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We estimate the Hausdorff measure and dimension of Can-
tor sets in terms of a sequence given by the lengths of the
bounded complementary intervals. The results provide the
relation between the decay rate of this sequence and the di-
mension of the associated Cantor set.

It is well-known that not every Cantor set on the line is an
s-set for some 0 ≤ s ≤ 1. However, if the sequence associated
to the Cantor set C is nonincreasing, we show that C is an
h-set for some continuous, concave dimension function h. We
construct the function h from the sequence associated to the
set C.

1. Introduction

A Cantor set is a compact, perfect, totally disconnected subset of the real
line. In this article we will consider only Cantor sets of Lebesgue measure
zero. The complement of a Cantor set is a countable union of disjoint open
intervals. We will use the term gap for any bounded convex component of
the complement of a Cantor set.

Every Cantor set is completely determined by its gaps. Since the gaps
are disjoint, the sum of their lengths equals the diameter of the Cantor set.

There is a natural way to associate to each summable sequence of positive
numbers a unique Cantor set having gaps with lengths equal to the terms of
the sequence. In this correspondence the order of the sequence is important.
Different rearrangements can lead to different Cantor sets. Of course, if two
sequences lead to the same Cantor set, one is a rearrangement of the other.

In the first part of this paper we will concentrate on finding the Hausdorff
measure of a Cantor set in terms of the decay of the sequence of the lengths
of the gaps. In particular we will show that the Hausdorff dimension depends
totally on this behavior.

We establish an equivalence relation between sequences and show that
Cantor sets in the same equivalence class have the same dimension.

Since the Cantor set depends on the order of the sequence, one expects
that the dimension of the resulting set also depends on the order. This
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is true, and moreover, the arrangement of the sequence in monotone non-
increasing order yields the Cantor set with the largest dimension out of all
Cantor sets with the same set of gap lengths (see also [BT54]).

Let 0 ≤ s ≤ 1. An s-set is a set on the line of Hausdorff dimension s and
whose Hausdorff s-measure is finite and positive. Let h be a nondecreasing,
right-continuous function taking the value zero at the origin. The Hausdorff
h-measure Hh is defined in the same way as the Hausdorff s-measure but
replaces the function xs by h(x) (see [Rog98], [Hau19]):

Hh(A) = lim
δ→0

inf
{∑

h(diamEi) : Ei open,
⋃

Ei ⊃ A, diamEi ≤ δ
}
.(1)

A set A ⊂ R is an h-set if 0 < Hh(A) < +∞.
Given 0 ≤ s ≤ 1, it is not difficult to construct a Cantor set that is an

s-set. It is also known that not every Cantor set of dimension s is an s-set.
So should a set of dimension s but Hausdorff measure zero or infinity be
considered s-dimensional?

Hausdorff proposed the h-measure that bears his name to further the
investigation of non-s-sets. In this paper we prove that every Cantor set C
on the line associated to a sequence of nonincreasing positive real numbers
is an h-set for some continuous concave function h. We explicitly construct
h in terms of the sequence that defines the Cantor set. In other words, for
every sequence, the set with the largest Hausdorff dimension is also an h-set
for some appropriate function.

The study of Cantor sets through the decay of the complementary inter-
vals was initiated by Borel in 1948 [Bor49] and continued by Besicovitch
and Taylor in their seminal paper [BT54]. The present paper extends some
of their results.

Tricot [Tri81] and Falconer [Fal97] obtained results associating proper-
ties of the gaps of a Cantor set with its box dimension. (See also [Tri95]). In
[CMPS03] the particular case of the sequence xp was thoroughly analyzed.

Throughout the paper, we will use the notation dim A for the Hausdorff
dimension of a set A, since it is the only concept of dimension that we are
considering. The Hausdorff s-measure of a set A will be denoted by Hs(A).

