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Marco Kühnel

We prove the rationality of the Kähler cone and the posi-
tivity of the Chern class c2(X) if X is a Calabi–Yau threefold
with Picard number ρ(X) = 2 and has an embedding into a
Pn-bundle over Pm in the cases (n, m) = (1, 3) and (3, 1). The
case (n, m) = (2, 2) has been done in the first part of this
paper. Moreover, if (n, m) = (3, 1), we describe the ‘other’
contraction different from the projection.

1. Introduction

In this paper, a Calabi–Yau threefold is a compact complex Kähler manifold
of dimension three with KX = OX and H1(OX) = 0.

Wilson stated in 1994 [Wi94b] a conjecture about the rationality of the
Kähler cone of a Calabi–Yau threefold. It says that the Kähler cone of a
Calabi–Yau threefold X is rational and finitely generated in N1(X) if the
Chern class c2(X) is positive, i.e., D.c2(X) > 0 for every nef divisor D.

In [Kü01b] we dealt with the case ρ(X) = 2. We proved some general
results about the Kähler cone and then concentrated on the case that X is
embedded in a P2-bundle over P2. For this class of Calabi–Yau manifolds
we confirmed Wilson’s conjecture.

We now finish this track by considering X embedded in either a P1-
bundle over P3 or a P3-bundle over P1. The first case offers some interesting
perspectives. The Calabi–Yau manifolds turn out to be generic double covers
of P3 ramified over an octic. We compute the number of fibres of the bundle
projection in X and describe the Kähler cone. The ramifying octics are
discussed in greater detail in [Kü02].

Since C = P1 if X −→ C is a fibration onto a normal curve C and X
a Calabi–Yau manifold, it is also natural to turn our attention to those X
that can be embedded in a P3-bundle over P1.

We will denote K(X) for the Kähler cone of X. The main results are:

Theorem 1.1. Let X ⊂ P(E) be a Calabi–Yau 3-fold with ρ(X) = 2, with
E either a rank-2-bundle over P3 such that h0(−KP(E)) > 1 or an arbitrary
rank-4-bundle over P1. Then ∂K(X) is rational and semiample. Further-
more all D ∈ K(X) satisfy D.c2(X) > 0.
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In the case that E is a rank-4-bundle over P1 we can give a complete
classification of the occurring contractions.

Theorem 1.2. Let X ⊂ P(E) := Z be a Calabi–Yau 3-fold with ρ(X) = 2,
where E −→ P1 is of rank 4. Fix E = O ⊕ O(a1) ⊕ O(a2) ⊕ O(a3), with
0 ≤ a1 ≤ a2 ≤ a3, and let ψ : X −→ X ′ be the second contraction. If E
denotes the exceptional locus of ψ and F := O

⊕
i|ai=0O(ai) the maximal

trivial subbundle of E, then:

(i) If c1(E) = 3, then rkF ≤ 2 and E = P(F) ∼= P1 × P rkF−1.
(ii) If c1(E) = 2, then rkF ∈ {2, 3} and E = X ∩ P(F) = P1 × Y , with

dimY = rkF − 2.
(a) If rkF = 2, then Y consists of four points.
(b) If rkF = 3, then Y is a smooth plane quartic.

(iii) If c1(E) = 1, then Z is the blow-up of P4 in a linearly embedded P2; if
X ∈ |−KZ | is general, then E =

⋃16
i=1Ci, with Ci

∼= P1; furthermore,
X ′ is a quintic in P4 with 16 double points on a linearly embedded P2.

(iv) If c1(E) = 0, then Z = P1 × P3 and E =
⋃64

i=1Ci, with Ci
∼= P1.

For the proofs of these results we proceed as in [Kü01b] and prove first
a generalization of a lemma of Kollár [Bo89]:

Theorem 1.3. Let X ⊂ P(E) be a Calabi–Yau threefold with ρ(X) = 2,
with E either a rank-2-bundle over P3 or a rank-4-bundle over P1. Then
K(X) = K(Z)|X.

In contrast to the generalized Kollár Lemma in [Kü01b], the situation
here is simpler, since there are no exceptions in the theorem above. However,
in the case that E is a rank-2-bundle over P3 it has to be investigated whether
π∗h is not ample. It turns out that this is true if ρ(X) > 1. So the proofs of
the rationality result and the positivity of c2(X) become much shorter than
those in [Kü01b]. In the case of E a rank-4-bundle over P1, the rationality
of the Kähler cone can even be proved without using the generalized Kollár
Lemma.

This article grew out of the author’s doctoral thesis at the University of
Bayreuth.

2. Notation

In this section we summarize the most important notations of this paper.
X will always denote a Calabi–Yau threefold, and Z always a fourfold.

N1(X): the R-vector space of numerical classes of Div (X)⊗ R.
K(X): the Kähler cone of X, i.e., the ample cone.
W (X): the hypersurface {D3 = 0} ⊂ N1(X).
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OX(1): the restriction OZ(1)|X, where OZ(1) is the tautological bundle
associated to Z = P(E).

KZ : the canonical divisor of Z.
ci(E): the i-th Chern class of a bundle E .
ci(M): the i-th Chern class of the tangent bundle of the complex

manifold M .

3. Some general statements

For a more detailed description of properties of the Kähler cone of a Calabi–
Yau threefold with ρ(X) = 2, see [Kü01a, Kü01b]. Here we mention only
results necessary in this article.

The first fundamental theorem we want to cite in a specialized form is
proved by Wilson in [Wi94a].

Theorem 3.1 (Wilson). Let X be a Calabi–Yau threefold and ρ(X) = 2.
If D ∈ ∂K(X) and D3 > 0, then there is some r ∈ R with rD ∈ Pic (X).

Hence it is natural to consider the cubic hypersurface

W (X) := {D ∈ N1(X) | D3 = 0}.
A useful statement is:

Lemma 3.2. Let X be a Calabi–Yau threefold with ρ(X) = 2. If W (X)
contains a double line, then W (X) is rational.

