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A recent problem in dynamics is to determine whether an
attractor Λ of a Cr flow X is Cr robust transitive. By an
attractor we mean a transitive set to which all positive orbits
close to it converge. An attractor is Cr robust transitive (or
Cr robust for short) if it has a neighborhood U such that the
set

⋂
t>0 Yt(U) is transitive for every flow Y that is Cr close to

X. We give sufficient conditions for robustness of attractors
based on the following definitions: an attractor is singular-
hyperbolic if it has singularities, all of which are hyperbolic,
and is partially hyperbolic with volume expanding central di-
rection (Morales, Pacifico and Pujals, 1998). An attractor
is Cr critically robust if it has a neighborhood U such that⋂

t>0 Yt(U) is in the closure of the closed orbits of every flow
Y Cr close to X. We show that on compact 3-manifolds all Cr

critically robust singular-hyperbolic attractors with only one
singularity are Cr robust.

1. Introduction

A recent problem in dynamics is to determine whether an attractor Λ of a Cr

flow X is Cr robust transitive or not. By an attractor we mean a transitive
set to which all positive orbits close to it converge. An attractor is Cr robust
transitive (or Cr robust for short) if it has a neighborhood U such that the
set

⋂
t>0 Yt(U) is transitive for every flow Y that is Cr close to X. We

give sufficient conditions for robustness of attractors based on the following
definitions: an attractor is singular-hyperbolic if it has singularities, all of
which are hyperbolic, and is partially hyperbolic with volume expanding
central direction [MPP]. An attractor is Cr critically robust if it has a
neighborhood U such that

⋂
t>0 Yt(U) is in the closure of the closed orbits

is every flow Y Cr close to X. We show that, for flows on compact 3-
manifolds, all Cr critically robust singular-hyperbolic attractors with only
one singularity are Cr robust.

Let us state our result in a precise way. Hereafter Xt is a flow induced by
a Cr vector field X on a compact 3-manifold M . The ω-limit set of p ∈ M
is the accumulation point set ωX(p) of the positive orbit of p. An invariant
set is transitive if it equals ωX(p) for some point p on it.
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Definition 1.1. A compact set in M is an attracting set of X if it can be
written in the form

⋂
t>0 Xt(U) for some neighborhood U . An attractor is

a transitive attracting set.

See [Mi] where several definitions of attractors are discussed. The central
definition of this paper is the following:

Definition 1.2. An attractor of a Cr flow X is Cr robust transitive (or
Cr robust for short) if it has a neighborhood U such that

⋂
t>0 Yt(U) is a

transitive set of Y for every flow Y that is Cr close to X.

Recently the problem of finding sufficient conditions for robustness of
attractors was introduced in [B] and [P]. To deal with it we introduce the
following definitions: a compact invariant set Λ of X is partially hyperbolic
if there are an invariant splitting TΛ = Es⊕Ec and positive constants K, λ
such that:

1. Es is contracting, namely

‖DXt/Es
x‖ ≤ Ke−λt, ∀x ∈ Λ, ∀t > 0.

2. Es dominates Ec, namely

‖DXt/Es
x‖ ·

∥∥DX−t/Ec
Xt(x)

∥∥ ≤ Ke−λt, ∀x ∈ Λ, ∀t > 0.

The central direction Ec of Λ is said to be volume expanding if the addi-
tional condition ∣∣J(DXt/Ec

x)
∣∣ ≥ Keλt

holds for all x ∈ Λ and t > 0, where J( · ) means the Jacobian.

Definition 1.3 ([MPP]). An attractor is singular-hyperbolic if it has sin-
gularities, all of which are hyperbolic, and is partially hyperbolic with vol-
ume expanding central direction.

The most representative example of a Cr robust singular-hyperbolic at-
tractor is the geometric Lorenz attractor [GW]. The main result in [MPP]
claims that C1 robust nontrivial attractors on compact 3-manifolds are
singular-hyperbolic. The converse is false: there are singular-hyperbolic at-
tractors on compact 3-manifolds that are not Cr robust [MPu]. The follow-
ing definition gives a further sufficient condition for robustness of singular-
hyperbolic attractors:

Definition 1.4. An attractor of a Cr flow X is Cr critically robust if it has
a neighborhood U such that

⋂
t>0 Yt(U) is in the closure of the closed orbits

of Y , for every flow Y that is Cr close to X.

Hyperbolic attractors on compact manifolds are Cr robust and Cr criti-
cally robust for all r. The geometric Lorenz attractor [GW] is an example
of a singular-hyperbolic attractor with only one singularity which is also Cr

robust and Cr critically robust. In general singular-hyperbolic attractors
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with only one singularity may be neither Cr robust nor Cr critically robust
[MPu]. Nevertheless we shall prove that on compact 3-manifolds Cr criti-
cally robustness implies Cr robustness among singular-hyperbolic attractors
with only one singularity. More precisely:

Theorem A. A Cr critically robust singular-hyperbolic attractor with only
one singularity on compact 3-manifolds is Cr robust.

This gives explicit sufficient conditions for the robustness of attractors
but they depend on the perturbed flow. E. Pujals is interested in conditions
depending on the unperturbed flow only. It would also be interesting to
determine whether the conclusion of Theorem A holds if we interchange the
roles of robust and critically robust in the statement.

