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We show that the Seiberg–Witten invariant is zero for all
smooth 4-manifolds with b+>1 that admit circle actions hav-
ing at least one fixed point. We also show that all symplectic
4-manifolds that admit (possibly nonsymplectic) circle actions
with fixed points are rational or ruled, and thus admit a sym-
plectic circle action.

1. Introduction

This paper addresses two problems in 4-manifold theory concerning S1-
actions. The first is the computation of 4-dimensional diffeomorphism in-
variants. Ever since the introduction of Donaldson invariants in the early
1980’s, efforts to calculate diffeomorphism invariants centered upon large
classes of smooth manifolds that have some additional structure. One such
class of manifolds thought to have promise was 4-manifolds with effective
circle actions, but the extra structure given by such manifolds turned out
to be insufficient for calculating Donaldson invariants.

With the introduction of Seiberg–Witten invariants in 1994, old prob-
lems were revisited with new hope. Donaldson showed how to calculate
the Seiberg–Witten invariants in the simplest case where the 4-manifold
was a product of a 3-manifold and a circle [7]. In 1997 Mrowka, Ozvath,
and Yu [16], and simultaneously Nicolaescu [17], studied the 3-dimensional
Seiberg–Witten equations of Seifert-fibered spaces. In 2001, Seiberg–Witten
invariants for manifolds with free and fixed-point-free circle actions were cal-
culated in [4], [5]. In this paper we finish this line of research by calculating
the Seiberg–Witten invariants for S1-manifolds with fixed points. We prove:

Theorem 1.1. If X is a smooth, closed, oriented 4-manifold with b+>1 and
admits a circle action having at least one fixed point, then the Seiberg–Witten
invariant vanishes for all Spinc structures.

When the action on X4 is free, the quotient of the S1-action is a smooth,
closed 3-manifold Y . In this case X can be thought of as a unit circle bundle
of a complex line bundle over Y with Euler class χ ∈ H2(Y ; Z).

A fixed-point-free circle action will have nontrivial isotropy groups and
the orbit space will be an orbifold rather than a manifold. As in the free
case, a manifold with a fixed-point-free S1-action can still be considered a
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unit circle bundle, but it is also a principal S1-bundle of an orbifold line
bundle over a 3-dimensional orbifold. In this setup, H2(Y ; Z) is replaced by
the group Pict(Y ), which records local data around the singular set (see [5]).

Manifolds that admit circle actions with fixed points have more compli-
cated local data, yet this extra structure gives more control when computing
the Seiberg–Witten invariants.

Theorem 1.1 combined with the formula derived in [5] gives the means for
calculating the Seiberg–Witten invariants of any S1-manifold X with b+>1.
See [12] for an introduction to Seiberg–Witten theory or [18] for a more
detailed analysis.

Theorem 1.2 (General Formula). Let X be a smooth, closed, oriented 4-
manifold with b+>1 and a smooth circle action.

(1) If the action has fixed points, SWX(ξ) = 0 for any Spinc structure ξ.
(2) If X has a fixed-point-free S1-action, let Y 3 be the orbifold quotient

space and suppose that χ ∈ Pict(Y ) is the orbifold Euler class of the
circle action. If ξ is a Spinc structure over X with SW4

X(ξ) 6= 0, then
ξ = π∗(ξ0) for some Spinc structure on Y and

SW4
X(ξ) =

∑
ξ′≡ξ0modχ

SW3
Y (ξ′),

where ξ′−ξ0 is a well-defined element of Pict(Y ). (See [5] with respect
to the b+=1 fixed-point-free case.)

As an application of Theorem 1.1 we illustrate the usefulness of Seiberg–
Witten invariants even when they vanish. A theorem of Taubes [20] says
that the Spinc structure associated with the first Chern class of a symplectic
4-manifold must have Seiberg–Witten invariant ±1. Symplectic 4-manifolds
always have b+>0 because the wedge product of the symplectic form with
itself is the volume form. Putting these facts together with Theorem 1.1 we
conclude:

Corollary 1.3. A 4-manifold that admits a symplectic form and admits a
circle action with fixed points must have b+=1.

This result is unexpected because it is easy to imagine that such manifolds
with b+ > 1 can exist. For instance, build a symplectic 4-manifold with a
free circle action (they exist for any b+ > 1). There are then several cut-and-
paste methods available to produce a new 4-manifold with a circle action
that has fixed points. The proof of Theorem 1.1 gives a visual reason why
the new 4-manifold cannot also carry a symplectic form.

