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We use circle packing techniques to construct approximate
solutions to the generalized Beltrami equations with simply
and multiply connected regions in the plane. We show conver-
gence of the approximate solutions. This gives a constructive
proof for the existence of quasiconformal mappings with a
given pair of complex dilations.

1. Introduction

Circle packings — configurations of circles with specified patterns of tan-
gency and having disjoint interiors — came to prominence with analysts in
1985 when Thurston conjectured that maps between such configurations
would approximate conformal maps. Shortly, Burt Rodin and Dennis Sul-
livan [7] proved the convergence of Thurston’s scheme, and much research
on circle packings followed.

In [1], Z.-X. He used circle packing methods to solve the Beltrami equation

∂zf = λ∂zf.

In this paper we shall construct homeomorphic solutions w = f(z) of the
generalized Beltrami equation

∂zf = λ∂zf + µ∂zf, z ∈ Ω.(1)

We suppose that Ω is a simply or multiply connected Jordan domain in the
complex plane C and that U is either, as the corresponding case may be,
the unit disk with center at the origin or the unit circular domain obtained
from the unit disk by the deletion of a closed disjoint union of finitely many
closed disks and points. Further we assume that λ, µ : Ω → C are measurable
functions with ∥∥|λ|+ |µ|

∥∥
∞ = esssupz∈Ω

(
|λ|+ |µ|

)
< 1.(2)

The homeomorphic solution in L2 to (1) and (2) is called a quasiconformal
mapping with complex dilations (λ, µ).

This paper can be viewed as a development of [1] in terms of both equation
and region. Our method of constructing functions is different from that of
[1], and avoids an essential difficulty that one is faced with in discussing the
Riemann’s existence theorem of Equation (1): namely, the composition of a
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quasiconformal map with complex dilations (λ, µ) and a conformal map is a
quasiconformal map, but its complex dilations are different from (λ, µ) (see
[5], for example).

2. Construction of Approximate Solutions

We shall construct approximate solutions of Equation (1) in this section.
Let δ be a small positive number. We use the grid

RL (δ) =
{
x + iy : x = pδ, y =

√
3

2 qδ, (p, q) ∈ Z× Z
}

to decompose C into a number of rectangles with side lengths δ and
√

3δ/2,
and choose the side lengths of the rectangles in such a way that one is just
able to use the regular hexagonal grid of mesh δ/n (n ∈ N) to triangulate
it. Suppose Ωδ is the minimal Jordan domain containing all rectangles that
intersect Ω. Then Ωδ is a closed polyhedral Jordan domain, which is the
union of squares of side length δ and

√
3δ/2. It is obvious that Ω ⊂ Ωδ and

Ωδ converges to Ω when δ → 0 in the sense that any compact subset of Ĉ\Ω
is contained in Ĉ \ Ωδ for δ small enough.

For any rectangle R in Ωδ, set

λ(R) =

{
1

A(R)

∫∫
R λ(z) dx dy, R ⊂ Ω,

0, otherwise,

µ(R) =

{
1

A(R)

∫∫
R µ(z) dx dy, R ⊂ Ω,

0, otherwise,

where A(R) denotes the area of R. Define piecewise constant functions
λδ, µδ : Ω → C by

λδ(z) = λ(R), µδ(z) = µ(R), a.e. z ∈ R ∩ Ω.(3)

Then

lim
δ→0

λδ(z) = λ(z), lim
δ→0

µδ(z) = µ(z), a.e. z ∈ Ω.(4)

Suppose that R is an interior rectangle in Ωδ with R ∩ ∂Ωδ = ∅. Denote
by z1, z2, z3 and z4 its lower left, lower right, upper right, and upper left
vertices, respectively. Let ΨR : C → C be the map defined by

ΨR(z) =

∣∣1 + λ(R) + µ(R)
∣∣

1−
∣∣λ(R) + µ(R)

∣∣2 (
(z − z1) + (λ(R) + µ(R))(z − z1)

)
.