The proof of Theorem A relies on recent work [MP2]. We reproduce the
necessary results in Section 2 for completeness. The proof of Theorem A is
in Section 3.

2. Singular-hyperbolic attracting sets

In this section we describe the results in [MP2], omitting some proofs; see
[MP2] for details. Hereafter X is a Cr flow on a closed 3-manifold M .
The closure of B will be denoted by Cl(B). If A is a compact invariant
set of X we denote by SingX(A) the set of singularities of X in A, and by
PerX(A) the union of the periodic orbits of X in A. A compact invariant
set H of X is hyperbolic if the tangent bundle over H has an invariant
decomposition Es ⊕EX ⊕Eu such that Es is contracting, Eu is expanding
and EX is generated by the direction of X [PT]. Stable Manifold Theory
[HPS] asserts the existence of the stable manifold W s

X(p) and the unstable
manifold W u

X(p) associated to p ∈ H. These manifolds are respectively
tangent to the subspaces Es

p ⊕ EX
p and EX

p ⊕ Eu
p of TpM . In particular,

W s
X(p) and W u

X(p) are well-defined if p belongs to a hyperbolic periodic
orbit of X. If O is an orbit of X we write W s

X(O) = W s
X(p) and W u

X(O) =
W u

X(p) for some p ∈ O. We observe that W
s(u)
X (O) does not depend on

p ∈ O. When dim Es = dim Eu = 1 we say that H is of saddle type. In
this case W s

X(p) and W u
X(p) are two-dimensional submanifolds of M . The

maps p ∈ H → W s
X(p) and p ∈ H → W u

X(p) are continuous (on compact
parts). Moreover, a compact, singular, invariant set Λ of X is singular-
hyperbolic if all its singularities are hyperbolic and the tangent bundle over
Λ has an invariant decomposition Es ⊕ Ec such that Es is contracting, Es

dominates Ec and Ec is volume expanding (i.e., the Jacobian of DXt/Ec

grows exponentially as t →∞). Again, Stable Manifold Theory asserts the
existence of the strong stable manifold W ss

X (p) associated to p ∈ Λ. This
manifold is tangent to the subspace Es

p of TpM . For all p ∈ Λ we define
W s

X(p) =
⋃

t∈R W ss
X (Xt(p)). If p is regular (i.e., X(p) 6= 0) then W s

X(p) is a
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well-defined two-dimensional submanifold of M . The map p ∈ Λ → W s
X(p)

is continuous (on compact parts) at the regular points p of Λ. A singularity
σ of X is Lorenz-like if its eigenvalues λ1, λ2, λ3 are real and satisfy

λ2 < λ3 < 0 < −λ3 < λ1

up to some reordering of the eigenvalues. A Lorenz-like singularity σ is
hyperbolic, so W s

X(σ) and W u
X(σ) do exist. Moreover, the eigenspace of λ2

is tangent to a one-dimensional invariant manifold W ss
X (σ). This manifold

is called the strong stable manifold of σ. Clearly W ss
X (σ) splits W s

X(σ) into
two connected components. We denote by W s,+

X (σ) and W s,−
X (σ) the two

connected components of W s
X(σ) \W ss

X (σ).
Let Λ be a singular-hyperbolic set with dense periodic orbits of a three-

dimensional flow. It follows from [MPP] that every σ ∈ SingX(Λ) is Lorenz-
like and satisfies Λ ∩ W ss

X (σ) = {σ}. It follows also from [MPP] that
any compact invariant subset without singularities of Λ is hyperbolic of
saddle type. If in addition Λ is attracting, there is for every p ∈ PerX(Λ) a
σ ∈ SingX(Λ) such that

W u
X(p) ∩W s

X(σ) 6= ∅.
This follows from the methods in [MP1].

For every singular-hyperbolic set Λ of a three-dimensional flow X and
every Lorenz-like singularity σ ∈ SingX(Λ) we define

P+ = {p ∈ PerX(Λ) : W u
X(p) ∩W s,+

X (σ) 6= ∅},
P− = {p ∈ PerX(Λ) : W u

X(p) ∩W s,−
X (σ) 6= ∅},

H+
X = Cl(P+),

H−
X = Cl(P−).

These sets will play an important role.

Lemma 2.1. Let Λ be a connected, singular-hyperbolic, attracting set with
dense periodic orbits and only one singularity σ. Then Λ = H+

X ∪H−
X .