We need to distinguish the manifolds in Corollary 1.3 from similar man-
ifolds that have been intensely studied. If the circle action preserves the
symplectic form in the sense that the generating vector field of the action



SEIBERG–WITTEN VANISHING THEOREM 3

T satisfies LTω = dιTω = 0 then the action is called symplectic. The man-
ifolds in Corollary 1.3 do not have this restrictive pointwise condition and
therefore they are not necessarily symplectic circle actions.

In 1990 Audin [2] and Ahara–Hattori [1] classified 4-manifolds with sym-
plectic circle actions having fixed points up to equivariant diffeomorphism
(see Karshon’s classification [13] for equivariant symplectomorphism). But
the classification up to diffeomorphism of 4-manifolds that admit both a
symplectic form and a circle action with fixed points remained unknown.
We can settle this issue using the proof of Theorem 1.1 together with T.J.
Li’s analysis of symplectic manifolds with b+=1 [14]. We prove that such
manifolds are rational or ruled.

Theorem 1.4. Every 4-manifold that admits a symplectic form and that
admits a circle action with at least one fixed point is diffeomorphic to CP2,
an S2-bundle over a surface, or is obtained by a sequence of blowups from
CP2 or from an S2-bundle over a surface.

It is easy to put symplectic circle actions on rational or ruled surfaces.
This implies the next corollary and proves the conjecture below in the case
of circle actions with fixed points.

Corollary 1.5. Every 4-manifold that admits a symplectic form and that
admits a circle action with at least one fixed point also admits a symplectic
circle action (with respect to a possibly different symplectic form).

Taubes asked the following interesting and deep question in [21]: if Y 3×S1

is symplectic, does Y fiber over the circle? Partial positive results have been
posted in [6], [8]. One can ask a much more general question for any S1-
manifold (cf. [4]):

Conjecture 1.6. Every symplectic 4-manifold that admits a circle action
also admits (possibly a different) symplectic form and circle action that are
symplectic with respect to each other.

If the conjecture holds it effectively answers Taubes’ question. While the
full proof of this conjecture seems out of reach at the moment, Corollary 1.5
does lend support to the hypothesis that symplectic 4-manifolds with S1-
actions are very special.

2. Proofs

The theorem below proves both Theorem 1.1 and Theorem 1.4:

Theorem 2.1. Suppose X is a smooth, closed, oriented, 4-manifold with
b+(X) > 0 that admits a smooth S1-action with at least one fixed point.
Then X contains an essential embedded sphere of nonnegative self-inter-
section.
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If a 4-manifold X has an essential embedded sphere of nonnegative self-
intersection and b+(X)>1, the Seiberg–Witten invariant vanishes (see [11]),
proving Theorem 1.1. Likewise, the existence of such a sphere in a symplectic
4-manifold implies that the manifold is rational or ruled [14].

The proof of Theorem 2.1 requires Fintushel’s foundational work on 4-
manifolds with S1-actions [9], [10]. Every such 4-manifold π : X → Y has
a quotient 3-manifold Y together with the following data (altogether called
a legally weighted 3-manifold Y ):

(1) A finite collection of weighted arcs and circles in int Y .
(2) A finite set of isolated fixed points in int Y disjoint from the sets of

(1).
(3) A class (the “Euler class”) χ ∈ H1(Y, S) where S is the union of ∂Y ,

points of (2), and arcs of (1).
The endpoints of weighted arcs are fixed points and there may be a finite

set of fixed points in the interior of a weighted arc or circle. To each compo-
nent of an arc or circle that runs between two fixed points (without passing
through another fixed point) one assigns a weight that records the local
isotropy data of the circle action. If a weighted circle contains no fixed
points, it is called simply weighted; otherwise it is multiply weighted.

Each component of (1) and (2) has an associated index, which is simply
the Euler number of the principal S1-bundle over the boundary of a tubular
neighborhood of the component. Similarly, an index can be given to each
boundary component. The sum of the indices of all of the components is
zero [10, §9].

Fintushel used this weighted space to distinguish simply connected 4-
manifolds with circle actions [9], [10]. We will need this result also.

Theorem 2.2 (Fintushel). Let S1 act smoothly on a simply connected 4-
manifold X, and suppose the quotient space Y ' S3 is not a counterexample
to the 3-dimensional Poincaré conjecture. Then X is a connected sum of
copies of S4, CP2, CP2, and S2 × S2.

