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We study various aspects of tame finite parabolic iterated
function systems that satisfy a certain open set condition.
The first goal in our analysis of these systems is a detailed
investigation of the conformal measure on the associated limit
sets. We derive a formula that describes in a uniform way
the scaling of this measure at arbitrary limit points. The
second goal is to provide a metrical Diophantine analysis for
these parabolic limit sets in the spirit of theorems of Jarńık
and Khintchine in number theory. Subsequently, we show
that this Diophantine analysis gives rise to refinements of the
description of the conformal measure in terms of Hausdorff
and packing measures with respect to certain gauge functions.

1. Introduction

For a large class of fractal sets the idea of an iterated function system
has turned out to be a very convenient and efficient concept. Tradition-
ally, the development of fractal geometry was always very much inspired by
various phenomena that appear in conformal analysis and number theory.
In this paper we continue this tradition by studying metrical Diophantine
aspects of certain tame parabolic iterated function systems. This study
generalizes results for geometrically finite Kleinian groups with parabolic
elements (obtained in [S1], [S2], [S3], [SV], see also [HV], [Su]) and for
parabolic rational rational functions (obtained in [SU1], [SU2]), which rep-
resent complex analytic analogues of Jarńık’s number theoretical theorem
on well-approximable numbers ([J], [B]) and Khintchine’s on a qualitative
description of the ‘essential support’ of the 1-dimensional Lebesgue measure
([K]).

The paper is organized as follows: in Section 2 we first define the class of
tame finite parabolic iterated function systems that satisfy the Super Strong
Open Set Condition (SSOSC). We then recall a few immediate geometrical
implications of the bounded distortion properties. In Section 3 we study the
h-conformal measures arising from these parabolic systems. (Here, h denotes
the Hausdorff dimension of the limit set associated to such a system.) We
obtain a formula that describes in a uniform way the scaling of this measure
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at arbitrary elements of the limit set. As a by-product we obtain an estimate
on the local behaviour of the h-conformal measure at parabolic points. In
Section 4 we analyse the limit sets from a Diophantine point of view. Our
general approach here follows roughly the analysis given in [S1], [S2], [SV],
[SU1], [SU2]. Nevertheless, the construction of the main tool, namely
the measure µ on a Cantor-like subset of the limit set, is different. This
construction is simplified and its geometrical and dynamical significance is
clarified. Finally, we establish various limit laws leading up to the Khintchine
Limit Law for tame parabolic iterated function systems. Subsequently, we
show that these laws provide some efficient control on the fluctuations of
the h-conformal measure, giving rise to refinements of the description of
the h-conformal measure in terms of Hausdorff and packing measures with
respect to some gauge functions.

2. Preliminaries

We begin by giving a description of our setting. LetX be a compact subset of
some Euclidean space Rd such thatX has nonempty interior and is contained
in a bounded connected open set V . Suppose that there are countably many
conformal maps φi : X → X, i ∈ I, with I having at least two elements.
Then the system S = {φi : i ∈ I} is called a conformal iterated function
system if and only if the following eight conditions are satisfied:

(1) (Open Set Condition) φi(Int(X)) ∩ φj(Int(X)) = ∅ for all i 6= j.
(2) |φ′i(x)| < 1 everywhere except for finitely many pairs (i, xi), i ∈ I, for

which xi is the unique fixed-point of φi and |φ′i(xi)| = 1. Such pairs
and indices i will be called parabolic and the set of parabolic indices
will be denoted by Ω. All other indices will be called hyperbolic.

(3) For all n ≥ 1, ω = (ω1, . . . , ωn) ∈ In we have that if ωn is a hyperbolic
index or if ωn−1 6= ωn, then φω admits a conformal extension to V ⊂ Rd

that maps V into itself.
(4) If i is a parabolic index, then

⋂
n≥0 φin(X) = {xi} (Hence in particular,

the diameter of the set φin(X) tends to 0 for n tending to infinity.)
(5) (Cone Condition) There exist α, l > 0 such that for every x ∈ ∂X ⊂ Rd

there exists an open cone Con(x, ux, α, l) ⊂ Int(X) with vertex x,
‖ux‖ = 1 and central angle α. Here, we have set Con(x, ux, α, l) :=
{y : 0 < (y − x, ux) ≤ cosα‖y − x‖ ≤ l}.

(6) There exists 0 < s < 1 such that for all n ≥ 1, ω ∈ In we have that if
ωn is a hyperbolic index or if ωn−1 6= ωn, then ‖φ′ω‖ ≤ s.

(7) (Bounded Distortion Property) There exists K ≥ 1 such that for all
n ≥ 1, ω = (ω1, . . . , ωn) ∈ In and x, y ∈ V we have that if ωn is a
hyperbolic index or if ωn−1 6= ωn, then

|φ′ω(y)| ≤ K |φ′ω(x)|.



DIOPHANTINE ANALYSIS 363

(8) There are constants L ≥ 1, α > 0 such that∥∥φ′i(y)| − |φ′i(x)|∣∣ ≤ L‖φ′i‖|y − x|α for all i ∈ I and x, y ∈ V.
Note that if Ω = ∅, the system S is called hyperbolic, and that if Ω 6= ∅,

then S is called parabolic. Throughout this paper we shall always assume
without further notice that the system S is parabolic and the alphabet I is
finite.

We now state a few immediate geometrical consequences of the bounded
distortion properties (7), (8) and the cone condition (5). For the proofs of
these statements we refer to [MU1] and [MU3].

For all hyperbolic words ω ∈ I∗ and all convex subsets C of V we have

diam(φω(C)) ≤ ‖φ′ω‖diam(C)(2.1)

and

diam(φω(V )) ≤ D‖φ′ω‖.(2.2)

Here, the norm ‖ · ‖ is the supremum norm on V , and D ≥ 1 denotes a
universal constant. Moreover, for every x ∈ X, 0 < r ≤ Dist(X, ∂V ), and
for every hyperbolic word ω ∈ I∗ we have

diam(φω(X)) ≥ D−1‖φ′ω‖(2.3)

and

φω(B(x, r)) ⊃ B(φω(x),K−1‖φ′ω‖r).(2.4)

Also, there exists 0 < β ≤ α such that for all x ∈ X and for all hyperbolic
words ω ∈ I∗

φω(Int(X)) ⊃ Con
(
φω(x), β,D−1‖φ′ω‖

)
⊃ Con

(
φω(x), β,D−2diamφω(V )

)
,

(2.5)

where Con
(
φω(x), β,D−1‖φ′ω‖

)
and Con

(
φω(x), β,D−2diam(φω(V ))

)
denote

some cones with vertices at φω(x), angles β, and altitudes D−1‖φ′ω‖ and
D−2diam(φω(V )) respectively. Finally, for every ω ∈ I∗ (not necessarily
hyperbolic) and every x ∈ X, there exists an altitude l(ω, x) > 0 such that

φω(Int(X)) ⊃ Con
(
φω(x), β, l(ω, x)

)
.(2.6)

We emphasize that for d ≥ 2 the conditions (7) and (8) with α = 1 can
be deduced from condition (3). For d ≥ 3, this has been shown in [U1].
For d = 2, conditions (7) and (8) follow from Koebe’s distortion theorem
combined with the observation that complex conjugation in C is an isometry.

Let I∗ denote the set of all finite words in the alphabet I, and let I∞ be
the set of all infinite sequences with entries in I. By condition (3), we have
φω(V ) ⊂ V , for every hyperbolic word ω. For each ω ∈ I∗ ∪ I∞, we define
the length of ω by the uniquely determined relation ω ∈ I |ω|. If ω ∈ I∗ ∪ I∞
and n ≤ |ω|, then we write ω|n to denote the word ω1ω2 . . . ωn. In [MU1]
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it was shown that limn→∞ sup|ω|=n{diam(φω(X))} = 0. Hence, the map
π : I∞ → X, given by π(ω) =

⋂
n≥0 φω|n(X), is uniformly continuous. Now,

the limit set J = JS of the system S can be defined as the range of the map
π, that is, we define

J = π(I∞).
In order to introduce the notion of tameness we define, for every i ∈ Ω,

Xi =
⋃

j∈I\{i}

φj(X).

We call a parabolic conformal iterated function system S = {φi : i ∈ I}
tame if xi /∈ Xi, for every i ∈ Ω and xi 6= xj if i 6= j. Also, we say that
S satisfies the Super Strong Open Set Condition (SSOSC) if the following
condition is satisfied:

∂X ∩
⋃
i∈I

φi(X) = {xi : i ∈ Ω}.(2.7)

Unless stated otherwise, for the remaining part of this section we shall as-
sume that S is a tame parabolic finite conformal iterate function system
satisfying (SSOSC). The tameness of the system S and formula (2.7) imply

B

( ⋃
i∈I\Ω

φi(X), 2R̂
)
⊂ IntX.(2.8)

Also, for each ω ∈ I∗ and every A ⊂ B(xi, 2R̂) we have that

φω(A) ∩ J = φω(A ∩ J).(2.9)

Note that in order to derive the latter formula, we have to use the fact that
the system S is tame. Furthermore, for all i ∈ Ω, ω ∈ I∗ we have

π−1(π(ωi∞)) = ωi∞.(2.10)

Following [MU1], given t ≥ 0, a Borel probability measure m is called
t-conformal for the system S if m(J) = 1 and if for every Borel set A ⊂ X
and for each i, j ∈ I with i 6= j, we have

m(φi(A)) =
∫
A
|φ′i|tdm(2.11)

and

m(φi(X) ∩ φj(X)) = 0.(2.12)

Recall that a parabolic system S is called regular if and only if there exists a
t-conformal measure (cf. [MU1]). Then t = h is the Hausdorff dimension of
the limit set (see [MU1]). Combining Theorem 1.4 in [MU2] and Corollary
5.8 in [MU1], we immediately have the following result:

Theorem 2.1. A parabolic finite iterated function system is regular.
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Hence, since the systems we consider in this paper are finite, it follows
that they are regular. The associated h-conformal measure will always be
denoted by m. We shall require the following distortion properties:

Lemma 2.2. There exists a positive constant R∗ < R̂ such that the follow-
ing holds: for each hyperbolic word τ ∈ I∗ and for every ω ∈ I∞ we have
that φτ is well-defined on B(π(ω), R∗). Moreover

|φ′τ (y)|
|φ′τ (x)|

≤ K for all x, y ∈ B(π(ω), R∗),

and

K−h|φ′τ (π(ω))|hm(B(π(ω), r)) ≤ m
(
φτ (B(π(ω), r))

)
≤ Kh|φ′τ (π(ω))|hm(B(π(ω), r))

for every r ∈ [0, R∗].

