equal. Equation 2.6 will essentially hold, but different
(x, e) pairs appear in the sum. So consider pairs (x, e) with x ∈ e ∪ ∂S(t0)
(remember we identify an edge with its closed interval in G, so x may be
a vertex); we call a pair future active if e’s interior intersected with S(t0)
contains an open interval ending at x. In other words, the picture of S(t)
near x and along e is changing for t > t0 near t0 (since S(t) is decreasing in
t). We say that a pair (x, e) is past active if either x is not a vertex, or x is
a vertex and (x, e) is not future active, see Figure 1. (Geometrically, since
S(t) is decreasing in t, we are saying that for t near t0 and at a boundary
point, x, the picture of S(t) always changes when x is not a vertex, and
when x is a vertex it changes along some edges in the future (t > t0) and
other edges in the past (t < t0).)

future active edges

past active edges

• vertex in S(t)
◦ vertex not in S(t)
−−− edge (or partial edge) in S(t)
- - - edge (or partial edge) not in S(t)

Figure 1.

Summing the calculus formula shows that the right derivative of I at t0
exists and equals

I ′(t + 0) = −
∑

(x,e) future active

f(x, t0)cae +
∫

S(t0)
ft(x, t0) dE(x).(2.7)

Similarly the left derivative is the same, with future active replaced by past
active pairs (x, e).

Notice that the notion of “future active” essentially arose in the definition
of the area of the boundary of a subset, in [FT99], Section 2, in connection
with the co-area formula.

3. The edge-based eigenvalues and eigenfunctions

In this section we discuss some facts about the “edge-based” Laplacian and
its eigenpairs, i.e., pairs (f, λ) with ∆Ef = λf and ∆V f = 0. Such pairs
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are crucial to understanding the solutions to the wave equation and invari-
ants associated with it. We concern ourselves with the basic cases at first,
later illustrating fancier boundary conditions and mixed edge and vertex
Laplacians.

It is worth mentioning that the equations ∆Ef = λf and ∆V f = 0
describe the modes associated with a physical object with a metal string for
each edge, with strings being fused together at the vertices. For example,
if we “pluck” such an object, it would produce tones with the frequencies
of
√

λ with λ ranging over the edge-based eigenvalues (this is seen from
considering the wave equation of the next section).

3.1. Basic existence theory.

Definition 3.1. We say that (f, λ) is an eigenpair for the “edge-based”
Laplacian if f ∈ C∞(G) and satisfies ∆Ef = λf and ∆V f = 0. We say
that f satisfies the Dirichlet condition if f vanishes at all boundary points;
the similarly for the Neumann condition, where f ’s normal derivatives along
its edges evaluated at any boundary point vanish.

Notice that the condition ∆Ef = λf implies that f ’s restriction to each
edge is given by A cos(ωx + B), where A,B are constants, ω = λ1/2, and x
represents one of the two standard coordinates on the edge.

The existence of a complete set of eigenpairs for the Laplacian is well
understood in analysis for compact domains, and the same techniques carry
over to our setting, for finite graphs, with almost no modifications. We only
summarize the theory, and refer the reader to [GT83] or [Fri69].

Proposition 3.2. Let G be a finite graph. There exists eigenpairs (fi, λi)
for the edge based Laplacian, such that:

(1) 0 ≤ λ1 ≤ λ2 ≤ · · · ,
(2) the fi satisfy the Dirichlet condition,
(3) the fi form a complete orthonormal basis for L2

Dir(G, E), and
(4) λi →∞.

The same statement holds with Dirichlet replaced by Neumann and
L2

Dir(G, E) replaced by L2(G, E).

Proof. Consider the Rayleigh quotient

R(f) =
∫
|∇f |2 dE∫
|f |2 dE

,

which is certainly defined for f ∈ C1(G). Let u1, u2, . . . be a minimizing
sequence for R in C1

Dir(G), i.e., ui ∈ C1
Dir(G) with

R(ui) → inf
f∈C1

Dir(G)
R(f).
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We may assume
∫
|ui|2 dE = 1, and thus that

∫
|∇ui|2 dE are bounded. Let

H1
Dir(G) be the closure of C1

Dir(G) under the norm

‖f‖2
H1 =

∫
[|∇f |2 + |f |2] dE ;

H1
Dir(G) can also be described with Fourier transforms, or as the set of L2

functions with a weak derivative in L2; it is well-known to be a separable
Hilbert space, therefore having a weakly compact unit ball. Hence by passing
to a subsequence we may assume that the ui converge weakly in H1 to a
u ∈ H1

Dir(G).
The ui are uniformly Hölder continuous of exponent 1/2. To see this let

x, y ∈ G be of distance ρ, and fix a path γ of length ρ from x to y. We have

∣∣ui(x)− ui(y)
∣∣ ≤ ∫

γ
|∇ui| dE ≤

(∫
γ

dE
)1

2
(∫

γ
|∇ui|2 dE

)1
2
≤ Cρ1/2‖ui‖H1 ,

where C is the maximum over edges e of a
−1/2
e . Hence our claim holds, and

by Ascoli’s lemma we can pass to a further subsequence and assume that
the ui converge uniformly to a u that is Hölder continuous of exponent 1/2;
since the ui vanish on the boundary, so does u.

We have (by the uniform convergence and the weak H1 convergence)

R(u) ≤ lim infR(ui),

and so equality must hold and u minimizes R over all of H1
Dir(G).

Now we claim that u is our desired eigenfunction, and λ = R(u) its
eigenvalue. This is seen by setting λ = R(u) and considering R(u + εw) for
various w ∈ H1

Dir(G) and taking ε → 0. We conclude that∫
∇u∇w dE = λ

∫
uw dE(3.1)

for all w ∈ H1
Dir(G). Now standard estimates for elliptic equations (e.g.,

Lemma 15.4 of [Fri69]) show that in fact u is C∞ at all edge interiors, and
satisfies

∆Eu = λu.(3.2)

Hence u’s restriction to any edge is given as A cos(ωx+B) for ω = λ1/2, and
A,B are constants depending on e (and which of the two standard coordi-
nates we place on e). Since u is Hölder continuous on G, it is certainly con-
tinuous everywhere, including all its vertices. Hence u ∈ C∞

Dir(G). Finally,
given a vertex, v, let us show that (∆V u)(v) = 0. From Proposition 2.19 we
know that∫
∇u·∇w dE =

∫
(∆Eu)w dE+

∫
(∆V u)w dV = λ

∫
uw dE+

∫
(∆V u)w dV.
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From (3.1) and (3.2) we obtain∫
(∆V u)w dV = 0.(3.3)

We choose w ∈ C1
fn(G) in Equation (3.1), such that w(v) = 1 and w(v′) = 0

on other vertices and conclude

(∆V u)(v) = 0.

Letting h → 0 we conclude that u is an “edge-based” Laplacian eigenfunction
satisfying the Dirichlet condition, with eigenvalue λ.

Set f1 = u and λ1 = λ. Now repeat the same argument, except mini-
mizing R over those functions that are orthogonal to f1. With the same
argument, we find an eigenpair (f2, λ2) with λ1 ≤ λ2 and f1 orthogonal
to f2. Now repeat again, minimizing over functions orthogonal to f1 and
f2. In this way we get a sequence of orthogonal eigenpairs (fi, λi) with λi

nondecreasing in i.
Next we show that λi → ∞. Otherwise the H1 norms of the fi are

uniformly bounded, and so the fi are uniformly Hölder continuous, and so
a subsequence of the fi converges uniformly to a g. But since the fi are
orthogonal, g would be orthogonal to all fi and therefore to itself, so g = 0.
This contradicts the uniform convergence of the subsequence of fi to g.