Proof of Theorem 2.1. Let X be a smooth, closed 4-manifold with a
smooth S1-action whose quotient is a legally weighted 3-manifold Y . First
we show how to reduce to the case where there are no multiply weighted
circles in Y .

Suppose Y contains a multiply weighted circle C with 3 or more fixed
points. Note that C could represent a nontrivial class in H1(Y ; Z) or be
embedded in Y nontrivially as in Figure 1.

In this situation X can be decomposed into an equivariant connect sum
of two 4-manifolds X = X0 # N1, both with circle actions. The weighted
orbit space of X0 is the same as before except the weighted circle C has
exactly two fixed points; the weighted orbit space of N1 is S3 with a trivially
embedded multiply weighted circle with the original weights (Figure 2).
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Figure 1. Example of a multiply weighted circle.
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Figure 2. Decomposing X into X0 # N1.

The equivariant connect sum in this example is performed by removing the
preimage of a D3 neighborhood of the fixed point between the weights (5, 2)
and (12, 5) from both X0 and N1 and then gluing equivariantly along the
S3 boundary.

If we repeat this for all multiply weighted circles in X with 3 or more
fixed points, we can decompose X into

X = X0 # N1 # N2 · · ·# Nk

and we can further assume each Ni decomposes into connect sums of CP2,
CP2, S2×S2, or S4 by Theorem 2.2. If any of the Ni’s have a CP2 or S2×S2

factor, then X has an essential embedded sphere of nonnegative square. So



6 SCOTT BALDRIDGE

we may assume that X decomposes into X0 #k CP2, where b+(X0) > 0 and
k ≥ 0. If there is an essential sphere of nonnegative square in X0, such a
sphere survives in any of its blowups. Hence it is enough to find a sphere of
nonnegative square in X0.

This leaves us with multiply weighted circles containing two fixed points
each. If these circles could be embedded in a 3-ball contained in X0, then
we could deal with them in a similar manner as we do with fixed points and
weighted arcs below. So while we have simplified multiply weighted circles
considerably, we have not addressed the issue that they might represent
nontrivial cycles in homology.

Fortunately we are in a situation where we can change the circle action on
X0 and obtain a new weighted orbit space — one without multiply weighted
circles. We briefly describe this trick from [19]. Let C be a multiply weighted
circle in the weighted orbit space of X0 and let α be an arc in C running from
one fixed point to the other. Let N be a tubular neighborhood of α. The
4-manifold with boundary whose weighted orbit space is N can be identified
with D2 × S2, with π−1(α) = pt× S2.

The manifold D2 × S2 has many other circle actions that restrict to the
same circle action on ∂(D2 × S2). In particular, there is a circle action on
D2×S2 with an isotropy group whose order is smaller than the order of the
original isotropy group along α. This new circle action depends upon the
isotropy data of α and the data from the other arc of C. Remove π−1(N)
from X0 and equivariantly glue D2 × S2 with this new circle action into
X0 \ π−1(N) instead. It can be shown that this changes the circle action
and the weighted orbit space, but not X0.

One can then do the same trick for the other arc of C and reduce the order
of its isotropy group without changing X0. We can repeat this procedure
several times, continually reducing the order of the isotropy groups. The
algorithm ends with a circle action on X0 whose weighted orbit space has
the same data as before except it has two isolated fixed points instead of C
or it has a 3-ball removed instead of C.

This algorithm can be carried out for each multiply weighted circle locally.
Hence X0 admits a different S1-action whose weighted orbit space is the
same as the original orbit space except that the weighted circles have been
replaced with isolated fixed points or it has had a few 3-balls removed.

Thus we can work with X0, rename it X, and assume it has only boundary
components, weighted arcs, isolated fixed points, or simply weighted circles.
If there are two or more boundary components in the quotient, the preimage
of an arc that runs from one boundary component to another boundary
component is an essential sphere of square zero; so we may reduce to the
case where Y has only one boundary component. This case can be eliminated
using a short argument in the lemma below.
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Therefore we need only consider an S1-manifold X with weighted arcs,
isolated fixed points, and simply weighted circles. Isotope the arcs and fixed
points into a smooth ball D3 ⊂ Y and enclose them by a sphere ∂D3 ⊂ Y .
Since the sum of the indices of the components is 0, the Euler class of the
preimage of the sphere in X is zero, i.e., we can realize X as the fiber sum
of two manifolds X1 and N by