Proof. The statement that φτ : B(π(ω), R∗) → Rd is well-defined and the
first distortion property of the lemma are immediate consequences of the
fact that R∗ < R̂ < Dist(X, ∂V ) and property (7) at the beginning of this
section. In order to derive the second distortion property of the lemma,
choose 0 < R∗ < R̂ sufficiently small such that, for each i ∈ Ω,

B
(
φi(X) ∩ (Rd \B(xi, R̂)), 2R∗) ⊂ IntX.(2.13)

If π(ω) ∈ φi(X) for some i ∈ Ω, and if ‖π(ω)−xi‖ ≥ R̂, then B(π(ω), 2R∗) ⊂
IntX. The proof in this case then follows immediately from a combination
of the conformality of the measure m and distortion property (7). In the
case that π(ω) ∈ φi(X)∩B(xi, R̂), it follows that B(π(ω), R∗) ⊂ B(xi, 2R̂).
Using (2.9) and the conformality of m, we obtain

m
(
φτ ((B(π(ω), r))

)
= m

(
φτ (B(π(ω), r)) ∩ J

)
= m

(
φτ (B(π(ω), r) ∩ J)

)
=
∫
B(π(ω),r)∩J

|φ′τ |hdm =
∫
B(π(ω),r)

|φ′τ |hdm,

and hence the first distortion property of the lemma gives the proof in this
case. Finally, if π(ω) /∈

⋃
i∈Ω φi(X), then π(ω) ∈ φj(X) for some j ∈ I\Ω. In

this case (2.8) implies that B(π(ω), 2R∗) ⊂ IntX, and hence the statement
of the lemma follows immediately from (7) and the conformality of m. This
proves the lemma. �

The following fact easily follows from the local analysis of parabolic points
done in [MU2]:



366 B.O. STRATMANN AND M. URBAŃSKI

Lemma 2.3. Assuming that R∗ > 0 is sufficiently small, there exists a
constant C1 > 0 such that for every i ∈ Ω and every r ∈ (0, R∗], the inter-
section J ∩B(xi, r) \ {xi} is contained in a central cone contained in IntX
with vertex xi and an angle ≤ C1r

pi.

As an immediate consequence of this lemma and (2.9) we get the following:

Lemma 2.4. There exists a constant C1 > 0 such that for every i ∈ Ω,
every r ∈ (0, R∗], and every hyperbolic word ω the intersection

J ∩B
(
φω(xi), r|φ′ω(xi)|

)
is contained in a central cone with vertex xi and an angle ≤ C2r

pi.

We are now in a position to prove the following distortion property:

Lemma 2.5. There exist constants ρ,R∗ > 0 such that for every i ∈ Ω,
x ∈ J ∩ B(xi, R∗), and for each ω ∈ I∗ the map φω is well-defined on
B(x, ρ‖x− xi‖) and

|φ′ω(z)|
|φ′ω(y)|

≤ K for all y, z ∈ B(x, ρ‖x− xi‖),

and furthermore, for every positive r ≤ ρ‖x− xi‖ we have

K−h|φ′ω(x)|hm(B(x, r)) ≤ m
(
φω(B(x, r))

)
≤ Kh|φ′ω(x)|hm(B(x, r)).

Proof. In view of Lemma 2.3 there exists R∗ > 0 and ρ ∈ (0, 1/2) such
that B(x, 2ρ‖x − xi‖) ⊂ IntX for all x ∈ J ∩ B(xi, R∗). Therefore, all
the maps φω : B(x, 2ρ‖x − xi‖) → IntX are well-defined, and the second
part of our lemma follows from the first part. The first part in turn in the
case when d = 1 is contained in Lemma 2.6 of [U2]. In the case d = 2 it
follows immediately from Koebe’s distortion theorem and the observation
that the complex conjugation is an isometry. In the case d ≥ 3 it follows
from the inequality following formula (4.9) in the proof of Theorem 4.13 in
[MU2] that, with Y = B(x, ρ‖x− xi‖), W = B(x, 2ρ‖x − xi‖), one gets
|φ′ω(z)|/|φ′ω(y)| ≤ 4. We are done. �

The constants R∗ and R∗ of Lemma 2.2 and Lemma 2.5 will be crucial in
the sequel. For later use we define

R := min{R∗, R
∗}.

3. The geometry of conformal measures

The main result in this section is the derivation of a ‘global formula’ for the
conformal measure associated with a tame parabolic finite iterated function
system. This formula describes in a uniform way the scaling of this measure
at arbitrary points in the associated limit set. Our elaboration of this for-
mula follows closely the discussion in [SV] and [SU2], where we obtained
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this type of formula for geometrically finite Kleinian groups with parabolic
elements and for parabolic rational maps.

The section is split into two subsections. In the first we give an estimate
for the conformal measure around parabolic points. In the second we then
derive the global formula. Subsequently, as a first application of this formula,
we obtain a first rough description of how the conformal measure relates to
the geometric concepts Hausdorff measure and packing measure.

3.1. The conformal measure around parabolic points. We begin this
subsection by recalling the following estimates for tame parabolic systems.
For d ≥ 2 a proof can be found in [MU2] (Section 4). For d = 1 the
estimates are obtained immediately from the considerations in [U2].

Proposition 3.1. Let S be a tame parabolic system. Then there exists a
constant Q ≥ 1 and an integer q ≥ 0 such that for every parabolic index
i ∈ I there exists an integer pi ≥ 1 such that for every j ∈ I \ {i} and for
all n, k ≥ 1 we have

Q−1n
− pi+1

pi ≤ inf
X
{|φ′inj |}, ‖φ′inj‖,diam(φinj(X)) ≤ Qn

− pi+1

pi ,(3.1)

Q−1n
− 1

pi ≤ Dist(xi, φin(Xi)) ≤ Dist(xi, φin(Xi)) ≤ Qn
− 1

pi ,(3.2)

Dist(φin(Xi), φik(Xi)) ≤ Q n
− 1

pi − k
− 1

pi .(3.3)

Furthermore, for |n− k| ≥ q we have

Dist(φin(Xi), φik(Xi)) ≥ Q n
− 1

pi − k
− 1

pi .(3.4)

The following lemma gives the main result of this section:

Lemma 3.2. Let m denote the h-conformal measure of the finite parabolic
system S. For each κ > 0 there exists Cκ > 0 such that for every parabolic
index i and for every x ∈ J we have

C−1
κ ‖x− xi‖h+(h−1)pi ≤ m(B(x, κ‖x− xi‖)) ≤ Cκ ‖x− xi‖h+(h−1)pi .

In particular, the constant Cκ depends continuously on κ.

Proof. Since the support of m is equal to J , we may assume without loss
of generality that ‖x − xi‖ ≤ ∆ for some fixed 0 < ∆ ≤ R. Let x = π(ω)
and ω ∈ I∞ be given. Then ω = injτ , where j 6= i, n ≥ 1, and τ ∈ I∞.
Assuming ∆ to be chosen sufficiently small, (3.1) implies that

n ≥ 2Q2κ−1.(3.5)

For the proof of the first inequality in the measure estimate of the lemma,
let

T :=
{
k : Dist(φikj(X), φinj(X)) ≤ κ‖x− xi‖ − diam(φinj(X))

}
.
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Using (3.1), we deduce that

m(B(x, κ‖x− xi‖)) ≥
∑
k∈T

m(φikj(X))
∑
k∈T

inf{|φ′ikj |}
h ≥

∑
k∈T

Q−hk
− pi+1

pi
h
.

Using (3.2) and (3.1), we have that if

Q n
− 1

pi − k
− 1

pi ≤ κQ−1n
− 1

pi −Qn
− pi+1

pi ,

then it follows that k ∈ T . Hence in particular, if k ≥ n and if

Q
(
n
− 1

pi − k
− 1

pi

)
≤ κQ−1n

− 1
pi −Qn

− pi+1

pi ,(3.6)

then k ∈ T . Clearly, the statement in (3.6) is equivalent to

Qk
− 1

pi ≥ (Q− κQ−1)n−
1
pi +Qn

− pi+1

pi .