Proof. W (X) is in an appropriate affine neighbourhood of P(N1(X)) ∼= P1

given by some cubic polynomial w ∈ Z[x]. Let Dw ∈ Q[x] be the formal
derivative of w. Then, if w = (x− a)2(x− b) and a 6= b,

(x− a) = gcd(w,Dw) ∈ Q[x].

If a = b, then
(x− a)2 = gcd(w,Dw) ∈ Q[x].

In both cases, a, b ∈ Q follows. �

Putting both results together, we get in particular:

Corollary 3.3. If X is a Calabi–Yau manifold with ρ(X) = 2 and φ :
X −→ P1 a fibration, then ∂K(X) is rational.

Finally, we need a lemma of Kollár, proved in [Bo89].

Lemma 3.4 (Kollár). If Z is a Fano 4-fold and X ∈ |−KZ | a Calabi–Yau
manifold, then i∗ : N1(Z) −→ N1(X) is an isomorphism and K(X) =
K(Z)|X.
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4. Calabi–Yau threefolds in P1-bundles over P3

We are interested in Calabi–Yau threefolds X of the form X ⊂ P(E) =: Z,
X ∈ |−KP(E)|, with E a vector bundle of rank 2 over P3. Let p : P(E) −→ P3

be the bundle projection and π : X −→ P3 the restriction of p to X. The
hyperplane class in P2 shall be denoted by h, the fibre of p by F . The
expression γ(E) := (c21(E) − 4c2(E)).h is invariant under E 7→ E ⊗ L, where
L is a line bundle over P2. The line bundle OZ(1)|X will be called OX(1).

The following sequences are basic for our proofs and results:

0 −→ TZ|P3 −→ TZ −→ p∗TP3 −→ 0,(1)

0 −→ OZ −→ p∗(E∨)⊗OZ(1) −→ TZ|P3 −→ 0,(2)

0 −→ TX −→ TZ |X −→ NX|Z −→ 0,(3)

OZ(1)2 − p∗c1(E).OZ(1) + p∗c2(E) = 0.(4)

By the Künneth formula we get b1(Z) = 0, b2(Z) = 2, b3(Z) = 0, b4(Z) = 2.
The intersection theory on Z is computed inductively by OZ(1).p∗h3 = 1

and Equation (4):

Lemma 4.1. Let E −→ P3 be a rank-2-bundle and Z := P(E). Then:
(i) OZ(1).p∗h3 = 1.
(ii) OZ(1)2.p∗h2 = c1(E).h2.
(iii) OZ(1)3.p∗h = c21(E).h− c2(E).h.
(iv) OZ(1)4 = c31(E)− 2c1(E)c2(E).

4.1. Intersection product and Picard number. By standard compu-
tations we get:

Lemma 4.2. Let E −→ P3 be a rank-2-bundle and X ⊂ P(E) a Calabi–Yau
threefold. Then:

(i) c3(X) = −8γ − 168.
(ii) π∗h.c2(X) = 44.
(iii) OZ(1)|X.c2(X) = 4γ + 22c1(E) + 24.
(iv) −KZ |X.c2(X) = 8γ + 224.
(v) π∗h3 = 2.
(vi) OZ(1)|X.π∗h2 = c1(E).h2 + 4.
(vii) OZ(1)2|X.π∗h = 1

2γ + 1
2c

2
1(E).h+ 4c1(E).h2.

(viii) OZ(1)3|X = γ + 3
4γc1(E).h2 + 3c21(E).h+ 1

4c
3
1(E).

Compare the following result about the Picard number to the correspond-
ing theorem in [Kü01b].

Theorem 4.3. Let X ⊂ P(E) be a Calabi–Yau manifold, with E −→ P3 a
rank-2-bundle. If E is stable and H1(−KZ) = H2(−KZ) = 0 (for example,
if −KZ is big and nef ), then

ρ(X) = 2 + h2(E∨ ⊗ E).
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Proof. We look at the sequences

0 −→ N∨
X|Z −→ ΩZ |X −→ ΩX −→ 0(5)

and

0 −→ ΩZ ⊗KZ −→ ΩZ −→ ΩZ |X −→ 0.(6)

First, we want to show H i(TZ) = H i(E∨ ⊗ E) for i > 1. For this purpose
we compute Rip∗(p∗(E∨)⊗OZ(1)) = E∨ ⊗Rip∗OZ(1) = 0 for i > 0. Hence
the Leray spectral sequence implies

H i(p∗(E∨)⊗OZ(1)) = H i(E∨ ⊗ E).

Sequence (2) shows that H i(p∗(E∨) ⊗ OZ(1)) = H i(TZ|P3) for i > 0, since
Rip∗OZ = 0 for i > 0 and therefore H i(OZ) = H i(OP3) = 0 for i > 0. To
apply sequence (1), we compute Rip∗p

∗TP3 = TP3 ⊗ Rip∗OZ = 0 for i > 0.
Therefore we see again by the Leray spectral sequence that

H i(p∗TP3) = H i(TP3) = 0

for i > 0. This implies by sequence (1) that

H i(TZ|P3) = H i(TZ)

for i > 1. Hence
H i(TZ) = H i(E∨ ⊗ E)

for i > 1.
We now know

H i(ΩZ ⊗KZ) = H4−i(TZ)∨ = H4−i(E∨ ⊗ E)∨

for i < 3. In particular,

H1(ΩZ ⊗KZ) = H3(E∨ ⊗ E)∨ = H0(E∨ ⊗ E ⊗O(−4)) = 0,

the last equality holding since E is stable and therefore simple. Since b3(Z)
vanishes, so does H2,1(Z). Since N∨

X|Z = KZ |X the cohomology sequences
of (6) and (5) contain

0 −→ H1(ΩZ) −→ H1(ΩZ |X) −→ H2(E∨ ⊗ E)∨ −→ 0(7)

and

0 −→ H1(KZ |X) −→ H1(ΩZ |X) −→ H1(ΩX) −→ H2(KZ |X),(8)

respectively.
By the assumption H1(−KZ) = H2(−KZ) = 0 we conclude from

0 −→ 2KZ −→ KZ −→ KZ |X −→ 0
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and from

H1(KZ) = H3(OZ)∨ = 0,

H2(KZ) = H2(OZ)∨ = 0,

H2(2KZ) = H2(−KZ)∨ = 0,

H3(2KZ) = H1(−KZ)∨ = 0

that
H1(KZ |X) = H2(KZ |X) = 0.