Next we state a technical lemma to be used later. If S is a submanifold we
denote by TxS the tangent space at x ∈ S. A cross-section of X is a compact
submanifold Σ transverse to X and diffeomorphic to the two-dimensional
square [0, 1]2. If Λ is a singular-hyperbolic set of X and x ∈ Σ ∩ Λ, then x
is regular and so W s

X(x) is a two-dimensional submanifold transverse to Σ.
In this case we denote by W s

X(x,Σ) the connected component of W s
X(x)∩Σ

containing x. We shall be interested in a special cross-section described as
follows: let Λ be a singular-hyperbolic set of a three-dimensional flow X
and let σ ∈ SingX(Λ). Suppose that the closed orbits contained in Λ are
dense in Λ. Then σ is Lorenz-like [MPP], and therefore one can describe
the flow using the Grobman–Hartman Theorem [dMP]. Indeed, we can
assume that the flow of X around σ is the linear flow λ1∂x1 + λ2∂x2 + λ3∂x3
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in a suitable coordinate system (x1, x2, x3) ∈ [−1, 1]3 around σ = (0, 0, 0).
A cross-section Σ of X is singular if it corresponds to the submanifolds
Σ+ = {x3 = 1} or Σ− = {x3 = −1} in the coordinate system (x1, x2, x3).
We denote by l+ and l− the curves obtained by intersecting {x2 = 0} with
Σ+ and Σ−, respectively; these curves are contained in W s,+

X (σ) and W s,−
X (σ)

respectively. We state without proof the following straightforward lemma:

Lemma 2.2. Let Λ a singular-hyperbolic set with dense periodic orbits of
a three-dimensional flow X, and fix σ ∈ SingX(Λ). There are singular
cross-sections Σ+,Σ− as above such that every orbit of Λ passing close to
some point in W s,+

X (σ) (resp. W s,−
X (σ)) intersects Σ+ (resp. Σ−). If p ∈

Λ ∩ Σ+ is close to l+, then W s
X(p, Σ+) is a vertical curve crossing Σ+. If

p ∈ PerX(Λ) and W u
X(p) ∩ W s,+

X (σ) 6= ∅, then W u
X(p) contains an interval

J = Jp intersecting l+ transversally; and the same is true if we replace +
by −.

To prove transitivity we shall use two lemmas:

Lemma 2.3 (Birkhoff’s criterion). Let T be a compact, invariant set of X
such that for all open sets U, V intersecting T there is s > 0 such that
Xs(U ∩ T ) ∩ V 6= ∅. Then T is transitive.

Lemma 2.4. Let Λ be a connected, singular-hyperbolic, attracting set with
dense periodic orbits and only one singularity σ. Let U, V be open sets,
p ∈ U ∩ PerX(Λ) and q ∈ V ∩ PerX(Λ). If W u

X(p) ∩ W s,+
X (σ) 6= ∅ and

W u
X(q) ∩W s,+

X (σ) 6= ∅, there exist t > 0 and z ∈ W u
X(p) arbitrarily close to

W u
X(p)∩W s,+

X (σ) such that Xt(z) ∈ V . The same is true if we replace + by
−.

Let Λ be a singular-hyperbolic set of X ∈ X r satisfying:
1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has only one singularity σ.
We note that condition 3 implies

(H1) Λ = Cl(PerX(Λ)).

Proposition 2.5. Suppose that, for any given p, q ∈ PerX(Λ), either
1. W u

X(p) ∩W s,+
X (σ) 6= ∅ and W u

X(q) ∩W s,+
X (σ) 6= ∅, or

2. W u
X(p) ∩W s,−

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
Then Λ is transitive.

Proof. By Birkhoff’s criterion we only need prove that for all open sets U, V
intersecting Λ there exists s > 0 such that Xs(U ∩ Λ) ∩ V 6= ∅. For this we
proceed as follows: by (H1) there are p ∈ PerX(Λ)∩U and q ∈ PerX(Λ)∩V .
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First suppose that alternative 1 holds. By Lemma 2.4, there are z ∈ W u
X(p)

and t > 0 such that Xt(z) ∈ V . Since z ∈ W u
X(p), we have w = X−t′(z) ∈ U

for some t′ > 0. Since Λ is an attracting set, w ∈ Λ. If s = t + t′ > 0 we
conclude that w ∈ (U∩Λ)∩X−s(V ) and so Xs(U∩Λ)∩V 6= ∅. If alternative 2
of the corollary holds we can find s > 0 such that Xs(U ∩ Λ) ∩ V 6= ∅ in a
similar way (replacing + by −). The result follows. �

Proposition 2.6. If there is a sequence pn ∈ PerX(Λ) converging to some
point in W s,+

X (σ) such that W u
X(pn) ∩ W s,−

X (σ) 6= ∅ for all n, then Λ is
transitive. The same is true interchanging + and −.

Proof. Let p, q ∈ PerX(Λ) be fixed. Suppose that W u
X(p)∩W s,+

X (σ) 6= ∅ and
W u

X(q) ∩ W u,−
X (σ) 6= ∅. By Lemma 2.2 we can fix a cross-section Σ = Σ+

through W s,+
X (σ) and an open arc J ⊂ Σ ∩ W u

X(p) intersecting W s,+
X (σ)

transversally. Again by Lemma 2.2 we can assume that pn ∈ Σ for every
n. Because the direction Es of Λ is contracting, the size of W s

X(pn) is
uniformly bounded away from zero. It follows that there is n large so that J
intersects W s

X(pn) transversally. Applying the Inclination Lemma [dMP] to
the saturation of J ⊂ W u

X(p), and the assumption W u
X(pn) ∩W s,−

X (σ) 6= ∅,
we conclude that W u

X(p)∩W s,−
X (σ) 6= ∅. So alternative 2 of Proposition 2.5

holds; it follows from that proposition that Λ is transitive. �

Proposition 2.7. If there is a ∈ W u
X(σ) \ {σ} such that σ ∈ ωX(a), then

Λ is transitive.

