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We present estimates of the transition densities for sta-
ble processes on Riemannian symmetric spaces of noncompact
type. We show that these processes have a weak scaling prop-
erty and we address in this way a question of Getoor about
the stability properties of pseudostable measures on symmet-
ric spaces.

1. Introduction

Stable Lévy processes on a group, where stability is meant with respect to
group automorphisms, can only exist on nilpotent groups (see [Ku], [App1],
[App2]). In [Ge], using a subordination procedure, Getoor defined stable
processes with respect to Brownian motion on hyperbolic spaces of noncom-
pact type. He asked whether stability properties of such a process and its
semigroup can be found. In this paper we answer this question positively
(see Theorem 4.3 and Remark 1 thereafter), proving a weak scaling property
of the transition densities of the stable process in the sense of Getoor. We
also solve in this way, in the case of symmetric spaces, Open Problem 4
from [App2]. The main results of our paper are given in Theorem 4.3 and
Corollaries 5.3 and 5.6.

2. Preliminaries

Let G denote a noncompact semisimple Lie group, K a maximal compact
subgroup, and X = G/K the associated Riemannian symmetric space with
nonpositive curvature. We adopt the notation and conventions from [AJ].
In particular, if a is the Cartan space and λ ∈ a, then we denote by φλ the
spherical functions on X.

It is well-known that the heat kernel on X = G/K is given by

ht(x) = C

∫
a

dλ

|c(λ)|2
e−t(|λ|2+|ρ|2)φλ(x)

where C = C(X) is a constant, c(λ) is the c-function appearing in the inverse
spherical Fourier transform formula and ρ = 1

2

∑
α>0 mαα is the half-sum

of the positive roots with multiplicities mα.
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We set n = dimX, m =
∑

α>0 mα, and we denote by Σ++ the set of
positive indivisible roots and by a+ ⊂ a the positive Weyl chamber. We
have global estimates:

Theorem 2.1 ([AJ], Theorem 3.7). Let k > 0. Then

ht(expH) � t−
n
2 (1+ t)

m
2
−|Σ++|

( ∏
α∈Σ++

(1+〈α,H〉)
)
e−|ρ|

2t−〈ρ,H〉− |H|2
4t ,(1)

provided |H| < k(1 + t), H ∈ a+.

Observe that
(∏

α∈Σ++(1 + 〈α,H〉)
)
e−〈ρ,H〉 � φ0(expH) when H ∈ a+.

Thus for any x ∈ X we have

ht(x) � t−
n
2 (1 + t)

m
2
−|Σ++|φ0(x) e−|ρ|

2t− |x|2
4t ,(2)

where |x| = d(x0, x), the Riemannian distance between x ∈ X and x0 = eK.
From the probabilistic point of view, the ht(x) are the densities of the

Brownian motion on X = G/K. If (Xt) is the corresponding diffusion on
G with stationary independent (left) increments and the distribution of X0

given by the Haar measure on K then its transition function is

Pt(x, y) = ht(x−1y), x, y ∈ G.
Convention: by c without subscripts we denote a positive constant that

may vary from term to term, but otherwise depends only on the underlying
space and α (see below).

3. Stable semigroups

In the sequel we understand the objects under discussion (processes, tran-
sition probabilities, etc.) equivalently on the symmetric space X = G/K or
on the group G, without changing notation.

Let α ∈ (0, 2). The α-stable process on a symmetric space X with tran-
sition densities Pt(x, y) = pt(x−1y) was defined by Getoor ([Ge]) by means
of a subordination procedure. In particular,

pt(x) =
∫ ∞

0
hu(x)ηt(u) du,(3)

where ηt is the density of the α/2-stable subordinator (cf. also [Be]).
In [AJ] estimates for pt when α = 1 were given. In [Gruet] estimates for

pt(x) when t→∞ were given in the rank-one case. In this paper we obtain
estimates for pt(x) with respect to both variables x, t for any α ∈ (0, 2) on
all Riemannian symmetric spaces of noncompact type.