Also, (3.5) implies that Qn−
pi+1

pi ≤ κ(2Q)−1n
− 1

pi . Therefore, if k ≥ n and

Qk
− 1

pi ≥ (Q − κQ−1)n−
1
pi + κ(2Q)−1n

− 1
pi , or equivalently if k ≥ n and

k ≤
(
1 − κ

2Q

)− 1
pi , then k ∈ T . It now follows that there exists a constant

C̃κ > 0 (which depends continuously on κ) such that

m(B(x, κ‖x−xi‖)) ≥ Q−h
(1− κ

2Q
)−

1
pi∑

k=n

k
− pi+1

pi
h

≥ Q−h
(
1− pi+1

pi
h
)((

1− κ

2Q

)− 1
pi

(1− pi+1

pi
h)
−1
)
n
− pi+1

pi
h

≥ C̃κn
−h+(h−1)pi

pi .

Hence, since by (3.6) we have ‖x− xi‖ ≤ Qn
− 1

pi , it follows that

m(B(x, κ‖x− xi‖)) ≥ C̃κQ
h+(h−1)pi‖x− xi‖h+(h−1)pi .(3.7)

In order to prove the second inequality in the measure estimate of the lemma,
note that Qk−

1
pi ≤ (1+κ)‖x−xi‖ if and only if k ≥

(
Q−1(1+κ)‖x−xi‖

)−pi .
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Using this observation, (3.2) and (3.1), we obtain

m(B(x, κ‖x− xi‖)) ≤ m(B(xi, (1 + κ)‖x− xi‖)

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

m(φikj(X))

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

‖φ′ikj‖
h

≤
∑
j 6=i

∑
k=(Q−1(1+κ)‖x−xi‖)−pi

Qk
− pi+1

pi
h

≤ 2Q
(
k
h

pi+1

pi
−1
)−1

≤
(
Q−1(1 + κ)‖x− xi‖

)−pi

“
1− pi+1

pi
h

”
= Ĉκ‖x− xi‖h+(h−1)pi ,

where Ĉκ <∞ denotes a positive constant depending continuously on κ. �

Corollary 3.3. There exists a constant C ≥ 1 such that for each i ∈ Ω and
for all 0 < r ≤ 2diam(X) we have

C−1 rh+(h−1)pi ≤ m(B(xi, r)) ≤ C rh+(h−1)pi .

Proof. Let j 6= i, and choose n ≥ 1 to be the least integer such that
Q−1n

− 1
pi ≤ r. Let x ∈ φin−1j(X) be fixed. By (3.2) and Lemma 3.2,

we have

m(B(xi, r)) ≤ m(x, 2‖x− xi‖)

≤ C2 ‖x− xi‖h+(h−1)pi ≤ C2Q(n− 1)−
h+(h−1)pi

pi

� n
−h+(h−1)pi

pi �
(
Q

2

)h+(h−1)pi

rh+(h−1)pi .

Now, let k ≥ 1 denote the least integer such that Qk−
1
pi ≤ r/2, and let

y ∈ φikj(X) be fixed. Similar as above, (3.2) and Lemma 3.2 imply that

m(B(xi, r)) ≥ m(B(y, ‖y − xi|))

≥ C1 ‖y − xi‖h+(h−1)pi ≥ C1Q
−(h+(h−1)pi)k

−h+(h−1)pi
pi

� (k − 1)−
h+(h−1)pi

pi ≥ 2−(h+(h−1)pi)rh+(h−1)pi . �

Lemma 3.4. For every κ > 0 there exists Dκ ≥ 1 such that for each i ∈ Ω,
for every sufficiently small r > 0, and for all x ∈ J ∩B(xi, κ−1r) we have

D−1
κ rh+(h−1)pi ≤ m(B(x, r)) ≤ Dκr

h+(h−1)pi .
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Proof. Since B(x, r) ⊂ B(xi, ‖x − xi‖ + r) ⊂ B(xi, (1 + κ−1)r), it follows
from Corollary 3.3 that

m(B(x, r)) ≤ C(1 + κ−1)h+(h−1)pirh+(h−1)pi .(3.8)

Now, if r ≤ 2‖x− xi‖, then r = α‖x− xi‖ for some α such that κ ≤ α ≤ 2.
By Lemma 3.2, we have Cα ≤ C := sup {Ct : t ∈ [κ, 2]} <∞. Hence, using
Lemma 3.2 once again, it follows that

m(B(x, r)) = m(B(x, α||x− xi||) ≥ C−1
α ||x− xi||h+(h−1)pi(3.9)

≥ C
−1
( r
α

)h+(h−1)pi

≥ Cmax{κ−(h+(h−1)pi), 2−(h+(h−1)pi)}rh+(h−1)pi .

Otherwise if r ≥ 2‖x− xi‖, then Corollary 3.3 implies

m(B(x, r)) ≥ m(B(xi, r/2)) ≥ C
(r

2

)h+(h−1)pi

= C2−(h+(h−1)pi)rh+(h−1)pi .

Combining this last estimate with (3.8) and (3.9), the lemma follows. �

3.2. The global formula for the conformal measure. An element ω ∈
I∞ is called preparabolic if and only if σkω = i∞ for some k ≥ 0 and some
i ∈ Ω. The set of all preparabolic elements will be denoted by I∞p . Also, a
limit point that is not a preparabolic element will be referred to as radial,
and we write I∞r to denote the set of all radial points.

For each ω ∈ I∞ we fix an increasing sequence of integers {nj(ω)}k(ω)
j=1

as follows: assume that nj(ω) is defined, then we define nj+1(ω) to be the
smallest index greater than nj(ω) such that either ωnj+1(ω) is hyperbolic
or ωnj+1(ω) 6= ωnj+1(ω)−1 (note that n1(ω) is well-defined). In case nj+1(ω)
does not exist, then j = k(ω). Note that if nj+1(ω) ≥ nj(ω) + 2, then
there exists a unique parabolic index i = i(ω, j) such that ωl = i for all
nj(ω) ≤ l ≤ nj+1(ω). Furthermore, if nj+1(ω) = nj(ω) + 1, then i(ω, j)
denotes some arbitrary element of Ω. Observe that k(ω) = ∞ if and only if
ω ∈ I∞r . For each j, we define

rj(ω) := R
∣∣φ′ω|nj(ω)

(π(σnj(ω)ω))
∣∣,

and we refer to the sequence {rj(ω)}k(ω)
j=1 as the hyperbolic zoom of ω. Note

that by the chain rule and by property (6) of Section 2, {rj(ω)}k(ω)
j=1 is a

strictly decreasing sequence. Hence, for each ω ∈ I∞r and every positive

r ≤ R̃ = min{inf {|φ′i| : i /∈ Ω}, inf {|φ′ij | : i ∈ Ω, j 6= i}},

there exists a unique j ≥ 1 such that rj+1(ω) < r ≤ rj(ω). For a given ω and
r, the neighbours rj+1(ω) and rj(ω) thus determined in the hyperbolic zoom
of ω will be denoted by r∗(ω) and r∗(ω) respectively. Also, in this situation
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we shall write i(ω, r) to denote the parabolic element i(ω, j). Finally we
define the function ζ, given for ω ∈ I∞ and r > 0 by

ζ(ω, r) :=
m(B(x, r))

rh
.

The following theorem is the main result of this section:

Theorem 3.5 (Global formula for conformal measures). Let S be a tame
parabolic finite iterated function system satisfying the (SSOSC). Then, for
each ω ∈ I∞r and every 0 < r ≤ R̃, and setting i = i(ω, r), we have

ζ(ω, r) �


(

r

r∗(ω)

)(h−1)pi

for r∗(ω) ≥ r ≥ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

(
r∗(ω)
r

)h−1

for r∗(ω) ≤ r ≤ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

.

Proof. Let ω ∈ I∞r and 0 < r ≤ R̃ be fixed. For ease of notation, throughout
the proof we shall suppress the dependence on ω in some of the appearing
quantities. Let j be determined by the condition r∗ = rj . Hence, r∗ = rj+1.
By (3.2), we have

‖π(σnjω)− xi‖ = ‖π(φ
inj+1−nj−1ωnj+1

(π(σnj+1ω)))− xi‖ � (nj+1 − nj)
− 1

pi .

Using the chain rule and (3.1), we obtain

1 = rj+1

∣∣φ′ω|nj
(π(σnjω))

∣∣−1 ∣∣φ′σnjω|nj+1−nj−1
(π(σnj+1ω))

∣∣−1

�
(rj+1

rj

)
(nj+1 − nj)

pi+1

pi =
(r∗
r∗

)
(nj+1 − nj)

pi+1

pi .

Hence, (r∗
r∗

) 1
pi � ‖π(σnjω)− xi‖.(3.10)

This implies that if

r ≥ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

,

then ∣∣φ′ω|nj
(π(σnjω))

∣∣ · ‖π(σnjω)− xi‖ ≤ r ≤
∣∣φ′ω|nj

(π(σnjω))
∣∣,

and hence
‖π(σnjω)− xi‖ ≤

r∣∣φ′ω|nj
(π(σnjω))

∣∣ ≤ 1.



372 B.O. STRATMANN AND M. URBAŃSKI

Now, using property (7) (note that φω|nj
is hyperbolic) and Lemma 3.4, it

follows that

m(B(π(ω), r)) �
∣∣φ′ω|nj

(π(σnjω))
∣∣h m(B(π(σnjω), r

∣∣φ′ω|nj
(π(σnjω))

∣∣−1))
� rhj (rr

−1
j )h+(h−1)pi = rh

( r
rj

)(h−1)pi

= rh
( r
r∗

)(h−1)pi

.

This proves the first case in the theorem. We are now left to consider the
case in which

r ≤ r∗(ω)
(
r∗(ω)
r∗(ω)

) 1
pi+1

.

