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Certain ergodic, piecewise Möbius self-mappings of the unit
interval, similar to the classical Gauss or Rényi maps, give rise
to natural sequences of convergents pn/qn for every associated
“irrational” number x. Here we study the metric theory of
the approximation sequences θn = |qn||qnx − pn|. Follow-
ing Jager we describe the distribution of pairs (θn, θn+1) in
a plane domain by deriving their distribution function. As a
consequence we get a generalization of the theorem of Bosma,
Jager and Wiedijk, referred to as the Lenstra Conjecture,
which describes the distribution of the θn.

1. Introduction

It is a well-known fact that every irrational number x ∈ (0, 1) admits a
unique representation as a continued fraction of the form

[n1, n2, n3, . . . ] =
1

n1 +
1

n2 +
1

n3 + · · ·

,

where the ni are positive integers. The expansion determines an infinite
sequence of rational fractions pi/qi = [n1, n2, . . . , ni], in lowest terms, known
as the convergents of x.

One important approach for studying the classical theory is by way of the
Gauss map

G(x) =
1
x
−
[1
x

]
=
〈1

x

〉
,

where [a] denotes the integral part of a and 〈a〉 the fractional part. For
technical reasons define the fractional part of infinity to be zero. If we let
Gi denote the i-th iterate of G, the continued fraction expansion of x ∈ (0, 1)
has terms ni = [1/Gi−1(x)].

The Gauss map is an example of an ergodic, piecewise Möbius mapping of
the unit interval. With such a mapping T , one comes to expect an associated
continued fraction theory. The digits in the expansion of x correspond to
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102 ANDREW HAAS AND DAVID MOLNAR

the sequence of intervals of monotonicity of the iterates Tn nesting about
x, while certain endpoints of the intervals of monotonicity can be viewed
naturally as “fractions” pn/qn, corresponding to the convergents of x.

Given a Möbius transformation A that takes one of the endpoints {0, 1}
to 0 and the other to ∞, define the transformation

T (x) = 〈A(x)〉.(1)

On a one-parameter family the maps have finite invariant measures, equiv-
alent to Lebesgue measure, with respect to which they are ergodic. In their
graphical appearance as well as in the dynamic interval structures they de-
fine, these maps are virtually identical to either the Gauss map or the closely
related Rényi or backwards continued fraction map [7].

As above, for x ∈ (0, 1), the sequence of integers ai = [A(T i−1(x))], when
defined, determines a continued fraction expansion for x with respect to
the particular Möbius transformation A. For example, on a one-parameter
subfamily particularly resembling the Gauss map the representations are of
the form

x =
t

a1

t
+ t +

1

a2

t
+ t +

1
a3

t
+ t + · · ·

where t > 0 and the ai are now nonnegative integers. In this setting the
classical theory obviously corresponds to the choice of parameter t = 1.

The expansion of x also determines a sequence of convergents pn/qn, con-
verging to x. One important measure of the degree to which a convergent
approximates x is given in classical form by the function θn(x) defined by
the identity ∣∣∣∣x− pn

qn

∣∣∣∣ = θn(x)
q2
n

.(2)

In [9] we developed the basic theory as well as many metrical results for
the continued fractions described above. In this paper we shall focus more
sharply on the metrical theory of the sequences of approximation values θn.
Following Jager [10], each Möbius transformation A, as above, is shown
to determine a plane domain Ω and a density λ such that for almost all
x ∈ (0, 1) the sequence of Jager pairs (θn, θn+1) is distributed in Ω according
to the density λ. These objects are described quite explicitly as a function
of the transformation A. As a consequence we get a generalization of the
theorem of Bosma, Jager and Wiedijk from [5], referred to as the Lenstra
Conjecture, which describes the distribution of the θn. These results are
applied to the computation of the generic limiting averages of the values θn

and |θn − θn+1|.
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It is also interesting to note that given a Möbius transformation A, as
above, the shift map (θn, θn+1) → (θn+1, θn+2) extends to an automorphism
of Ω for which the density λ is invariant. We prove that this dynamical
system is Bernoulli.