It is easy to verify that ∂zΨR(z) = λ(R)∂zΨR(z) + µ(R)∂zΨR(z). Since
|λ(R) + µ(R)| ≤ ‖|λ|+ |µ|‖∞ < 1, the function ΨR(z) is an affine conformal
homeomorphism with complex dilations (λ(R), µ(R)) and maps the square R
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onto the parallelogram R′ with vertices z′1 = ΨR(z1) = 0, z′2 = ΨR(z2) = a,
z′3 = ΨR(z3) = a + b, z′4 = ΨR(z4) = b, where

a =

∣∣1 + λ(R) + µ(R)
∣∣

1−
∣∣λ(R) + µ(R)

∣∣2 δ
(
1 + λ(R) + µ(R)

)
,(5)

b =

∣∣1 + λ(R) + µ(R)
∣∣

2
(
1−

∣∣λ(R) + µ(R)
∣∣2) √3 δ

(
1− (λ(R) + µ(R))

)
i.(6)

Write n = 2[1/(2δ)], ω = eiπ/3 and γ = δ/n. Let HL(γ) denote the
regular hexagonal grid with mesh γ, whose vertices form the lattice V (γ) =
{γp + γqω : p, q ∈ Z}. The neighbors of α ∈ V (γ) are the points α + γωk,
0 ≤ k ≤ 5. Suppose T (γ) is the complex obtained by using HL(γ) to
triangulate the plane C. Then the 1-skeleton of T (γ) is the nerve of some
regular hexagonal circle packing Pγ of the complex plane C formed by closed
disks of radii γ/2.

By (5), (6) and the fact that
∣∣λ(R) + µ(R)

∣∣ ≤ ‖|λ| + |µ|‖∞ < 1, it is
easy to deduce that the angle z′4z

′
1z
′
2 of the parallelogram R′ is bounded

from below, the distance between z′1z
′
2 and z′4z

′
3 is

√
3δ/2 and the lengths

of sides of R′ are between cδ and Kδ, where 0 < c ≤ 1 and K ≥ 1 are
constants depending only on ‖|λ|+ |µ|‖∞. So one can suppose that H(R′)
is the collection of all triangles of T (r)(γ) lying in R′ and having distance at
least γ/2 from ∂R′, where T (r)(γ) = eiθT (γ), for θ = arg

(
1 + λ(R) + µ(R)

)
.

Thus H(R′) is a simplicial complex and |H(R′)| is some polyhedral Jordan
domain in R′.

Since triangles in H(R′) have length δ/n one gets, as in [2], a triangulation
T (R′) on R′ that agrees with the triangulation H(R′) on |H(R′)| and whose
restriction on each side of R′ is the triangulation consisting of n 1-simplexes
of equal length, the length lying between cδ/n and Kδ/n.

Set (T (R), t) =
(
T (R′), (ΨR)−1

)
. Then (T (R), t) is a K-quasiconformal

affine triangulation on the rectangle R, and its restriction on each side of
R is the affine triangulation with n 1-simplexes of equal length. So these
affine triangulations can be glued together to form a K-quasiconformal affine
triangulation for

Ω̃δ =
⋃

R∩∂Ω=φ

R.

In addition, by intersecting the region

Ωδ \ int Ω̃δ =
⋃

R∩∂Ωδ 6=φ

R

with the regular hexagonal triangulation HL(γ) of the plane, one gets an
affine triangulation (T̃δ, I) for Ωδ \ int Ω̃δ, where I denotes the identity map.
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Pasting together the affine triangulations above for Ω̃δ and Ωδ \ int Ω̃δ, we
obtain an affine triangulation (Tδ, tδ) for Ωδ.

Denote by Lm(R) the subcomplex of H(R) = Ψ−1
R (H(R′)) consisting of

faces of triangles with the property that G(Tδ, v, m) ⊂ H(R) for each vertex
v of ∆, where G(Tδ, v, m) is m generations about v in the complex Tδ. From
the preceding discussion, it is not difficult to obtain:

Lemma 1.
(a) For Ω̃δ =

⋃
R∩∂Ω=φ R, one has lim

δ→0
A(Ω \ Ω̃δ) = 0.

(b) Let m be a nonnegative integer with m ≤ cn, for any square R in Ω̃δ.
Then

A
(
|H(R) \ Lm(R)|

)
≤ cA(R)(m + 1)/n,

where A denotes area.