Because of (3.10) (after arranging for appropriate constants), this means
that ∣∣φ′ω|nj+1

(π(σnj+1ω))
∣∣ ≤ r ≤ ρ

∣∣φ′ω|nj
(π(σnjω))

∣∣ · ‖π(σnjω)− xi‖,

where 0 < ρ < 1 is the constant obtained in Lemma 2.5. Therefore, there
exists nj ≤ u ≤ nj+1 − 1 such that

ρ
∣∣φ′ω|u+1

(π(σu+1ω))
∣∣·‖π(σu+1ω)−xi‖ ≤ r ≤ ρ

∣∣φ′ω|u(π(σuω))
∣∣·‖π(σuω)−xi‖.

In particular, this implies that

r � ρ
∣∣φ′ω|u(π(σuω))

∣∣ · ‖π(σuω)− xi‖.(3.11)

Thus, by using the conformality of m, Lemma 2.5 and Lemma 3.2, it follows
that

m(B(π(ω), r)) �
∣∣φ′ω|u(π(σuω))

∣∣hm(B(π(σuω), ρ‖π(σuω)− xi‖
))

(3.12)

�
∣∣φ′ω|u(π(σuω))

∣∣h‖π(σuω)− xi‖h+(h−1)pi

� rh‖π(σuω)− xi‖(h−1)pi .

On the other hand, the chain rule, (3.1) and (3.2) imply that

1 = rj+1

∣∣∣φ′ω|u(π(σuω))
∣∣∣−1 ∣∣∣φ′σuω|nj+1−u−1

(π(σnj+1ω))
∣∣∣−1

� r∗

∣∣∣φ′ω|u(π(σuω))
∣∣∣−1

(nj+1 − u)
pi+1

pi ,

as well as
‖π(σuω)− xi‖−(pi+1) � (nj+1 − u)

pi+1

pi .

These two latter comparabilities together with (3.11) show that

r � r∗‖π(σuω)− xi‖−(pi+1)‖π(σuω)− xi‖ = r∗‖π(σuω)− xi‖−pi .

Hence, ‖π(σuω)− xi‖ � (r∗/r)1/pi , which together with (3.12) implies that

m(B(π(ω), r)) � rh
(r∗
r

)h−1
.

This proves the second case in the theorem. �
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The following corollaries are immediate consequences of the previous the-
orem.

Corollary 3.6. If ω ∈ I∞r , then for each j ≥ 1 we have

m(B(π(ω), rj(ω))) � rj(ω)h.

Corollary 3.7. The conformal measure m is a doubling measure. This
means that for every c > 0 there exists B > 0 such that for each z ∈ J and
every r > 0 we have

m(B(z, cr)) ≤ Bm(B(z, r)).

Finally, as a first nontrivial application of Theorem 3.5 we derive an al-
ternative proof of the following geometrical fact, which was obtained under
slightly weaker assumptions in [MU2]. For this let Ht and Pt denote the
t-dimensional Hausdorff and packing measure respectively.

Theorem 3.8. If S is a tame finite parabolic system satisfying the
(SSOSC), then the following hold:

(a) If h > 1, then 0 < Hh(J) <∞ and Ph(J) = ∞.
(b) If h = 1, then 0 < Hh(J),Ph(J) <∞.
(c) If h < 1, then 0 < Ph(J) <∞ and Hh(J) = 0.

Additionally, if either measure Hh or Ph is finite and positive, then its nor-
malized version is equal to the conformal measure m.

Proof. In [MU1] (Lemma 5.6 and Theorem 5.7) it was shown that for a tame
finite parabolic system satisfying the (SSOSC) the h-conformal measure m
is atomless. This combined with Corollary 3.6 and the inverse Frostmann
lemma (see [MU3]) implies that Hh(J) <∞ and Ph(J) > 0. Now, if h ≥ 1,
then Theorem 3.5 immediately gives that, for every x ∈ π(I∞r ),

lim sup
r→0

m(B(x, r))
rh

� 1,

which implies that Hh(J) > 0. If in addition x = π(ω), for ω ∈ I∞r contain-
ing arbitrarily long blocks of i’s for some i ∈ Ω, then

lim inf
r→0

m(B(x, r))
rh

≤ lim inf
r→0

ζ

(
ω, ρr∗(ω)

(
r∗(ω)
r∗(ω)

) 1
pi+1

)

= lim inf
r→0

(
r∗(ω)
r∗(ω)

) (h−1)pi
pi+1

= 0.

Now, by ergodicity of the measure m (see [MU2], Corollary 5.11) and since
m is positive on open sets, it follows that m-almost everywhere we have

lim inf
r→0

m(B(x, r))
rh

= 0.
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We conclude that Ph(J) = ∞, which proves case (a) of the theorem. Case
(b) is an immediate consequence of Theorem 3.5. The proof of case (c) is
analogous to the proof of case (a), and we omit it. �

4. Metrical Diophantine analysis

In this section we give a metrical Diophantine analysis for tame parabolic
finite iterated function systems. In the first subsection we calculate the
Hausdorff dimensions of certain subsets of the limit set that are of zero h-
conformal measure. These sets are comprised of radial elements that under
the system have a rather rapid approach to the parabolic points. In partic-
ular, these sets are the natural analogues of the sets of well-approximable
numbers. In the second subsection we derive various limit laws that give
useful approximations of the ‘essential support’ of the h-conformal measure
associated with a tame finite parabolic iterated function system. Subse-
quently, we show that these laws lead to good estimates on the growth of
the function ζ in the global formula (Theorem 3.5), which in turn give rise
to a refined description of the conformal measure in terms of Hausdorff mea-
sures and packing measures with respect to some explicit gauge functions.
4.1. Iterated function systems in the spirit of Jarńık. We first have
to introduce the notion of a canonical ball. For i ∈ Ω, δ > 0 and a hyperbolic
word ω ∈ I∗, we define

Bω(i) = Bω = B
(
φω(xi), R|φ′ω(xi)|

)
,

Bδ
ω(i) = Bδ

ω = B
(
φω(xi), (R|φ′ω(xi)|)1+δ

)
.

The closed ball Bω will be referred to as the canonical ball associated with
the hyperbolic word ω.

Our main interest in this section will be focused on the sets

Jδi :=
⋂
q≥1

⋃
n≥q

⋃
|ω|=n

Bδ
ω(i)

and
Jδ :=

⋃
i∈Ω

Jδi .

The main result in this section is stated in the following theorem. The proof
of this theorem will occupy the remaining part of this section. It will be
given in several steps, some of which are formulated in separate lemmata.

Theorem 4.1. Let S = {φi : i ∈ I} be a tame parabolic finite iterated
function system satisfying (SSOSC). Then, for every i ∈ Ω the following
hold:

(a) If h ≤ 1, then

HD(Jδ) =
h

1 + δ
.
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(b) If h ≥ 1, then

HD(Jδi ) =


h

1 + δ
if δ ≥ h− 1,

h+ δpi
1 + δ(1 + pi)

if δ ≤ h− 1.

In particular, with pmin := min{pi : i ∈ Ω}, we have

HD(Jδ) =


h

1 + δ
if δ ≥ h− 1,

h+ δpmin

1 + δ(1 + pmin)
if δ ≤ h− 1.

The first step in the proof is to give an upper bound for HD(Jδi ).

Lemma 4.2. For each i ∈ Ω and every δ > 0 we have

HD(Jδi ) ≤ min
{

h

1 + δ
,

h+ δpi
1 + δ(1 + pi)

}
.

Proof. For n ≥ 1, let Hn denote the family of all hyperbolic words of length
n. For every ε > 0 we have

H
h

1+δ
+ε(Jδi ) ≤ lim inf

q→∞

∑
n≥q

∑
ω∈Hn

(
(R|φ′ω(xi)|)1+δ)

) h
1+δ

+ε

≤ Rh+ε(1+δ) lim inf
q→∞

∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ).

From Lemma 4.3 and Theorem 4.6 in [MU1] we deduce that there exists
an (h + ε(1 + δ))-semiconformal measure ν. We then apply Theorem 5.1
in [MU1], which gives that ν is in fact (h + ε(1 + δ))-conformal, and that
ν(xj) > 0 for some j ∈ Ω. From the definition of the limit set J it follows
that there exists a hyperbolic word τ ∈ I∗ such that φτ (xj) ∈ B(xi, R).
Hence, by Lemma 2.2, we have

|φ′ω(xi)| ≤ K|φ′ω(φτ (xj))| = K|φ′τ (xj)|−1|φ′ωτ (xj)|

for every hyperbolic word ω ∈ I∗. Combining this estimate with the confor-
mality of ν, it follows that for each q ≥ 0 and every n ≥ q we have∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ) ≤
(
K|φ′τ (xj)|−1

)h+ε(1+δ)
∑
n≥q

∑
ω∈Hn

|φ′ωτ (xj)|h+ε(1+δ)

≤
∑
n≥q

∑
|ω|=n

ν(φωτ (xj))ν(xj)−1

≤ ν(xj)−1ν
(
{φγ(xj) : |γ| ≥ q + |τ |}

)
≤ ν(xj)−1.
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Hence, H
h

1+δ
+ε(Jδi ) ≤ ν(xj)−1, and consequently HD(Jδi ) ≤ h

1+δ + ε. By
letting ε tend to 0, we derive that HD(Jδi ) ≤ h

1+δ .
In order to obtain the second upper bound, note that by Lemma 2.4

the intersection J ∩B(φω(xi), (R|φ′ω(xi)|)1+δ) is contained in a central cone
with vertex φω(xi) and angle ≤ C2R

1+δ|φ′ω(xi)|)δpi � (R|φ′ω(xi)|)δpi , or
equivalently the radius of the base � (R|φ′ω(xi) |)1+δ(pi+1). Thus J ∩
B (φω(xi), (R|φ′ω(xi)|)1+δ) can be covered by at most const (R|φ′ω(xi)|)−δpi

balls of radii (R|φ′ω(xi)|)1+δ(pi+1). Therefore, for every ε > 0 we have

H
h+δpi

1+δ(1+pi)
+ε(Jδi )

≤ lim inf
q→∞

∑
n≥q

∑
ω∈Hn

(
(R|φ′ω(xi)|)1+δ(1+pi)

) h+δpi
1+δ(1+pi)

+ε(R|φ′ω(xi)|)−δpi

� lim inf
q→∞

∑
n≥q

∑
ω∈Hn

|φ′ω(xi)|h+ε(1+δ(1+pi)).