Proof. Without loss of generality we can assume that there exists z in
ωX(a) ∩ W+

X (σ). If W u
X(q) ∩ W s,−

X (σ) = ∅ for all q ∈ PerX(Λ), then
W u

X(q) ∩ W s,+
X (σ) 6= ∅ for all q ∈ PerX(Λ); see [MP1]. Then Λ is tran-

sitive by Proposition 2.5 since alternative 1 holds for all p, q ∈ PerX(Λ). So
we can assume that there is q ∈ PerX(Λ) such that W u

X(q) ∩W s,−
X (σ) 6= ∅.

It follows from the dominating condition of the singular-hyperbolic split-
ting of Λ that the intersection W u

X(q) ∩W s,−
X (σ) is transversal. This allows

us to choose a point in W u
X(q) arbitrarily close to W s,−

X (σ) on the side of
W u

X(q) ∩W s,−
X (σ) accumulating a. Since Λ is attracting and satisfies (H1),

one can find a sequence pn ∈ PerX(Λ) converging to z ∈ W s,+
X (σ) such that

for all n there is p′n in the orbit of pn such that the sequence p′n converges
to some point in W s,−

X (σ). Now suppose for a contradiction that Λ is not
transitive. Then Proposition 2.6 implies

W u
X(p′n) ∩W s,+

X (σ) = ∅ and W u
X(pn) ∩W s,−

X (σ) = ∅
for n large. But W u

X(pn) = W u
X(p′n) since p′n and pn are in the same orbit

of X. So W u
X(pn) ∩ (W s,+

X (σ) ∪W s,−
X (σ)) = ∅. However

W u
X(pn) ∩W s

X(σ) = ∅,
a contradiction since SingX(Λ) = {σ}. We conclude that Λ is transitive. �
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Theorem 2.8. If Λ is not transitive, there is for all a ∈ W u
X(σ)\{σ} a per-

iodic orbit O of X with positive expanding eigenvalues such that a ∈ W s
X(O).

Proof. Fix a ∈ W u
X(σ) \ {σ}, and assume that ωX(a) is not a periodic orbit.

We will obtain a contradiction once we prove that if p, q ∈ PerX(Λ) then
p, q satisfy one of the two alternatives in Proposition 2.5. To prove this
we proceed as follows: as noted before, both W u

X(p) and W u
X(q) intersect

W s
X(σ) (see [MP1]). Then we can assume

W u
X(p) ∩W s,+

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
By using this and the linear coordinate around σ, it is easy to construct

an open interval I = Ia, contained in a suitable cross-section Σ = Σa of X
containing a, and such that I \ {a} is formed by two intervals I+ ⊂ W u

X(p)
and I− ⊂ W u

X(q). Observe that the tangent vector of I is contained in
Ec ∩TΣa. Proposition 2.7 implies that σ /∈ ωX(a), since Λ is not transitive.
It follows that H = ωX(a) is a hyperbolic set of saddle type; see [MPP].
As in [M] one proves that H is one-dimensional, so Bowen’s Theory of
hyperbolic one-dimensional sets [Bw] applies. In particular we can choose
a family of cross-sections S = {S1, . . . , Sr} of small diameter such that H is
the flow-saturate of H ∩ intS ′, where S ′ =

⋃
Si and intS ′ is the interior of

S ′. Also, I ⊂ Λ since Λ is attracting. Recall that the tangent direction of
I is contained in Ec. Since Ec is volume expanding and H is nonsingular,
the Poincaré map induced by X on S ′ is expanding along I. As in [MP1,
p. 371] we can find δ > 0 and a open arc sequence Jn ⊂ S ′ in the positive
orbit of I with length bounded away from 0 such that there is an in the
positive orbit of a contained in the interior of Jn. We can fix S = Si ∈ S
in order to assume that Jn ⊂ S for every n. Let x ∈ S be a limit point of
an. Then x ∈ H ∩ intS ′. Because I is tangent to Ec, the interval sequence
Jn converges to an interval J ⊂ W u

X(x) in the C1 topology (W u
X(x) exists

since x ∈ H and H is hyperbolic). J is not trivial since the length of Jn is
bounded away from 0. If an were in W s

X(x) for n large we would conclude
that x is periodic by [MP1, Lemma 5.6], a contradiction since ωX(a) is not
periodic. We conclude that for infinitely many values of n, an /∈ W s

X(x).
Since Jn → J and Λ has strong stable manifolds of uniformly size, there
exists

zn ∈
(
W s

X(an+1) ∩ S
)
∩

(
Jn \ {an}

)
for all n large. For every n let J+

n and J−
n be the two connected components

of Jn \{an}, with J+
n in the positive orbit of I+ and J−

n in the positive orbit
of I−. Clearly, either zn ∈ J+

n or zn ∈ J−
n .