It remains to show that the fi are complete. If the fi are not complete,
there is a nonzero g ∈ L2

Dir(G) orthogonal to all the fi. By convolving g with
smooth approximations to Dirac’s delta function, and modifying it at the
vertices, we can find a gε ∈ C∞

Dir(G) for any ε > 0 with ‖g−gε‖L2 ≤ ε. Hence
for small ε the function, h, which is the projection of gε onto the complement
of the fi’s, is: (1) nonzero, (2) orthogonal to all fi, and (3) lies in H1

Dir(G).
Now R(h) must upper bound the λi, by their minimizing property. Hence
λi are bounded, which we know is impossible.

We finish by remarking that the same proof holds for the Neumann con-
dition, except that we begin by working with C1(G) instead of C1

Dir(G). �

The same theorem holds for more general “mixed” boundary conditions.
Namely, we consider the condition that a function, f , satisfy the mixed
condition

f = 0 on K1,(3.4)

ñ · ∇f + σf = 0 on K2,(3.5)

where K1,K2 are a partition of ∂G and where σ is nonnegative. Then the
same theorem and proof hold, provided that we replace C1

Dir(G) by{
f ∈ C1(G) | f = 0 on K1

}
,
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and replace the Rayleigh quotient, R, by

R̃(f) =

∫
|∇f |2 dE +

∫
K2

σf2 dV∫
|f |2 dE

.(3.6)

We mention that V does not enter in any essential way into the edge-based
eigenvalues. Only E should affect those eigenvalues.

We can get mixed edge-vertex Laplacians. So consider the Rayleigh quo-
tient:

R(f) =
∫

γ|∇f |2 dE∫
αf2 dV +

∫
βf2 dE

,

with α, β, γ continuous, nonnegative and γ differentiable and never vanish-
ing. Its successive minimizers satisfy

−∇ · (γ∇f) = λf(α dV + β dE).(3.7)

The theorem above gives us a complete eigenbasis for L2(G, µ) with µ =
αV + βE . This basis is infinite provided that β is not identically zero.

Finally, we mention that it is easy to modify the above to work for mixed
boundary conditions with mixed edge-vertex Laplacians.

3.2. Weyl’s law. One fundamental result about edge-based eigenvalues
that is true for any finite graph is that their growth rate is determined, to
first-order, by the sum of the lengths of their edges. In analysis the analogous
quantity is the volume of the subdomain or manifold, and Weyl’s proof of
this fact (see [Wey12]) in analysis immediately carries over here.

For a finite graph, G, let NDir(λ,G) be the number of Dirichlet edge-based
eigenvalues ≤ λ for G, and similarly for NNeu(λ,G).

Proposition 3.3 (Weyl’s Law). Fix a finite graph, G. Let N(λ) be either
NDir(λ,G) or NNeu(λ,G). There is a constant, C, such that

|N(λ)− Lλ1/2/π| ≤ C,

where L is the sum of all the lengths of the edges in the graph.

Proof. Consider the graph, G1, where every vertex is a boundary point. Then
the edge-based eigenvalues of G1 are found by minimizing the same Rayleigh
quotient over a more restrictive class of functions. Hence, by the min-max
principle,

NDir(λ,G1) ≤ NDir(λ,G).
Similarly,

NNeu(λ,G) ≤ NNeu(λ,G1),
for NNeu(λ,G1) corresponds to a Rayleigh quotient over the space of func-
tions that needn’t be continuous at any vertex. For similar reasons we have

NDir(λ,G) ≤ NNeu(λ,G),
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the former N corresponding to the same class of functions as the latter
except the latter need not vanish at boundary vertices. To summarize, we
have shown

NDir(λ,G1) ≤ NDir(λ,G) ≤ NNeu(λ,G) ≤ NNeu(λ,G1).

Hence it suffices to prove the proposition for G1.
But the values of the G1 eigenfunctions don’t interact across vertices, so

NDir(λ,G1) =
∑
e∈E

NDir(λ, e),

where edges, e, are also viewed as graphs. If e is an edge of length `,
its Dirichlet eigenfunctions are fn(x) = sin(nxπ/`) for n = 1, 2, . . . , with
eigenvalues λn = (nπ/`)2. Hence we have

NDir(λ, e) = bλ1/2`/πc.

It follows that for some constant C > 0,

NDir(λ,G1) ≥ −C + (λ1/2/π)
∑
e∈E

`e = −C + Lλ1/2/π.

For similar reasons the result also holds for NNeu(λ,G1), where the eigen-
functions on an edge are fn(x) = cos

(
(n − 1)xπ/`

)
for n = 1, 2, . . . , with

eigenvalues λn =
(
(n− 1)π/`

)2. �

Again, a similar result holds for mixed boundary conditions. To see this,
we shall show that for any fixed mixed boundary condition (as in the end of
the previous subsection)

NDir(λ,G) ≤ Nmixed(λ,G) ≤ NNeu(λ,G),

where Nmixed counts eigenvalues with a mixed condition. Indeed, NDir can
be viewed as having the same Rayleigh quotient, as in Equation (3.6), as
Nmixed, except over a smaller space (i.e., the space of functions vanishing
over all of ∂G, not just K1). Furthermore, the Rayleigh quotient for Nmixed

is no less than that for NNeu, and the space for the former is more restrictive.
Hence the claim that NDir ≤ Nmixed ≤ NNeu, and hence the asymptotic law.

To get an asymptotic law for mixed edge-vertex Laplacians (as in Equa-
tion (3.7)), the above arguments show it suffices to consider Dirichlet and
Neumann eigenvalues for an edge, e. Partition e into k intervals, I1, . . . Ik,
and on a fixed interval, Ij , set γmax to be the maximum value of γ there, and
βmin similarly. The Rayleigh quotient with γmax replacing γ and βmin re-
placing β is never smaller, and so the Dirichlet eigenvalue counting function
on Ij for the Rayleigh quotient with β and γ is at least⌊

λ1/2|Ij |βmin

γmaxπ

⌋
.
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We conclude that for any ε > 0 we have that the Dirichlet eigenvalue count-
ing function on e is at least

λ1/2(1/π)
(
−ε +

∫
e
β(x)/γ(x) dx

)
,

where x is a standard coordinate on e. We conclude a similar upper bound
for the Neumann eigenvalues, and conclude that N(λ) ∼ λ1/2C/π, where

C =
∑

e

∫
e

β(x)
γ(x)

dx.

3.3. A condition on edge-based eigenfunctions.

Proposition 3.4. Let G be a locally finite graph. Let (f, ω) be an edge-based
eigenpair for the Laplacian, and let ω = λ1/2. Let v be an interior vertex
such that ω`e is not a multiple of π for any e incident upon v. Then∑

e∼{v,u}

ae
f(u)− cos(ω`e)f(v)

sin(ω`e)
= 0.

If the degree of v is infinite, the theorem still holds provided the above
sum converges absolutely (and ∆V is understood in the natural way).

Proof. This is a simple consequence of the fact that if f is an eigenfunction
then ∆V f(v) = 0 at any interior vertex. Fix an edge e ∼ {v, u}, and let
x be the standard coordinate on e with x(v) = 0 and x(u) = `e. We have
f ’s restriction to e with coordinate x, fe = fe(x) = A cos(ωx + B) for some
A,B. Hence

f(v) = fe(0) = A cos B,

and
f(u) = fe(`e) = A cos B cos(ω`e)−A sin B sin(ω`e),

and the outward normal derivative of f at v is

f ′(0) = −Aω sinB = −ω
f(u)− cos(ω`e)f(v)

sin(ω`e)
.

Since ∆V f = ñ · ∇f at v is V(v)−1 times the sum of the above times ae, we
conclude the proposition. �

Using this proposition one can rather easily determine all the edge-based
eigenpairs in terms of the eigenpairs of the “normalized” adjacency matrix of
the graph, provided that all edge lengths are equal; the ω’s will turn out to
be periodic of period 2π. However, we do not know of such a determination
when edge lengths vary; we shall show that a graph with two vertices joined
by three edges of varying edge lengths will not have periodic ω’s.
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3.4. The equilength case. In this subsection we consider a finite graph,
G, all of whose edges have length 1 (however the ae can vary). We can
similarly deal with any graph whose edge lengths are equal.