2. Cantor sets associated to a sequence

We will now assign to each summable sequence of positive numbers a unique
Cantor set with gaps whose lengths correspond to the terms of this sequence.
Let a = {ak}, for k = 1, 2, . . . , be a sequence of positive real numbers such
that

∑
ak = Sa < ∞. Let I be an interval of length |I| = Sa. We first

remove from I an open interval of length a1, whose position will be clear
in a moment. We next remove from the left remaining interval an interval
of length a2 and from the right an interval of length a3. We continue in
this way, removing at the i-th step 2i−1 intervals from left to right. It is
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easy to see that we end up with a Cantor set, which we will call Ca. Since∑
ak = |I|, there is only one choice for the location of each interval to be

removed in the construction, and Ca is well-defined.
The gap of Ca associated with the term ak will be denoted gak

. If g and
g′ are gaps, we will say that g < g′ if all x ∈ g, y ∈ g′ satisfy x < y. Given
a sequence a and its associated Cantor set Ca, we define a cut of Ca to be a
partition of N = L ∪R such that

ga`
< gar for all ` ∈ L, r ∈ R.

We will allow L or R to be empty. The following lemma is an immediate
consequence of the definitions.

Lemma 1. Every point in Ca defines a cut and, conversely, every cut of
Ca defines a unique point of Ca.

Let Ca and Cb be Cantor sets associated to sequences a and b respectively.
As a result of the definition of Ca and Cb it is clear that, for any n, m ∈ N,

gan < gam implies gbn < gbm .

This implies that if (L,R) defines a cut of Ca, it also defines a cut of Cb.
If x ∈ Ca is defined by a cut (L,R), then x =

∑
n∈L |gan |.

3. Equivalences of Cantor sets

The previous considerations allow us to define a natural map πab from Ca

into Cb, assigning to the point x ∈ Ca the point y ∈ Cb defined by the same
cut associated to x, i.e., if La(x) = {n ∈ N : gan ⊂ [0, x]}, then

y = πab(x) =
∑

n∈La(x)

|gbn |.

Observe that y can be written also as

y =
∑

n∈Lb(y)

|gbn |, with Lb(y) = {n ∈ N : gbn ⊂ [0, y]}.

The map πab : Ca → Cb is one-to-one and onto. It can be extended
linearly to a one-to-one map from [0, Sa] into [0, Sb], by mapping the gap
gan linearly into the gap gbn .

Note that π is an increasing function, since given x, y ∈ Ca with x < y,
we have

πab(y)−πab(x) =
∑

n∈La(y)

bn−
∑

n∈La(x)

bn =
∑

n∈La(y)\La(x)

bn =
∑

{n : gan⊂[x,y]}

bn > 0.

Thus πab is increasing on Ca. This implies that πab is increasing on [0, Sa].
Since πab : [0, Sa] → [0, Sb] is onto, it must be continuous and consequently
π−1

ab : [0, Sb] → [0, Sa] is also continuous.
We have therefore proved the following proposition:
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Proposition 1. If Ca and Cb are the Cantor sets associated to arbitrary
sequences a and b, then the map πab : [0, Sa] → [0, Sb] is increasing, one to
one, onto and bicontinuous. Furthermore πab(Ca) = Cb.

Definition 1. We define an order relation ≺ between summable sequences
of positive terms as follows: if a and b are two such sequences, we set

a ≺ b if there exists k > 0 such that
an

bn
< k for all n ∈ N.

In this case we say that a is of lower order than b. If a ≺ b and b ≺ a we
say that a and b are of the same order and we write a ∼ b. Note that

a ∼ b ⇐⇒ k1 <
an

bn
< k2 for all n ∈ N,

for some constants k1, k2 > 0.

We will need the following result from [CMPS03]:

Proposition 2. Let a = {ak}k∈N be defined by ak =
(

1
k

)p, with p > 1.
Then dim(Ca) = 1/p, and moreover, Ca is a (1/p)-set; precisely,

1
8

(
2p

2p − 2

)1/p

≤ H1/p(Ca) ≤
(

1
p− 1

)1/p

.

The following notation is convenient in the proofs below.

Notation 1. We write λ(p) for the sequence whose n-th term is n−p.

Theorem 1. Let Ca and Cb be Cantor sets associated to the sequences a
and b.

(1) If a ≺ b then dim(Ca) ≤ dim(Cb); thus dim(Ca) = dim(Cb) if a ∼ b.
(2) There exist sequences a = {an} and b = {bn} such that

lim inf
an

bn
= 0 and dim(Ca) = dim(Cb).

Proof of theorem. For part (1), if a ≺ b, we will show that the map πba

defined above is Lipschitz. Given x, y ∈ Cb with x < y, we have

πba(y)− πba(x) =
∑

{n : gbn⊂[x,y]}

an ≤ k
∑

{n : gbn⊂[x,y]}

bn = k(y − x).