Now the proof follows exactly in the same way as in the first part. �

As a first step towards the proof of the lower bound in Theorem 4.1, we
obtain the following lemma:

Lemma 4.3. There exists a universal constant b(d) ≥ 1 such that the fol-
lowing holds: for every open set G ⊂ IntX and each n ≥ 1, there exists a
finite set IG,n ⊂

⋃
j≥n I

j of mutually incomparable hyperbolic words, which
has the properties that m

(⋃
ω∈IG,n

Bω
)
≥ b(d)−1m(G) and that the balls in

{Bω : ω ∈ IG,n} are pairwise disjoint subsets of G.

Proof. Fix i ∈ Ω. We define

J∞ :=π
(
{ω∈ I∞ \{τi∞ : τ ∈ I∗} : ω contains arbitrarily long blocks of i’s}

)
.

Then, since the conformal measure m is positive on nonempty open subsets
of J , Corollary 5.11 in [MU1] implies that m(J∞) = 1. Now, let q ≥ 1
be sufficiently large such that φiq(X) ⊂ B(xi,K−1R). It follows from the
definition of J∞ that if x ∈ J∞, then there exists an increasing infinite
sequence {lj}j with lj ≥ n for all j ≥ 1, a sequence {qj}j with qj ≥ q + 1
for all j ≥ 1, and words ω(j) ∈ I lj+qj such that for all j ≥ 1 we have
x ∈ φω(j)(X), ω(j)

lj
6= i and σljω|qj = iqj . It now follows that

x ∈ φω(j)|lj+1
(B(x,K−1R)) ⊂ Bω(j) ,

that ω(j)|lj+1 is a hyperbolic word, and that limj→∞ diam(Bω(j)) = 0. Hence,
the set G ∩ J∞ can be covered by canonical balls Bω for which |ω| ≥ n.
Let Γ denote such a cover of G ∩ J∞. By the Besicovitch Covering Theo-
rem, there exists a universal constant b(d) ≥ 2 such that Γ contains b(d)/2
subfamilies, each consisting of pairwise disjoint elements, such that G is
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contained in the union of all balls in these subfamilies. It follows that
for at least one of these subfamilies, say Γ0, we have m

(⋃
Bω∈Γ0

Bω
)
≥

2/b(d)m(G ∩ J∞) = 2/b(d)m(G). Since there clearly exists a finite subset
Γf of Γ0 having the property that m

(⋃
Bω∈Γf

Bω
)
≥ 1

2m
(⋃

Bω∈Γ0
Bω
)
, the

conclusion of the lemma follows. �

Proof of Theorem 4.1. Our next step in the proof of the theorem is the con-
struction of a Cantor set contained in Jδi . Crucial for this will be a certain
increasing sequence {nl}l≥0 of nonnegative integers, and it will become clear
during the construction how one has to choose this sequence. We begin by
defining for l ≥ 0 the sets Il ⊂ I∗ by induction as follows: let B∅ := B(xi, R)
and I0 := {∅}. Suppose that Il has been defined, and let ω ∈ Il be fixed. By
Lemma 4.3 there exists a finite set ω∗ consisting of hyperbolic words such
that

ω∗ ⊂
⋃

k≥max{|ω|+l, nl+1}

Ik

and the family {Bτ}τ∈ω∗ consists of pairwise disjoint balls such that Bτ ⊂
IntBδ

ω for every τ ∈ ω∗ (note that τ ||ω| = ω). In addition

m

( ⋃
τ∈ω∗

Bτ

)
≥ 1
b(d)

m(IntBδ
ω) � m(Bδ

ω).(4.1)

Here, the latter inequality follows from the conformality of m, Lemma 2.2
and Corollary 3.3. Put

Il+1 =
⋃
ω∈Il

ω∗.

Now, let {Fl}l≥1 denote the family of nested nonempty compact subsets of
B∅ given by

Fl :=
⋂
ω∈Il

Bω.

Note that we have in particular that

F =
⋂
l≥1

Fl 6= ∅.

Next, for each l ≥ 1 we construct a Borel probability measure µl supported
on the set Fl−1 as follows: let µ1 := 1

m(B∅)
m|B∅ , and assume that the measure

µl has already been defined for some l ≥ 1. Recall that

ω∗ := {τ ∈ Il+1 : τ |nl
= ω}

for ω ∈ Il. Now, for each ω ∈ Il and every Borel set A ⊂ Bω we put

µl+1(A) :=
∑

τ∈ω∗m(A ∩Bτ )∑
τ∈ω∗m(Bτ )

.(4.2)
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This defines a Borel probability measure µl+1 on Fl having the property that
µl+1(Bω) = µl(Bω) for every ω ∈ Il. A straightforward inductive argument
gives that µq(Bω) = µl(Bω) for every q ≥ l. Also, since for each ω ∈

⋃
l≥0 Il

the set Bω ∩ F is an open subset of F , we conclude that the weak limit
µ := liml→∞ µl exists and is supported on F , and that µ(Bω) = µl(Bω) for
each l ≥ 1 and every ω ∈ Il. For ω ∈ Il and j ≤ l, let kj = kj(ω) ≤ |ω|
denote the unique integer determined by ω|kj

∈ Ij . Using (4.1) and (4.2),
a straightforward inductive argument gives that for every l ≥ 1 and every
ω ∈ Il we have

µ(Bω) = µl(Bω) =
l∏

j=1

m(Bω|kj
)∑

τ∈ω|∗kj−1

m(Bτ )
(4.3)

= m(Bω)
l−1∏
j=1

m(Bω|kj
)∑

τ∈ω|∗kj

m(Bτ )
1

m(B(xi, R))

= m(Bω)
l−1∏
j=1

m(Bω|kj
)

m(Bδ
ω|kj

)
exp(O(l))

= m(Bω)
l−1∏
j=1

|φ′ω|kj
(xi)|h

|φ′ω|kj
(xi)|hm

(
B(xi, (R|φ′ω|kj

(xi)|)δ)
) exp(O(l))

= m(Bω)
l−1∏
j=1

m
(
B(xi, (R|φ′ω|kj

(xi)|)δ)
)−1 exp(O(l)).

For every η ∈
⋃
j≥l−1 Ij define

∏
l−1

(η) :=
l−1∏
j=1

m
(
B(xi, (R|φ′η|kj

(xi)|)δ)
)−1

.

Since

lim
n→∞

sup
{
|φ′ω(xi)| : ω ∈ In

}
= 0,(4.4)

it follows that there exists n0 ≥ 1 such that for each ω with |ω| ≥ n0 we
have

(R|φ′ω(xi)|)1+δ ≤ 1
3R|φ

′
ω(xi)|.(4.5)

Since the set Il is finite, it follows from (4.4) that there exists a positive
number R̃ ≤ R such that if ω ∈ Il and if R|φ′τ (xi)| ≤ R̃ for some τ ∈ ω∗,
then |ω| ≥ n0. For fixed z ∈ F and 0 < r ≤ R̃/3, consider the family F of
all words ω ∈

⋃
l≥0 Il+1 for which

Bω ∩B(z, r) ∩ J 6= ∅, R |φ′ω(xi)| < 3r, R |φ′ω|kl
(xi)| ≥ 3r.(4.6)
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We shall now see that the family F∗ = {ω|kl
: ω ∈ F} is a singleton, and

that if this is the case with {γ} = F∗, then it follows that

B(z, r) ⊂ Bγ .(4.7)

For this, fix some element γ ∈ F∗ and ω ∈ F such that γ = ω|kl
and such

that y ∈ Bω ∩ B(z, r) ∩ J . Clearly, by construction of the set J , we have
y ∈ Bδ

γ . From (4.5) and (4.6) we deduce that if x ∈ B(z, r), then

‖x− φγ(xi)‖ ≤ ‖x− z‖+ ‖z − y‖+ ‖y − φγ(xi)‖

< r + r + (R|φ′ω(xi)|)1+δ

≤ 2r + 1
3R|φ

′
ω(xi)| ≤ 2

3R|φ
′
ω|kl

(xi)|+ 1
3R|φ

′
ω|kl

(xi)|

= R|φ′ω(xi)| = R|φ′γ(xi)|.

Hence we have proved (4.7); in particular, using (4.6) and the construction
of the set F , we obtain F∗ = {γ}.

Let ε > 0 be fixed. Since T0 := sup {
∏

(τ) : τ ∈ Il−1} <∞, we obtain for
nl sufficiently large and for all η ∈ Il that

T0 exp(O(l)) ≤ |φ′η(xi)|−ε.

Combining this estimate and (4.6), it follows that∏
l−1

(γ) exp(O(l)) ≤ r−ε.(4.8)

To complete the proof of Theorem 4.1, it now suffices to show that µ(B(z, r))
can essentially be estimated from above by r−2εrθ, for

θ =
h

1 + δ
or θ =

h+ δpi
1 + δ(1 + pi)

.