It is well-known that the symmetric stable densities on Euclidean spaces
cannot be written explicitly, except for α = 1. We now recall the exact esti-
mates of the densities ηt(u), which will be crucial for our estimates of pt(x).
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By Theorem 37.1 of [D],

lim
u→∞

η1(u)u1+α/2 =
α

2Γ(1− α
2 )
.(4)

This, together with the boundedness of η1(·) and the scaling property

ηt(u) = t−2/αη1(t−2/αu), t, u > 0,(5)

gives

ηt(u) ≤ ctu−1−α/2, t, u > 0,(6)

ηt(u) ≥ c̃tu−1−α/2, t > 0, u > t2/α.(7)

Moreover, by [H] and (5) we know that

ηt(u) � t
1

2−αu−
4−α
4−2α e−c1t

2
2−α u

− α
2−α

, t−2/αu ∈ (0, 1),(8)

where c1 = c1(α) = 2−α
2 (α

2 )
α

2−α . Observe that for u > t2/α we have

exp(−c1t
2

2−αu−
α

2−α ) ≥ exp(−c1),
so that (6) and (7) give

ηt(u) � tu−1−α/2e−c1t
2

2−α u
− α

2−α
, t−2/αu > 1,(9)

which of course simplifies to ηt(u) � tu−1−α/2, but we want to make the
estimates (8) and (9) as similar as possible.

Consider now the case of an n-dimensional Riemannian symmetric space
X = G/K when G is a complex Lie group. We have then

hu(x) = φ0(x)(4πu)−n/2 e−
|x|2
4u

−|ρ|2u

and hu(expH) is a probability density with respect to the polar coordi-
nate Jacobian J(H) dH =vol(K/M)

∏
α∈Σ+ sinhmα α(H) dH. Thanks to

this explicit formula for hu we are able to compute the 1-stable density in
the complex case, in terms of the modified Bessel function of the third kind
(or the MacDonald function) Kν(x).

Proposition 3.1. If G is a complex Lie group and α = 1 then

pt(x) = 2
(

2π
|ρ|

)−n+1
2

tφ0(x)(|x|2 + t2)−
n+1

4 Kn+1
2

(
|ρ|
√
|x|2 + t2

)
.

Proof. For α = 1 we have ηt(u) = t
2
√

π
u−3/2 exp(− t2

4u). By using the sub-
ordination formula and an integral representation for MacDonald function
[GR], p. 907, (8.432.6),

Kν(z) =
1
2

(z
2

)ν
∫ ∞

0
e−t− z2

4t t−ν−1dt,

we get the desired assertion. �
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4. Estimates of pt(x)

By (8) and (9) we have

pt(x) � t
1

2−α

∫ t2/α

0
hu(x)u−

4−α
4−2α e−c1t

2
2−α u

− α
2−α

du(10)

+ t

∫ ∞

t2/α

hu(x)u−1−α/2e−c1t
2

2−α u
− α

2−α
du.

As in [AJ] we will see that the main contribution in (10) will come from the
interval where

u ∼ u0 = u0(x, t)

with u0 minimizing the function

f(u) =
|x|2

4u
+ |ρ|2u+ c1t

2
2−αu−

α
2−α .(11)

The exponent equal to −f is then maximal in the exponential appearing
in (10), if we replace hu(x) by its estimate given in Theorem 2.1. More
precisely, when |x| < k(1 + u) and u > δ > 0 with δ fixed, we have

hu(x) ηt(u) � φ0(x)G(t, u)e−
|x|2
4u

−|ρ|2u−c1t
2

2−α u
− α

2−α
,(12)

where

G(t, u) =

{
t

1
2−αu−r(α), u 6 t2/α,

tu−s(α), u > t2/α,

with r(α) = l
2 + |Σ++|+ 4−α

4−2α and s(α) = l
2 + |Σ++|+1+ α

2 , where l = dim a

is the rank of X (we have used l = n−m).
Since

f ′(u) = −|x|
2

4u2
+ |ρ|2 − c1α

2− α

t
2

2−α

u
2

2−α

,

we get

|ρ|2u2
0 =

|x|2

4
+

c1α

2− α
t

2
2−αu

2(1−α)
2−α

0 ,(13)

or, in more convenient form,

|ρ|2 =
1
4

(
|x|
u0

)2

+ c2

(
t

u0

) 2
2−α

,(14)

with c2 = c1α/(2− α).