For any v ∈ V̊ , let av be the sum of the ae over all edges, e, incident with
v (these edges, e, may be incident with boundary vertices). We will assume
that G is connected with at least one edge, so that av > 0 for all v. Let Ã
be the “normalized” adjacency matrix, which is just the adjacency matrix
of Section 2, normalized by dividing each row by its corresponding av. Ã
represents a Markov chain if and only if G has no boundary vertices (and
it always represents a Markov chain if we add in the boundary vertices and
make them “absorbing” states).

Our main result describes the edge-based eigenvalues in terms of Ã and
the number of edges and interior vertices. We state this first, and then prove
it in a series of propositions. First we set

Z≥0 = {0, 1, 2, 3, . . . },
so that for any τ ∈ R we can write

τ + 2πZ≥0 = {τ, τ + 2π, τ + 4π, . . . }.

Theorem 3.5. Let G be a connected graph with at least one edge, and let Ã
be its normalized adjacency matrix, as above. The edge-based eigenvalues is
the multiset sum3 of the following sets: for each eigenvalue, λ, of Ã, there
is a unique cos−1(λ) ∈ [0, π]; corresponding to this λ we have eigenvalues

cos−1(λ) + 2πZ≥0, and 2π − cos−1(λ) + 2πZ≥0.(3.8)

Additionally, the sets

π + 2πZ≥0, and 2π + 2πZ≥0(3.9)

occur with multiplicity |E| − |V̊ |. This means that if |E| − |V̊ | = −1, i.e.,
G is a tree without boundary, then we subtract the list in Equation (3.9)
once from the union over Equation (3.8); i.e., nπ for nonnegative integer n
occurs with multiplicity one.

Let us mention that if G has separated boundary, then the Neumann
condition at a boundary vertex is equivalent to considering that vertex to
be an interior vertex. Hence our theorem really also handles the case where
we impose a Dirichlet condition on some vertices, and a Neumann condition
on the rest, assuming the rest are separated.

Proof. The proof of this theorem occupies the rest of this section. We prove
it in a sequence of propositions. Notice that our proof provides a method
for finding a basis for the eigenspaces.

3i.e., if λ occurs five times in the lists below, then its multiplicity is five.
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Proposition 3.6. Let ω ∈ R \ (πZ). Then ω2 is an edge-based Dirichlet
eigenvalue if and only if cos ω is an eigenvalue of Ã. If so, ω2’s multiplicity
is that of cos ω in Ã, and for each corresponding eigenfunction, f , of Ã
(therefore defined on the vertices), we may extend f along each edge (as
A cos(ωx + B) for some A,B and standard edge coordinate x) to an edge-
based eigenfunction.

Proof. If ω ∈ R \ (πZ) has ω2 an edge-based eigenvalue, then by Proposi-
tion 3.4 we have for each v∑

e∼{v,u}

aef(u) = cos(ω)f(v)
∑

e∼{v,u}

ae.

In other words, since f is Dirichlet, Ãf = cos(ω)f ; that is, cos ω is an
eigenvalue of Ã.

Conversely, let cos ω 6= ±1 be an eigenvalue of Ã with eigenfunction g.
We claim that for any fixed e = {u, v}, there is a unique way to extend g
to a function along e of the form A cos(B + ωx), where x is the standard
coordinate on e with x(v) = 0. Indeed, consider the equations in A,B for
fixed g(u), g(v):

g(v) = A cos B, g(u) = A cos(B + ω).

Since
A sinB =

g(u)− g(v) cos ω

− sinω
,

A cos B and A sinB are uniquely determined by g(u), g(v). From what we
know of polar coordinates, this means either A = 0 and B is arbitrary, in
which case g’s extension along e is by 0 (and g(u) = g(v) = 0), or there
is a unique positive A = A0 and unique B = B0 modulo 2π satisfying
the equations, with the only other solution being A = −A0 and, modulo
2π, B = B0 + π. Since the function A cos(B + ωx) is the same for these
solutions, and does have the right value at x = x(v) = 0 and x = x(u) = 1, g
can be extended to satisfy ∆Eg = ω2g. Also clearly g satisfies the condition
in Proposition 3.4, which is equivalent to ∆V g = 0.

To sum up, we know that ω2 is an edge-based eigenvalue for ω ∈ R \ (Zπ)
if and only if cos ω is an eigenvalue of Ã. We know that the restriction of
any ∆E eigenfunction gives an Ã eigenfunction, and we know that (given ω)
a Ã eigenfunction g has a unique extension to a ∆E eigenfunction. Hence
the multiplicities of ω2 in ∆E and cos ω in Ã are equal. �

The story when ω ∈ πZ is less elegant. Indeed, there are many edge-based
eigenfunctions, f , whose restriction to the vertices vanishes.

Let Yω be the eigenspace corresponding to the Dirichlet edge-based eigen-
functions with eigenvalue ω2,

Yω = Yω(G) = {f ∈ C∞
Dir(G) | ∆Ef = ω2f,∆V f = 0},
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and let Zω be those elements of Yω vanishing on all vertices,

Zω = Zω(G) =
{
f ∈ Yω | f |V = 0

}
.

We reduce the study of Yω for ω ∈ πZ to that of Zω by the following
proposition:

Proposition 3.7. Yω/Zω for ω ∈ 2πZ is one-dimensional if ∂G = ∅, and
otherwise zero. Similarly for ω ∈ π + 2πZ, except that we require ∂G = ∅
and that G is bipartite.

Proof. If f ∈ Y2πn with n ∈ Z, and e = {u, v} is an edge, then f(u) = f(v),
since f ’s restriction to e is of the form A cos(B + 2πnx). Hence f must be
constant on V . This implies that Yω/Zω is at most one-dimensional, and
must be zero if ∂G 6= ∅. On the other hand, if ∂G = ∅ then the function
whose restriction to each edge is cos(ωx) gives a nonzero element of Yω/Zω.
The case ω = (2n + 1)π is handled similarly. �

The next two propositions essentially finish our work in this section.

Proposition 3.8. For ω > 0 there is a natural isomorphism of Yω with
Yω+2π that restricts to an isomorphism of Zω with Zω+2π. The same is true
if ω + 2π is replaced by ω + π, provided that G is bipartite.

Proof. For an arbitrary f ∈ Yω, let ιf be the function whose restriction to e
is A cos

(
B + (2π + ω)x

)
, where A,B are given by f ’s restriction to e being

A cos(B + ωx). Then ∆V f = ∆V (ιf)ω/(ω + 2π) so ∆V (ιf) = 0. From here
it is clear that ι is the desired isomorphism. �

Proposition 3.9. Let G′ = G ∪ {e} be the graph formed by adding an edge,
e, to G. Then Zω(G) naturally injects into Zω(G′), and the quotient is of
dimension 1 or zero.

Proof. If f ∈ Zω(G), we simply extend it by zero on e to get a member of
Zω(G′). Member of Zω(G′) restricts to A sin(ωx) along e for some A, and
hence any two of them are scalar multiples of each other modulo Zω(G). �

First a corollary of these two propositions:

Corollary 3.10. Let b be the number of ±1’s that appear among Ã’s eigen-
values, i.e.,

b = b(G) =


0 if ∂G 6= ∅,
1 if ∂G = ∅ and G is not bipartite, and
2 if ∂G = ∅ and G is bipartite.

Then
dim Yπ + dim Y2π + 2(|V̊ | − b) = 2|E|.

Hence, if G is bipartite, we further have

dim Yπ = dim Y2π = |E| − |V̊ |+ b.
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Proof. The first part follows from the above and Weyl’s law. The second
part follows from Proposition 3.8. �

To prove Theorem 3.5, first note that since we are working with the
Dirichlet condition we can assume the boundary is separated— if not, we
just give each boundary edge its own boundary vertex.