Then dim(Ca) = dim(πba(Cb)). By an elementary property of Hausdorff
dimension we obtain dim(πab(Cb)) ≤ dim(Cb), proving (1).

For part (2), consider a sequence a = {an} such that for some fixed p > 1

lim
n→∞

an

n−p
= 0 and lim

n→∞

n−q

an
= 0, for all q > p.

The maps πλ(p)a : Cλ(p) → Ca and πaλ(q) : Ca → Cλ(q) are Lipschitz, as can
be seen by means of an argument similar to that of part (1). This implies
that q− 1 ≤ dim(Ca) ≤ p− 1 for all q > p. Then dim(Ca) = 1/p. �
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4. Computation of Hausdorff dimensions

In this section we define some indices associated with a summable sequence.
These numbers can be considered as a measure of the decay rate of the
sequence. We then compare their values with the dimension of the associated
Cantor set.

For a sequence a = {an}, define

β(a) = inf {s : 0 < s, a ≺ λ(1/s)},

γ(a) = sup {s : 0 < s, λ(1/s) ≺ a},
δ(a) = inf

{
s : 0 < s ≤ 1,

∑
n as

n < ∞
}
.

Of these constants, only δ is invariant under rearrangements; β and γ are
not. Since we know that for the sequence λ(p) rearrangements can indeed
change the dimension (see [CMPS03]), we have to discard the intuition
that δ(a) = dim(Ca).

A historical survey of various indices associated with the decay of gaps
(when an decreases) and the box dimension is given by Tricot in [Tri81],
together with more complete results. In particular he shows that

γ(a) = lim
−log n

log an
and β(a) = lim

−log n

log an
,

and if a = {an} is monotonic decreasing, then δ(a) = β(a).

Proposition 3. Let a be a summable sequence of positive terms.
(1) γ(a) ≤ dim(Ca) ≤ β(a).
(2) γ(a) ≤ δ(a) ≤ β(a).

Proof. Part (1) is a consequence of Theorem 1 and the definition of γ(a)
and β(a).

For part (2), choose s > 0 such that a ≺ λ(1/s), which is to say

an ≤
c

n1/s
for some c > 0 and every n.

Then, for some other constant c′,

as+ε
n ≤ c′

n(s+ε)/s
for every n,

which implies that s+ ε ≥ δ(a) for all ε > 0; thus δ(a) ≤ β(a). Furthermore,
for each ε ≥ 0 we have

c n
− 1

γ(a)−ε ≤ an for some c and every n,

and so ∑
n

aγ(a)−ε
n = +∞,
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which implies that δ(a) ≥ γ(a) − ε. Since ε is arbitrary, we conclude that
δ(a) ≥ γ(a). �

A consequence of the proposition and Tricot’s result is that if a is a
monotone nonincreasing summable sequence of positive terms and ã is any
rearrangement of a then β(a) = δ(a) = δ(ã) ≤ β(ã).

Another immediate consequence of the definition of γ(a) and β(a) is:

Property. Let a be a summable sequence of positive terms. If 0 < b < β(a)
then lim n→∞n1/ban = +∞, and if γ(a) ≤ b then lim n→∞n1/ban = 0.

This tells us that if we take a rearrangement ã of a monotone nonin-
creasing sequence a such that β(a) 6= β(ã) (so that β(a) < β(ã)), then
lim n→∞n1/β(a)ãn = +∞. Therefore, if ã is a rearrangement of a monotonic
nonincreasing sequence a, then dim(Cea) ≤ β(a) < β(ã).
4.1. Monotone nonincreasing sequences. For a nonincreasing sequence
a, we already know that δ(a) = β(a). In addition, by Proposition 3, we know
that γ(a) ≤ dim(Ca) ≤ β(a). Therefore, if lim(log an / log n) = `, we have
dim(Ca) = −1/`.

This result extends the result of Falconer [Fal97, p. 55]. Moreover, that
author shows that if that limit does not exist then the upper and lower
box-dimensions disagree.

In this case, however, we still want to determine the dimension of Ca. To
this end, we introduce two new constants associated to the sequence a. Set
rn =

∑
j≥n aj . Using an argument analogous to the one used in [CMPS03],

one can see that the s-Hausdorff measure of Ca is bounded by

Hs(Ca) ≤ c lim n
(rn

n

)s
.