2. Preliminaries

2.1. u-continued fraction expansions and the generalized Gauss
map. We begin with a review of the basic continued fraction theory devel-
oped in [8]. For k 6= 0 consider the Möbius transformations

A(k,0)(z) =
k(1− z)

z
and A(k,1)(z) =

kz

1− z
.

Möbius transformations like these, with real coefficients, preserve the ex-
tended real line R ∪ {∞}. The Möbius transformations A described in the
introduction are precisely the Au(z) with u ∈ Ψ = Ψ0 ∪Ψ1, where

Ψ0 =
(
(−∞,−1) ∪ (0,∞)

)
× {0} and Ψ1 =

(
(−∞, 0) ∪ (1,∞)

)
× {1}.

It will often be more convenient to use following real matrices of determinant
±1 to represent the transformations:

A(k,0) =

 k√
|k|

−k√
|k|

−1√
|k|

0

 and A(k,1) =

 k√
|k|

0

−1√
|k|

1√
|k|

 .

The product of a pair of matrices represents the composition of the corre-
sponding transformations. We shall also need the matrix B =

(
1
0

1
1

)
in our

work. See [1] for the basics on Möbius transformations.
For u ∈ Ψ, define the set of integers Vu, called the u-digits, to be the set

of nonnegative integers if k > 0 and the set of negative integers if k < 0.
Given a finite sequence of u-digits a1, a2, . . . , an, define the finite u-continued
fraction expansion

[a1, a2, . . . , an]u = A−1
u Ba1A−1

u Ba2 . . . A−1
u BanA−1

u (∞) ∈ [0, 1].

In particular, if we write

A−1
u Ba1A−1

u Ba2 . . . A−1
u BanA−1

u =
(

pn rn

qn sn

)
,

then [a1, a2, . . . , an]u = pn/qn.
Write I = [0, 1] for the closed unit interval. For u ∈ Ψ, the interval

transformation Tu : I → I is the piecewise Möbius transformation T defined
in Equation (1) with A = Au. This transformation generalizes the classical
Gauss map, with which it agrees when u = (1, 0). When u ∈ Ψ0 we shall
refer to Tu or u itself as Gauss-like, and when u ∈ Ψ1 we shall refer to it as
Rényi-like.
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2.2. The basic facts. The basic facts about the representation of real
numbers by u-continued fraction expansions and the transformations Tu are
collected from [8] and [9].

1. Given an infinite sequence of u-digits {an}∞n=1, there is a unique x ∈ (0, 1)
with x = lim

n→∞
[a1, a2, . . . , an]u = lim

n→∞
pn/qn.

A number x ∈ [0, 1] is u-rational if Tn
u (x) = 0 for some positive integer

n. Such numbers form a countable set denoted by Qu. The complement of
Qu is the set of u-irrational numbers.

2. Every u-irrational number has a unique infinite u-expansion. If the
irrational x has the expansion [a1, a2, . . . ]u then T (x) = [a2, a3, . . . ]u.

For each u = (k, m) ∈ Ψ define the intervals

Ju =


(−∞,−k] if m = 0 and k > 0,
[−k,∞) if m = 0 and k < −1,
(−∞, 1− k] if m = 1 and k > 1,
[1− k,∞) if m = 1 and k < 0.

Set ρu(x, y) = cu(x− y)−2, where cu = sgn(k)
(
log
∣∣∣k + 1−m

k −m

∣∣∣)−1
. Given a

Borel subset D of I × Ju,

ρu(D) =
∫∫

D
ρu(x, y) dx dy

defines a Borel probability measure on I × Ju.

3. The map T̃u : I × Ju → I × Ju defined by

T̃u(x, y) =
(
Tu(x), Au(y)− 〈Au(x)〉

)
has invariant measure ρu. On the complement of a countable subset, T̃u

is a Bernoulli automorphism. Consequently, T̃u is ergodic. The map T̃u is
referred to as the natural automorphic extension of Tu.