Therefore by (8) and (7)

ρ(X) = h1(ΩZ |X) = ρ(Z) + h2(E∨ ⊗ E). �

Example 4.4 (A Calabi–Yau manifold with ρ(X) = 1). Let E = O⊕O(4).
We prove as in Theorem 4.3 that

H i(ΩZ ⊗KZ) = H4−i(TZ)∨ = H4−i(E∨ ⊗ E)∨.

But now

H3(E∨ ⊗ E)∨ = H0(E∨ ⊗ E ⊗O(−4)) = H0(O(−8)⊕ 2O(−4)⊕O) = C.

The cohomology sequence of (5) starts

0 −→ H0(N∨
X|Z) −→ H0(ΩZ |X) −→ H0(ΩX).

Since H0(ΩX) = 0 and H0(N∨
X|Z) = 0, we see that

H0(ΩZ |X) = 0.

This we use in the cohomology sequence of (6) and get the sequence

0 −→ C −→ H1(ΩZ) −→ H1(ΩZ |X) −→ H2(E∨ ⊗ E)∨ −→ 0.

We know H2(E∨⊗E)∨ = 0. Since −KZ = OZ(2) is big and nef, H i(N∨
X|Z) =

H i(KZ |X) = 0 for i = 1, 2. By using the cohomology sequence of (5) we get

H1(ΩX) = H1(ΩZ |X).

This finally implies
ρ(X) = 1.

As a last subject in this section, we are interested in some bounds for
γ. This yields a total lower bound for c3(X) for the Calabi–Yau threefolds
considered here, and, what is more important within this framework, it
allows us to compute the number of full fibres of p contained in X. That
will be done in the next section.
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Lemma 4.5. Let E −→ P3 be a rank-2-bundle. Denote its generic splitting
type by (a, b). Then

γ(E) ≤ γ(O(a)⊕O(b)) = (a− b)2.

Moreover, equality holds if and only if E = O(a)⊕O(b).

Proof. Set E ′ := O(a)⊕O(b). By tensoring with O(m) for m� 0, we may
assume that H i(E) = 0 for i > 0. For a general hyperplane we H ⊂ P3 we
look at the sequence

0 −→ E(−1) −→ E −→ E|H −→ 0.

We see that
h0(E) ≤ h0(E(−1)) + h0(E|H).

The same argument shows inductively that

h0(E) ≤ h0(E(−k)) +
k−1∑
i=0

h0(E(−i)|H)

for all k, and hence
h0(E) ≤

∑
i≥0

h0(E(−i)|H).

We choose a general line L ⊂ H and conclude, by replacing P3 by H, that

h0(E(−i)|H) ≤
∑
j≥0

h0(E(−i− j)|L).

Therefore

h0(E) ≤
∑
0≤i,j

h0(E(−i− j)|L)

=
∑

0≤j≤a,i+j≤a

a+ 1− i− j +
∑

0≤j≤b,i+j≤b

b+ 1− i− j.

=
a∑

j=0

(
a+ 2− j

2

)
+

b∑
j=0

(
b+ 2− j

2

)

=
a+2∑
j=2

(
j

2

)
+

b+2∑
j=2

(
j

2

)
=
(
a+ 3

3

)
+
(
b+ 3

3

)
= h0(E ′).

By assumption we have

χ(E) = h0(E) ≤ h0(E ′) = χ(E ′).
Using Riemann–Roch, this inequality transforms to

1
8γ(c1(E).h2 + 4) + 1

24c
3
1(E) + 1

2c
2
1(E).h+ 11

6 c1(E).h2 + 2

≤ 1
8γ(c1(E

′).h2 + 4) + 1
24c

3
1(E ′) + 1

2c
2
1(E ′).h+ 11

6 c1(E
′).h2 + 2.
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Since by assumption c1(E) = c1(E ′) and c1(E).h2 > 0, this implies

γ(E) ≤ γ(E ′).
Equality holds if and only if all connecting homomorphisms

H0(E(−i)|L) −→ H1(E(−i− 1)|H)

are the zero map, what means that

h1(E(−i− 1)|H) ≤ h1(E(−i)|H)

for all i ≥ 0. This implies that H1(E(n)|H) = 0 for all n ∈ Z, by the choice
of m. We conclude, using Horrocks’ splitting criterion, that

E|H = OH(a)⊕OH(b).

By [OSS88, p. 42] we know that E splits if and only if E|H splits for some
hyperplane H. Hence

E = O(a)⊕O(b). �

Theorem 4.6. Let X ⊂ P(E) be a Calabi–Yau manifold, with E −→ P3 a
rank-2-bundle. For the generic splitting type (a, b) of E (where a ≤ b) we
have b− a ≤ 4 and hence

γ(E) ≤ 16,
or equivalently,

c3(X) ≥ −296.

Proof. Let X = {s = 0}, where s ∈ H0(−KP(E)), L ⊂ P3 is a general line
and

E|L = O(a)⊕O(b),
with a ≤ b. Then s induces a section

t = p∗s ∈ H0(S2E ⊗ det E−1 ⊗O(4)).