The corollary above shows that the theorem is true for a tree. Any con-
nected graph is the union of a tree and a number of edges. Hence it suffices
to show that if the theorem is true for G then it is true for G with an edge
thrown in, G′ = G ∪ {e}.

So assume the theorem is true for G. If b(G) = b(G′) then dim Yπ+dim Y2π

increases by 2. But each dimension can increase by at most 1, so they
increase precisely by that much, and the theorem holds for G′.

The only change in b that can happen by adding an edge is that b(G) = 2
but b(G′) = 1, i.e., G is bipartite but G′ isn’t. In this case dim Yπ + dim Y2π

remains the same. While Zπ cannot decrease in going from G to G′, Yπ/Zπ

goes from one to zero-dimensional from G to G′. Since Y2π/Z2π remains
one-dimensional, Z2π increases by one. Once again we see how the Zω’s and
Yω/Zω’s change for G′, and it is easy to see the theorem holds there. �

4. The wave equation

In this section we usually only assume that the graphs are locally finite. This
is because the wave equation has finite propagation speed, and “cannot tell”
whether or not a graph is finite (in any fixed interval of time).

Definition 4.1. Given a graph, fix nonnegative α, β ∈ C0(G), nonnegative
γ ∈ C1(G), and an interval I ⊂ R. A function u = u(x, t) : G × I → R is
said to satisfy the wave equation with coefficients α, β, γ if:

(1) u is continuous on G × I and u( · , t) ∈ C2(G) for all t ∈ I;
(2) for all x ∈ G̊ and t ∈ I̊ the derivative utt exists at (x, t) and is contin-

uous in x; and
(3) for fixed t we have

(α dV + β dE)utt = ∇ · (γ∇u)

as integrating factors.
If u vanishes on ∂G × I we say that u satisfies the Dirichlet condition;
similarly for the Neumann condition if ∇u vanishes along all edges at all
boundary vertices.

Having the equality above as integrating factors means that

αutt = −γ∆V u

at all (x, t) with x ∈ V̊ and t ∈ I̊, and that

βutt = −γ∆Eu +∇γ · ∇u
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at all (x, t) with x ∈ G̊ \ V and t ∈ I̊.
In the above definition we may also allow mixed boundary conditions as

in Equations (3.4) and (3.5).
The the vertex-based wave equation, we mean the wave equation with

coefficients α = γ = 1 and β = 0. In this case ∆Eu = 0 and so u must
be edgewise linear. As remarked in Section 2, ∆V on a finite graph can
be viewed as a bounded operator on L2

Dir(G,V). As such, for any edgewise
linear f ∈ L2

Dir(G,V) we can form

u(x, t) = cos
(
t
√

∆V

)
f = f − t2∆V f/2 + t4∆2

V f/4!− · · ·

and we easily see it satisfies the wave equation with u(x, 0) = f(x). The
boundedness of ∆V implies that if f = χv is the edgewise linear character-
istic function4 at v, then for fixed x,

u(x, t) = cos
(
t
√

∆V

)
χv = (−1)dt2dNx,v/(2d)! + O(t2d+2)

where d is x’s distance to v and Nx,v is the number of paths from x to v
of length d. It follows that u(x, t) > 0 for small t, and so the vertex-based
wave equation does not have a finite wave propagation speed.

Since traditional graph theory is based on ∆V restricted to edgewise lin-
ear functions, the above explains why approaching the wave equation with
traditional graph theory leads to unsatisfactory results.

A much better model of the wave equation appearing in analysis is the
edge-based wave equation, where β = γ = 1 and α = 0. We will show in
the next subsection that these waves propagate “along the edges” and have
finite wave speed equal to 1.

4.1. The energy inequality. Many basic properties of the wave equation
follow from well-known energy inequality, which we state and apply in this
subsection.

If A ⊂ G, then the energy of u = u(x, t) over A at time t is defined to be

Energy(A; t) =
∫

A

(
γ(∇u)2 dE + u2

t (α dV + β dE)
)
.

For real h > 0 let
Ah =

{
x ∈ G | dist(x,A) < h

}
.

Now fix coefficients α, β, γ for a wave equation and let c be the smallest
constant such that γ ≤ c2β throughout G (we assume this c exists).

Theorem 4.2. Let A be an open set with Act0 of finite type for some t0 > 0.
Then if u is a solution to the Dirichlet or Neumann wave equation we have

Energy(Act0 ; 0) ≥ Energy(A; t0).

4i.e., this function is 1 on v, 0 on other vertices, and edgewise linear.
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The same holds of the mixed boundary condition, as in Equations (3.4)
and (3.5), provided we add ∫

K2∩A
γσu2 dV

to the energy.

This theorem will be proven in the next subsection; its proof is virtually
identical to its well-known proof in analysis.

We remark that the wave equation has a time symmetry, in that if u
satisfies the wave equation then so does w(x, t) = u(x,−t). We may therefore
conclude the symmetric fact that

Energy(A; 0) ≤ Energy(Act0 ; t0).

From the energy inequality we easily conclude the following proposition:

Proposition 4.3. Assume G is locally finite, that β is strictly positive on
G, and that c exists as before (i.e., γ ≤ c2β everywhere). Let u be a solution
to the wave equation on G × [0, T ] with u(x, 0) = 0 and ut(x, 0) = 0 for all
x within a distance ct to a fixed y ∈ G. Then u(y, t) = 0.

Proof. For any ε > 0 we have

Energy({y}c(t−ε); 0) = 0.

We conclude that ut(y, s) vanishes from s = 0 to s = t − 2ε, and hence
u(y, t− 2ε) = 0. Now we let ε → 0 and use the continuity of u. �

Some immediate corollaries of this are:

Corollary 4.4. If u, w are two solutions to the wave equation such that u
and w agree at time t = 0 on all points within distance ct to y, and the same
for ut and wt, then u(y, t) = w(y, t). In other words, the value of u(y, t)
depends only on the value of u at a fixed time in the “space-time cone of
speed c at y”. In other words, this wave equation has finite speed of wave
propagation bounded by c.

Corollary 4.5. Fixing u( · , 0) and ut( · , 0), there is at most one solution,
u(x, t) for t > 0, to the wave equation.

4.2. A proof of the energy inequality. Let I ⊂ R be an interval. By a
(graph-time) vector field on G × I we mean a pair (G, F ) where F = F (t) is
an integrating factor on G and G = G(t) is vector field on G both depending
on t ∈ I. By its divergence we mean

∇gt · (G, F ) = ∇ ·G + Ft,

which is an integrating factor that depends on time, t, where by Ft we mean
the partial derivative of F with respect to t, i.e., we differentiate F ’s dV
component and its dE component with respect to time.



WAVE EQUATIONS FOR GRAPHS 251

Proposition 4.6. Consider a divergence free graph-time vector field,
(G, F ), i.e., ∇ · G + Ft = 0 as a boundary inclusive equality. Write F =
FV dV + FE dE. Assume that FV ≥ 0 at all vertices and that cFE ≥ |G| on
(G \ V ) × I. If A is any open set with Act0 of finite type, and if 0, t0 ∈ I,
then

I(t) =
∫

Ac(t0−t)
F (t)

is a nonincreasing function in t ∈ [0, t0].

The energy inequality in Section 4.1 follows almost at once by taking

F = γE(∇u)2 + (αV + βE)u2
t and G = −2γut∇u,

adding γσu2V|K2 to F for the mixed boundary condition.

Proof. Let S(t) = Ac(t0−t). If ∂S(t) contains a vertex, then I(t) is right
continuous at t, and has a jump (if any) from the left of

I(t− 0)− I(t) =
∑

x∈V̊ ∩∂S(t)

FV (x)V(x).

Next partition ∂S(t) into interior and boundary points,

B̊ = ∂S(t) ∩ G̊ and B∂ = ∂S(t) ∩ ∂G.