Fix u ∈ Ψ. Given x ∈ (0, 1) let

(xn, yn) = T̃n+1
u (x,∞).(3)

If x is u-irrational, (xn, yn) is defined and lies in I×Ju for all integers n ≥ 0.

4. In terms of the natural extension we have

θn(x) = |xn − yn|−1.(4)

A variant of the ergodicity of T̃ , which is very important for the proofs in
this paper, is given in the following theorem from [9]:

5. For u ∈ Ψ and for almost all x ∈ [0, 1], the points T̃n
u(x, y) for integers

n ≥ 0 are distributed in the interior of the region I × Ju according to the
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density function ρu(x, y) for all y ∈ Ju ∪{∞}. In other words, for any Borel
set D ⊂ I × Ju having boundary of measure zero and for almost all x,

lim
n→∞

1
n

#
{
j ≤ n | T̃n

u(x, y) ∈ D
}

= ρu(D)

for all y ∈ Ju ∪ {∞}. Furthermore, for any uniformly continuous function
f ∈ L1(ρu) and for almost all x ∈ I,

lim
n→∞

1
n

n∑
i=1

f(T̃n
u(x, y)) =

∫
f dρu

for all y ∈ Ju ∪ {∞}.

3. Approximating pairs (θn, θn+1)

3.1. (θn, θn+1) as a function of (x, y) ∈ I × Ju. As a consequence of
the relationship expressed in Equation (4), it is possible to study measure
theoretic properties of the approximation sequence {θn} defined in (2) for
a given u-irrational, by way of the natural extension. As in Jager [10] our
approach shall be to begin with the even richer sequence of approximating
pairs (θn, θn+1).

Define the functions

Fu(x, y) = sgn(k)
(

1
x− y

,
xy

k(y − x)

)
when u is Gauss-like and

Fu(x, y) = sgn(k)
(

1
x− y

,
(1− x)(1− y)

k(x− y)

)
when u is Rényi-like.

Let R̂2 be the set R2 with the points in the diagonal set {(x, y) | x = y}
deleted. For each u ∈ Ψ, the map Fu : R̂2 → R2 is C∞. As the next
proposition makes clear, a basic understanding of these maps provides the
connection between the approximating pairs and our earlier work with the
natural extension.

Proposition 1. For u ∈ Ψ and x u-irrational, (θn, θn+1) = Fu(xn, yn).

Proof. A straightforward computation using Fact 4, formula (3) and the
definition of Au gives

(θn, θn+1) =
(

1
|xn − yn|

,
1

|xn+1 − yn+1|

)
=
(

1
|xn − yn|

,
1

|(Au(xn)− [Au(xn)])− (Au(yn)− [Au(xn)])|

)
=
(

1
|xn − yn|

,
1

|Au(xn)−Au(yn)|

)
= Fu(xn, yn). �
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The set R̂2 has two connected components, U (for upper) with x < y and
L with x > y. U and L may be further divided, in a way depending on u,
into two pieces. When u is Gauss-like U+

u ⊂ U and L−u ⊂ L have −x ≥ y
while U−

u ⊂ U and L+
u ⊂ L have −x ≤ y. When u is Rényi-like U+

u ⊂ U
and L−u ⊂ L have −x + 2 ≥ y while U−

u ⊂ U and L+
u ⊂ L have −x + 2 ≤ y.

Theorem 1. The transformation Fu is injective on each of the sets U+
u , U−

u ,
L+

u and L−u . The inverses are

x =
1±

√
1− 4kwz

sgn(k) 2w
and y =

−1±
√

1− 4kwz

sgn(k) 2w
(5)

for Gauss-like maps and

x =
2w + 1±

√
1− 4kwz

sgn(k) 2w
and y =

2w − 1±
√

1− 4kwz

sgn(k) 2w
(6)

for Rényi-like maps, where the ± sign before the square root matches the
superscript sign in the symbol for the set.