We have

S2E ⊗ det E−1 ⊗O(4)|L ∼= O(a− b+ 4)⊕O(4)⊕O(b− a+ 4)

and by the general choice of L the intersection X ∩ p∗L can be assumed to
be smooth. Let d00 := a− b+4, d01 := 4, d11 := b− a+4. We denote by
[x0 : x1] the coordinates of the fibres of p in a trivializing neighbourhood
p−1(U), with U ⊂ P3. In this neighbourhood we can express s|p∗L as

s|p∗L =
∑

sijxixj ,

with sij ∈ H0(O(dij))|U . If b − a > 4, then H0(O(d00)) = 0 and hence
s00 = 0. Therefore

s|p∗L = x1(s01x0 + s11x1)
is reducible and so X ∩ p∗L is singular along

S := {x1 = 0} ∩ {s01x0 + s11x1 = 0} = {x1 = 0} ∩ {s01 = 0}.
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Since s01 ∈ H0(O(4)), we conclude S 6= ∅. Hence this case does not occur
and therefore b− a ≤ 4.

By applying Lemma 4.5 we conclude finally that

γ(E) ≤ γ(O ⊕O(b− a)) ≤ γ(O ⊕O(4)) = 16. �

4.2. The discriminant map. To be able to compute K(X) we need infor-
mation about the morphism π : X −→ P3, which is the natural projection.

Construction 4.7. Let X = {s = 0}, with s ∈ H0(−KP(E)) and

V := {p ∈ P3 | π is locally in p not an étale covering}.
We define the discriminant

∆(E,F) : S2E ⊗ F −→ (det(E)⊗F)⊗2

by

∆(E,F)

( ∑
1≤i<j≤2

cijsisj ⊗ f

)
:= (c212 − 4c11c22)(s1 ∧ s2 ⊗ f)⊗2,

where s1, s2 form an O(U)-basis of E(U), F −→ P3 is a line bundle and
f ∈ F(U) is a generator of F(U) for a small open set U ⊂ P3. An easy
computation shows that this definition is independent of the chosen bases.

Now we specify
F = det E∨ ⊗O(4).

Then the discriminant is a map

∆E : p∗(−KP(E)) −→ O(8),

with
{∆E(p∗s) = 0} = V

set-theoretically: in local coordinates

s =
∑

sijxixj ,

where [x0 : x1] denotes the coordinates of the fibre, V is the locus where the
zeroes of

∑
sij(z)xixj = 0 are not two distinct points. By definition this is

the discriminant locus of the quadratic equation in x0, x1, given by

s201 − 4s00s11 = 0.

This coincides with the discriminant locus of p∗s.
Since on a trivializing neighbourhood U ⊂ P3 the map is given by

∆E(t)|U = t212 − 4t11t22,

if t ∈ H0(p∗(−KP(E))) and t|U = (t11, t12, t22), we see that, in particular,
H0(∆E) : H0(−KP(E)) −→ H0(O(8)) is a holomorphic map.

Moreover,
H0(∆E)(rt) = r2H0(∆E)(t)
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for r ∈ C, t ∈ H0(−KP(E)). Hence we can projectivize, but cannot exclude
that H0(∆E)(s′) = 0 for some s′ 6= 0. Therefore we get a rational map

δE : P(H0(−KP(E))) · · ·→ P(H0(O(8))) ∼= P164.

Let for the moment V ′ := {z ∈ P3 | H0(∆E)(s)(z) = 0} in the sense of
ideals. If we set

P := {z ∈ P3 | dimπ−1(z) = 1},

we see that

P =
{
z ∈ P3 |

∑
sijxixj = 0 for all [x0 : x1]

}
and hence

P = {z ∈ P3 | s00(z) = s01(z) = s11(z) = 0} ⊂ Sing (V ′).

Moreover, this shows that

P = {z ∈ P3 | π−1(z) ∼= P1}.

Now let z ∈ Sing (V ′). If s00(z) = s01(z) = s11(z) = 0, then z ∈ P . So let
us assume s00(z) 6= 0 or s01(z) 6= 0. Define

x := [s01(z) : −2s00(z)] ∈ p−1(z).

Since z ∈ V , we get that ∆E(s)(z) = s01(z)2 − 4s00(z)s11(z) = 0. Therefore

s(x) = s00(z)s01(z)2 − 2s00(z)s01(z)2 + 4s11(z)s00(z)2

= −s00(z)∆E(s)(z) = 0,

hence x ∈ X.
We want to show that x ∈ X is singular. For this we have to compute in

the point x

∂s

∂x0
=2s00x0 + s01x1 = 0,(9)

∂s

∂x1
=s01x0 + 2s11x1 = 0,(10)

∂s

∂zi
=
∂s00

∂zi
x2

0 +
∂s01
∂zi

x0x1 +
∂s11
∂zi

x2
1 = 0,(11)

and since z ∈ Sing (V ′) we know moreover that at the point z we have

s201 − 4s00s11 = 0(12)

2s01
∂s01

∂zi
− 4s11

∂s00
∂zi

− 4s00
∂s11
∂zi

= 0.(13)
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Using the expression for x in (9), (10) and (11) we compute
∂s

∂x0
= 2s00s01 − 2s00s01 = 0,

∂s

∂x1
= s201 − 4s00s11 = 0,

∂s

∂zi
=
∂s00

∂zi
s201 − 2

∂s01
∂zi

s00s01 + 4
∂s11
∂zi

s200

= 4
∂s00

∂zi
s00s11 − 2

∂s01
∂zi

s00s01 + 4
∂s11
∂zi

s200

= −s00

(
2s01

∂s01
∂zi

− 4s11
∂s00
∂zi

− 4s00
∂s11
∂zi

)
= 0,

where the last equation used (12) as well as (13).
Thus we have proved that x ∈ X is singular. But we assumed X to be

smooth. Hence it has been proved that P = Sing (V ′). In particular, V ′ is
reduced and therefore V ′ = V in the sense of ideals.

Now we know that V = δE(X) ∈ |O(8)| and

P = Sing (V ).

If we assume ρ(X) = 2, we will see in the next section that in this case
P 6= ∅. The image of δE then is a subvariety of the singular octics in P3; in
particular δE is not surjective.

At this point we should mention the work of Clemens, Cynk and Szemberg
[Cl83, CS99, Cy99]. The first article mentioned describes the construction
of Calabi–Yau threefolds as resolutions of double covers of P3 ramified over
a given (singular) octic. The latter two papers are concerned with the Euler
number of such Calabi–Yau threefolds. The track followed in the present
paper reverses the direction, since we are given first the Calabi–Yau threefold
and then construct the octic. Hence our method can be used to construct
octic hypersurfaces with many nodes. This is done in [Kü02].