We therefore define two constants associated to the sequence a:

τ(a) = inf
{

s > 0 : lim n
(rn

n

)s
< +∞

}
,

α(a) = lim αn, where n
(rn

n

)αn

= 1.

Note. The constant α associated to a monotone sequence a was introduced
in [BT54]. The authors show that dim(Cea) ≤ α(a), where ã is any re-
arrangement of a.

It is interesting to remark that lim αn was introduced already in 1948 by
Emil Borel with the name of logarithmic density.

From results in the seminal paper by Besicovitch and Taylor [BT54], one
can conclude that dim(Ca) = α(a) for a monotonic nonincreasing sequence
(see [CHM03]), and that for each t and β with 0 ≤ t ≤ β there is a
monotone nonincreasing sequence a = {an} such that β(a) = β and α(a) =
t. Our next proposition, however, expresses the surprising result that if γ(a)
is strictly smaller than β(a), then α(a) has a smaller than expected bound.
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Proposition 4. With notation as above, for a nonincreasing sequence a,

α(a) = τ(a) and α(a) ≤ γ(a)
1− β(a) + γ(a)

.

Proof. We first show that α(a) ≤ τ(a). Let s > 0 be such that lim n
(

rn
n

)s
<

+∞. Then

n
(rn

n

)s
= n

(rn

n

)αn
(rn

n

)s−αn

=
(rn

n

)s−αn

.

So lim
(

rn
n

)s−αn < +∞. Since lim
(

rn
n

)−1/k = +∞ for each fixed k > 0,
there must exist a subsequence αnk

such that αnk
< s + 1/k for all k. We

have α(a) = lim nαn ≤ lim αnk
≤ s, and therefore α(a) ≤ τ(a).

For the converse, τ(a) ≤ α(a), assume that α(a) < τ(a), and consider s
such that α(a) < s < τ(a). Let {ank

} be such that limk ank
= α(a) and

ank
< s for all k. Then

+∞ = lim nn
(rn

n

)s
= lim knk

(rnk

nk

)s
= lim k

(rnk

nk

)s−αnk = 0

(since s − αnk
> c > 0 for some c and for all k). This contradiction shows

that α(a) = τ(a).
For the other inequality, note that if γ(a) = β(a), then

γ(a)
1− β(a) + γ(a)

= γ(a)

and there is nothing to prove. However, if γ(a) < β(a), then
γ(a)

1− (β(a)− γ(a))
< β(a).

To show that α(a) satisfies the desired inequality, we prove

α(a) ≤ γ(a) + ε

1− (β(a)− γ(a)− ε)
for each ε > 0.

To this end, we will show that for each ε > 0, there is a subsequence {ank
}k

of {an}n for which rnk
is at most O

(
n
− 1−β(a)

(γ(a)+ε)

k

)
.

Fix β(a)− γ(a) ≥ ε > 0, and set γε = γ(a) + ε. We see immediately from
the definition of γ(a) that there is a subsequence nk such that ank

≤ n
−1/γε
k .

This is the subsequence that we desire.
Since an is monotone, we can estimate rnk

from above. Fix nk. Define a
new sequence {bn}n in the following way:

bj =


aj for j ≤ nk,

n
−1/γε
k for nk ≤ j < dnβ(a)/γε

k e,

j−1/β(a) for all larger j.
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Here as usual dxe stands for the smallest integer that is larger or equal than
x. So we have that aj ≤ bj for all j, and therefore

∑
j≥nk

aj ≤
∑

j≥nk
bj .

We can estimate that⌈
n

β/γε
k

⌉∑
j=nk

bj =

⌈
n

β(a)/γε
k

⌉
− nk

n
1/γε
k

∼ n
(β(a)−1)/γε
k for k large enough,

and, using an integral comparison, we see that∑
j≥dnβ(a)/γε

k e

bj = C
(
n

β(a)/γε
k

)(β(a)−1)/β(a)
.

Since both of these terms are O(n(β(a)−1)/γε
k ), we have

α(a) ≤ γ(a) + ε

1− (β(a)− γ(a)− ε)
for every ε. �

In [Tri95] it is proved that

β(a) = lim − log n

log an
= lim αn.

Proposition 4 shows this is false, in general, for the lim . Moreover, we know
that there are no sequences a, with γ(a) < β(a) and

γ(a)
1− β(a) + γ(a)

< dim(Ca) ≤ β(a).