Proof. The proof for the sets Lu is much the same as that for the sets Uu,
which follows.

First suppose u is Gauss-like. The transformation σu(x, y) = (−y,−x) is
an order-two involution interchanging U+ and U−. Also,

Fu(−y,−x) = Fu(x, y).

So it suffices to restrict our attention to U+. Computing the Jacobian
derivative of Fu we get

2(x + y)
k(x− y)3

,

which vanishes only on the boundary {(x, y) | y = −x} in U+.
Next, setting

w =
1

x− y
and z =

xy

k(y − x)
and solving for z and w gives formulae (5). Since Fu is continuous in the
interior of the connected set U+, the ± in front of the square root can
only change from one sign to the other at points in the w, z-plane with
1 − 4kwz = 0. This set is the image of the solution to −4xy/(x − y)2 = 1
or y = −x. It follows that Fu is invertible on U+ and U−. By checking
the maps at a single point, for example (−1, 0), it is seen that the inverse is
given by (5) with the minus sign on U− and with the plus sign on U+.

Now suppose instead that u is Rényi-like. The transformation σu(x, y) =
(−y + 2, −x + 2) is an order-two involution interchanging U+

u and U−
u and

Fu(−y + 2, −x + 2) = Fu(x, y). As above the Jacobian derivative of Fu

vanishes only on {(x, y) | y = −x + 2}.
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Solving for the inverse map we get formulae (6). As above Fu is invertible
on the two subsets of Uu and the inverse is given by (6) with the minus sign
on U−

u and with the plus sign on U+
u . �

Remark. The proof above also shows that, given (x, y) ∈ R̂2, we have
F (x, y) = F (x′, y′) if and only if either σ(x, y) = (x′, y′) or (x, y) = (x′, y′).

3.2. The space of approximating pairs Ωu = Fu(I × Ju). In R2 con-
sider the points O = (0, 0), Pu = (1/|k|, 0), Ru = (0, 1/|k|) and

Qu =


(

1
|k|+ 1

,
1

|k|+ 1

)
if (−1)mk > 0,(

1
|k| − 1

,
1

|k| − 1

)
if (−1)mk < 0.

Let Ω∗
u denote the quadrilateral with vertices O,Pu, Qu, Ru in the w, z-plane,

from which the line segment from Ru to O has been deleted. For |k| < 1
define Λu as the closed region bounded by the lines PuQu and QuRu and the
hyperbola z = 1/(4 |k|w). Let Λu = ∅ when |k| ≥ 1. Define Ωu = Ω∗

u ∪ Λu.

1 2 3 4 5
w

1

2

3

4

5

z
(

0,
1

|k|

)

(

1

|k|
, 0

)

(

1

|k|+1
,

1

|k|+1

)

2 4 6 8 10

w

2

4

6

8

10

z

(

0,
1

|k|

)

(

1

|k|
, 0

)

(

1

|k|−1
,

1

|k|−1

)

Figure 1. Ωu for the cases k = 1
5 and k = −11

10 . The shaded
region is Λu.

Let Γu be the square in the x, y-plane with vertices (0, 1−k), (1−k, 1+k),
(k+1, 2) and (0, 2) when m = 1 and −1 < k < 0 and the square with vertices
(−k,−k), (1,−k), (1,−1) and (−k,−1) when m = 0 and 0 < k < 1. Observe
that σu acts as an order-two self-map of Γu.

In light of the Theorem 1, the map Fu : I × Ju → R2 can be completely
characterized.

Corollary 1. If |k| > 1 then Fu is a homeomorphism from I × Ju to Ωu.
If |k| < 1 then Fu : Γu → Λu is two-to-one with F (x, y) = F (σu(x, y)) and
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Fu : (I × Ju) − Γu → Ωu − Λu is a homeomorphism. In particular, for any
u ∈ Ψ and u-irrational x the approximating pairs (θn, θn+1) belong to Ωu.