We split this estimate into three cases:

Case 1: r ≥
(
R |φ′γ(xi)|

)1+δ. Using (4.7), (4.8) and the conformality of m,
we obtain

µ(B(z, r)) ≤ µ(Bγ) = µl(Bγ)

≤ m(Bγ)
∏
l−1

(γ) exp(O(l)) = |φ′γ(xi)|h
∏
l−1

(γ) exp(O(l))

� |φ′γ(xi)|hr−ε � r
h

1+δ
−ε,

which completes the discussion for this case.
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Before dealing with the remaining cases, note that, using (4.3), (4.6), (4.8)
and Corollary 3.3, we have

µ(B(z, r)) ≤
∑
ω∈F

µ(Bω) =
∑
ω∈F

m(Bω)
∏
l

(ω) exp(O(l))(4.9)

≤ m(B(z, 7r))
∏
l

(ω) exp(O(l))

= m(B(z, 7r))
∏
l−1

(ω) exp
(
O(l) (m(B(xi, (R|φ′γ(xi)|)δ))−1

)
� r−ε |φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, 7r)).

Case 2: r ≤
(
R |φ′γ(xi)|

)1+δ and r ≥ K2RQpi+2
(
R |φ′γ(xi)|

)1+δ+δpi . From
(4.7) and Lemma 2.2 we deduce that

r ≤ R |φ′γ(xi)| ≤ KR |φ′τ |n(π(σnτ))|,

where z = π(τ) and τ |n = γ. This implies that

r/K ≤ R |φ′τ |n(π(σnτ))| = R |φ′γ(π(σnτ))|.(4.10)

Now, since z ∈ Bγ ∩ J , we have z ∈ Bδ
γ , and therefore

π(σnτ) ∈ B
(
xi,K(R |φ′γ(xi)|)δ

)
.

Let σnτ = iqω, with ω1 6= i. By Proposition 3.1 (formula (3.2)), we

have ‖π(σnτ) − xi‖ ≥ Q−1q
− 1

pi . Hence, using the fact that Q−1q
− 1

pi ≤
K(R |φ′γ(xi)|)δ and Proposition 3.1 (formula (3.1)), we obtain

R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣ = R

∣∣φ′γ(π(σnτ))| · |φ′iqω1
(π(σω))

∣∣(4.11)

≤ R
∣∣φ′γ(π(σnτ))

∣∣Qq− 1
pi

≤ KRQpi+2
(
R|φ′γ(xi)|

)1+δ(pi+1)

≤ r/K.

It follows that

(r/K)∗ = R
∣∣φ′γ(π(σnτ))

∣∣, (r/K)∗ = R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣.

Choose a small κ > 0 to be specified in the course of the proof. Without
loss of generality we may assume that z /∈ Jδ+κi . Thus by choosing r > 0 to
be sufficiently small, we can assume that z /∈ Bδ+κ

γ , and hence in particular
that π(σnτ) /∈ B

(
xi,K

−1(R|φ′γ(xi)|)δ+κ
)
. Since

‖π(σnτ)− xi‖ ≤ Qq
− 1

pi
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by Proposition 3.1 (formula (3.2)), we have Qq−
1
pi ≥ K−1(R|φ′γ(xi)|)δ+κ.

Hence, using Proposition 3.1 (formula (3.1)), we obtain

R
∣∣φ′τ |n+q+1

(π(σn+q+1τ))
∣∣ = R |φ′γ(π(σnτ))| · |φ′iqω1

(π(σω))|

(4.12)

≥ K−1R |φ′γ(xi)|Q−1q
− 1

pi

≥ (R(KQ)pi+2)−1(R |φ′γ(xi)|)1+(δ+κ)(pi+1).

Write r = c(R|φ′γ(xi)|)1+δ+η, for 0 ≤ η ≤ δpi and 1 ≤ c ≤ K2RQpi+2.
Suppose first that the first part of the global formula (Theorem 3.5) holds
for the centre z and radius r/K. Using (4.12), we obtain

cK−1(R|φ′γ(xi)|)1+δ+η

≥ R|φ′γ(π(σnτ))|

(
R|φ′τ |n+q+1

(π(σn+q+1τ))|
R|φ′γ(π(σnτ))|

) 1
pi+1

≥ RK−1|φ′γ(xi)|

(
(R(KQ)pi+2)−1

(R|φ′γ(xi)|)1+(δ+κ)(pi+1)

R|φ′γ(π(σnτ))|

) 1
pi+1

� |φ′γ(xi)|1+δ+κ.

Note that if r > 0 is chosen to be sufficiently small (and hence the word
length of γ is large), we have η ≤ 2κ. Then, applying Theorem 3.5, (4.9)
and Corollary 3.7, we obtain

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))

� r−εrh|φ′γ(xi)|−δ(h+(h−1)pi)

(
r/K

(r/K)∗

)h−1

� r−εrh|φ′γ(xi)|−δ(h+(h−1)pi)

(
r

|φ′γ(xi)|

)(h−1)pi

= r−εrh+(h−1)pi |φ′γ(xi)|−δ(h+(h−1)pi)−(h−1)pi

� r−εrh+(h−1)pir
−δ(h+(h−1)pi)−(h−1)pi

1+δ+η = r−εr
hpiη−pη+h+hη

1+δ+η .

Note that we have
hpiη − pη + h+ hη

1 + δ + η
≥ h

1 + δ
− ε(4.13)

if and only if

η(hpi − pi + hpiδ − piδ + hδ) ≥ −ε(1 + δ + η).

Clearly, since η ≤ 2κ, the latter inequality is satisfied if we choose κ > 0 to
be sufficiently small. Hence, we can assume without loss of generality that
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(4.13) holds. It then follows that

µ(B(z, r)) ≤ r
h

1+δ
−2ε,

which gives the Case 2 assuming the first part of the global formula.

Now suppose that the second part of the global formula (Theorem 3.5)
holds for the centre z = π(τ) and radius r/K. Then (4.9), Corollary 3.7 and
Theorem 3.5 imply that

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))(4.14)

≤ r−ε|φ′γ(xi)|−δ(h+(h−1)pi)rh
(

(r/K)∗
r

)h−1

� r−εr|φ′γ(xi)|−δ(h+(h−1)pi)p|φ′τ |n+q+1
(π(σn+q+1τ))|h−1.

If h ≤ 1, then using (4.12), we can continue the estimate in this case as
follows:

µ(B(z, r)) � r−εr|φ′γ(xi)|−δ(h+(h−1)pi)pi |φ′γ(xi)|(h−1)(1+(δ+κ)(p+1))

= r−εr|φ′γ(xi)|h+hκpi+hκ−κpi−1−δ−κ

= r−εr|φ′γ(xi)|h−1−δ+aκ,

where we have set a := hpi + h− pi − 1 ≤ 0. Hence,

µ(B(z, r)) � r−εrr
h−1−δ+aκ

1+δ+η = r−εr
h+η+aκ
1+δ+η ≤ r−εr

h+aκ
1+δ ,

where in the last inequality we used the assumption that h ≤ 1. Now, by
choosing κ > 0 to be sufficiently small, it follows that

µ(B(z, r)) ≤ r
h

1+δ
−2ε.

This completes Case 2 for h ≤ 1.

If h > 1, then using (4.11), we can continue the estimate in (4.14) as
follows:

µ(B(z, r)) � r−εr|φ′γ(xi)|−δ(h+(h−1)pi)|φ′γ(xi)|(h−1)(1+δ(p+1))

= r−εr|φ′γ(xi)|h−1−δ = r−εrr
h−1−δ
1+δ+η = r−εr

h+η
1+δ+η

≤

r
h

1+δ
−ε if δ ≥ h− 1

r
h+δpi

1+δ(1+pi) if δ ≤ h− 1.

Here, the latter inequality is obtained by using the facts that η ≤ δpi and
that for δ ≤ h− 1 it holds that h+η

1+δ+η decreases if η increases.
Hence, the proof of Case 2 is complete.
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Case 3: r ≤ K2RQpi+2
(
R|φ′γ(xi)|

)1+δ+δpi . From (4.9) and Corollary 3.7
we deduce that

µ(B(z, r)) � r−ε|φ′γ(xi)|−δ(h+(h−1)pi)m(B(z, r/K))(4.15)

= r−ε|φ′γ(xi)|−δ(h+(h−1)pi)rhζ(z, r/K)

� r−εrhr
− δ(h+(h−1)pi)

1+δ+δpi ζ(z, r/K)

= r
h+δpi

1+δ+δpi
−ε
ζ(z, r/K).

If h ≥ 1, then we can apply Theorem 3.5, and we obtain

µ(B(z, r)) � r
h+δpi

1+δ+δpi
−ε
.

If h ≤ 1, we can assume i = imax, which means pi = max{pj : j ∈ Ω}. Let
k ≥ 1 be the index in the hyperbolic zoom associated with the point z and
with the radius r/K. If nk+1 = nk+1, then we can proceed as in the previous
case to obtain the desired result. Hence, suppose that nk+1 6= nk + 1. It
follows that σnkτ = juτnk+1 for some j ∈ Ω, u ≥ 1 and τnk+1 6= j. Now, for
t ∈ [(r/K)∗, (r/K)∗] we write ζ(z, t) = tα(t). Then

α(t) =
log ζ(z, t)

log t

=


pj(h−1) + pj(1−h) log((r/K)∗)

log t for (r/K)∗≥ r≥ (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1

,

1− h+ (h−1) log((r/K)∗)
log t for (r/K)∗≤ r≤ (r/K)∗

(
(r/K)∗
(r/K)∗

) 1
pj+1

.