Remark. Equation (13) can be solved explicitly as a (bi)quadratic equation
for 2(1−α)

2−α = −2, 0, 1, 2, 4, corresponding respectively to α = 3
2 , 1, 0, ∅, 3, so

only for α = 3
2 or 1. In the case α = 1 we obtain |ρ|2u2

0 = |x|2
4 + c1t

2 =
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|x|2+t2

4 and u0 =
√
|x|2 + t2/2|ρ| as in [AJ]. In the case α = 3

2 we obtain a
biquadratic equation and

u0 =
1

|ρ|
√

2

(
|x|2

4
+

√
|x|4
16

+ 4c2t4|ρ|2
)1

2

.

Equation (13) may be solved explicitly for some other particular values of α
(see the following lemma). For a generic α ∈ (0, 2) the function u0 is given
only implicitly by (13).

Lemma 4.1. For α = 4/3 and t > c3|x| with c3 =
1√

3(4c2|ρ|)1/3
, we have

u0 =
1

3
√

2|ρ|2

((
c2t

3 −

√
c22t

6 − |x|6
432|ρ|2

)1
3

+
(
c2t

3 +

√
c22t

6 − |x|6
432|ρ|2

)1
3

)
.

Proof. If α = 4
3 then (13) becomes by rearrangement an equation of degree

3 with respect to u0. It can be solved explicitly by Cardano formulas. How-
ever, a reasonable expression occurs only when the determinant is positive.
This is ensured by the second condition in the hypothesis. �

Lemma 4.2. For each x and t there exists exactly one solution u0(x, t) of
(13) and (14). We have u0 � |x| + t. The functions (H, t) → u0(expH, t)
and (H, t) → f(u0(expH, t)) are homogeneous of degree 1.

Proof. From (14) we have (|x|/u0)2 < 4|ρ|2 and (t/u0)2/(2−α) < c−1
2 |ρ|2,

so that u0 > |x|/(2|ρ|) and u0 > tc
(2−α)/2
2 |ρ|−(2−α), which gives the lower

bound. On the other hand, for any constant A > 1 we have

1
4

(
|x|

A(|x|+ t)

)2

+ c2

(
t

A(|x|+ t)

) 2
2−α

≤ 1
4A2

+ c2

(
1
A

) 2
2−α

,

which is less than |ρ|2 for A sufficiently large. Since the right-hand side
of (14) is decreasing in u0, it follows that u0 ≤ A(|x| + t). By a similar
argument the solution of (14) exists and is unique.

Write u0(H, t) = u0(expH, t). If u0 = u0(H, t) is a solution of (14) then
for a > 0 the solution of (14) for aH and at is au0, so au0 = u0(aH, at).
Thus u0(H, t) is 1-homogeneous. The homogeneity of f(u0) is now evident
by (11). �

We now give the exact bounds of the α-stable density pt(x) in terms of u0.

Theorem 4.3.

pt(x) �


t(t1/α + |x|)−n−α if t+ |x| 6 1,

φ0(x)t
1

2−α (|x|+ t)−r(α)+ 1
2 e−f(u0) if t+ |x| > 1 and u0 6 t2/α,

φ0(x)t(|x|+ t)−s(α)+ 1
2 e−f(u0) if t+ |x| > 1 and u0 > t2/α,
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with r(α) = l
2 + |Σ++|+ 4−α

4−2α , s(α) = l
2 + |Σ++|+1+ α

2 , u0 = u0(x, t) given
implicitly by (13) and the function f defined in (11).

Remark 1. Theorem 4.3 gives a weak scaling property for stable densities
on symmetric spaces (the possibility of recovering, at least asymptotically,
the density pt(x) if p1(x) is known).

More precisely, when t+ |x| 6 1, then pt(expH) � t−n/α p1(exp(t−1/αH))
(in the Euclidean case we have equality).

When t + |x| > 1, it is not the function pt(x) itself but the function
φ0(x)−1pt(x) that has a weak scaling property (the role of the function φ0

may be explained as the influence of the non-Euclidean structure of X). It
is clear that the factors t

1
2−α (|H| + t)−r(α)+ 1

2 and t (|H| + t)−s(α)+ 1
2 of the

bounds of the function φ0(x)−1pt(expH) may be obtained from the factors
(|H|+1)−r(α)+ 1

2 and (|H|+1)−s(α)+ 1
2 of the bounds of φ0(x)−1p1(expH) by

transformations of the form H 7→ tβ p1(exp(t−1H)), with a convenient value
of β. The same is true for the function f(u0) since, by the 1-homogeneity
of f(u0), we have tf(u0(exp(t−1H, 1) = f(u0(expH, t)).