Proof. When |k| > 1, I × Ju lies entirely in one of the regions U− or L−.
Therefore Fu maps I × Ju homeomorphically onto its image. The three
boundary arcs of I × Ju map onto the three boundary arcs of Ω and no
points in I×Ju can take values on the omitted boundary arc from Ru to O.
It follows that Fu maps I ×Ju onto a subset of Ωu. Conversely, F−1

u is well-
defined in the region lying between the curves w = 0 and z = 1/(4 |k|w) and
maps the boundary arcs of Ωu back where they came from. As above F−1

u Ωu

must be a subset of I × Ju and we conclude that Fu is a homeomorphism
onto Ωu.

Suppose that |k| < 1. When m = 0 the line y = −x and when m = 1 the
line y = −x+2 will divide I×Ju into a triangle and an unbounded region. By
Theorem 1, Fu is injective on the closure of both pieces. Arguing as above,
the closure of the unbounded region maps homeomorphically onto Ωu while
the closure of the triangle maps homeomorphically onto Λu. The union of
the closed triangle with its image under σu is precisely the square Γu. �

3.3. The distribution of approximating pairs. It is now an easy matter
to prove one of the main theorems of the paper. Define the function

λu(w, z) =


|k| cu√

1 + (−1)m+14kzw
if (w, z) ∈ Ω∗

u,

2 |k| cu√
1 + (−1)m+14kzw

if (w, z) ∈ Λu.

We shall abuse notation by also using λu to denote the measure with

λu(D) =
∫

D
λu(w, z) dµ,

where D is a Borel set and µ is two-dimensional Lebesgue measure.

Lemma 1. Let F ∗
uρu be the Borel probability measure induced by Fu on Ωu

by setting F ∗
uρu(D) = ρu(F−1

u (D)). Then F ∗
uρu = λu.

Proof. The measure is determined by its value on open sets. On an open
set D in the interior of Ω∗

u we compute

F ∗
uρu(D) = cu

∫∫
F−1

u D

dx dy

(x− y)2
(7)

= cu

∫∫
D

f(F−1
u (w, z))

∣∣JacF−1
u (w, z)

∣∣ dw dz,
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where f(x, y) = 1/(x− y)2. From the definition of Fu we have 1/(x− y)2 =
w2. The Jacobian is computed from Theorem 1 as∣∣JacF−1

u (w, z)
∣∣ = |k|

w2
√

1 + (−1)m+14kzw
.

Thus the second integral in (7) is simply λu(D). Similarly, for open D in
the interior of Λu the second integral of (7) is doubled, since the map is
two-to-one. The lemma follows. �

It is interesting to note at this point that one can induce a Bernoulli auto-
morphism of the space Ωu, which is a type of shift map on the approximating
pairs. Suppose that |k| > 1. Then Fu : I×Ju → Ωu is a homeomorphism, so
we can define the map S̃u : Ωu → Ωu by S̃u = Fu ◦ T̃u ◦F−1

u . Because of the
way we have defined the measure λu, Fu is an isomorphism of probability
spaces and S̃u is a measure preserving transformation of Ωu. Moreover, the
dynamical system (I × Ju, T̃u, ρu) is isomorphic by this conjugacy to the
system (Ωu, S̃u, λu). This proves the following:

Proposition 2. The dynamical system (Ωu, S̃u, λu) is Bernoulli.

Note that if (w, z) = (θn, θn+1) for some u-irrational x, then

S̃u(θn, θn+1) = (θn+1, θn+2)

is the shift map.
Being Bernoulli, the system (Ωu, S̃u, λu) is ergodic. In the spirit of Jager

[10], we use Fact 5 from Section 2.2 to describe the distribution of pairs as
a function of x. Although the statement focuses on the distribution of the
sequence of pairs, the theorem is easily seen to hold in the context of the
dynamical system (Ωu, S̃u, λu).