So the question now is whether there exists a sequence a such that

γ(a) ≤ dim(Ca) ≤
γ(a)

1− β(a) + γ(a)
.

The next proposition answers this question completely and emphasizes the
asymmetry between the lim and the lim .

Proposition 5. Let 0 < γ ≤ β ≤ 1 be given. For any number t such that
γ ≤ t ≤ γ/(1− β + γ), there is a monotonic nonincreasing sequence a such
that dim(Ca) = t and

γ(a) = γ and β(a) = β. (∗)

Proof. Let 0 ≤ s ≤ 1, and define

f(s) =
γ(1− sβ)

1− β + γ(1− s)
.

For each s we construct a monotonic nonincreasing sequence a(s) satisfying
dim(Ca(s)) = f(s), γ(a(s)) = γ, and β(a(s)) = β. Since f is decreasing,
f(0) = γ

1−β+γ and f(1) = γ, there exists for any t ∈
[
γ, γ

1−β+γ

]
an st so that

dim(Ca(st)) = t.
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To construct such a sequence, let

R =
1− γs

1− βs

β

γ

and define pn = 2Rn
, for n = 0, 1, 2, . . . . Define the sequence a(s) = {an} as

follows: a0 = a1 = 1 and

aj = (pn)−(1−sγ)/γj−s when pn ≤ j < pn+1.

Notice that apn = p
−1/γ
n and

a(pn+1−1) = p−(1−sγ)/γ
n (pR

n − 1)−s ∼ p
−1/β
n+1 .

Furthermore, n−1/γ ≤ an ≤ n−1/β . Hence γ(a(s)) = γ and β(a(s)) = β, so a

satisfies the desired conditions. In addition a(s) satisfies

α(a(s)) =
γ(1− s)

(1− β) + γ(1− s)
= f(s).

To show this, we estimate rpn . We see that

rpn =
∑

pn≤j<pn+1

aj +
∑

j≥pn+1

aj ∼ Cp
− 1−sγ

1−sβ
1−β

γ
n ,(2)

so that

α(a(s)) ≤ γ(1− sβ)
(1− β) + γ(1− s)

.

To see the other inequality observe that for i ∈ N with pn < i < pn+1, we
have

αi =
ln(1/i)
ln(ri/i)

≥ ln(1/pn)
ln(rpn/pn) = αpn

.

This estimate is obtained by noting that if τ is such that i = pτ
n (1 < τ < R),

then

ri ≈ p
− 1−sγ

γ
n

(
pR(1−s)

n − pτ(1−s)
n

)
+ p

R2(1−s)−R
γ

n ,

and since 1 < τ < R, by (2) asymptotically we have that ri/rpn → 1.
Thus, for large enough values, we know that 1 < ln ri/ ln rpn < τ , which is
equivalent to the desired inequality. Therefore dim(Ca(s)) = f(s). �

We summarize in the next theorem the main results of this section.

Theorem 2. Let a = {an > 0} be a summable sequence.

(1) 0 ≤ γ(a) ≤ dim(Ca) ≤ α(a) ≤ γ(a)
1− β(a) + γ(a)

≤ β(a). In particular,

when the sequence a is nonincreasing we have dim(Ca) = α(a).
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(2) Given numbers α, β and γ with

0 ≤ γ ≤ α ≤ γ

1− β + γ
≤ β ≤ 1,

there exists a summable sequence a (which can be chosen to be non-
increasing) such that γ(a) = γ, α(a) = α and β(a) = β.

Given a nonincreasing sequence a it could happen that the α(a)-Hausdorff
measure of the associated Cantor set Ca is zero or infinite. In the next section
we will see that we can still say something in this case.

5. Dimension function

To analyze this situation it will be useful to refine the notion of dimension,
in the spirit of Hausdorff’s original work. Throughout this section we fix
a monotonic nonincreasing sequence a = {ak} of positive terms such that∑

ak = 1.
We associate to a another nonincreasing sequence:

b = {bn} with bn =
rn

n
, where rn =

∞∑
j=n

aj as before.

Fix a decreasing function f : [1,+∞) → R such that f(k) = bk, for example

f(x) = bk(k + 1− x) + bk+1(x− k), x ∈ [k, k + 1).

Then define

h(t) =

{
1/f−1(t), t ∈ (0, b1],
0, t = 0.

Then h is a nondecreasing, concave function and h(bk) = 1/k. This function
will be useful for determining the dimension of the Cantor set Ca.