From this we deduce that α has its minimum at t = (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1 .

Therefore, we can assume without loss of generality that

(r/K) = (r/K)∗
(

(r/K)∗
(r/K)∗

) 1
pj+1

.(4.16)

Also, by choosing κ > 0 sufficiently small, we can assume that z /∈ Jδ+κ.
For r > 0 small, we then have z /∈ Bδ+κ

τ |k (pj). Now, by the same arguments
as those leading to formula (4.12) in Case 2, we have

(r/K)∗ ≥ (R(KQ)pi+2)−1((r/K)∗)1+(δ+κ)(pj+1).(4.17)

Hence, Theorem 3.5 and (4.16) imply that

ζ(z, r/K) ≤
(

(r/K)∗
(r/K)∗

)(h−1)pj
pj+1

.(4.18)
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Now write(
(r/K)∗
(r/K)∗

)(h−1)pj
pj+1

= (r/K)α = (r/K)∗
((

(r/K)∗
(r/K)∗

) 1
pj+1

)α
and for every t ∈ (0, 1) consider the number α(t) determined by the equation(

t

(r/K)∗

)(h−1)pj
pj+1

= (r/K)∗
((

t

(r/K)∗

) 1
pj+1

)α(t)

.(4.19)

We are interested in a sufficiently good lower bound on α(r/K). And indeed,
solving Equation (4.19) for α(t), one easily deduces that the function t 7→
α(t) is increasing throughout the entire interval (0, 1). Therefore, invoking
(4.17), we may assume that

(r/K)∗ = R(KQ)pi+2)−1((r/K)∗)1+(δ+κ)(pj+1)

≤ R(KQ)pi+2)−1((r/K)∗)1+δ(pj+1).

Combining this and (4.16), we obtain

(r/K) � (r/K)∗
(
(r/K)∗

)δ =
(
(r/K)∗

)1+δ
.

Then by combining this, (4.18) and (4.17), we get

ζ(z, r/K) �
(
(r/K)∗

)(δ+κ)pj(h−1) � (r/K)
pj(h−1)(δ+κ)

1+δ .

Substituting this latter inequality in (4.15), we obtain

µ(B(z, r)) � r
h+δpi

1+δ+δpi
+

δpj(h−1)

1+δ r−ε+
κpj(1−h)

1+δ .

A straightforward calculation, using the facts that pi ≥ pj and h ≥ pj
pj + 1

,
shows that

h+ δpi
1 + δ + δpi

+
δpj(h− 1)

1 + δ
≥ h

1 + δ
.

Hence, if κ is chosen sufficiently small, we finally obtain

µ(B(z, r)) � r
h

1+δ
−ε. �

4.2. Limit laws for iterated function systems. Define the set

I∗ := {inj : i ∈ Ω, j 6= i, n ≥ 1} ∪ (I \ Ω).

A word ω ∈ I∞ can be written uniquely as an infinite word in elements from
I∗ if and only if ω is not of the form τi∞ for any i ∈ Ω and τ ∈ I∗. Let

σ∗ : I∞∗ → I∞∗

denote the shift map on I∞∗ . Also, for i ∈ Ω and ω ∈ I∞∗ define

Qi(ω) :=

{
n if ω1 = inj for some n ≥ 1 and j 6= i,

0 otherwise.
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In [MU1] we proved that the iterated function system S∗ = {φω : ω ∈ I∗}
is hyperbolic, and that S∗ is regular if and only if S is regular. The shift
map σ∗ can be interpreted as the symbolic representation of the system S∗.
As in the previous section, in this section we shall always assume that S is a
tame parabolic finite iterated function system satisfying (SSOSC), and that
m is the associated conformal measure for S. Clearly, m is also conformal
for S∗. Hence, there exist Borel probability measures m̃ and µ∗ on I∞∗
that are equivalent to each other (with uniformly bounded Radon–Nikodým
derivatives) such that m = m̃ ◦ π−1 and µ∗ ◦ (σ∗)−1 = µ∗ (see [MU1]). For
ε ∈ R, i ∈ Ω and n ≥ 1, we define

Ai,n(ε) :=
{
ω ∈ I∞∗ : Qi(ω) ≥ n

pi
h+(h−1)pi

−ε}
and

Ai,∞(ε) :=
{
ω ∈ I∞∗ : σ∗n(ω) ∈ Ai,n(ε) for infinitely many n

}
.

Lemma 4.4. For i ∈ Ω and ε ∈ R we have m̃(Ai,∞(ε)) > 0 if and only if
ε ≥ 0.

Proof. Using the definition of m̃ and the conformality of m, we obtain∑
n≥1

µ∗((σ∗)−n(Ai,n(ε))) =
∑
n≥1

µ∗(Ai,n(ε)) =
∑
n≥1

m̃(Ai,n(ε))(4.20)

=
∑
n≥1

∑
k≥n

pi
h+(h−1)pi

−ε

k
− pi+1

pi
h

�
∑
n≥1

n
−1+ε

h+(h−1)pi
pi .

Since h+ (h− 1)pi > 0 (see [MU2]), it follows that the series∑
n≥1

µ∗((σ∗)−n(Ai,n(ε)))

converges for ε < 0. Thus, the “weaker part” of the Borel–Canteli lemma
gives that µ∗(Ai,∞(ε)) = 0, which then implies that m̃(Ai,∞(ε)) = 0. This
proves one direction of the equivalence in the lemma.

In order to prove the remaining part of the lemma, recall the following
well-known result from elementary analysis:

• Let (Xn)n∈N be a sequence of events in a probability space (X,P ). If∑
n∈N P (Xn) = ∞ and if P (Xn ∩Xk) � P (Xn)P (Xk) for all distinct

n, k ∈ N, then P (lim supn→∞Xn) � 1.
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By again using formula (4.20), the ‘if-part’ of the lemma follows from this
general result once we have shown that for all n, k ∈ N with n > k we have

m̃
(
(σ∗)−k(Ai,k(ε)) ∩ (σ∗)−n(Ai,n(ε))

)
� m̃

(
(σ∗)−k(Ai,k(ε))

)
m̃
(
(σ∗)−n(Ai,n(ε))

)
.

Since µ∗ and m̃ are equivalent, and since µ∗ is σ∗-invariant, it follows that
in order to obtain this latter inequality it is sufficient to show that

m̃
(
Ai,k(ε) ∩ (σ∗)−(n−k)(Ai,n(ε))

)
� m̃(Ai,k(ε)) m̃(Ai,n(ε)).

Since the set Ai,k(ε) can be written as a union of S∗-cylinders of length 1,
it can be written also as a union of cylinders of length (n− k). If Ai,k(ε) =⋃
Bk(ε) denotes such a representation by cylinders of length (n − k), then

by the σ∗-invariance of µ∗ and by the Bounded Distortion Property (7) and
the conformality of m, we have for each ω ∈ Ai,n(ε) and τ ∈ Bk(ε) that

m̃
(
(σ∗)−k(Ai,k(ε)) ∩ (σ∗)−n(Ai,n(ε))

)
� m̃

(
(σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε)

)
� |φ′τ (π(ω))|hm̃(Ai,n(ε)) ∩ (σ∗)n−k(Bk(ε))).

This implies that

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε))
m̃(Bk(ε))

� |φ′τ (π(ω))|hm̃(Ai,n(ε))
|φ′τ (π(ω))|h

= m̃(Ai,n(ε)),

or equivalently that

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Bk(ε)) � m̃(Ai,n(ε)) m̃(Bk(ε)).

If in this latter inequality we sum up over all sets Bk(ε), we obtain

m̃((σ∗)−(n−k)(Ai,n(ε)) ∩Ai,k(ε)) � m̃(Ai,n(ε)) m̃(Ai,k(ε)),

which in particular gives the desired inequality. �

Lemma 4.5. For i ∈ Ω and ε ≥ 0 we have m̃(Ai,∞(ε)) = 1.

Proof. Let i ∈ Ω and ε > 0 be fixed. Clearly, σ∗(Ai,∞(ε)) ⊂ Ai,∞(ε). Hence,
using the ergodicity of the map σ∗ and the previous lemma, the statement
of the lemma follows. �

Theorem 4.6 (Limit Law I). For m̃-almost every ω ∈ I∞∗ and for all i ∈ Ω
we have

lim sup
n→∞

logQi((σ∗)n(ω))
log n

=
pi

h+ (h− 1)pi
.

Proof. In order to obtain the lower bound for the ‘lim sup’ in the lemma,
fix some i ∈ Ω and note that by Lemma 4.5 we have m̃(Ai,∞(0)) = 1. If
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ω ∈ Ai,∞(0), there exists by definition a sequence (kj)j∈N of natural numbers
kj , such that (σ∗)kj (ω) ∈ Ai,kj

(0) for all j ∈ N. This implies for all j that

Qi((σ∗)kj (ω)) ≥ k
pi/(h+(h−1)pi)
j ,

and hence that

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≥ pi
h+ (h− 1)pi

.

In order to obtain the upper bound for the ‘lim sup’ in the lemma, let ε < 0
and i ∈ Ω. By Lemma 4.4, there exists a set Fi(ε) such that m̃(Fi(ε)) = 1,
and such that if ω ∈ Fi(ε) then there exists a number n0 = n0(ω) ∈ N with
the property that (σ∗)n(ω) /∈ Ai,n(ε) for all n ≥ n0. Hence, for ω ∈ Fi(ε) we
have for all n ≥ n0 that

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≤ pi
h+ (h− 1)pi

− ε.