X =
(
X1 \ (D3 × S1)

)
∪S2×S1

(
N \ (D3 × S1)

)
,

where the orbit space of N contains all of the weighted arcs and isolated
fixed points. The quotient of X1 contains no fixed points but it could still
have complicated topology. N is a simply connected 4-manifold with an
S1 action and quotient S3, so it is diffeomorphic to a connect sum of S4’s,
CP2’s, CP2’s, and S2 × S2’s by Theorem 2.2. We can in fact build N by
starting with a circle action on S4 with two fixed points and equivariantly
connect summing the other factors. This may be yet a different S1-action,
but the resulting manifold is still diffeomorphic to N . Since N is simply
connected, any two embedded circles are isotopic; hence the fiber sum of X1

with N along S2 × S1 using the new S1-action will still be diffeomorphic to
X. Once again we can eliminate all connect sum factors of N except for the
S4 we started with.

Thus we have reduced the problem to finding an essential sphere of non-
negative square in

X =
(
X1 \ (D3 × S1)

)
∪S2×S1

(
S4 \ (D3 × S1)

)
,

where the quotient of S4 has 2 fixed points. Note that X is a 4-manifold with
an S1-action, b+ > 0, and 2 isolated fixed points F ⊂ Y . Because the sum
of the indices is zero, one of the fixed points comes with a +1 index and the
other comes with a −1 index. In this situation, b+(X) > 0 forces b1(X) > 0
by the formula χ(F ) = χ(X) = 2−2b1(X)+ b2(X) derived from the Smith–
Gysin sequence. A calculation in homology shows that H1(X) ∼= H1(Y ),
implying b1(Y ) = b1(X) > 0. Hence H1(Y ; Z) in the long exact sequence of
the pair (Y, F ) is nonzero:

0 → H1(Y ; Z) → H1(Y, F ; Z) ∂→ H0(F ; Z) → H0(Y ; Z) → 0.

Since ∂χ = (1,−1) ∈ H0(F ; Z) = Z⊕Z there exists a 1-cycle in H1(X, F ; Z)
represented by a closed loop β that is not a multiple of the Euler class χ of
the action. The preimage π−1(β) is an essential torus of self-intersection 0.
Isotope β to the fixed point set such that β = β1 + β2, where β1 and β2

are arcs running from one fixed point to the other. The preimage of both
of these arcs is a sphere of self-intersection 0. Since the preimage of β is
essential, one of these spheres must be essential as Theorem 2.1 demands.

We finish the proof of Theorem 2.1 with the following lemma to cover the
case when there is one boundary component of fixed points.
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Lemma 2.3. Let X be a smooth, closed oriented b+>1 4-manifold with
a smooth circle action whose orbit space Y has weighted circles and arcs,
isolated fixed points, and one boundary component. Then there exists an
essential sphere of nonnegative square in X.

Proof. As before, we eliminate cases that have spheres of nonnegative square
by using techniques in the proof above. Thus we can assume that the quo-
tient space of X contains only simply weighted circles, n isolated fixed points
{x1, x2, . . . , xn} each with a +1 index, and one boundary component with
index −n. Denote the fixed point set by F .

A linearly independent subset of H2(X; Z) can be constructed as follows:
for i = 1 to n, let γi be an arc that runs from xi to a point on ∂Y such that
all arcs are mutually disjoint. The preimage π−1(γi) of each of these arcs
is an essential sphere Si representing a 2-cycle in H2(X; Z). These linearly
independent classes have an intersection matrix with respect to each other
given by

Si · Sj =

{
−1, i = j,

0, otherwise.
Because the intersection form of X is not negative definite, we must have
b2(X) > n. Let g be the genus of ∂Y . Using the fact χ(X) = χ(F ), we get

b1(X) = 1
2(b2(X)− n + 2g).

In particular, b1(Y ) > g because b1(Y ) = b1(X). The long exact sequence for
the pair (Y, F ) implies that there is a 1-cycle in H1(Y, F ; Z) represented by a
closed loop γ that is not a multiple of the Euler class χ. The preimage π−1(γ)
is an essential torus of self-intersection zero. The loop γ is homologous to
an arc that starts and ends on ∂Y but is otherwise disjoint from F ; and the
preimage of the arc is a sphere homologous to the torus. This is an essential
sphere of nonnegative square, proving Lemma 2.3. �
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