B̊ will contain no vertices for all but finitely many t. If B̊ contains no vertex,
then using Proposition 2.21 we see that

I ′(t) = −
∑

x∈B̊,e3x

FE(x, t)cae +
∫

S(t)∪B∂

Ft(t)

(where Ft contains both a dV term and a dE term). By taking S(t) and
adding to it ∂S(t) as new vertices each of weight 1, we get a graph, Gt;
taking FV = 0 at all new vertices, we may write:∫

S(t)∪B∂

Ft(t) =
∫
Gt\B̊

Ft(t) = −
∫
Gt\B̊

∇ ·G(t)

=
∫

B̊
ñ ·G(t) =

∑
x∈B̊,e3x

ne,x ·G(x, t)ae,

using the divergence theorem.
Recalling that ne,x is a unit vector, we have

−FE(x, t)c + ne,x ·G(x, t) ≤ −FE(x, t)c + |G(x, t)| ≤ 0

for all x, t. Hence

I ′(t) =
∑

x∈B̊,e3x

ae

(
−FE(x, t)c + ne,x ·G(x, t)

)
≤ 0.
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We have shown that I(t) is nonincreasing at all but finitely many points
(i.e., the t’s with B̊ containing a vertex), and at these finitely many points
we know that I(t) is continuous or has a decreasing jump. Hence I(t) is
nonincreasing. �

The proposition is usually proven (in analysis) by invoking a space-time
divergence theorem on a truncated cone in space-time (or graph-time here),
such as those (x, t) with dist(x,A) < c(t0 − t) (see, for example, [Smo83]
Chapter 4 or [CH89]). While this approach also works, setting up a graph-
time divergence theorem seems like more trouble than it’s worth for our
purposes at this point.

4.3. More general wave equations. One can generalize the uniqueness
results for the wave equation, i.e., Corollaries 4.4 and 4.5, to the same results
for a wave equation of the form

(α dV + β dE)utt = ∇ · (γ∇u) + δ · ∇u + εu,

where δ is a C0 vector field and ε is a C0 function, and we assume β never
vanishes. The proof is a simple adaptation of the analysis proof given in, for
example, Smoller’s book [Smo83]. We define the energy exactly as before
(ignoring δ and ε), but now prove

eKt0Energy(Act0 ; 0) ≥ Energy(A; t0)(4.1)

for some constant K depending on δ, ε, provided that u, ut vanish on Act0

at t = 0. Uniqueness with “propagation speed” at most c follows as before.
We shall outline the proof of Equation (4.1) when δ = 0; the general

case is a bit messier but similar (see [Smo83] for details). First we notice
that if all is the same as in Proposition 4.6 except that ∇ ·G + Ft does not
necessarily vanish (where by F and G we mean F = γE(∇u)2 +(αV+βE)u2

t

and G = −2γut∇u), then we have

I(t) ≤ I(0) +
∫ t

0

∫
Ac(t0−s)

(∇ ·G + Ft) ds.

Hence setting
E(t) = Energy(Ac(t0−t); t)

for 0 ≤ t ≤ t0, we have for such t

E(t) ≤ E(0)− 2
∫ t

0

∫
Ac(t0−s)

εu(x, s)ut(x, s) dE(x) ds.(4.2)

The integral on the right-hand side can be bounded by∣∣∣∣∫ t

0

∫
Ac(t0−s)

uut

∣∣∣∣ ≤ ∫ ∫ u2/2 +
∫ ∫

u2
t /2.

The u2
t /2 term integrated over space is bounded by a constant times E(t)

(since β vanishes nowhere), and the u2/2 can be bounded by a constant
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times t2 times a u2
t integral by Poincaré’s inequality (see [Smo83]). It

easily follows that the double integral in Equation (4.2) is bounded by a
constant times

∫ t
0 E(s) ds, and hence

E(t) ≤ E(0) + K

∫ t

0
E(s) ds

for a constant K. Gronwall’s inequality implies E(t) ≤ eKtE(0), which is
just Equation (4.1).

4.4. Differentiability and the wave equation. In this subsection we
show how to prove the existence of a solution to the wave equation for suffi-
ciently “differentiable” initial conditions. On the circle, i.e., R/(2πZ), there
is a rough correspondence between differentiability and having Fourier coef-
ficients decaying. We shall use the same for graphs, to give a nice description
of when we are sure that the wave equation has a solution.

Let f1, f2, . . . be the eigenfunctions of ∆E with eigenvalues λ1, λ2, . . .
with some boundary conditions of any type specified before. Let Dk (which
depends on the boundary conditions) be those formal sums

∑
i aifi with∑

i i
k|ai| < ∞ (here k is any real, although typically a nonnegative integer).

Let Bk be the same, except that the ai’s are subject to the weaker condition
that ik|ai| is bounded in i. Let Diffk be those functions f ∈ Ck such that
for j = 0, . . . , k − 1 we have:

(1) f (j)(v, e) depends only on v if j is even, where f (j)(v, e) is the j-th
derivative of f at v along e.

(2) The sum of f (j)(v, e) over all e for fixed v is zero for all v, if j is odd.

It is not hard to prove the following facts:

Proposition 4.7. We have natural inclusions Bk+1+ε ⊂ Dk ⊂ Bk for any
k and ε > 0, and inclusions Dk ⊂ Diffk ⊂ Bk for any nonnegative integer k.

We remark that Diffk’s compatibility with Dk, Bk makes it, in some sense,
a better notion of differentiability than Ck defined in Section 2.

Proof. The first inclusions are straightforward. The inclusion Dk ⊂ Diffk

follows by viewing the formal sum as an absolutely convergent sum of func-
tions whose derivatives up to k-th order also form an absolutely convergent
sum (here we use the periodic nature of the eigenpairs). Finally the inclu-
sion Diffk ⊂ Bk follows by integration by parts of the inner product (f, fi)
for an f ∈ Diffk along each edge:

∫ 1
0 f(x)Ae cos(ωx + Be) is proportional to

the integral of ω−kf (k)(x) times sine or cosine of plus or minus ωx+Be plus
boundary terms. The boundary terms at v ∈ V̊ are proportional to sums
over e of f (j)(v, e)Ae times sine or cosine ωx+Be. Knowing that Ae cos(Be)
is independent of e (for a given v, with x = 0 corresponding to v), and
knowing that the sum of Ae sin(Be) vanishes (since ∆V fi = 0 for all i), we
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see that the boundary terms at V̊ disappear; similarly we see that boundary
terms at boundary vertices vanish. Now we use Weyl’s law and the fact that
f ∈ Ck to see that ik(f, fi) is bounded. �

We now state an existence theorem in terms of D2; it follows from the
above proposition that our theorem also applies to the class Diff4, which is
easier to understand, in a sense, than D2.

Proposition 4.8. Let g, h ∈ D2. If g =
∑

aifi and h =
∑

bifi, then

u(x, t) =
∑

i

fi

(
ai cos(

√
λi t) +

bi√
λi

sin(
√

λi t)
)

(4.3)

is a solution to the wave equation with u( · , 0) = g and ut( · , 0) = h.

Proof. We need to know that utt exists, and if g, h ∈ D2 then the sum of
twice differentiated terms is absolutely convergent and this utt exists. The
rest is an easy verification. �

Any g, h in L2, say, will have eigenfunction expansions. It makes sense to
define u(x, t) by the formal sum above (in Equation (4.3)), which for fixed
t will always lie in L2 (although utt need not exist).

4.5. Chebyshev polynomials and the wave operator. We again as-
sume that G is finite in this subsection. Let fi, λi be as in the Section 4.4,
and set Summ to be D0 in the notation of the previous section, i.e.,

Summ =
{∑

i

aifi

∣∣∣ ∑ |ai| < ∞
}

.

Elements of Summ may be viewed as formal sums, or we may identify them
with the bounded function on G to which they converge (since the fi are
uniformly bounded). Summ is the set of functions with a summable eigen-
function coefficient series; it is easy to see that it contains, for example,
H1(G). The map sending fi to its restriction on vertices extends to a con-
tinuous map from Summ to L∞(G,V). Since G is finite this gives rise to a
continuous map ME→V : Summ → L2(G,V).