On structures different from R stable measures defined by subordination
may preserve such a weaker scaling property (cf. [BSS] for fractals). We
answer in this way a question raised by Getoor in [Ge] about looking for
“stability” properties of the densities pt.

Remark 2. After the proof of the theorem we will give a simple criterion
concerning the conditions u0 > t2/α and u0 6 t2/α. Note that for u0 � t2/α

the second and the third estimates coincide.

Proof of Theorem 4.3. The estimates for small t and |x| are the same as on
Rn and may be found in [BSS] (cf. also [Ben]). From Lemma 4.2 it follows
that u0(x, t) → ∞ when max(x, t) → ∞. Following [AJ], Theorem 4.3.1,
we will look for the estimates of pt(x) in terms of u0, when u0 → ∞. We
split the integral (3) for pt(x) into∫ κ−1u0

0
+
∫ ∞

κ−1u0

= I1 + I2(15)

for a constant κ > 1. We will see below that the first integral is essentially
smaller than the second one, so pt(x) �

∫∞
κ−1u0

hu(x) ηt(u) du. Now we may
use the estimate for hu(x) from the Theorem 2.1. Write J2 = φ0(x)−1I2 and
in J2 apply the change of variables u = u0(x, t)v. Set

P = P (x, t) =
|x|2

4u0

/
|ρ|2u0 and Q = Q(x, t) =

c1α

2− α
t

2
2−αu

−α
2−α

0

/
|ρ|2u0.

We have 0 < P,Q < 1 and P +Q ≡ 1 (the functions P and Q measure in a
sense the proportion of importance of variables x and t respectively in the
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function u0(x, t)). We get

f(u0v) = |ρ|2u0

(
v + P

1
v

+Q
2− α

α
v−

α
2−α

)
.(16)

For any values of P and Q, the point v where the function

g(v, x, t) = v + P
1
v

+Q
2− α

α
v−

α
2−α

attains its minimum must satisfy the equation P 1
v2 + Qv−

2
2−α = 1, which

admits the only solution v = 1. The functions u0, P and Q depend on x
and t. Nevertheless, due to the uniqueness property just mentioned and the
fact that ∂2g

∂v2 � 1 for all x and t, the proof of the Laplace method (see [O],
pp. 80–82)) may be adapted to the present situation. The moderate price
to pay is obtaining bounds instead of asymptotics in u0. Consequently we
get

J2 � c t
1

2−αu
−r(α)+ 1

2
0 e−f(u0), u0 →∞, u0 6 t2/α,(17)

J2 � c tu
−s(α)+ 1

2
0 e−f(u0), u0 →∞, u0 > t2/α.(18)

To complete the proof we need to justify the claim that the first integral
in (15), which we denote by I1, is essentially smaller that the second one.
We use the global upper estimate for the heat kernel ([An], [AJ, (3.3)]),
and proceed as with J2 above, applying the Laplace method. It follows that
I1/I2 → 0 when u0 →∞. �

Lemma 4.4. There exist positive constants K,M such that if t 6 K|x|α/2

then u0 > t2/α and if t > M |x|α/2 then u0 6 t2/α. If t � |x|α/2 then
u0 � t2/α.

Proof. The first two assertions follow easily from Lemma 4.2. If t � |x|α/2

then |x| � t2/α and, consequently, u0 � |x|+ t � t2/α + t. Since u0 and t are
supposed to be large (t→∞), we have u0 � t2/α. �

5. Properties of u0

Note that for general α ∈ (0, 2) we have no explicit formula for u0 and f(u0).
In this section we study their properties in greater depth.

Proposition 5.1. (H, t) 7→ u0 = u0(expH, t) is a norm on a× R+.