Theorem 2. For u ∈ Ψ and for almost all x ∈ [0, 1] the sequence (θn, θn+1),
n = 1, 2, . . . is distributed in the interior of the region Ωu according to the
density function λu(w, z). In other words, for almost all x ∈ (0, 1) and for
any Borel subset D of Ωu with boundary of measure zero

lim
n→∞

1
n

#{j ≤ n | (θj , θj+1) ∈ D} = λu(D).

Consequently, for a bounded, uniformly continuous function f and almost
all x ∈ (0, 1)

lim
n→∞

1
n

n∑
j=1

f(θj , θj+1) =
∫

Ωu

f dλu.

Proof. As a consequence of Fact 5, for almost all u-irrational x and for any
y ∈ Ju∪{∞} the sequence T̃n

u(x, y) is distributed in I×Ju according to the
density ρu. This is true in particular for the sequence (xn, yn) = T̃n+1

u (x,∞).
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Also associated to x is the sequence (θn, θn+1) = Fu(xn, yn) ∈ Ωu. Applying
Fact 5 and Lemma 1 gives

lim
n→∞

1
n

#{j ≤ n | (θj , θj+1) ∈ D} = lim
n→∞

1
n

#{j ≤ n | (xj , yj) ∈ F−1
u (D)}

= ρu(F−1
u (D)) = λu(D).

To see the final statement of the theorem, define probability measures
Pn = 1

n

∑n
j=1 δ(θj ,θj+1) on Ωu, where δ(w,z) is the point mass at (w, z). It

follows from the above that for almost all x, limn→∞ Pn(D) = λu(D) for any
Borel subset D of Ωu with boundary of measure zero. By the Portmanteau
Theorem [4],

lim
n→∞

1
n

n∑
j=1

f(θj , θj+1) = lim
n→∞

∫
Ωu

f dPn =
∫

Ωu

f dλu. �

3.4. First application: a sum of Jager’s. It follows immediately from
Theorem 2 that for u ∈ Ψ and almost all x ∈ [0, 1]

lim
n→∞

1
n

n∑
j=1

|θj − θj+1| = cu|k|
∫

Ωu

|w − z|√
1− 4kzw

dz dw,(8)

which leads to:

Theorem 3. Suppose |k| > 1. Then for almost all x, lim
n→∞

1
n

n∑
j=1

|θj − θj+1|
equals 

(
log

|k|+ 1
|k|

)−1
(

1
|k|

−
sin−1 2

√
|k|

|k|+1

2
√
|k|

)
if (−1)mk > 0,

(
log

|k|
|k| − 1

)−1
(
− 1
|k|

+
sinh−1 2

√
|k|

|k|−1

2
√
|k|

)
if (−1)mk < 0.

Proof. The region Ωu is symmetric about the line z = w and the integrand
in (8) is invariant under the symmetry. This means we can evaluate the
integral by restricting attention to the lower half of Ωu and then doubling
the value. When (−1)mk > 0 and |k| ≥ 1 the right-hand side of (8) becomes

2 |k| cu

∫ 1
|k|+1

0

∫ −1
|k| z+ 1

|k|

z

w − z√
1− 4 |k| zw

dw dz.
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Using Mathematica very carefully we get

2 |k| cu

∫ 1
|k|+1

0

((
w

6 |k| z
− −1+6 |k| z2

12 |k|2z2

)√
1−4 |k| zw

) ∣∣∣∣−1
|k| z+ 1

|k|

z

dz

= 2 |k| cu

∫ 1
|k|+1

0

(1−4 |k| z2)3/2 +
√

(1−2z)2(6 |k| z2 +2z2−2z−1)
12 |k|2z2

dz

= 2 |k| cu
1

12 |k|2

(
−
(1

z
+2 |k| z

)√
1−4 |k| z2

+
√

(1−2z)2
(
6 |k| z3 +2z3−6 |k| z2−6z2−1

)
+3
√
|k| sin−1(2

√
|k|z)

) ∣∣∣∣ 1
|k|+1

0

= cu

(
sgn(|k|−1)

|k|
− 1

2
√
|k|

sin−1 2
√
|k|

1+ |k|

)
,

and the result follows.
When (−1)mk < 0 the right-hand side of (8) can be written as the sum

of two integrals,

2 |k| cu

∫ 1
|k|

0

∫ w

0

w − z√
1− 4 |k| zw

dz dw

+ 2 |k| cu

∫ 1
|k|−1

1
|k|

∫ w

|k|w−1

w − z√
1− 4 |k| zw

dz dw.