If g ∈ Summ with g =
∑

aifi, then(
cos
√

∆E

)
g =

∑
ai

(
cos
√

λi

)
fi

lies in Summ, and we know

ME→V

(
cos
√

∆E

)
g =

∑
ai

(
cos
√

λi

)
ME→V fi.

Since 1− cos
√

λi is the ∆V eigenvalue corresponding to ME→V fi and Ã =
I −∆V , we have

ÃME→V = ME→V cos
√

∆E
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as maps from Summ to L2(G,V), assuming all edge lengths are 1. It follows
that for any polynomial, P , we have

P
(
Ã
)
ME→V = ME→V P

(
cos
√

∆E

)
.

If Tk is the k-th Chebyshev polynomial, given by

Tk(cos x) = cos(kx),

we have
Tk

(
Ã
)
ME→V = ME→V cos

(
k
√

∆E

)
.

We conclude the following theorem:

Theorem 4.9. Let all edge lengths be 1. Let g ∈ Summ, and let u be the
formal solution to the wave equation as in Equation (4.3) with h = 0. Then
for any integer k and interior vertex v we have

u(v, k) = Tk

(
Ã
)
ME→V g.

So if we wish to know this wave equation solution at vertices and at only
integral times, we need only know the initial condition at the vertices. The
values of the solution there are given in term of Chebyshev polynomials of
the normalized adjacency matrix. Notice that knowing the values of u at
nonintegral times requires knowing f along the edges.

Notice that Theorem 4.9 is valid for infinite (locally finite) graphs, since
the wave equation solution is determined locally for any finite time, and the
equality in Theorem 4.9 is a local statement as well.

We finish this subsection by remarking that if we ignore the map ME→V ,
we can say that Ã “acts like” cos

√
∆E . Noting that Ã is I − ∆V for an

appropriate graph theoretic Laplacian, ∆V , we can see that I − ∆V “acts
like” cos

√
∆E .

4.6. Wave propagation through vertices. Using Theorem 4.9 it is not
hard to see what happens when a wave is sent through a vertex. More
precisely, let G be the infinite d-regular star,5 i.e., G’s vertices are v0 union
vi,j with i = 1, . . . , d and j a positive integer, and G’s edges are {v0, vi,1}
for all i, and {vi,j , vi,j+1} for all i and for all positive j (see Figure 2).

Taking g to be a function which is zero on all vertices except v1,j for some
j ≥ 2, we apply Theorem 4.9 to see that of the “wave” traveling towards v0,
we have (2/d)− 2 of the wave comes back along the i = 1 edge, and 2/d of
it travels down each i > 1 edge.

This motivates the following theorem. We state this theorem in terms
of the length 1 d-regular star, by which we mean the graph, G, as above,

5Note that the wave equation effectively ignores vertices of degree 2, i.e., one gets the
same equation if one treats the two edges incident with the vertex as one longer edge. So
the infinite d-regular star is equivalent to a graph with one degree d vertex and d edges
of infinite length.
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v0 vd,1 vd,2v1,1v1,2

v2,1
vi,1

vi,2

Figure 2.

except we restrict j to take on only the value 1. We endow the edges of G
with standard coordinates x1, . . . , xd where xi(0) = v0 and xi(1) = vi,1.

Theorem 4.10. Let u(x, t) be the solution to the wave equation for 0 ≤ t ≤
1/4 given by

u(xi, t) =

{
f(x1 + t) for i = 1,
0 otherwise,

where f is any twice differentiable function supported on (1/4, 3/4). Then
the solution for 0 ≤ t ≤ 5/4 to the wave equation exists and is given by

ũ(xi, t) =

{
f(x1 + t) +

(
(2/d)− 1

)
f(t− x1) for i = 1,

(2/d)f(t− xi) otherwise.

Notice that this theorem tells us how waves propagate through vertices.
Also, notice that we know that ũ is unique.

Proof. Clearly ũ satisfies the wave equation on edge interiors. At v0, the
only vertex of interest for t ≤ 5/4, we have ũ is continuous (taking the
limiting value 2f(t)/d along each edge at v0) and satisfies ∆V ũ = 0 there.
Hence ũ satisfies the wave equation. �

4.7. Finite propagation speed of wave operators. There are a num-
ber of operators on L2(G, E) that arise from the wave operator, which have
a “finite speed of propagation”. We mention one classical one, and a gener-
alization of it. First we need some definitions.

By the support of a function, f , in L2(G, E) we mean the complement of
the union of those open sets, U , for which f = 0 almost everywhere in U .

Definition 4.11. Let At be a family of bounded (everywhere defined) oper-
ators on L2(G, E) indexed on t ≥ 0. We say that At have speed of propagation
at most c if (Atf, g) = 0 for any f, g ∈ L2(G, E) and t with the supports of
f and g a distance at least ct apart.
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Definition 4.12. A subset, D, of L2(G, E) is called supportingly dense if
for any f ∈ L2(G, E) and ε > 0 there is f̃ ∈ D such that ‖f − f̃‖2 < ε and
(each point of) the support of f̃ is within distance ε of the support of f .

In our propagation speed definition, rather than requiring f, g ∈ L2(G, E),
it suffices to take f, g ∈ D where D is any supportingly dense subset of
L2(G, E). We also remark that standard mollification arguments show that
for any k, Diffk is supportingly dense; it follows that Bk and Dk are, as well.

Consider the operator

Wt = cos
(
t
√

∆
)
.

By the spectral theorem this can be viewed as an operator on L2(G, E) whose
norm is bounded by 1. We know by Proposition 4.8 that Wt restricted to
D2 ∩ L2(G, E) has propagation speed at most 1. Since D2 is supportingly
dense in L2(G, E) we see that Wt has speed of propagation ≤ 1.

Next for any a ∈ R consider the operator:

Wt,a = h
(
t2(∆− a)

)
,

where

h(x) = 1− x

2!
+

x2

4!
− x3

6!
+ · · · =

{
cos

√
x if x ≥ 0,

cosh
√
−x if x < 0.

So Wt,0 is just Wt as above. Since ∆ is positive semidefinite, ‖Wt,a‖ ≤
cosh

(
t
√

a
)
. The analogue of Proposition 4.8 for the wave equation utt =

−∆u + au is easily verified, and we conclude (using Subsection 4.3) as we
did for Wt that:

Proposition 4.13. For fixed a, the propagation speed of Wt,a is ≤ 1.

5. Applications

In this section we give examples of how to apply our edge-based approach
to get graph theoretic results from analysis results. We give a new bound
on eigenvalues based on set distances in graph theory; the bound it gives
on diameters can be better or worse than the well-known bound of Chung,
Faber, and Manteuffel (in [CFM94]); our technique is very simple and works
in analysis (to give the result of Friedman and Tillich in [FT]). We also show,
for example, that the graph diameter inequalities of Chung, Grigor’yan, and
Yau in [CGY96, CGY97], which mildly generalize that of Chung, Faber,
and Manteuffel (in [CFM94]), is optimal to first-order, in a certain sense, for
small Laplacian eigenvalue. We give other results that illustrate our ability
to translate from analysis to graph theory, although these other results do
not improve the best known graph theory results.
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5.1. Distances and diameter: using old results. A number of arti-
cles have inequalities relating distances to sets or diameters of a space to
Laplacian eigenvalues, both for manifolds and graphs (see [AM85, Moh91,
LPS88, CFM94, CGY96, BL97, CGY97]). In [FT] the philosophy that
I −∆G “acts like” cos

√
∆E of the preceding section is used to apply graph

theoretic techniques (namely those of [CGY97]) to analysis and get an im-
proved eigenvalue bound based. Here we go the other way, taking analysis
results or more general results, and apply them to get graph theoretic re-
sults. The result we obtained is not the best known, but it is better than
some results, especially one that can be derived from the same technique
using the vertex-based Laplacian. However, in the next subsection we give
a distances/eigenvalues technique that yields new results in graph theory.