Proof. Again set u0(H, t) = u0(expH, t). We already know that u0(H, t) is
1-homogeneous. Set u0 = u0(H, t), u1 = u0(H1, t1), u2 = u0(H +H1, t + t1),
a=1/(4|ρ|)2 and b= c2/|ρ|2. For p= u0

u0+u1
∈ (0, 1) and q=1− p we have

u0

p
=
u1

q
.(19)
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Then we obtain

ap

(
|H|
u0

)2

+ bp

(
t

u0

) 2
2−α

= p, and aq

(
|H1|
u1

)2

+ bq

(
t1
u1

) 2
2−α

= q.

Summing these equations, using the fact that functions x → x2 and t →
t2/(2−α) are convex, and applying (19), we get u2 ≤ u0/p = u1/q and u2 ≤
u0 + u1. This shows that u0 is a norm. �

Proposition 5.2. u0 extends to a norm on a × R. f(u0) is a norm on
a× R+ and extends to a norm on a× R.

Proof. Since u0 is homogeneous, it is determined by its unit sphere S =
{(H, t) : u0(H, t) = 1}. Since c(2−α)/2

2 = α
2 , S can be described by

t =
2
α

(
|ρ|2 − |H|2

4

)2−α
2

.

One may deduce from this formula the convexity of the unit ball B0 ⊂ R2

of the 1-homogeneous function

U0 : U0(y, t) = u0(|H|, |t|)
with any H ∈ a such that |y| = |H|, y ∈ R. Thus U0 is a norm on R2. The
convexity of B0 implies the convexity of

B =
{
(H, t) ∈ a× R : (|H|, t) ∈ B0

}
=
{
(H, t) ∈ a× R : u0(H, |t|) = 1

}
,

which is the unit ball of u0 extended naturally to a×R. This gives the first
statement.

For the second one, we solve f(u0) = 1 using (11) and the equality(
t

u0

) 2
2−α

=
1
c2

(
|ρ|2 − 1

4

(
|H|
u0

)2)
.(20)

We obtain a quadratic equation for u0,
2
α
|ρ|2u2

0 − u0 +
α− 1
2α

|H|2 = 0,(21)

and it follows that

u0 = ϕ(H) =
α

4|ρ|2
(1 + P (H)) , |H| ∈

(
0,

1
|ρ|

)
,(22)

where

P (H) =

√
1− 4(α− 1)

α2
|ρ|2|H|2.

Indeed, let ϕm(H) be the alternative formal solution to (21) (this is possible
at least for α > 1). Then positivity of the right-hand side of (20) implies
that |H|

2ϕm(H) ≤ |ρ| and, consequently, P (H) ≤ 1 − 2|H||ρ|
α . This is possible

only for |H| ≤ α
2|ρ| . Solving this we obtain |H| ≥ 1

|ρ| . The contradiction
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shows that (21) admits at most one solution. An analogous argument for ϕ
instead of ϕm establishes the range for H. Note that for |H| ∈ (0, 1/|ρ|) the
determinant of (21) is positive for every α ∈ (0, 2). Thus, we arrive at (22).
Putting u0 = ϕ(H) into (20) we get

t = ψ(H) =
2
α
ϕ(H)

(
|ρ|2 − |H|2

4ϕ(H)2

)1−α
2

.

We have f(u0) = 1 iff u0 = ϕ(H) and t = ψ(H). To finish the proof it is
enough to show that the graph of y 7→ ψ(y) is concave on R+ (i.e., ψ′′ ≤ 0,
where we understand y = |H| and ψ as a function of |H| on R+) and the
symmetry with respect to the t-axis does not affect the concavity (e.g., ψ is
decreasing). We obtain

ψ′′(y) = −
(α

2

)α
2 2r2−α(1 + P (y))α

s(y)1+
α
2 P (y)

with the obvious meaning of P (y) and

s(y) = α− 2|ρ|2|y|2 +
√
α2 − 4(α− 1)|ρ|2|y|2 > 0,

since for y < 1/|ρ| we have

s(y) ≥ α− 2 +
√
α2 − 4(α− 1) = α− 2 + |α− 2| = 0.