In addition, for the hexagonal circle packing, we have:

Lemma 2. Let Hn be the n-generation of a circle packing P about some
circle c0 of P such that Hn is combinatorially equivalent to H ′

n, where H ′
n

is the n-generation of some regular hexagonal circle packing about one of its
circles, say c′0. For n large enough, there is a quasiconformal mapping Φ
from the complex plane C to C that maps the subpacking H ′

m of H ′
n (with

m ∼ n/2) to the corresponding subpacking Hm of Hn and whose restriction
Φ|D′

0
to the closure D′

0 of the interior of c′0 is Lipschitz and can be expressed
by Φ|D′

0
=

(
r/r′(z − a′0) + a0

)
+ h(z)/n, where a0, a′0, r, r′ are the centers

and radii of c0, c′0, and |h(z)| is bounded above by a positive constant M .

Proof. By the transformation ζ = m(z) = r/r′(z − a′0) + a0, H ′
n becomes

H ′′
n. It is clear that H ′′

n is combinatorially equivalent to H ′
n and c′′0 = c0,

where c′′0 = m(c′0). Since H ′
n is combinatorially equivalent to Hn, so is H ′′

n.
We now construct the quasiconformal mapping Φ. Fix any three mutually
tangent circles c′′1, c

′′
2, c

′′
3 in H ′′

n−1 and the corresponding circles c1, c2, c3 in
Hn−1. Let ϕ be the orientation-preserving Möbius transformation sending
c′′j ∩c′′k to cj∩ck, where (j, k) is any pair in{(1, 2), (1, 3), (2, 3)}. Obviously, ϕ

maps the interstice bounded by c′′1, c
′′
2 and c′′3 to that bounded by c1, c2 and

c3. These conformal mappings may be glued together to form a conformal
mapping from the union of interstice bounded by circles of H ′′

n−1 to the union
of interstice bounded by circles of Hn−1. The mapping maps each circle of
H ′′

n−2 to the corresponding circle of Hn−2. Next, we extend the mapping
radially on each disk bounded by circles of H ′′

n−2 and the result is a K-
quasiconformal mapping ϕ1 from the union of interstices and disks bounded
by circles of H ′′

n−2 to the corresponding union bounded by circles of Hn−2.
Finally, by a property of quasiconformal mappings, ϕ1 can be extended to
a K1-quasiconformal mapping Φ1 : Ĉ → Ĉ with Φ1(∞) = ∞ such that Φ1
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equals ϕ1 on the union of interstice and the disks bounded by circles of H ′′
m,

where m = [(n− 3)/2]. From [2], we obtain Φ1|D′′
0
(ζ) = ζ + h1(ζ)/n, where

|h1(ζ)| ≤ M and M is a positive constant. Let Φ(z) = Φ1

(
m(z)

)
; then

Φ|D′
0

=
(
r/r′(z − a′0) + a0

)
+ h(z)/n, where h(z) = h1

(
m(z)

)
. From the

construction of Φ, it is easy to get that Φ is Lipschitz on D′
0. So Φ is the

desired mapping. �

According to the circle packing theorem [8], given an abstract triangula-
tion T of a topological sphere, there exists a circle packing P on the Riemann
sphere S2 having the combinatorics of T . P is unique up to Möbius trans-
formations of S2. We further obtain:

Lemma 3. Let T be a simply or multiply connected complex in the plane.
There exists a circle packing P in the unit disk or some unit circle domain,
as the case may be, whose tangency graph is isotopic to the 1-skeleton of T .
Moreover, P is unique up to Möbius transformation.

Proof. If T is simply connected, the conclusion of the lemma holds from [7].
If T is a multiply connected complex, by adding an ideal vertex for each hole
and connecting each ideal vertex and boundary vertices of T neighboring
it with disjoint Jordan arcs, we get the augmented complex T ∗, which is
simply connected. By the result in the simply connected case, there exists
a circle packing P ∗ in the unit disk whose tangency graph is isomorphic to
the 1-skeleton of T ∗. By removing the circles corresponding to the ideal
vertices in P ∗, we obtain a circle packing P in the unit circle domain with
the combinatorics of T and P is unique up to Möbius transformation. �

For the affine triangulation (Tδ, tδ) of Ωδ, by Lemma 3, there is a circle
packing Pδ in the closed region U, which has the combinatorics of Tδ and is
unique up to Möbius transformation of the unit disk, where U is the unit
disk or the unit circle domain.