Consider the result of Bobkov and Ledoux, which states that for any
metric probability space, (M,ρ, µ), and disjoint Borel sets X, Y we have

√
λ ρ(X, Y ) ≤ − log(µX µY )(5.1)

where ρ(X, Y ) is the distance from X to Y and λ is the optimal constant
in the Poincaré inequality (in other words, λ is the first nonzero Neumann
eigenvalue in the case of a compact manifold or finite graph). Let us apply
this to bounding the diameter of a graph.

One way is to directly apply Equation (5.1) to the vertex-based situations,
with λ = λV , the vertex-based Laplacian eigenvalue. We get µX = |X|/n,
and we take X, Y to consist of single points of distance D where D is the
diameter. We conclude that

√
λV D ≤ log(n2) = 2 log n, or

D ≤ 2 log n√
λV

.

Here λV is the first nonzero eigenvalue of the Laplacian I − Ã where Ã is
the normalized adjacency matrix. Notice that if our graph is d-regular, then
λV = λT /d where λT is the first nonzero eigenvalue of the traditional graph
theoretic Laplacian. We conclude:

D ≤ 2 log n
√

d/λT .

Alternatively we may apply Equation (5.1) to the edge-based Lapla-
cian. Notice that the similar and slightly weaker inequalities of [CGY96,
CGY97] require the Laplacian, ∆, to have cos

(
t
√
−∆

)
extend supports of

functions by a distance at most t. So our edge-based Laplacian could be
used with these earlier results, whereas the vertex-based Laplacian could
not. We take X, Y to be balls of size 1/2 about two points of distance D,
the diameter. We conclude:√

λE (D − 1) ≤ log(n2) = 2 log n.
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Seeing as
√

λE = cos−1(1− λV ), we have

D − 1 ≤ 2 log n

cos−1(1− λV )
.

But it is easy to see that cos−1(1− a) ≥
√

2a for any a. Hence we have

D − 1 ≤
√

2/λV log n.

In the d-regular case this gives

D − 1 ≤
√

(2d)/λT log n.(5.2)

We conclude:
(1) With the same technology, i.e., using Equation (5.1), the edge-based

technique does better than the vertex-based technique by roughly a
factor of

√
2.

(2) In previous Laplacian bounds (e.g., [CGY96, CGY97]) the edge-
based technique can be applied whereas the vertex-based technique
cannot (by support extending restrictions that are equivalent to the
wave equation having propagation speed 1).

It is interesting to note that the edge-based diameter bound we derived
(in Equation (5.2)) improves the original Alon–Milman bound6 of

D ≤ 2b
√

(2d/λT ) log2 nc
(see [AM85]), in the case where d/λT and n are large. Similarly we have
improved Mohar’s improvement (see [Moh91]) of the Alon–Milman result,
taking λ∞ ≤ 2d (the highest Laplacian eigenvalue)7 ). But the result of
Chung, Faber, and Manteuffel (see [CFM94]) improves on our edge-based
result by a factor of 2. In fact, it is precisely this factor of 2 that we gain
in applying the result in Chung, Faber, and Manteuffel to analysis, in [FT],
using the relation in this paper between graph Laplacians and analysis-like
(e.g., edge-based) Laplacians.

5.2. Distances and diameters: new results. In this subsection we give
a new way of proving distance/eigenvalues or diameter/eigenvalue results.
Graph theoretically this yields a new result, which is an edge-based analogue
of the Chung, Faber, and Manteuffel (see [CFM94]) result; our new results
cannot be compared to that of Chung, Faber, and Manteuffel — it can yield
better or worse results. This proof also carries over to analysis, where it
gives a different (and in some sense shorter) proof of the Friedman–Tillich
result in [FT]. But however different our proofs or results are, they can be

6It is interesting that this bound is often misquoted, as the authors use [a] to denote
bac (the greatest integer ≤ a) without ever explicitly saying so in the paper. Many authors
incorrectly guess the meaning of [a].

7 Since we are thinking of d/λT as being large, it seems reasonable to expect that λ∞
should not be far from 2d.
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viewed as variants of older results stemming from the same basic technique
used in [CGY97] and [FT].

Let X0 denote the constants in L2(G, E), and X1 the orthogonal comple-
ment of X0; for i = 0, 1 let πi denote the projection onto Xi (so π0 + π1 is
the identity). Let Wt,a be the operators defined at the end of Section 4, and
fix a = λE to be the first nonzero eigenvalue of ∆.

Proposition 5.1. If f, g are two functions whose supports are at a distance
of at least d, we have

cosh
(
d
√

λE

)
≥ ‖π1f‖‖π1g‖
‖π0f‖‖π0g‖

.

Proof. By Proposition 4.13 we have

0 = (Wd,af, g) = (Wd,aπ0f, π0g) + (Wd,aπ1f, π1g).

Now
(Wd,aπ0f, π0g) = ± cosh

(
d
√

λE

)
‖π0f‖‖π0g‖

since π0f, π0g are both constants. Since Wd,a restricted to X1 has norm at
most one, we have ∣∣(Wd,aπ1f, π1g)

∣∣ ≤ ‖π1f‖‖π1g‖,
and the proposition follows. �

Corollary 5.2. Let X, Y be disjoint measurable subsets of distance ≥ d.
Then

d
√

λE ≤ cosh−1

(√
E(Xc)E(Y c)
E(X)E(Y )

)
.

Proof. Take f, g to be the respective characteristic functions of X, Y . �

We finish this subsection with a discussion of the above proposition and
its corollary.

First of all, these proofs carry right over to analysis, where they yield the
results of Friedman and Tillich (in [FT]) with a considerably simpler proof;
however, the basic idea that (Wd,af, g) = 0 based on the supports of f, g the
the speed of propagation of W appears before.

Second, the above proposition and corollary can be generalized to k func-
tions or k sets for any k ≥ 2, with the same technique that appears in
[CGY96], also used in [CGY97, FT]. In the analysis case we recover the
results for k functions or sets that appear in [FT]. For graphs, our corollary
would read that if X1, . . . , Xk were disjoint measurable subsets any two of
which had supports of distance ≥ d, then

d
√

λE ≤ min
i6=j

cosh−1

√E(Xc
i )E(Xc

j )
E(Xi)E(Xj)

 .
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Our proposition would read similarly.
Finally, we remark that the above corollary yields a diameter result that

can be better (or worse) than that of Chung, Faber, and Manteuffel (see
[CFM94]). Similarly our corollary can be better or worse than the compa-
rable theorem in [CGY97]. For example, the Chung, Faber, and Manteuffel
result states that in a regular graph

(D − 1) cosh−1

(
1 +

2λV

λn − λV

)
≤ cosh−1(n− 1),

where D is the diameter, n = |V |, and λV , λn are respectively the smallest
and largest positive ∆V eigenvalues. Taking balls of radius δ/2 about two
points of distance D and applying Corollary 5.2 we get

(D − δ)
√

λE ≤ cosh−1(2n/δ − 1)

for any δ ≤ 2. It follows that the result obtained here, taking δ = 2, is
better than the result in [CGY97], provided that λV and 2 − λn are both
≤ c/ log n for a constant, c (using cos

√
λE = 1− λV ).

5.3. Invariants. A typical spectral invariant studied in the analysis liter-
ature is the wave invariant

W (t) = Trace
(
cos t

√
∆E

)
=
∑

j

(
cos t

√
λj

)
,

with λj running through all Laplacian eigenvalues. This sum can be under-
stood in several ways; here we think of

W̃ (t) =
∑

j

(
eit
√

λj
)

as a complex analytic function defined on the subset of complex numbers
with positive imaginary part, and then we extend W̃ analytically to the
whole complex plane; W is just the real part of W̃ .