The integrals are computed, as above, using Mathematica. �

3.5. Second Application: the distribution of θn. The next application
of Theorem 2 is to derive the distribution of the sequence {θn} for generic x.
It follows from Corollary 1 that for u ∈ Φ and for all u-irrational x ∈ (0, 1),
θn lies in the interval

Iu =


(

0,
1
|k|

)
if (−1)mk > 0,(

0,
1

|k| − 1

)
if (−1)mk < 0.

Let φ : Ωu → Iu denote the projection φ(w, z) = w. Define the measure βu

on Iu by βu(D) = λu(φ−1(D)). Then it is clear that for almost all x ∈ (0, 1),

βu(D) = lim
n→∞

1
n

#
{
j ≤ n | (θn, θn+1) ∈ φ−1(D)

}
= lim

n→∞

1
n

# {j ≤ n | θn ∈ D},
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and therefore βu describes the distribution of θn in Iu. βu is equivalent
to Lebesgue measure and the density βu(w) is obtained by projecting the
density λu(w, z) onto the w-axis by integration with respect to the z vari-
able. χA shall denote the characteristic function of the set A. Then we have
the following generalization of the Lenstra conjecture, originally proved by
Bosma, Jager and Wiedijk [5]:

Theorem 4. For u ∈ Ψ and for almost all u-irrational x ∈ (0, 1) the se-
quence θn, n = 1, 2, . . . , is distributed in the interval Iu according to the
density function βu(w) defined by(

log
|k|+ 1
|k|

)−1(
χ(0, 1

|k|+1
)(w) +

(
1
w
− |k|

)
χ( 1

|k|+1
, 1
|k| )

(w)
)

if (−1)mk > 0, and by(
log

|k|
|k| − 1

)−1(
χ(0, 1

|k| )
(w) +

(
1
w

+ 1− |k|
)

χ( 1
|k| ,

1
|k|−1

)(w)
)

if (−1)mk < 0.

Proof. We perform the calculations in the cases where m = 0. When m = 1
the computations run parallel to those presented below. First consider 0 <
k < 1. The interval Iu = (0, 1

k ) is divided into four subintervals, over which
the limits of integration will differ. For each of the two inner intervals it is
necessary to consider separately the integration over pieces of the regions
Ω∗

u and Λu lying above the intervals. Refer to the first illustration of Ωu in
Figure 1.

We thus have βu(w) = I + II + III + IV, where

I = cu

(∫ − 1
k
w+ 1

k

0

k√
1− 4kzw

dz

)(
χ(0, 1

2
)(w) + χ( 1

2
, 1
k+1

)(w)
)

= cu

(
−
√

(2w − 1)2 + 1
2w

)(
χ(0, 1

2
)(w) + χ( 1

2
, 1
k+1

)(w)
)
,

II = cu

(∫ 1
4wk

− 1
k
w+ 1

k

2k√
1− 4kzw

dz

)
χ( 1

2
, 1
k+1

)(w)

= cu

(√
(2w − 1)2

w

)
χ( 1

2
, 1
k+1

)(w),

III = cu

(∫ 1
4wk

−kw+1

2k√
1− 4kzw

dz

)
χ( 1

k+1
, 1
2k

)(w)

= cu

(√
(2kw − 1)2

w

)
χ( 1

k+1
, 1
2k

)(w),
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IV = cu

(∫ −kw+1

0

k√
1− 4kzw

dz

)(
χ( 1

k+1
, 1
2k

)(w) + χ( 1
2k

, 1
k
)(w)

)
= cu

(
−
√

(2kw − 1)2 + 1
2w

)(
χ( 1

k+1
, 1
2k

)(w) + χ( 1
2k

, 1
k
)(w)

)
.