If zn ∈ J+
n there is vn+1 ∈ PerX(Λ) ∩ S close to an+1 such that

W s
X(vn+1) ∩ J+

n 6= ∅ and W s
X(vn+1) ∩ J−

n+1 6= ∅.
Since vn+1 is periodic, it follows from [MPP] that W u

X(vn+1) intersects
W s,+

X (σ) or W s,−
X (σ). The choice of vn+1 implies that its orbit passes close
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to a point in W s,−
X (σ). Since Λ is not transitive we conclude that W u

X(vn+1)
intersects W s,−

X (σ). Since W s
X(vn+1) ∩ J+

n is transversal, the Inclination
Lemma then implies W u

X(p) ∩W s,−
X (σ) 6= ∅. Hence

W u
X(p) ∩W s,−

X (σ) 6= ∅ and W u
X(q) ∩W s,−

X (σ) 6= ∅.
If zn ∈ J−

n we can prove by similar arguments that

W u
X(p) ∩W s,+

X (σ) 6= ∅ and W u
X(q) ∩W s,+

X (σ) 6= ∅.
These alternatives yield the desired contradiction. Therefore ωX(a) = O for
some periodic orbit O of X. To finish we prove that the expanding eigenvalue
of O is positive. Suppose by contradiction that it is not. Fix a cross-section
Σ intersecting O in a single point p0. This section defines a Poincaré map
Π : Dom Π ⊂ Σ → Σ of which p0 is a hyperbolic fixed-point. The as-
sumption implies that DΠ(p0) has negative expanding eigenvalue. Because
p0 ∈ PerX(Λ), it follows from [MPP] that W u

X(p0) intersects W s,+
X (σ) or

W s,−
X (σ). We shall assume the former case since the proof in the latter is

similar. We claim that W u
X(p) ∩W s,+

X (σ) 6= ∅ for all p ∈ PerX(Λ). Indeed,
let p ∈ PerX(Λ) be fixed. Again W u

X(p) intersects W s,+
X (σ) or W s,−

X (σ). In
the first case we are done. So we can assume that W u

X(p) ∩ W s,−
X (σ) 6= ∅.

By flow-saturating this intersection we obtain an interval K ⊂ W u
X(p) ∩ Σ

intersecting W s
X(p0,Σ) transversally. At the same time, there is an interval

J ⊂ W s,+
X (σ)∩Σ intersecting W u

X(p0,Σ) transversally. Since the expanding
eigenvalue of DΠ(p0) is negative the Inclination Lemma implies that the
backward iterates Π−n(J) of J accumulate on W s

X(p0,Σ) in both sides. Be-
cause K has transversal intersection with W s

X(p0Σ) we conclude that one
such backward iterate intersects K, and this yields W u

X(p)∩W s,+
X (σ) 6= ∅ as

desired, proving the claim. The claim together with Proposition 2.5 implies
that Λ is transitive, yielding the contradiction needed to complete the proof
of theorem. �

Hereafter we shall assume that Λ is not transitive. Let a ∈ W s
X(σ)\{σ} be

fixed. By Theorem 2.8, a ∈ W s
X(O) for some periodic orbit O with positive

expanding eigenvalue. This last property implies that the unstable manifold
W u

X(O) of O is a cylinder with generating curve O. Then O separates
W u

X(O) into two connected components, which we denote by W u,+,W u,−

according to the following convention (see Figure 1): there is an interval
I = Ia, contained in a suitable cross-section of X and containing a, such
that if I+, I− are the connected components of I \ {a} then I+ ⊂ W u

X(p)
and I− ⊂ W u

X(q) for some periodic points p, q ∈ Λ (recall that Λ is not
transitive). In addition I is tangent to the central direction Ec of Λ (see
Figure 1). Since a ∈ W s

X(O) and I is tangent to Ec, the flow of X carries
I to an interval I ′ transverse to W s

X(O) at a. Note that the flow carries I+

and I− into I+
0 and I−0 respectively.



SUFFICIENT CONDITIONS FOR ROBUSTNESS OF ATTRACTORS 335

Definition 2.9. We denote by W u,+ the connected component of W u \ O
that is accumulated (via the Inclination Lemma and the Strong λ Lemma
[dMP, D]) by the positive orbit of I+

0 . We denote W u,− the connected
component of W u

X(O) \O accumulated by the positive orbit of I−0 .

W
s,+

W s,-

σ I

I

+

-
a

O

I

I+0

0
-

a0

u,-
W

u,+
W

p

p

q

Figure 1. Definition of W u,+ and W u,−.

It can easily be proved using the Strong λ Lemma [D] that this definition
does not depend on p, q, Jp, Jq.

Proposition 2.10. W u,+ ∩ W s,−
X (σ) = ∅ and W u,+ ∩ W s,+

X (σ) 6= ∅. The
same is true interchanging + and −.

Proof. For simplicity set W = W u,+. First we prove that W ∩W s,−
X (σ) = ∅.