It is well-known that in analysis the real singularities of W are at t = 0
and t being (plus or minus) the length of a closed geodesic. If all edges
of a graph have length one, then we know we have α1, . . . , α2|E| such that
the edge-based eigenvalues (with their respective multiplicities) are precisely
those squares of αj + 2πZ≥0. We have

W̃ (t) =
1

1− e2πit

2|E|∑
j=1

eitαj .

This has a pole at tR precisely when t = 0 or t is an integer with
∑

eitαj 6= 0.
To understand the vanishing or not of

∑
eitαj , consider that the αj ’s are

of two types; one type is a (π, 2π) pair coming from an edge and interior
vertex count, and such αj ’s cancel in the sum

∑
cos(itαj) for t an odd
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integer and contribute 2 when t is even; the other type is a α, 2π − α pair
with

eitα + eit(2π−α) = 2 cos(tα)
for t an integer. Hence this sum is essentially the trace of the t-th Chebyshev
polynomial in Ã.

It follows that the first odd t > 0 for which W̃ has a pole is the length of
the smallest odd cycle. However it doesn’t seem like such a simple statement
holds for higher odd values of t or even values, and so the invariant W̃ is
not entirely analogous to its analysis counterpart.

It is natural to ask if any spectral, edge-based invariants (such as those
whose analysis analogues are interesting, for example) yield new and inter-
esting graph invariants. Such invariants would, in particular, include traces
of Chebyshev polynomials of Ã when the edge lengths are one.

5.4. Cheeger’s inequality. In this section we mention that Cheeger’s in-
equality holds for the edge-based Laplacian as well as the vertex-based, but
the second one, at least for r-regular graphs yields the first one. We will
require some notions from [FT99].

Consider an open subset of A ⊂ G whose boundary contains no vertices,
and let A(∂A) be the “area” of A’s boundary (see [FT99]); this is just the
sum of ae for each boundary point of A lying on e. Also E(A) is just the
total E measure of A, and we set

hE = min
E(A)≤E(G)/2

A(∂A)
E(A)

.

The co-area formula of [FT99] and the arguments to prove Cheeger’s in-
equality immediately carry over here to yield:

λE ≥ h2
E/4.(5.3)

We can compare this to Cheeger’s inequality for the vertex-based case (i.e.,
Dodziuk’s inequality, see [Dod84, FT99]),

λV ≥ h2
V /2(5.4)

for the 1-regular graphs (see Section 2), where

hV = min
B⊂V, V(B)≤ V(V )/2

E(E(B,Bc))
V(B)

,

where E(B,Bc) denotes the set of edges with one endpoint in B and one in
Bc.

Let us compare these two Cheeger’s inequalities, in case the graph is d-
regular in the traditional sense (each vertex is the endpoint of d edges) with
unit edge lengths and weights. We consider now the graph G derived from
it, where V at any vertex is taken to be d so as to make the graph 1-regular.

We shall need a simple lemma:
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Lemma 5.3. For a 1-regular graph hV ≥ hE/2.

Proof. Let B be the subset of vertices of size smaller than V(V )/2 for which

hV =
E(E(B,Bc))

V(B)
.

For a subset X of vertices we denote by Xt the set of points lying on edges
that have both endpoints on B or are within a distance t from X. Note that

E(B1/2) + E(Bc
1/2) = E(G).

It follows that the measure of one of these two sets is smaller than or equal
to V(G)/2.

Case 1: E(B1/2) ≤ V(G)/2. Here A(∂B1/2)

E(B1/2) ≥ hE . Since E(E(B,Bc)) =
A(∂B1/2) and V(B)≤2E(B1/2), we obtain

hV =
E(E(B,Bc))

V(B)
≥
A(∂B1/2)
2E(B1/2)

≥ hE/2.

Case 2: V(Bc
1/2) ≤ E(G)/2. This implies that

V(V )/4 = E(G)/2 ≥ V(Bc
1/2) ≥ V(Bc)/2,

so Bc is also of measure smaller than or equal to V(V )/2, and therefore
V(B) = V(Bc) = V(V )/2. This means that

hV =
E(E(B,Bc))

V(Bc)
.

By using the same arguments as in the previous case (with Bc replacing B)
we also get hV ≥ hE/2. �

Now notice that

λE = (cos−1(1− λV ))2 ≥ 2λV .

Hence
λE ≥ 2λV ≥ h2

V ≥ h2
E/4.

In other words: for 1-regular graphs Cheeger’s inequality for vertices, (5.4),
implies the Cheeger inequality for edges, (5.3).

5.5. Optimal distance bounds. In this section we prove the following
theorem:

Theorem 5.4. Let C,C1, C2 be constants such that the following holds: for
any graph with edge lengths one, whose diameter D is realized by two ver-
tices, u, v, we have

D − 1 ≤ C√
2λV + C1λV

log
(

C2V(V )2

V(u)V(v)

)
.(5.5)

Then C ≥ 1/2. The same is true if we insist that the graph is 1-regular.
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The bound of Chung, Faber, and Manteuffel (in [CFM94]) implies Equa-
tion (5.5) with C = 1/2 assuming V is constant; the generalization to general
V is implied by the results in [CGY96, CGY97] (with different constants
C2 in the two articles). Actually, there they assume the edge weights are in-
tegral; but this assumption clearly implies the same for rational edge weights,
and therefore arbitrary real edge weights. So regarding λV as small, these
inequalities are optimal to first-order.

Our proof is based on a standard metric probability space, the “expo-
nential distribution on the nonnegative reals,” or on a standard Riemannian
manifold, the surface of revolution of y = e−x with x nonnegative. We model
this on a graph by taking a sequence of edges with edge weight exponentially
decreasing. These analysis examples (the exponential distribution and the
surface of revolution of y = e−x) prove a bound in analysis that is analogous
to the bound C ≥ 1/2 in the theorem above (see [FT]).

Proof. Fix a small η ∈ (0, 1), and let r = 1 − η. Fix an integer D > 0.
Consider the graph, G, whose vertices are the integers, V = {0, 1, . . . , D},
with an edge from i to i + 1 of weight ri for all nonnegative integers i < D.

Making G into a 1-regular graph is done by taking V(i) = ri−1 + ri for
i 6= 0, D, dropping one of these summands when i = 0 or i = D. Here the
vertices furthest from each other are 0 and D, and therefore

log
(

V(V )2

V(u)V(v)

)
= log

(
4
(

1−rD+1

1−r

)2
1 · rD

)
≤ K(r)−D log r.

We obtain a lower bound on λV by using Cheeger’s inequality (5.4). Ob-
viously to find Cheeger’s constant hV we just need to consider vertex sets
that are connected, i.e., of the form B = {a, a + 1, . . . , b}.

We have to distinguish between two cases: a > 0 and a = 0. In the first
case

E(E(B,Bc))
V(B)

=
ra−1 +1{b6=D}r

b

ra−1 +2
∑b−1

i=a ri +1{b6=D}rb
≥ 1

2(1 + r + r2 + · · · )
=

1− r

2
.

In the second case we get the same lower bound with a slightly more tedious
calculation. First we note that in this case b 6= D (since V(B) ≤ V(V )/2)
and therefore

V(B) = rb + 2
b−1∑
i=0

ri ≤ V(V )/2 =
1− rD+1

1− r
.(5.6)

This implies that

rb ≥ 1 + rD+1

1 + r
.(5.7)
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We use the previous upper bound on V(B), and this lower bound on rb to
obtain

E(E(B,Bc))
V(B)

=
rb

V(B)
≥ (1 + rD+1)(1− r)

(1 + r)(1− rD+1)
≥ 1− r

2
.

By using (5.4) it follows that

λV ≥ (1− r)2/8 = η2/8,

and therefore

D − 1 ≤ C

η/2 + C1η2/8
(K(r)−D log r) .

Taking D →∞ we conclude

1 ≤ − C

η/2 + C1η2/8
log(1− η).

Taking η → 0+ yields 1 ≤ 2C. �
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