To prove now the finiteness of P we will fall back upon the bounds for γ
proved in the last section.

Lemma 4.8. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold, with E −→ P3

a rank-2-bundle. Let P := {p ∈ P3 | π−1(p) ∼= P1}. Then dimP ≤ 0.

Proof. Assume first that dimP = 2. Then dimπ∗P = 3 and, since π∗P 6= X,
we conclude that X is reducible, hence not smooth.

If dimP = 1, then D := π∗P ∈ Pic(X) is an effective divisor satisfying

D.π∗h2 = 0.

If we write
µD = OX(2) + kπ∗h,
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with µ ∈ R+, we compute

0 = D.π∗h2

=
(
OZ(2) + kp∗h

)
.p∗h2.

(
OZ(2) + (4− c1(E).h2)p∗h

)
= 8 + 2k + 2c1(E).h2.

Hence

µD = −KZ − 8p∗h|X.

But we know additionally that

0 < degP = D.π∗h.OX(1)

=
1
µ

(−KZ − 8p∗h).π∗h.OZ(1).(−KZ) =
1
µ

(γ − 16) ≤ 0,

what is a contradiction. �

This we now use to prove a result about the number of full fibres in X:

Theorem 4.9. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold, with E −→
P3 a rank-2-bundle. X contains exactly 64− 4γ fibres of p.

Proof. Let s ∈ H0(−KZ) be such that X = {s = 0}. This section s induces
a section t ∈ H0(p∗(−KZ)). Let

P := {t = 0}.

Since dimP ≤ 0 by Lemma 4.8, we know that

[P ] = c3(p∗(−KZ)).

To compute c3(p∗(−KZ)) we make the usual ansatz

c(E) = (1 + at)(1 + bt).

Then we can express

c(S2E ⊗ O(r)) = (1 + (2a+ r)t)(1 + (a+ b+ r)t)(1 + (2b+ r)t).

If we do the multiplications and replace again by Chern classes of E , we get

c3(S2E ⊗ O(r)) = 4c2(E)c1(E) + 2r(c21(E).h+ 2c2(E).h) + 3r2c1(E) + r3.

Setting r = 4− c1(E).h2 finally leads to

c3(p∗(−KZ)) = 64− 4γ. �
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4.3. The generalized Kollár Lemma. By Theorem 4.9 the only case in
which π∗h can be ample is γ = 16. But Lemma 4.5 and Lemma 4.6 state
that in this case E = O ⊕ O(4). We computed in Example 4.4 that then
ρ(X) = 1. Hence we have proved:

Corollary 4.10. Let X ⊂ P(E) be a Calabi–Yau manifold, with E −→ P3 a
rank-2-bundle. Assume that ρ(X) = 2. Then π∗h ∈ ∂K(X).

So we turn our attention to the ‘other’ side of the ample cone. The
following arguments are similar to the corresponding section of [Kü01b].

Lemma 4.11. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold with ρ(X) = 2
and with E −→ P3 a rank-2-bundle. If −KZ is not nef, then K(X) =
K(Z)|X.

Proof. Take D ∈ Pic(Z)⊗Q such that D|X is nef. Without loss of generality
we may assume D = OZ(2) + kp∗h, with k ∈ Q. Set E := D +KZ . Then
E = lp∗h, with l ∈ Q; hence E or −E is nef. If −E is nef, so is −KZ , and
we get a contradiction. Therefore E is nef. Now let C ⊂ Z be a curve. If
C ⊂ X, then by assumption D.C ≥ 0. But if C 6⊂ X, then −KZ .C ≥ 0
since X ∈ |−KZ | and hence

D.C = (E −KZ).C > 0.

This shows that D is nef. �

The generalization of Kollár’s lemma is possible in an unrestricted way:

Theorem 4.12. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold with ρ(X) =
2, with E −→ P3 a rank-2-bundle. Then

K(X) = K(Z)|X.

We divide the proof into several steps:

Lemma 4.13. Let Z be a fourfold such that −KZ is big and nef but not
ample. If Φ|−mKZ | : Z −→ Z ′ contracts only a finite number of curves, then
these are smooth and rational.

Proof. Let C be an irreducible curve contracted by Φ. Since −mKZ =
Φ∗OZ′(1) we also have −mKZ′ = OZ′(1), and Z ′ has only canonical singu-
larities; in particular, they are rational. This tells us that R1Φ∗OZ = 0, and
since

0 −→ IC −→ OZ −→ OC −→ 0,
we conclude that R1Φ∗OC = 0. By the Leray spectral sequence, H1(OC) =
0. Hence C is smooth and rational. �

Lemma 4.14. Let Z be a fourfold such that −KZ is big and nef but not
ample. Then the exceptional locus of Φ|−mKZ | : Z −→ Z ′ contains a two-
dimensional component.
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Proof. Assume Φ contracts only a finite number of curves. By Lemma 4.13
these are smooth and rational. Let C be such a curve. By the adjunction
formula, KZ .C = 0 implies that c1(NC|Z) = c1(KC) = −2. Now we compute

χ(NC|Z) = 3(1− g(C)) + c1(NC|Z) = 1 > 0.

Therefore C deforms in Z, hence there is a surface contracted, contradicting
the assumption. �

Lemma 4.15. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold with ρ(X) =
2, with E −→ P3 a rank-2-bundle. Then

H4(Z,Z) =
〈
OZ(1).p∗h, (p∗h)2

〉
.

Proof. By the Künneth formula b4(Z) = 2.
In order to show that v1 := (p∗h)2 and v2 := OZ(1).p∗h form a Z-basis for

H4(Z,Z), it suffices to show that the matrix A = (aij) = (vi.vj) is invertible
over Z. But by Lemma 4.1

A =

(
0 1

1 c1(E).h2

)
,

which proves the lemma. �

Lemma 4.16. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold with ρ(X) =
2, with E −→ P3 a rank-2-bundle. Assume that −KZ is big and nef but not
ample. Then Φ|−mKZ ||X : X −→ X ′ is not an isomorphism.