Suppose for a contradiction that W ∩ W s,−
X (σ) 6= ∅. Since this last in-

tersection is transversal, there is an interval J ⊂ W s,−
X (σ) intersecting W

transversally. Now, fix a cross-section Σ = Σ+ as in Lemma 2.2 and let
p ∈ PerX(Λ) be such that W u

X(p) ∩ W s,+
X (σ) 6= ∅. Then there is an small

interval I ⊂ W u
X(p) ∩ Σ transversal to Σ ∩ W s,+

X (σ). By the definition of
W = W u,+ (Definition 2.9), the positive orbit of I accumulates on W . Since
J is transversal to W the Inclination Lemma implies that the positive orbit
of I intersects J . This proves W u

X(p) ∩ W s,−
X (σ) 6= ∅ for all p ∈ PerX(Λ).

It follows that alternative 2 of Proposition 2.5 holds for all p, q, which con-
tradicts the nontransitivity of Λ and proves that W ∩ W s,−

X (σ) = ∅, as
desired. Now suppose for a contradiction that W ∩ W s,+

X (σ) = ∅. Since
W∩W s,−

X (σ) = ∅ we obtain W∩W s
X(σ) = ∅ (see [MPP]). But the denseness

of periodic orbits and the Inclination Lemma imply that W ∩W s
X(σ) 6= ∅.
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This is a contradiction, which proves that W ∩ W s,+
X (σ) 6= ∅. The result

follows. �

Proposition 2.11. H+ = Cl(W u,+) and H− = Cl(W u,−).

Proof. Fix q ∈ P+, i.e., W u
X(q) ∩W s,+

X (σ) 6= ∅. Note that W u,+ ∩W s,+
X (σ)

is nonempty by Lemma 2.10. Using (H1) and the Inclination Lemma it is
not hard to prove that W u,+ accumulates on q; therefore H+ ⊂ Cl(W u,+).
Conversely let x ∈ W u,+ be fixed. By (H1) and W u,+ ⊂ Λ there is z in
PerX(Λ) near x. Choosing z close to x we ensure that W s

X(z) ∩W u,+ 6= ∅,
because stable manifolds have size uniformly bounded away from zero. If
W u

X(z) ∩ W s,−
X (σ) 6= ∅, the Inclination Lemma and the fact that W s

X(z)
intersects W u,+ imply that W u ∩ W s,−

X (σ) 6= ∅. This contradicts Proposi-
tion 2.10, so W u

X(z) ∩W s,−
X (σ) = ∅. By [MP1] we obtain z ∈ P+, proving

that x ∈ H+ and the lemma. �

Proposition 2.12. If z ∈ PerX(Λ) and W s
X(z) ∩W u,+ 6= ∅, then

Cl(W s
X(z) ∩W u,+) = Cl(W u,+).

The same is true if we replace + by −.

Proof. We have shown that Cl(W s,+
X (σ) ∩ W u,+) = Cl(W u,+). Fix x ∈

W u,+. By (H1) there is w ∈ PerX(Λ) close to x. In particular W s
X(w)

intersects W u,+. If W u
X(w) ∩W s,+

X (σ) = ∅ then W u
X(w) ∩W s,−

X (σ) 6= ∅ by
[MP1]. It follows from the Inclination Lemma that W u,+ ∩W s,−

X (σ) 6= ∅,
contradicting Proposition 2.10. We conclude that W u

X(w) ∩ W s,+
X (σ) 6= ∅.

Note that W s
X(w)∩W u,+ 6= ∅ gets close to x as w → x. Since the intersection

W u
X(w) ∩ W s,+

X (σ) 6= ∅ is transversal we can apply the Inclination Lemma
to find a transverse intersection W u,+ ∩ W s,+

X (σ) close to x. This proves
Cl(W s,+

X (σ) ∩ W u,+) = Cl(W u,+). Finally we prove Cl(W s
X(z) ∩ W u,+) =

Cl(W u,+). Choose x ∈ W u,+. Since Cl(W s,+
X (σ) ∩W u,+) = Cl(W u,+) there

is an interval Ix ⊂ W u,+ arbitrarily close to x such that Ix ∩W s,+
X (σ) 6= ∅.

The positive orbit of Ix first passes through a and then accumulates on W u,+.
But W s

X(z)∩W u,+ 6= ∅ by assumption. Since this intersection is transversal
the Inclination Lemma implies that the positive orbit of Ix intersects W s

X(z).
By taking the backward flow of the last intersection we get W s

X(z)∩ Ix 6= ∅.
This proves the lemma. �

Given z ∈ PerX(Λ), let HX(z) be the homoclinic class associated to z.

Proposition 2.13. If z ∈ PerX(Λ) is close to a point in W u,+, then

HX(z) = Cl(W u,+).

