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We consider the Euler–Lagrange equation of a functional
arising from conformal geometry in four dimensions, a fourth
order equation with borderline nonlinearity. We present a
short proof of the fact that any W 2,2-solution is smooth.

1. Introduction

Let (M, g) be a four-dimensional compact Riemannian manifold. Motivated
by problems in four-dimensional spectral theory and conformal geometry,
Chang and Yang [CY] (cf. also Chang [C]) introduced the functional F :
W 2,2(M) → R:

F (w) =
∫

M

{
(∆w)2 + (α∆w + β|Dw|2)2 + T (Dw,Dw) + E(w − w)

}
dv,

(1.1)

where α, β ∈ R, w = 1
vol M

∫
w; E : R → R and T ∈ sym2(T ∗M) satisfy:

max
{
|E(x)|, |E′(x)|

}
≤ c1e

c2|x|, |T (v, v)| ≤ c3|v|2.(1.2)

Direct computations show that the Euler–Lagrange equation associated with
critical points of F on W 2,2(M) is

(1.3) 2(1 + α2)∆2w + 2β div
(
αD(|Dw|2)− (α∆w + β|Dw|2)Dw

)
= div(T (Dw, ·))−

(
E′(w − w)− E

′(w − w)
)

where E
′(w − w) = 1

vol M

∫
E′(w − w). Chang, Gursky and Yang [CGY]

proved that any F -minimizing solution u ∈ W 2,2(M) to (1.3) is actually
smooth. It was asked in [CGY] whether any weak solution u ∈ W 2,2(M)
is smooth. Indeed, Uhlenbeck and Viaclovsky [UV] confirmed this recently
and proved the smoothness for any weak solution u ∈ W 2,2(M) to (1.3). The
proof in [CGY] relied on F -minimality. The idea in [UV] is based on some
uniqueness properties for small perturbations of ∆2 in various Sobolev spaces
and seems to be an indirect argument. Here we provide an alternative and
direct proof of the smoothness for weak solutions to (1.3); namely, we show
that under a smallness assumption on the W 2,2 norm, the normalized Lp-
norm of the gradient of u on a ball decays like a positive power of the radius
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of the ball. This, combined with Morrey’s decay lemma and the conformal
invariance of the W 2,2 norm in dimension four, implies the Hölder continuity
of u. Higher-order regularity then follows from [CGY]. This type of so-
called ε0-decay lemma is very common in the context of regularity theory
for harmonic maps (cf. Schoen–Uhlenbeck [SU]). In fact, this kind of idea
was also employed by Chang, Wang and Yang in their study of the regularity
problem of biharmonic maps into spheres [CWY].

Since regularity is a local result, we assume, for simplicity, that M = Ω ⊂
R4 is a bounded smooth domain, with the Euclidean metric g. Now we state
the decay lemma:

Lemma A. There exist ε0 > 0 and θ0 ∈ (0, 1
2) such that if u ∈ W 2,2(Ω) is

a weak solution to (1.3) and if for Br(x) ⊂ Ω we have∫
Br(x)

|Du|4 + |D2u|2 ≤ ε20(1.4)

then, for any 2 < p < 4,

(θ0r)p−4

∫
Bθ0r(x)

|Du|p ≤ 1
2rp−4

∫
Br(x) |Du|p + C

(
p, ‖D2u‖L2(Ω)

)
rp.(1.5)

Since u ∈ W 2,2(Ω), the absolute continuity of
∫
|Du|4 + |D2u|2 implies

that there exists an r0 > 0 such that (1.4) holds for u over any ball Br(x) ⊂
Ω with 0 < r ≤ r0. Therefore, we can apply the lemma repeatedly and
conclude that there exists a δ0 ∈ (0, 1) such that rp−4

∫
Br(x) |Du|p behaves

like rpδ0 for all 0 < r < r0 and x ∈ Ω. This, combined with Morrey’s lemma,
implies that u ∈ Cδ0(Ω) and hence u ∈ C∞(Ω), via [CGY]. In particular,
one has (cf. also [UV]):

Theorem B. If u ∈ W 2,2(M) is a weak solution to (1.3), then u ∈ C∞(M).

2. Proof of Lemma A

It follows from Fubini’s theorem that there is an s ∈ [ r
2 , r] such that∫

∂Bs(x)
|Du|4 + |D2u|2 ≤ 2r−1

∫
Br(x)

|Du|4 + |D2u|2.(2.1)

Let u1 ∈ W 2,2(Bs(x)) satisfy

∆2u1 = − β

1 + α2
div

(
αD(|Du|2)− (α∆u + β|Du|2) Du

)
,(2.2)

u1 =
∂u1

∂r
= 0 on ∂Bs(x).(2.3)
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Let u2 ∈ W 2,2(Bs(x)) satisfy

∆2u2 =
1

2(1 + α2)
(
div(T (Du, ·))− (E′(u− u)− E

′(u− u))
)
,(2.4)

u2 =
∂u2

∂r
= 0 on ∂Bs(x).(2.5)

Let u3 = u− u1 − u2 ∈ W 2,2(Bs(x)). Then we have

∆2u3 = 0 in Bs(x),(2.6)

u3 = u and
∂u3

∂r
=

∂u

∂r
on ∂Bs(x).