Proof. Let E −→ V be the exceptional locus of Φ. We obtain

kX = φ∗H,

for a k ∈ Z. Since H is ample, H intersects every positive-dimensional
component of V . This implies that φ|X can be an isomorphism only if
dimV = 0.

So assume dimV = 0. By Lemma 4.14 there is a surface G ⊂ Z that gets
contracted to a point by Φ. In particular, −KZ .G ≡ 0. Let a, b ∈ Z be such
that

[G] = aOZ(1).p∗h+ b(p∗h)2.
Then −KZ .G.p

∗h = 0 and −KZ .G.OZ(1) = 0 are equivalent to

(c1(E).h2 + 4)a+ 2b = 0
(c21(E).h− 2c2(E).h+ 4c1(E).h2)a+ (c1(E).h2 + 4)b = 0,

which has a nontrivial solution only if

det

(
c1(E).h2 + 4 2

c21(E).h− 2c2(E).h+ 4c1(E).h2 c1(E).h2 + 4

)
= 0.

This means exactly γ = 16. As argued above, this amounts to ρ(X) = 1,
contradicting our assumption. �
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Proof of Theorem 4.12. We assume K(X) 6= K(Z)|X. The Kollár lemma
says that then −KZ is not ample. But by Corollary 4.10 the pullbacks p∗h
and π∗h are nef and not ample. So, if K(X) 6= K(Z)|X, by Lemma 4.11
the divisor −KZ |X has to be ample and −KZ has to be big and nef, but
not ample. From

0 −→ −(m− 1)KZ −→ −mKZ −→ −mKZ |X −→ 0

and H1(−(m− 1)KZ) = 0 for m > 0 we see that

H0(−mKZ) −→ H0(−mKZ |X)

is surjective, hence φ|−mKZ |X | = φ|−mKZ ||X. Since −KZ |X is ample, this
means that φ|−mKZ ||X is an isomorphism for m � 0. This contradicts
Lemma 4.16. �

4.4. Rationality of K(X) and positivity of c2(X).

Corollary 4.17. Let X ⊂ P(E) =: Z be a Calabi–Yau manifold with ρ(X) =
2, with E −→ P3 a rank-2-bundle. Then

D.c2(X) > 0 for all D ∈ K(X).

Proof. If −KZ is not ample, neither is −KZ |X, by Theorem 4.12. Hence
there is some nonnegative k ∈ Q such that

D := −KZ |X + kπ∗h ∈ ∂K(X).

By Lemma 4.2,

D.c2(X) = −KZ |X.c2(X) + kπ∗h.c2(X) ≥ 56 + 44k > 0.

By Theorem 4.12, π∗h ∈ ∂K(X). The claim follows since π∗h.c2(X) = 44.
If −KZ is ample, the claim of the theorem has been proven by Oguiso

and Peternell in [OP98]. �

The rationality of the Kähler cone also follows easily under mild restric-
tions:

Theorem 4.18. Let X ⊂ P(E) be a Calabi–Yau manifold with ρ(X) = 2,
with E −→ P3 a rank-2-bundle satisfying h0(−KP(E)) > 1. Then ∂K(X) is
rational.

Proof. Set Z := P(E) as before. In view of Theorem 4.12 it suffices to show
that ∂K(Z) is rational.

We consider three cases: −KZ is ample, −KZ is nef but not ample, and
−KZ is not nef.

Let −KZ be ample. Then the cone theorem states the rationality of
∂K(Z).

Now let −KZ be nef, but not ample. Then −KZ ∈ ∂K(X) and hence
∂K(X) is rational.
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Finally, let −KZ be not nef. By Theorem 4.12,

K(X) = K(Z)|X.
Since h0(−KZ) > 1 holds, −KZ |X is effective. By assumption also −KZ |X
is not nef. Now we want to use the log-rationality theorem ([KMM87,
Thm. 4-1-1]), which states that

sup{r ∈ R | H + r(KX + ∆) ∈ K(X)} ∈ Q
if H ∈ Pic(X) is ample, KX + ∆ not nef and ∆ an effective Q-divisor such
that (X,∆) has only weak log-terminal singularities. The latter property
can be reached by choosing ε∆ instead of ∆ for 0 < ε � 1. Note that
KX = 0.

Because −KZ |X is not nef, we apply the log-rationality theorem for an
arbitrary ample H ∈ Pic(X) and ∆ := ε(−KZ |X) for 0 < ε � 1. In this
way we get that ∂K(X) is rational. �

A result of Wilson [Wi94b, Facts A,B,C] says that the rationality of
∂K(X) and the positivity of c2(X) imply that ∂K(X) is semiample. Hence:

Corollary 4.19. Let X ⊂ P(E) be a Calabi–Yau manifold with ρ(X) = 2,
with E −→ P3 a rank-2-bundle. If ∂K(X) is rational, there is a second
contraction X −→ X ′ (apart from the first Stein factor of π).

5. Calabi–Yau threefolds in P3-bundles over P1

According to Corollary 3.3, if X is a Calabi–Yau threefold in a P3-bundle
over P1 with ρ(X) = 2, the Kähler cone is rational. With similar arguments
as in the previous section, it can also be proved that K(X) = K(Z)|X.

We adopt the convention that E −→ P1 is normalized in such a way that

E = O ⊕O(a1)⊕O(a2)⊕O(a3)

with 0 ≤ a1 ≤ a2 ≤ a3. As before, X ⊂ P(E) =: Z is the Calabi–Yau
manifold under consideration.

Theorem 5.1. Let X ⊂ P(E) =: Z be a Calabi–Yau threefold with E −→ P1

a rank-4-bundle. Then K(X) = K(Z)|X.