We will need some auxiliary results and (more!) notation.
Let W denote the set of binary words of finite length:

W = {e} ∪ {w1 · · ·wr : wi ∈ {0, 1}, r ∈ N} ,

where e denotes the empty word. If w,w′ ∈ W let ww′ be the concatenation
of w and w′, and |w| the length w, with |e| = 0. Let W ∗ denote the set of
words of positive length. Given w, either an infinite binary word or a finite
binary word of length at least k, we will denote by w(k) the truncation
w1 · · ·wk.

It is convenient to use the elements of W to describe the intervals of our
Cantor set Ca. Let Ie denote the initial interval. (Ie = I0

0 ). If w ∈ W ,
|w| = k and Iw is an interval of step k in the construction, denote by Iw0

and Iw1 the left and right intervals obtained by removing the open interval
from Iw.
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In this way, if Iw is an interval of step |w|, with

Iw = I
|w|P|w|

j=1 wj2k−j
,

and if w′ ∈ W , we see that Iww′ is an interval of step |ww′|, which we say is
related to Iw.

It is worthwhile to note at this stage that in the case of a monotonic non-
increasing sequence, the lengths of Iw also form a nonincreasing sequence.

For the sequence bn defined on the previous page we will now denote by bw

the element of the sequence corresponding to b`, with ` = 2k +
∑k

j=1 wj2k−j

and k = |w|.
In particular,

if bw = b2k+l then bww′ = b2k′ (2k+l)+s,(3)

where l =
∑k

j=1 wj2k−j with k = |w| and s =
∑k′

j=1 w′
j2

k′−j with k′ = |w′|.

Lemma 2. With the above notation, for every k ≥ 1, and w, w̃ of length k,
and any w′,

1
2

h(bww′)
h(bw)

≤ h(b eww′)
h(b ew)

≤ 2
h(bww′)
h(bw)

.

In particular, for any w′ we have h(bww′) ≤ 4 h(bw).

Proof. Recall that h(b`) = 1/` and let k′ = |w′|. Define

l =
k∑

j=0

wj2k−j , r =
k∑

j=0

w̃j2k−j and s =
k′∑

j=0

w′
j2

k′−j .

Then, by (3),

h(bww′)
h(bw)

=
2k + l

2k′(2k + l) + s
and

h(b eww′)
h(b ew)

=
2k + r

2k′(2k + r) + s
.

Now noting that
1
2
≤ 2k + r

2k + l
≤ 2,

we obtain the desired result.
For the second inequality just note that h is nondecreasing and therefore

the right-hand side is less or equal than 2 for any w′. �

These bounds of the ratios of h(bk) will be useful for defining a measure
on Ca. Since the construction of this Cantor set relies on the size of the
gaps, it will be useful to define a measure depending on the size of the gaps.

Proposition 6. There exists a probability measure µh supported on Ca such
that, for every k ≥ 1 and 0 ≤ ` ≤ 2k − 1,

1
4 h(b2k+`) ≤ µh(Ik

` ) ≤ 2 h(b2k+`).(4)
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Proof. For m ≥ 1 consider the probability measure µm supported on the
intervals Im

` of level m and such that

µm(Im
t ) =

h(b2m+t)∑2m−1
j=0 h(b2m+j)

.

If k ≤ m and w = w1 . . . wk is such that
∑k

j=0 wj2k−j = t, we have

µm(Ik
t ) = µm(Iw) =

∑
|w′|=m−k

µm(Iww′),

and hence ( 2m−1∑
j=0

h(b2m+j)
)

µm(Ik
t ) =

∑
|w′|=m−k

h(bww′).(5)

But by the bounds found in Lemma 2,

h(bww′) ≤ 2 h(bw)
h(b eww′)
h(b ew)

, for all w̃ such that |w̃| = |w| = k.

Hence, recalling the definition of w, we obtain (from (5)), that for all w̃ such
that |w̃| = k,(

h(b ew)
2m−1∑
j=0

h(b2m+j)
)

µm(Ik
t ) ≤ 2 h(bw)

∑
|w′|=m−k

h(b eww′),

and therefore( ∑
| ew|=k

h(b ew)
2m−1∑
j=0

h(b2m+j)

)
µm(Ik

t ) ≤ 2 h(bw)

( ∑
| ew|=k

∑
|w′|=m−k

h(b eww′)

)

= 2 h(bw)
2m−1∑
j=0

h(b2m+j),

which yields

µm(Ik
` ) ≤ 2

h(b2k+`)∑2k−1
j=0 h(b2k+j)

, k ≤ m.