The same is true if we replace + by −.
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Proof. Let z ∈ PerX(Λ) be a point close to one in W u,+. It follows from the
continuity of the stable manifolds that W s

X(z) ∩W u,+ 6= ∅. We claim that
HX(z) = Cl(W u,+). Indeed W u,+ ∩W s,−

X (σ) = ∅ by Proposition 2.10. This
equality and the Inclination Lemma imply that W u

X(z)∩W s
X(σ) ⊂ W s,+

X (σ).
By Proposition 2.12, W s

X(z)∩W u,+ is dense in W u,+ since W s
X(z)∩W u,+ 6=

∅. Let Σ be a cross-section containing p0 and fix x ∈ W u,+. We can assume
x, z ∈ Σ. Since W u

X(z) ∩W s
X(σ) 6= ∅ and W u

X(z) ∩W s
X(σ) ⊂ W s,+

X (σ) there
is an interval I ⊂ W u

X(z) intersecting W s,+
X (σ). Then the positive orbit

of I yields an interval J close to σ intersecting W s,+
X (σ). In addition, the

positive orbit of J yields an interval K whose positive orbit accumulates
W u,+ (recall Definition 2.9). Since W s

X(z) ∩ W u,+ is dense in W u,+ and
x ∈ W u,+, the orbit W s

X(z) passes close to x. The Inclination Lemma
applied to the positive orbit of K yields a homoclinic point z′ associated to
z which is close to x. This proves that x ∈ HX(z), so Cl(W u,+) ⊂ HX(z).
The opposite inclusion is a direct consequence of the Inclination Lemma
applied to W s

X(z) ∩ W u,+ 6= ∅. We conclude that Cl(W u,+) = HX(z) as
desired. �

Theorem 2.14. Let Λ be a singular-hyperbolic set of a Cr flow X on a
closed three-manifold, where r ≥ 1. Suppose that the following properties
hold:

1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has a unique singularity σ.
5. Λ is not transitive.

Then H+ and H− are homoclinic classes of X.

Proof. Let Λ be a singular-hyperbolic set of X satisfying the theorem’s con-
ditions. To prove that H+ is a homoclinic class it suffices by Proposition 2.11
to prove that Cl(W u,+) is a homoclinic class. By condition 3 of the Theo-
rem we can choose z ∈ PerX(Λ) arbitrarily close to a point in W u,+. Then
Cl(W u,+) = HX(z) by Proposition 2.13 and the result follows. �

3. Proof of Theorem A

First we introduce some notations. Hereafter M is a compact 3-manifold and
X r is the space of Cr flows in M equipped with the Cr topology, r ≥ 1. The
nonwandering set of X ∈ X r is the set Ω(X) of points p ∈ M such that for
all neighborhood U of p and T > 0 there is t > T such that Xt(U)∩U 6= ∅.
An attracting Λ with isolating block U has a continuation Λ(Y ) for Y Cr

close to X defined by Λ(Y ) =
⋂

t>0 Yt(U). This continuation is then defined
when Λ is an attractor. A compact invariant set is nontrivial if it is not a
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closed orbit of X. Transitive sets for flows are always connected. The proof
of Theorem A is based on the following result:

Theorem 3.1. Let Λ be a singular-hyperbolic set of X ∈ X r, r ≥ 1. Sup-
pose that the following properties hold:

1. Λ is connected.
2. Λ is attracting.
3. The closed orbits contained in Λ are dense in Λ.
4. Λ has only one singularity.
5. Λ is not transitive.

Then for every neighborhood U of Λ there is a flow Y that is Cr close to X
and such that

Λ(Y ) 6⊂ Ω(Y ).

To prove this theorem we shall use the following definitions and facts: let
X ∈ X r and let Λ be a singular-hyperbolic set of X satisfying the conditions
of the theorem. Let σ be the unique singularity of Λ. As mentioned on
page 330, σ is Lorenz-like. As in Section 2, W ss

X (σ) divides W s
X(σ) into

two connected components, which we denote by W s,+
X (σ) and W s,−

X (σ), or
W s,+,W s,− for short. Recall that PerX(Λ) denotes the union of the periodic
orbits of X in Λ. Fix such a ∈ W u

X(σ)\{σ}. By Theorem 2.8, ωX(a) = O for
some periodic orbit with positive expanding eigenvalues of X. In particular,
W u,+ and W u,− are defined (Definition 2.9).

Lemma 3.2. Cl(W u,+) ∩W s,− = ∅.
Proof. Suppose for a contradiction that Cl(W u,+)∩W s,− 6= ∅. By Lemma 2.2
there is a singular cross-section Σ− such that every orbit of Λ passing
close to some point in W s,−

X (σ) intersects Σ−. Let q ∈ Λ be periodic
such that W u

X(q) ∩ W s,−
X (σ) 6= ∅. Since Cl(W u,+) ∩ W s,− 6= ∅, we have

Cl(W u,+) ∩ Σ− 6= ∅. Because closed orbits are dense we can prove that
q ∈ Cl(W u,+). It follows that H− ⊂ Cl(W u,+), so Λ = Cl(W u,+) by Lemma
2.1. Also, since Λ is not transitive, H+ = Cl(W u,+) (Proposition 2.11) and
H+ is a homoclinic class (Theorem 2.14). Since homoclinic classes are tran-
sitive sets we conclude that Λ is transitive, a contradiction. This proves the
result. �

Lemma 3.3. Let D be a fundamental domain of W uu
X (p0) contained in

W u,+. There exist a neighborhood V of D and a cross-section Σ− of X
intersecting W s,− satisfying the following properties:

1. Every X-orbit’s sequence in Λ converging to a point in W s,− intersects
Σ−.

2. No positive X-orbit with initial point in V intersects Σ−.

Proof. Fix a fundamental domain F of W s
X(σ) and define F− = F ∩W s,−

X (σ)
Then there is a compact interval F ′ ⊂ F− such that Λ ∩ F− ⊂ F ′. By
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Lemma 3.2 there is ε > 0 such that Bε(Cl(W u,+))∩Bε(F ′) = ∅. Clearly we
can choose a cross-section Σ− of X inside Bε(F ′) such that every X-orbit’s
sequence in Λ converging to some point in W s,− intersects Σ−. Since W u,+

is invariant and Cl(W u,+) ∩ Bε(F ′) = ∅, every positive orbit with initial
point in D cannot intersect Σ−. By using the contracting foliation of Λ we
have the same property for every positive trajectory with initial point in a
neighborhood V of D. This proves the result. �

Now we define a perturbation (pushing) close to a point a ∈ W u
X(σ)\{σ}.