If we put Fi =
⋂
n≥1 Fi(−

1
n), then m̃(Fi) = 1 and for each ω ∈ Fi we have

lim sup
n→∞

logQi((σ∗)n(ω))
log n

≤ pi
h+ (h− 1)pi

.

Hence, for ω ∈ Ai,∞(0)∩Bi we obtain the equality stated in the theorem. �

Note that if Qi(ω) = n, then it follows from (3.3) that |xi − π(ω)| �
(n+ 1)−1/pi . This now leads to our second limit law.

Theorem 4.7 (Limit Law II). For m̃-almost every ω ∈ I∞∗ we have for all
i ∈ Ω that

lim sup
n→∞

− log |π((σ∗)n(ω))− xi|
log n

=
1

h+ (h− 1)pi
.

Proof. Fix ω ∈ I∞∗ and i ∈ Ω. By definition of Qi and using (3.3), we have
for n ∈ N that

|π((σ∗)n(ω))− xi| � (Qi((σ∗)n(ω)) + 1)−1/pi .

Hence, it follows that

lim
n→∞

∣∣∣∣− log |π((σ∗)n(ω))− xi|
log n

− logQi((σ∗)n(ω))
pi log n

∣∣∣∣ = 0.

Using Limit Law I, we find that, for m̃-almost all ω ∈ I∞∗ ,

lim sup
n→∞

− log |π((σ∗)n(ω))− xi|
log n

=
1
pi

lim sup
n→∞

logQi((σ∗)n(ω))
log n

=
1

h+ (h− 1)pi
. �



388 B.O. STRATMANN AND M. URBAŃSKI

Since m̃ is ergodic and positive on nonempty open sets, we have that m̃-
almost every point in I∞∗ has arbitrarily long blocks with parabolic entries
only. Taking this observation into account, we now modify on a set of
full measure the definition of the hyperbolic zoom (rj(ω))j as follows: for
a given i ∈ Ω we include only those elements in the hyperbolic zoom for
which nj(ω) ≥ nj−1(ω) + 2 and i(ω, j) = i. In other words, we consider
subsequences (rjk(ω))k and (njk(ω))k such that njk(ω) ≥ njk−1(ω) + 2 and
ωnjk−1(ω) = i. Such subsequences will be referred to as the i-restricted
hyperbolic zoom and the i-restricted optimal sequence, respectively.

Theorem 4.8 (Limit Law III). For each i ∈ Ω the i-restricted optimal se-
quence at m̃-almost every ω ∈ I∞∗ has the property that

lim sup
k→∞

log(njk+1(ω)− njk(ω))
log jk

=
pi

h+ (h− 1)pi
.

Proof. Let i ∈ Ω and ω ∈ I∞∗ . Define the function Nn : I∞∗ → N by
(σ∗)n(ω) = σNn(ω)(ω), for every n ≥ 1. Then we see by induction that
Nj(ω) = nj(ω), for all j ∈ N (this follows, since n1(ω) = N1(ω) and, as-
suming that nj(ω) = Nj(ω), since nj+1(ω) = nj(ω) + N1(ω)(σnj(ω)(ω)) =
Nj+1(ω)).

Using Limit Law II and the fact that |π(σNjk
(ω)(ω))− xi| � (Njk+1(ω)−

Njk(ω))−1/pi , it follows that for m̃-almost all ω we have

lim sup
k→∞

log(njk+1(ω)− njk(ω))
log jk

= lim sup
k→∞

log(Njk+1(ω)−Njk(ω))
log jk

= lim sup
k→∞

−pi log |π(σNjk
(ω)(ω))− xi|

log jk

= lim sup
k→∞

−pi log |π((σ∗)jk(ω))− xi|
log jk

=
pi

h+ (h− 1)pi
. �

Theorem 4.9 (Limit Law IV). For each i ∈ Ω the i-restricted hyperbolic
zoom at m̃-almost every ω ∈ I∞∗ has the property that

lim sup
k→∞

log (rjk(ω) / rjk+1(ω))
log jk

=
1 + pi

h+ (h− 1)pi
.

Proof. For i ∈ Ω and ω ∈ I∞∗ we saw in the proof of Theorem 3.5 that

rjk(ω)
rjk+1(ω)

� (njk+1(ω)− njk(ω))(1+pi)/pi
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for k ∈ N. Combining this estimate with Limit Law III, it follows for m̃-
almost all ω ∈ I∞∗ that

lim sup
k→∞

log (rjk(ω) / rjk(ω))
log jk

= lim sup
k→∞

1 + pi
pi

log(njk+1(ω)− njk(ω))
log jk

=
1 + pi

h+ (h− 1)pi
. �

The following theorem presents the main result in this section:

Theorem 4.10. (The Khintchine Limit Law for parabolic iterated function
systems). The hyperbolic zoom at m̃-almost every ω ∈ I∞∗ satisfies

lim sup
j→∞

log (rj(ω) / rj+1(ω))
log log 1

rj(ω)

=
1 + pmax

h+ (h− 1)pmax
,

where we have set pmax := max{pi : i ∈ Ω}.

Proof. For m̃-almost all ω ∈ I∞∗ we have

lim
j→∞

log rj(ω)
j

= lim
j→∞

log
∣∣φ′nj(ω)(π(σnj(ω)(ω)))

∣∣
j

= lim
j→∞

log
∣∣φ′Nj(ω)(π(σNj(ω)(ω)))

∣∣
j

= lim
j→∞

log
∣∣φ′Nj(ω)(π(σ∗)j(ω))

∣∣
j

= χ,

where the last equality follows from the Birkhoff Ergodic Theorem, using
the ergodicity of the system (I∞∗ , σ

∗, µ∗) and the definition

χ :=
∫
I∞∗

log
∣∣φ′ω1

(π(σ∗)(ω))
∣∣ dm∗(ω) > −∞.

Hence,

lim
j→∞

log log 1
rj(ω)

log j
= 1.

The theorem follows by combining this equality with Limit Law IV and
noting that

max
i∈Ω

1 + pi
h+ (h− 1)pi

=
1 + pmax

h+ (h− 1)pmax
. �

Corollary 4.11. For the function ζ of the h-conformal measure m (see
Theorem 3.5) associated with a tame parabolic finite iterated function system
satisfying (SSOSC) the following hold:

(i) For h = 1, we have for all ω ∈ I∞∗ and 0 < r < diam(I∞∗ ) that

ζ(ω, r) � 1.
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(ii) For h < 1, we have for m̃-almost every ω ∈ I∞∗ that

lim sup
r→0

log ζ(ω, r)
log log 1

r

=
(1− h)pmax

h+ (h− 1)pmax
.

(iii) For h > 1, we have for m̃-almost every ω ∈ I∞∗ that

lim inf
r→0

log ζ(ω, r)
log log 1

r

=
(1− h)pmax

h+ (h− 1)pmax
.

Proof. Statement (i) is an immediate consequence of Theorem 3.5. In order
to prove statement (ii), let ω ∈ I∞∗ and r > 0 sufficiently small be given.
Without loss of generality we may assume that rj+1(ω) ≤ r < rj(ω) and that
ωnj(ω)+1 = i, for some i ∈ Ω. For r in this range, an elementary calculation
shows that the maximal value of ζ(ω, r) is achieved if r is comparable to

rj,max(ω) := rj(ω)
(
rj+1(ω)
rj(ω)

)1/(1+pi)

.

For this value of r we have

ζ(ω, rj,max(ω)) �
(

rj(ω)
rj+1(ω)

)(1−h)pi/(1+pi)

.

As we have seen above in the proof of the Khintchine law, for m̃-almost all
ω ∈ I∞∗ it is sufficient to restrict the discussion to those indices j for which
ωnj(ω) = i, with pi = pmax. It follows that for all ε > 0 and for m-almost all
ω ∈ I∞∗ we eventually have

(1− ε) (1 + pi)
h+ (h− 1)pi

log log
1

rj(ω)
≤i.o. log

rj(ω)
rj+1(ω)

≤ (1 + ε)(1 + pi)
h+ (h− 1)pi

log log
1

rj(ω)

(where ‘≤i.o.’ indicates that the inequality holds ‘infinitely often’, i.e., for
some infinite sequence of values of j). Hence, the estimate above implies
that(

log
1

rj(ω)

)(1−ε)(1−h)pmax
h+(h−1)pmax

�i.o. ζ(ω, rj,max(ω)) �
(

log
1

rj(ω)

)(1+ε)(1−h)pmax
h+(h−1)pmax

.

This proves statement (ii) in the corollary. Statement (iii) follows from a
similar argument, and we omit its proof. �

We are now in the position to derive a refinement of the description of the
geometric nature of the h-conformal measure given in Theorem 3.8 . Namely,
using the latter corollary, we have the following statements concerning its
relationship to the packing measure Pψλ

and Hausdorff measure Hψλ
with

respect to the dimension function ψλ. Here, the function ψλ is given for
λ ∈ R and positive r by

ψλ(r) := rh
(
log

1
r

)(1+λ)(1−h)pmax/(h+(h−1)pmax)
.
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Corollary 4.12. If S is a tame finite parabolic iterated function system
satisfying (SSOSC), we have the following table:

λ vs. h h<1 h>1

λ>0 m�Hψλ
and Hψλ

(J)=∞ ∃Eλ s.t. m(Eλ)=1, Pψλ
(Eλ)=0

λ≤0 ∃Fλ s.t. m(Fλ)=1, Hψλ
(Fλ)=0 m�Pψλ

and Pψλ
(J)=∞

The symbol ‘�’ indicates absolute continuity between two measures.
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