We construct approximate solutions of Equation (1) as follows:

(a) For any |Lm(R′)| ⊂ |Tδ|, with Lm(R′) = ΨR(Lm(R)), let ζ0 be any
vertex of Lm(R′). There is an m-generation of some regular hexagonal circle
packing about one of its circles, say, c0 of center ζ0 and radius δ/(2n), which
is combinatorially equivalent to some m-generation of the circle packing Pδ

about one of its circle, say c′0, in U. We define gδ : D0 → D′
0 by gδ = Φ|D0 ,

where Φ is as in Lemma 2 and D0, D
′
0 are regions bounded by c0 and c′0. By

pasting these mappings, we obtain a quasiconformal mapping from the union
of disks bounded by the circles whose centers are the vertices of Lm(R′) and
whose radii are all equal to δ/(2n) to the corresponding union of bounded
circles of Pδ in U. We then extend linearly the mapping to the interstices
bounded by these circles and the result is a K-quasiconformal mapping Gδ

from the union of interstices and disks bounded by circles whose centers
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are the vertices of Lm(R′) and whose radii are all equal to δ/(2n) to the
corresponding union of bounded by circles of Pδ in U. Let G̃δ = Gδ||Lm(R′)|.
Then G̃δ is a K-quasiconformal mapping from |Lm(R′)| to the corresponding
portion of |carr(Pδ)|, where carr(Pδ) denotes the concrete geometric complex
in U formed by connecting the centers of tangent circles of Pδ with line
segments.

(b) For |Tδ| \
(⋃

R∩∂Ω=φ |Lm(R)|
)
, let Ĝδ be the map sending any vertex

of Tδ \
(⋃

Rδ∩∂Ω=φ Lm(Rδ)
)

to the center of the corresponding disk and
then extend it linearly on each simplex of Tδ \

(⋃
Rδ∩∂Ω=φ Lm(Rδ)

)
. Then

Ĝδ is a K-quasiconformal mapping from |Tδ| \
(⋃

R∩∂Ω=φ |Lm(Rδ)|
)

to the
corresponding portion of |carr(Pδ)|.

(c) By pasting Ĝδ and the G̃δ, we get a K-quasiconformal mapping Hδ from
|Tδ| to |carr(Pδ)| ⊂ U. Let Fδ = Hδ ◦ t−1

δ , then Fδ is a homeomorphic
mapping from Ωδ to |carr(Pδ)| ⊂ U.

We next prove that fδ converges to some solution of the generalized Bel-
trami equation (1) as δ approaches 0.

3. Convergence of approximate solutions

In this section, we show the existence of homeomorphic solutions for the
generalized Beltrami equation (1).

Theorem 1. Let λ, µ be two measurable functions with ‖|λ|+ |µ|‖∞ < 1.
For any positive sequence δk with δk → 0, let fδk

: Ω → U be the sequence
of map constructed for each δk through the procedure in Section 2. Then
fδk

has a subsequence converging uniformly on every compact subset of Ω to
some quasiconformal homeomorphism f : Ω → U that solves the generalized
Beltrami equation

∂zf(z) = λ∂zf(z) + µ∂zf(z), a.e. z ∈ Ω.

Proof. First, t−1
δ : Ωδ → |Tδ| is an affine map, and from its construction we

see that Fδ = Hδ ◦ t−1
δ : Ωδ → |carr(Pδ)| is a K-quasiconformal homeomor-

phism. Set f̃δk
= Fδk

= Hδk
◦ t−1

δk
, where δk → 0. Then fδk

= f̃δk
|Ω : Ω → U

is K-quasiconformal, too. Based on the convergence theorem for quasi-
conformal maps (see [4] or [5]), there is a subsequence of fδk

, still denoted
by fδk

, that converges uniformly on every compact subset of Ω to f , where
f is some quasiconformal homeomorphism from Ω to U.