Proof. We consider E normalized as above. In particular, OZ(1) ∈ ∂K(Z).
The canonical bundle of Z is

−KZ = OZ(4) + (2− c1(E))p∗h

and X ∈ |−KZ |.
If c1(E) > 2, then

−KZ .P(O) < 0,
hence P(O) ⊂ X. Therefore OX(1) is also nef and not ample.

If c1(E) < 2, then −KZ is ample and we use Lemma 3.4 (Kollár).
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If c1(E) = 2, then a1 = 0, so P(O) deforms in Z. Since −KZ .P(O) = 0,
either there is a curve of the form P(O) lying in X or the surface G :=
P(O ⊕O) has the property

X ∩G = ∅.
In the first case K(X) = K(Z)|X is proved.

In the second case we compute as in the previous section

〈OZ(1).p∗h,OZ(1)2〉Z = H4(Z,Z).(14)

Again, we show this by setting v1 := OZ(1).p∗h, v2 := OZ(1)2 and comput-
ing the matrix A = (vivj)ij :

A =

(
0 1
1 c1(E)

)
.

Obviously, A ∈ Gl(2,Z) and therefore (14) is proved.
Now we can write [G] = kv1 + lv2. With this we get 0 = −KZ .G.p

∗h = 4l
and hence

0 = −KZ .G.OZ(1) = 4k + 4lc1(E) + (2− c1(E))l = 4k;

therefore [G] = 0, contradicting the projectivity of Z. �

The intersection theory on X looks as follows:
(i) c3(X) = −168.
(ii) OZ(1)|X.c2(X) = 6c1(E)+44, π∗h.c2(X) = 24, hence −KZ |X.c2(X) =

224.
(iii) (−KZ |X)3 = 512, (−KZ |X)2.π∗h = 64.

With this, we already are able to prove the positivity of c2(X):

Theorem 5.2. Let X ⊂ P(E) =: Z be a Calabi–Yau threefold with E −→ P1

a rank-4-bundle normalized as above. Then

D.c2(X) > 0

for all D ∈ ∂K(X).

Proof. By the chosen normalization, OZ(1) is nef and not ample, hence
Theorem 5.1 shows that OX(1) is also nef and not ample. Since c1(E) ≥ 0,
the formulas above imply OX(1).c2(X) > 0 and π∗h.c2(X) > 0. Hence the
claim is proved. �

Again we refer to

0 −→ TZ|P1 −→ TZ −→ p∗TP1 −→ 0,(15)

0 −→ OZ −→ p∗(E∨)⊗OZ(1) −→ TZ|P1 −→ 0,(16)

0 −→ TX −→ TZ |X −→ NX|Z −→ 0.(17)

For the later description we compute the Picard number.
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Theorem 5.3. Let X ⊂ P(E) =: Z be a Calabi–Yau threefold with E −→ P1

a rank-4-bundle normalized as above. Then

ρ(X) = 2 + h1(−KZ).

In particular,
ρ(X) = 2 ⇐⇒ c1(E) ≤ 3.

Proof. We look at the two sequences

0 −→ N∨
X|Z −→ ΩZ |X −→ ΩX −→ 0(18)

and

0 −→ ΩZ ⊗KZ −→ ΩZ −→ ΩZ |X −→ 0.(19)

Our first aim is to show that H i(TZ) = H i(E∨ ⊗ E) for i > 1. For this
purpose we calculate Rip∗(p∗(E∨)⊗OZ(1)) = E∨⊗Rip∗OZ(1) = 0 for i > 0.
Therefore the Leray spectral sequence yields

H i(p∗(E∨)⊗OZ(1)) = H i(E∨ ⊗ E).

Sequence (16) shows that H i(p∗(E∨)⊗OZ(1)) = H i(TZ|P1) for i > 0, since
by Rip∗OZ = 0 for i > 0 we get H i(OZ) = H i(OP1) = 0 for i > 0. For
applying (15), we verify by the projection formula that Rip∗p

∗TP1 = 0 for
i > 0. Hence again the Leray spectral sequence implies

H i(p∗TP1) = H i(TP1) = 0

for i > 0. This implies, now with (15), that

H i(TZ|P1) = H i(TZ)

for i > 1. Therefore
H i(TZ) = H i(E∨ ⊗ E)

for i > 1.
So we see that

H i(ΩZ ⊗KZ) = H4−i(TZ)∨ = H4−i(E∨ ⊗ E)∨

for i < 3. In particular,

H1(ΩZ ⊗KZ) = H3(E∨ ⊗ E)∨ = 0.

Since H2,1(Z) = 0, H2(E∨ ⊗ E) = 0 and N∨
X|Z = KZ |X, the cohomology

sequences of (18) and (19) contain

0 −→ H1(ΩZ) −→ H1(ΩZ |X) −→ 0(20)

and

0 −→ H1(KZ |X) −→ H1(ΩZ |X) −→ H1(ΩX) −→ H2(KZ |X),(21)

respectively.
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The sequence

0 −→ OZ −→ −KZ −→ −KZ |X −→ 0

and Serre duality imply

hi(−KZ) = hi(−KZ |X) = h3−i(KZ |X)

for i > 0. Since Rip∗(−KZ) = 0 for i > 0 we compute

h2(−KZ) = h2(p∗(−KZ)) = 0.

Considering this together with the sequences (20) and (21) we get

ρ(X) = 2 + h2(KZ |X) = 2 + h1(−KZ).

Since R1p∗(−KZ) = 0, we compute further

h1(−KZ) = h1(S4E ⊗ O(2− c1(E))).

Hence the condition ρ(X) = 2 is equivalent to

2− c1(E) ≥ −1,

what proves the claim. �

In the chosen normalization of E the divisor OZ(1) is nef but not ample.
By K(X) = K(Z)|X also OX(1) is nef and not ample. The computation

OX(1)3 = OZ(1)3.(−KZ) = 3c1(E) + 2 > 0

and the basepoint-free theorem show that there is a birational contraction

ψ : X −→ X ′.