For u1, it follows (see, e.g., Lemma 2.2 of [CWY]) that for any q ∈ (1, 4
3)

‖D3u1‖Lq(Bs(x)) ≤ C‖|Du||D2u|+ |Du|2|Du|‖Lq(Bs(x))

≤ C
(
‖D2u‖L2(Bs(x)) + ‖Du‖2

L4(Bs(x))

)
‖Du‖

L
2q

2−q (Bs(x))

≤ Cε0‖Du‖
L

2q
2−q (Bs(x))

.

This, combined with the Sobolev embedding theorem, implies

‖Du1‖
L

2q
2−q (B r

2
(x))

≤ ‖Du1‖
L

2q
2−q (Bs(x))

≤ Cε0‖Du‖
L

2q
2−q (Bs(x))

(2.7)

≤ Cε0‖Du‖
L

2q
2−q (Br(x))

.

Here we have used the fact that Du1 = 0 on ∂Bs(x). To estimate u2, observe
that (1.2) implies that |T (Du, ·)| ≤ C|Du| ∈ L4(Ω) and

‖T (Du, ·)‖L4(Ω) ≤ C‖u‖W 2,2(Ω).(2.8)

The Moser–Trudinger inequality and (1.2) imply E′(u − u) − E
′(u − u) ∈

Lp(Ω) for any 1 < p < ∞ and∥∥E′(u− u)− E
′(u− u)

∥∥
L4(Ω)

≤ C‖u‖W 2,2(Ω).(2.9)

Multiplying (2.4) by u2 and integrating it over Bs(x), we get∫
Bs(x)

|D2u2|2 =
∫

Bs(x)
|∆u2|2

≤ C

∫
Bs(x)

(
|Du| |Du2|+ |E′(u− u)− E

′(u− u)| |u2|
)

≤ C‖u‖W 2,2(Ω)

(∫
Bs(x)

(|u2|2 + |Du2|2)
) 1

2

≤ C‖u‖W 2,2(Ω)r

(∫
Bs(x)

|D2u2|2
) 1

2

.



396 CHANGYOU WANG

Here we have applied the Poincaré inequality for u2 in the last step. Thus∫
Bs(x)

|D2u2|2 ≤ C‖u‖2
W 2,2(Ω)r

2.(2.10)

This, combined with the Sobolev embedding theorem, gives∫
Bs(x)

|Du2|4 ≤ C

(∫
Bs(x)

|D2u2|2
)2

≤ Cr4‖u‖2
W 2,2(Ω).(2.11)

In particular, for any q ∈ (1, 4
3), we have(r

2

) 2q
2−q

−4
∫

B r
2
(x)
|Du2|

2q
2−q ≤ C(‖u‖W 2,2(Ω))r

2q
2−q .(2.12)

Since u3 is a biharmonic function on Bs(x), we know that∫
Bs(x)

|D2u3|2 ≤
∫

Bs(x)
|D2u|2.

A standard Caccipolli-type argument implies that∫
B r

3
(x)
|D2u3|2 ≤ Cr−2

∫
B r

2
(x)
|Du3|2.(2.13)

This, combined with the subharmonicity of |∆u3|2, implies

r2‖Du3‖2
L∞(B r

4
(x)) ≤ C

∫
B r

3
(x)
|D2u3|2 ≤ Cr−2

∫
B r

2
(x)
|Du3|2.(2.14)

In particular, for any θ ∈ (0, 1
4) and q ∈ (1, 4

3),

(θr)
2q

2−q
−4

∫
Bθr(x)

|Du3|
2q

2−q ≤ Cθ
2q

2−q r
2q

2−q
−4

∫
B r

2
(x)
|Du3|

2q
2−q .(2.15)

Putting (2.7), (2.13), (2.15) together, we obtain, for any q ∈ (1, 4
3) and

θ ∈ (0, 1
4),

(θr)
2q

2−q
−4

∫
Bθr(x)

|Du|
2q

2−q ≤ (Cε0θ
2q

2−q
−4+Cθ

2q
2−q )r

2q
2−q

−4
∫

Br(x)
|Du|

2q
2−q(2.16)

+ C
(
θ, q, ‖u‖W 2,2(Ω)

)
r

2q
2−q .

Therefore, by choosing θ0 = (4C)
q−2
2q and then choosing ε0 sufficiently small,

we have

(θ0r)
2q

2−q
−4

∫
Bθ0r(x)

|Du|
2q

2−q ≤ 1
2
r

2q
2−q

−4
∫

Br(x)
|Du|

2q
2−q(2.17)

+ C
(
q, ‖u‖W 2,2(Ω)

)
r

2q
2−q .
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Set p = 2q
2−q . Observe that p ∈ (2, 4) for q ∈ (1, 4

3). This completes the proof
of Lemma A. �
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