Next we show that f has complex dilations (λ, µ). Suppose that mk is a
sequence of positive integer such that mk → ∞ and mk/nk → 0. For any
z ∈ σ ⊂ |Lmk

(R)|, by the definition of fδk
, we have fδk

(z) = Hδk
◦ t−1

δk
(z) =

Hδk
◦ΨR(z). There are two situations for ΨR(z):
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(i) ΨR(z) lies in some disk D0 of center ζ0 and radius r0 = δk/(2nk). Then

fδk
(z) =

(
r′0/r0(ΨR(z)− ζ0) + w0

)
+ h(ΨR(z))/mk,

where w0 and r′0 are the center and radius of the corresponding circle in Pδk
.

Taking partial derivatives of fδk
, we get

∂zfδk
(z) = r′0/r0∂zΨR(z) + ∂zh(ΨR(z))/mk,

∂zfδk
(z) = r′0/r0∂zΨR(z) + ∂zh(ΨR(z))/mk.

Since ∂zΨR(z) = λδk
∂zΨR(z) + µδk

∂zΨR(z), we have

∂zfδk
(z) = λδk

∂zfδk
(z) + µδk

∂zfδk
(z)(7)

+
(
∂zh(ΨR(z))/mk + 2 Re(∂zh(ΨR(z)))/mk

)
;

by Lemma 2 and the definition of ΨR(z), we conclude that ∂zh(ΨR(z))
and ∂zh(ΨR(z)) are bounded on Lmk

(R). Combining with (4) and letting
k → ∞, because r′0/r0 converges to the modulus of the derivative of some
Riemann mapping function [6], we obtain from (7)

∂zf(z) = λ∂zf(z) + µ∂zf(z).

(ii) ΨR(z) lies in the interstice bounded by three circles c0, c1 and c2. Then
ΨR(z) = (1 − t)ζ ′ + tζ ′′, where 0 ≤ t ≤ 1, ζ ′ ∈ c0, and ζ ′′ ∈ cl, for l = 1 or
l = 2. Write ζj and rj (j = 0, 1, 2) for the center and radius of cj . It follows
from the definition of fδk

(z) that

fδk
(z) = (1− t)

(
(r′0/r0(ζ ′ − ζ0) + w0) + h(ζ ′)/mk

)
(8)

+ t
(
(r′l/rl(ζ ′ − ζl) + wl) + h(ζ ′′)/mk

)
= r′0/r0ΨR(z) + (r′l − r′0)/rlq

(
ΨR(z)

)
+ q̃

(
ΨR(z)

)
+ C,

where

q
(
ΨR(z)

)
= tζ ′′ = ΨR(z)− (1− t)ζ ′, q̃

(
ΨR(z)

)
= (1− t)h(ζ ′) + th(ζ ′′),

C = (1− t)(w0 − r′0/r0ζ0) + t(wj − r′l/rlζl)

and wj and r′j (j = 0, 1, 2) are the center and radius of the corresponding
circle. By [6] and [2], we have (r′l − r′0)/rl = r′0/rlO(1/mk), and note
that ∂zq

(
ΨR(z)

)
, ∂zq

(
ΨR(z)

)
, ∂z q̃

(
ΨR(z)

)
and ∂z q̃

(
ΨR(z)

)
are bounded

on |Lmk
(R)|. As in (i), it follows from (8) that

∂zf(z) = λ∂zf(z) + µ∂zf(z), k →∞.

Thus, for any R ⊂ Ω̃δk
, we obtain from (i) and (ii) that

∂zf(z) = λ∂zf(z) + µ∂zf(z), z ∈ |Lmk
(R)|, k →∞.
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On the other hand, for any z ∈ Ω \Lk, where Lk =
⋃

R∩∂Ωδk
=φ |Lmk

(R)|,
we get easily from Lemma 1 that

lim
k→∞

A(Ω \ Lk) = 0.

Therefore, as k →∞, we conclude that

∂zf(z) = λ∂zf(z) + µ∂zf(z), a.e. z ∈ Ω,

that is, the complex dilations of the quasiconformal mapping f are (λ, µ).
�

Theorem 2. The maps fδ constructed in Section 2, as δ → 0, converge
uniformly on each compact subset of Ω to a solution f : Ω → U of (1).

Proof. By their construction, the fδ must converge to a homeomorphic map
Ω → U as δ → 0. Using Theorem 1, we can get that the fδ, as δ → 0,
converge uniformly on every compact subset of Ω to some solution f : Ω → U
of (1). �
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