But noting that

1
2
≤

2m−1∑
j=0

h(b2m+j) ≤ 1

and using the other inequality of Lemma 2, we finally obtain
1
2 h(b2k+`) ≤ µm(Ik

` ) ≤ 4 h(b2k+`) for every 1 ≤ k ≤ m, 0 ≤ ` ≤ 2k − 1.
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Now let µh be the weak∗-limit of µm. then (see for example [Mat95]) for
every 1 ≤ k, 0 ≤ ` ≤ 2k − 1,

1
2 h(b2k+`) ≤ µh(Ik

` ) ≤ 4 h(b2k+`). �

We are now ready to prove our main result. Recall that an h-set was
defined in Equation (1) of the introduction.

Theorem 3. Let a = {ak} be a nonincreasing sequence of positive terms
such that

∑
ak = 1 and Ca the associated Cantor set. Then Ca is an h-set.

Moreover
1
32 ≤ Hh(Ca) ≤ 1,

where Hh is the Hausdorff measure associated to h, and h is the dimension
function defined on page 54.

Proof. For the upper bound, fix δ > 0 and let n0 be such that n ≥ n0,
rn =

∑
j≥n aj < δ. Then the intervals E1, . . . , En remaining after the gaps

associated to a1, . . . , an−1 are removed form a δ-covering of Ca, and since h
is concave, we have

n∑
i=1

h(|Ei|) ≤ nh

(
|E1|+ · · ·+ |En|

n

)
= nh

(rn

n

)
= 1.

Therefore Hh(Ca) ≤ 1.
For the lower bound, the idea is to try to use the measure µh and apply

a generalized version of the mass transfer principle. To this end, let U be
any open set with diam(U) = ρ < 1. Let k ≥ 1 and 0 ≤ ` ≤ 2k − 2 be
such that b2k+`+1 ≤ ρ < b2k+` (the case b2k+1 ≤ ρ < b2k+1−1 will be
considered separately). Then, because the lengths of the intervals Ik

l form
a nonincreasing sequence,

ρ < b2k =
|Ik

0 |+ · · ·+ |Ik
2k−1

|
2k

< |Ik
0 |.

Then U can intersect at most two consecutive intervals of step k−1. Hence,
for all positive t ≤ 2k − 2,

µh(U) ≤ (µh(Ik−1
t ) + µh(Ik−1

t )),

≤ 2h(b2k−1+t) + 2h(b2k−1+t) by Proposition 6

≤ 8h(b2k−1) ≤ 32 h(b2k+`+1) by Lemma 2.

Since h is nondecreasing, µh(U) ≤32h(b2k+`+1) ≤32h(diam(U)).
Now assume ρ satisfies b2k+1 ≤ ρ < b2k+1−1. Since ρ < b2k , we still have

µh(U) ≤ 8 h(b2k−1) = 8
1

2k−1
= 32

1
2k+1

= 32h(b2k+1),

and so again, µh(U) ≤ 32 h(diam(U)).
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Therefore, if {Uk} is a δ-covering of Ca, we have∑
k

h(diam(Uk)) ≥
1
32

∑
k

µh(Uk) ≥
1
32

µh(Ca).

Since this is true for every δ-covering, we obtain

Hh
δ (Ca) ≥

1
32

µh(Ca),

and therefore Hh(Ca) ≥ 1
32 . �

One can also establish a certain equivalence relation among dimension
functions: h ≡ g if there exist constants c1 and c2 such that

c1 ≤ lim x→0+
h(x)
g(x)

≤ lim x→0+
h(x)
g(x)

≤ c2.

The following result relates the function h to α(a).

Proposition 7. If a ∼ n−1/s then h ≡ xs.

Proof. Since a ∼ n−1/s, we have γ(a) = β(a) = s, and hence there exist
c > 0 and d > 0 such that

cn−1/s ≤ an ≤ dn−1/s,

and therefore
Cn−1/s ≤ rn

n
≤ Dn−1/s.

Hence

0 < c1 ≤ lim x→0+
h(x)
xs

≤ lim x→0+
h(x)
xs

≤ c2 < +∞. �
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