Thus

βu(w) = cu

(
1−|2w−1|

2w

)
χ(0, 1

2
)(w) + cu

(
1+ |2w−1|

2w

)
χ( 1

2
, 1
k+1

)(w)

+ cu

(
1+ |2kw−1|

2w

)
χ( 1

k+1
, 1
2k

)(w) + cu

(
1−|2kw−1|

2w

)
χ( 1

2k
, 1
k
)(w)

=
(

log
∣∣∣∣k +1

k

∣∣∣∣)−1

χ(0, 1
k+1

)(w)+
(

log
∣∣∣∣k +1

k

∣∣∣∣)−1( 1
w
−k
)
χ( 1

k+1
, 1
k
)(w),

completing the argument in this case.
When k > 1, βu(w) is the sum of the integrals I and IV above, or

βu(w) = cu

(
1− |2w − 1|

2w

)
χ(0, 1

k+1
)(w) + cu

(
1− |2kw − 1|

2w

)
χ( 1

k+1
, 1
k
)(w).

Then |2w − 1| = 1 − 2w for 0 < w < 1
k+1 and |2kw − 1| = 2kw − 1 for

1
k+1 < w < 1

k . The result follows.
When m = 0 and k < −1, the region Ω, pictured to the right in Figure 1,

divides naturally into two pieces: one above the interval
(
0, 1

|k|
)

and another
to the right above the interval

(
1
|k| ,

1
|k|−1

)
. Then

βu(w) = cuχ(0, 1
|k| )

(w)
∫ − 1

k
w− 1

k

0

|k|√
1− 4kzw

dz

+ cuχ( 1
|k| ,

1
|k|−1

)(w)
∫ − 1

k
w− 1

k

−kw−1

|k|√
1− 4kzw

dz.

Computing, as above, gives

βu(w) = cuχ(0,−1
k

)(w) + cu

( 1
w

+ 1 + k
)
χ(− 1

k
,− 1

k+1
)(w). �

Here is an immediate application of Theorem 4:

Theorem 5. For u ∈ Ψ and almost all x ∈ (0, 1),

lim
n→∞

1
n

n∑
i=1

θi(x) =


(

2(k2 + |k|) log
|k|+ 1
|k|

)−1

if (−1)mk > 0,(
2(k2 − |k|) log

|k|
|k| − 1

)−1

if (−1)mk < 0.
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Proof. For almost all x

lim
n→∞

1
n

n∑
i=1

θi(x) =
∫
Iu

wβu(w) dw.

Computing the integral in the various cases proves the theorem. �

References

[1] L. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions
of one Complex Variable, International Series in Pure and Applied Mathematics,
McGraw-Hill, New York, 1979, MR 0510197 (80c:30001), Zbl 0395.30001.

[2] T. Bedford, M. Keane, C. Series, eds., Ergodic Theory, Symbolic Dynamics and Hy-
perbolic Spaces, Papers from the Workshop on Hyperbolic Geometry and Ergodic
Theory held in Trieste, April 17–28, 1989, Oxford Science Publications, Oxford Univ.
Press, New York, 1991, MR 1130170 (93e:58002), Zbl 0743.00040.

[3] P. Billingsley, Ergodic Theory and Information, Wiley, New York–London, 1965,
MR 0192027 (33 #254), Zbl 0141.16702.

[4] P. Billingsley, Convergence of Probability Measures, Wiley, New York–London, 1968,
MR 0233396 (38 #1718), Zbl 0172.21201.

[5] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation
of continued factions, Indag. Math., 45 (1983), 281–299, MR 0718069 (85f:11059),
Zbl 0519.10043.

[6] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory, Grundlehren der Math-
ematischen Wissenschaften, 245, Springer-Verlag, New York, 1982, MR 0832433
(87f:28019), Zbl 0493.28007.
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