These formulas can be quickly checked using Maple or Mathematica. Thus
ψ′′(y) ≤ 0. It is easy to verify that ψ′(0) = 0, so ψ′(y) ≤ 0 as required. �

Corollary 5.3. When t+ |x| > 1,

pt(x) �

{
φ0(x) t

1
2−α (|x|+ t)−r(α)+ 1

2 e
√
|x|2+t2 qα if u0 6 t2/α,

φ0(x) t (|x|+ t)−s(α)+ 1
2 e
√
|x|2+t2 qα if u0 > t2/α,

where the function qα satisfies

qα(k expHk′, t) = qα

(
(H, t)

‖(H, t)‖2

)
, k, k′ ∈ K,

and is a continuous, bounded and bounded away from zero function on the
Euclidean unit sphere in a× R.

Proof. Set qα(expH, t) = f(u0(expH, t))/
√
|H|2 + t2. By Proposition 5.3

the function (H, t) → qα(expH, t) is homogeneous of degree 0. �

Remark. When α = 1 the function qα is constant. The bounds from the
Corollary 5.3 are an extension of the bounds obtained in [AJ] for α = 1.

Lemma 4.2 gives enough information to replace u0 in an estimate when it
is a multiplicative factor. To deal with the exponent e−f(u0) in the estimates
of pt(x) more delicate (additive) properties are required. Namely,

exp(f(x)) � exp(g(x)) ⇐⇒ |f − g| is bounded.
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This motivates the following definition: we write

f(x)
e� g(x)

if there exists M ∈ R such that |f(x)− g(x)| ≤M for all x.

Proposition 5.4. If t 6 |x|α/2 then

exp(−f(u0)) � exp(−|ρ||x|).(23)

In particular, this holds for fixed t > 0, as x→∞ (that is, for all sufficiently
large x > x0(t)). Moreover, if t = |x|s with s > α/2 then (23) does not hold.

Proof. By our assumption, t
2

2−α ≤ |x|
α

2−α and

t
2

2−αu
− α

2−α

0 ≤
(
|x|
u0

) α
2−α

.(24)

The right-hand side of this inequality is bounded since u0 � |x| + t. Thus,
Equation (14) multiplied by u0 gives

f(u0) =
|x|2

4u0
+ |ρ|2u0 + c1t

2
2−αu

− α
2−α

0

e� 2|ρ|2u0.(25)

Using (13) and (24) we deduce that u0
e� |x|

2|ρ| , which together with (25) gives
the first assertion.

By the definition of f(u0) for t = |x|s and by (13) we obtain

f(u0)− |ρ||x| = (c1 + c2)
(
|x|
u0

) α
2−α

|x|
2s−α
2−α − |x|

(
|ρ| − |x|

2u0

)
.(26)

By (14) (
|ρ| − |x|

2u0

)(
|ρ|+ |x|

2u0

)
= c2

(
t

u0

) 2
2−α

(27)

so, transforming (26) with t = |x|s we get

f(u0)− |ρ||x|(28)

= |x|
2s−α
2−α

(
(c1 + c2)

(
|x|
u0

) α
2−α

− c2

(
|x|
u0

) 2
2−α

(
|ρ|+ |x|

2u0

)−1)
.

Note that for s ≤ α/2 this is bounded (for s < α/2 it even tends to 0), since
u0 � |x| + t. (This gives once again the first assertion.) From (14) with
|x| = t1/s we deduce that t

u0
→ 0. Observe that it is enough to show the

second assertion for s ∈ (α/2, 1).
Now, from (14) it follows that

|x|
2u0

→ |ρ|.(29)
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Together with (28) it implies that for s > α/2 we have f(u0)− |ρ||x| → ∞,
which completes the proof. �

Proposition 5.5. If |x| 6
√
t then exp(−f(u0)) � exp(−|ρ|αt). This is

true, in particular, when x is fixed and t → ∞ (that is, for all sufficiently
large t > t0(x)). If |x| = ts with s > 1

2 , it is no longer true.

Proof. Multiplying (14) by u0 and using

|x|2

u0
≤ t

u0
,(30)

which is bounded since u0 � |x|+ t, we get

f(u0)
e� |ρ|2u0 +

2− α

α
|ρ|2u0 =

2
α
|ρ|2u0.(31)

We claim that
2
α
|ρ|2u0

e� |ρ|αt.(32)

We will use the following simple consequence of the Mean Value Theorem:
for 0 < a < b and any γ we have

bγ − aγ = γKγ−1(b− a),(33)

for some K ∈ (a, b). From (14) multiplied by u2/(2−α)
0 we have

|ρ|2u
2

2−α

0 − c2t
2

2−α =
|x|2

4
u
−2+ 2

2−α

0 .