To this end we fix the following cross-sections:
1. Σa, containing a in its interior.
2. Σ′ = X1(Σ).
3. Σ0, intersecting O in a single interior point.
4. Σ+,Σ−, which intersect W s,+,W s,−, respectively, and point toward

the side of a.
Every X-orbit intersecting Σ+ ∪Σ− will intersect Σ. Note that there is a

well-defined neighborhood O given by

O = X[0,1](Σa).

This neighborhood will be the support of the pushing described in the Fig-
ures 2 and 3. The pushing in O yielding the perturbed flow Y of X is
obtained in the standard way (see [dMP]).

a Σ

a

a
’

l s l s
’

X1
(   )a

O0

σ

Σ

Σ

+

-

Σ

Wu,+

Figure 2. Unperturbed flow X.

We have to prove that Λ(Y ) 6⊂ Ω(Y ) for the perturbed flow Y . For
this purpose we observe that by 5 of Theorem 3.1 and Proposition 2.5 we
can assume that there q periodic in U such that W u

X(q) ∩ W s,−
X (σ) 6= ∅.

We obtain in this way an interval K in Σ− ∩ W u
X(q) crossing Σ− as in
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a Σ
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σ

Σ

Σ
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’’

’’’

K’
a’

K

V

Figure 3. Perturbed flow Y .

Figure 3. The Y -flow carries K to an interval K ′′ as in Figure 3. Let
q(Y ),W u

Y (q(Y )),K ′′(Y ), σ(Y ) denote the continuation of these objects for
the perturbed flow Y . We observe that K(Y ) ⊂ Λ(Y ) since Λ(Y ) is an
attracting set, q(Y ) ∈ Λ(Y ) and K ⊂ W u

Y (q(Y )). Then Theorem 3.1 will
follow from the lemma below:

Lemma 3.4. K(Y ) 6⊂ Ω(Y ).

Proof. Suppose for a contradiction that K(Y )⊂Ω(Y ) and pick x∈ IntK(Y ),
the interior of the interval K(Y ). The flow of Y carries the points near x
to the neighborhood V depicted in Figure 3. This neighborhood is obtained
by saturating a fundamental domain in W u,+ by the strong stable manifolds
[HPS]. Note that there are points x′ near x that back up close to x under
the forward flow of Y (x ∈ K(Y ) ⊂ Ω(Y )). In particular, the positive Y -
orbit of x′ returns to Σ−. At the same time, Lemma 3.3-2 implies that no
X-orbit starting in V intersects Σ−. Since X = Y outside O we conclude
that the positive Y -orbit of x′ intersects Σ+. Afterward this positive orbit
passes through the box O and arrives to V . By repeating the argument we
conclude that the positive Y -orbit of x′ never returns to Σ−, a contradiction.
The lemma is proved. �

Proof of Theorem A. Let Λ be a singular-hyperbolic attractor of a Cr flow
X on a compact 3-manifold M . Assume that Λ is Cr critically robust and
has a unique singularity σ. Denote by Λ(Y ) =

⋂
t>0 Yt(U) the continuation

of Λ in a neighborhood U of Λ for Y close to X. Denote by C(Y ) the union
of the closed orbits of a flow Y . Since Λ is Cr critically robust, there is a
neighborhood U of Λ such that Λ(Y )∩C(Y ) is dense in Λ(Y ) for every flow
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Y that is Cr close to X. Clearly Λ(Y ) is a singular-hyperbolic set of Y for all
Y close to X. Because Λ has a unique singularity, so does Λ(Y ). Now recall
that Λ is an attractor by assumption. In particular, Λ is transitive (recall
Definition 1.1). It follows that Λ is connected and so the neighborhood U
above can be arranged to be connected. Then Λ(Y ) is connected as well.
Summarizing, Λ(Y ) is a singular-hyperbolic set of Y satisfying conditions
1–4 of Theorem 3.1. If Λ is not Cr robust, we can find a Y that is is Cr close
to X and such that Λ(Y ) is not transitive. Then Λ(Y ) satisfies all conditions
of Theorem 3.1, and we can find a Y ′ that is Cr close to Y and such that
Λ(Y ′) 6⊂ Ω(Y ′). This is a contradiction, since Λ(Y ′) ⊂ Ω(Y ′) (recall that
Λ(Y ′) ∩ C(Y ′) is dense in Λ(Y ′)). This contradiction proves the result. �
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