This contraction is described as follows:

Theorem 5.4. Let X ⊂ P(E) := Z be a Calabi–Yau manifold with ρ(X) =
2, with E −→ P1 a rank-4-bundle normalized as above. Let ψ : X −→ X ′

be the birational contraction and E its exceptional locus. Denote by F :=
O
⊕

i|ai=0O(ai) the maximal trivial subbundle of E.

(i) If c1(E) = 3, then rkF ≤ 2 and E = P(F) ∼= P1 × P rkF−1.
(ii) If c1(E) = 2, then rkF ∈ {2, 3} and E = X ∩ P(F) = P1 × Y , with

dimY = rkF − 2.
(a) If rkF = 2, then Y consists of four points.
(b) If rkF = 3, then Y is a smooth plane quartic curve.

(iii) If c1(E) = 1, then Z is the blowup of P4 in a linearly embedded P2;
if X ∈ |−KZ | is chosen generally, then E =

⋃16
i=1Ci, with Ci

∼= P1;
in this case, X ′ is a quintic in P4 with 16 double points on a linearly
embedded P2.

(iv) If c1(E) = 0, then Z = P1 × P3 and E =
⋃64

i=1Ci, with Ci
∼= P1.
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Proof. E is normalized in such a way that OZ(1) ∈ ∂K(Z). First we show
that all curves C satisfying OZ(1).C = 0 have the form P(O) for some
quotient E −→ O −→ 0: If OZ(1).C = 0, then s|C is constant for all
s ∈ H0(OZ(1)). Writing

s =
∑

sixi,

where [x0 : · · · : x3] are fibre coordinates and si ∈ H0(O(ai)), the constancy
of s|C for all s ∈ H0(OZ(1)) implies that

xi = 0, if ai > 0 and xi = ci, if ai = 0

for ci ∈ C. This proves the claim.

(i) In case c1(E) = 3 we compute for C = P(O)

−KZ .C = (OZ(4) + (2− c1(E))p∗h).C = 2− c1(E) < 0,

hence C ⊂ X. Since every curve C satisfying OZ(1).C = 0 is of the form
P(O), this implies

E = P(F).

The divisor E is also the exceptional locus of ψ̃ := Φ|OZ(m)| : Z −→ Z ′ and
hence by Lemma 4.14 we know that dimE ≤ 2. Therefore also rkF ≤ 2.

(ii) If c1(E) = 2, then for C = P(O)

−KZ .C = 0,

hence C ⊂ X or C ∩X = ∅. Thus,

E = X ∩ P(F) = P1 × Y.

Since −KZ = OZ(4), there is an ample hypersurface V ⊂ Z ′ such that

kX = ψ̃∗V,

with ψ̃ : Z −→ Z ′ as above the birational map given by the linear system
|OZ(m)|. In particular,

dimE = dim P(F)− 1 = rkF − 1,

and hence
dimY = rkF − 2.

If rkF = 2, the number of contracted curves is computed as

Y.F = OZ(4).P(F).F = 4,

since every contracted curve is of the form P(O).
If rkF = 3, i.e., E = 3O ⊕ O(2), then by [Gr97] Y is a smooth curve,

since ρ(X) = 2 implies that every contraction is primitive. For a general
fibre F of p the intersection E ∩F is smooth ([Ha77, Corollary 10.9.1]) and

ψ|E∩F : E ∩ F −→ Y
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is an isomorphism, since F.P(O) = 1. Furthermore E ∩ F ⊂ P(F) ∩ F ∼= P2

and we compute

degE ∩ F = E.F.OZ(1) = −KZ .P(F).F.OZ(1) = 4,

because −KZ = OZ(4).

(iii) If c1(E) = 1, only E = 3O ⊕ O(1) is possible and therefore Z is the
blowup of P4 in a linearly embedded P2. Denote the blowup by φ : Z −→ P4.
As above the exceptional curves have the form C = P(O). Let E′ be the
exceptional divisor of the blowup. Then

−KZ = φ∗OP4(5)− E′ = OZ(5)− E′;

on the other hand
−KZ = OZ(4) + p∗h,

hence
E′ = OZ(1)− p∗h.

Set Y := X ∩ E′. The sequence

0 −→ −KZ − E′ −→ −KZ −→ −KZ |E′ −→ 0

and the equality H1(−KZ − E′) = H1(OZ(3) + 2p∗h) = 0 (with Kodaira
vanishing) imply that

H0(−KZ) −→ H0(−KZ |E′)

is surjective. Since −KZ |E′ is globally generated, we see that by a general
choice of X also Y can be assumed to be smooth.

Since OZ(1).P(O) = 0 and p∗h.P(O) = 1 we conclude that −KZ .P(O) = 1
and therefore

φ|Y : Y −→ P2

is generically one-to-one. If C = P(O) ⊂ Y , the sequence

0 −→ TP(O) −→ TY |P(O) −→ NP(O)|Y −→ 0

and the equalities TP(O) = O(2) and

c1(TY |P(O)) = c1(N∨
Y |X |P(O)) = −E′.P(O) = (−OZ(1) + p∗h).P(O) = 1

imply that
NP(O)|Y = O(−1).

This shows that φ|Y is the blowup of P2 in k points. To compute k, we
apply the canonical bundle formula,

K2
Y =

(
φ|Y ∗(OP2(3))−

k∑
i=1

Ei

)2

= 9− k,
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where Ei denotes the exceptional curves. We know that

E =
k⋃

i=1

Ei.

At the same time,

K2
Y = N2

Y |X = (−KZ).E3

= (OZ(4) + p∗h).(OZ(1)− p∗h)3

= 4c1(E)− 12 + 1 = −7.

Hence we arrive at k = 16.
Since −KZ = φ∗OP4(5)−E′ the characterization of φ|Y as a blowup shows

that X ′ is a quintic in P4 with 16 double points on a linearly embedded
P2 ⊂ P4.

(iv) In the last case c1(E) = 0, obviously E = 4O and hence Z = P1× P3.
Therefore we may use Theorem 4.9 to conclude that E consists of 64 curves
C ∼= P1. �
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