From this and (33) applied to a = c2t
2

2−α , b = |ρ|2u
2

2−α

0 and γ = 2−α
2 we get

|ρ|2−αu0 − c
2−α

2
2 t =

2− α

2
K−α

2
|x|2

4
u
−2+ 2

2−α

0 ,

with some K ∈ (a, b). Consequently, as K > a,

|ρ|2−αu0 − c
2−α

2
2 t ≤ c

(u0

t

) α
2−α |x|2

u0
,

which is bounded by virtue of (30) and the fact that |x|2 ≤ t yields u0 �
|x|+ t � t. It follows that

|ρ|2−αu0
e� c

2−α
2

2 t.(34)

To get our claim, multiply (34) by 2|ρ|α
α and use the fact that 2

αc
2−α

2
2 = 1.

The first assertion now follows from (31) and (32).
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In order to prove the second assertion, we show in a way similar to the
proof of the second assertion of the Proposition 5.4 (but using the Mean
Value Theorem as above, for γ = α/2) that the formula

f(u0)− |ρ|α t =
1
2
t2s−1

(
t

u0
− α

4

(
t

u0

)2

K
α−2

2

)
(35)

holds when |x| = ts, with

c2

(
t

u0

) 2
2−α

< K < |ρ|2.(36)

The case s > 1 being evident by (14), we see that for s < 1, again using
(14), we have |x|

u0
→ 0 and

t

u0
→ c

α−2
2

2 |ρ|2−α

when |x| = ts.
Taking limits in (36) we get K → |ρ|2, so K

α−2
2 → |ρ|α−2. Thus the

expression between the brackets in (35) does not tend to 0. It follows that
for s > 1/2 the difference f(u0) − |ρ|α t is unbounded when t → ∞ and
|x| = ts. �

Corollary 5.6. For any constants K,M > 0 we have

pt(x) �

{
φ0(x)t

1
2−α (|x|+ t)−r(α)+ 1

2 e−|ρ|
αt if t+ |x| > 1 and |x| 6 K t1/2,

φ0(x)t(|x|+ t)−s(α)+ 1
2 e−|ρ||x| if t+ |x| > 1 and |x| > M t2/α.

On the other hand, in a region K t1/2 < |x| < Mt2/α one cannot give a
simpler estimate of e−f(u0) and, consequently, a simpler estimate of pt(x)
than the one given in the Theorem 4.3.

Proof. Only the last assertion needs to be justified. Suppose that g(|x|, t) is
a 1-homogeneous function such that e−f(u0) � e−g on

R =
{
(|x|, t) : K t1/2 < |x| < Mt2/α

}
.

It implies that f(u0)
e� g.

Observe that the region R contains half-lines of the form |x| = at, where
t > t0(a), a > 0. The function f(u0) − g is homogeneous of degree 1 and
bounded on R, so f(u0) = g on R.

Suppose that the function f(u0) is explicitly determined. Writing (11) in
the form

f(u0) =
|x|2

4u0
+ |ρ|2u0 + c1 u0

(
t

u0

) 2
2−α
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and replacing ( t
u0

)
2

2−α by

c−1
2

(
|ρ|2 − 1

4

(
|x|
u0

)2)
we get according to (14) a quadratic equation with respect to u0 that could
be solved explicitly. Except for some special values of α = 1, 3

2 , . . . , this is
not possible. �
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cesses, 111–137, Birkhäuser, Boston, MA, 2001, MR 1833695 (2002d:60038),
Zbl 0984.60056.

[App2] D. Applebaum, On the subordination of spherically symmetric Lévy processes
in Lie groups, Int. Math. J., 1(2) (2002), 185–194, MR 1828652 (2002f:60011),
Zbl 0984.60018.

[Ben] A. Bendikov, Asymptotic formulas for symmetric stable semigroups, Exposition.
Math., 12 (1994), 381–384, MR 1297844 (95j:60029), Zbl 0810.60070.
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Département de Mathématiques
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