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We study not necessarily self-similar Dirichlet forms on the
Sierpiński gasket that can be described as limits of compatible
resistance networks on the sequence of graphs approximating
the gasket. We describe the compatibility conditions in detail,
and we also present an alternative description, based on just 3
conductance values and the 3-dimensional space of harmonic
functions. In addition, we show how to parameterize all the
Dirichlet forms by a set of independent variables.

1. Introduction

The central object in the theory of analysis on fractals, as it has developed so
far, is the Dirichlet form, analogous to

∫
|∇f |2 dx in the theory of Riemann-

ian manifolds. Great effort has gone into the construction of self-similar
Dirichlet forms on self-similar fractals, with the successful theory of Kigami
[Ki2] covering a class of finitely ramified fractals called post-critically finite
(pcf). This class of fractals includes the familiar Sierpiński gasket (SG),
and Kigami’s approach is based on his original construction for SG in [Ki1],
which was completed by Sabot [Sa] with the classification of all self-similar
Dirichlet forms on SG (see also [Me, SST, Te]). These Dirichlet forms have
the property that points have positive capacity. In general this property is
true for regular harmonic structures and is not true for nonregular harmonic
structures. We will discuss this in more detail in Section 7.

The goal of this paper is to describe the class of all Dirichlet forms on
SG— we drop the self-similarity requirement on the form, though of course
SG retains its topological self-similarity. It should be understood that the
geometric structure of SG inherited from the standard realization in the
plane plays no role in this theory. Instead, in Section 6 we use the harmonic
coordinates realization of SG from [Ki3]. However, the question of what is
the “correct” geometry for SG, or what might be the analog of a Riemannian
metric, is not resolved at present. Following our motivational analogy a step
further, we might imagine that the class of pcf self-similar fractals plays the
role of symmetric spaces in Riemannian geometry, and SG plays the role
of the sphere. The self-similarity condition on the Dirichlet form might be
analogous to group invariance of the Riemannian metric on a symmetric
space. This suggests that an understanding of the special case of SG might
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yield useful insights into the problem of describing all Dirichlet forms on
the general finitely ramified fractal (again there is no generally accepted
definition of this class of fractals).

In a crude sense, there already exists a solution to our problem. Consider
the sequence of graphs {Γn}, where Γ0 is the complete graph on the vertices
V0 = {q1, q2, q3}, the boundary points of the triangle containing SG, and Γn

is defined inductively to contain the vertices

Vn =
3⋃

i=1

FiVn−1,

where Fix = 1
2(x + qi) and the edge relation x ∼j y holds if there exists

Fi and x′, y′ ∈ Vn−1 with x′ ∼j−1 y
′ and x = Fix

′, y = Fiy
′. The sets of

vertices Vn are contained in SG, and SG is the closure of V∗ =
⋃
Vn in a

suitable topology. We will say that a Dirichlet form is point-sensitive if it
assigns positive capacity to all points in V∗. Given any Dirichlet form E on
SG with domain dom E , we can define its restriction to Γn as follows: for
any function f on Vn define its n-harmonic extension f̃ to SG to be the
element in dom E satisfying f̃ |V ′

n
= f and minimizing E(f̃ , f̃). Note that it

is important that the Dirichlet form is point-sensitive for this definition to
make sense. (For example, in a planar region for the usual Dirichlet form, no
such minimizer exists.) The restriction En is defined by En(f, f) = E(f̃ , f̃),
and similarly for the bilinear form En(f, g) = E(f̃ , g̃). Then En is a Dirichlet
form on Γn and so can be written

En(f, f) =
∑
x∼ny

c(x, y)(f(x)− f(y))2(1.1)

for certain positive conductance coefficients c(x, y). The reciprocal of a
conductance is a resistance, and the graph Γn equipped with the Dirichlet
form (1.1) is called a resistance network. In this paper we study point-
sensitive Dirichlet forms in terms the approximating sequence of Dirichlet
forms En.

The Dirichlet forms En satisfy a compatibility condition: the restriction
of En to Γn−1 must be equal to En−1. This may be expressed as an algebraic
condition relating the conductances on Vn and Vn−1. In fact it suffices to
understand this condition on the first level, n = 1, since it is a local condition
on each cell FwV0, where Fw = Fw1 · · ·Fwn for any word w1 · · ·wn of length
|w| = n from the alphabet {1, 2, 3}. For n = 1 this becomes a polynomial
equation in the 9 conductances on V1 in terms of the 3 conductances on V0.
We will show that for each choice of V0 conductances the solution set is a
6-dimensional manifold by giving an explicit parameterization in Section 5.
We give a geometric interpretation in Section 6. Nevertheless, the algebraic
structure of the compatibility conditions is still somewhat mysterious.
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A new description of Dirichlet forms that we present involves the harmonic
functions. These are just the harmonic extensions from Γ0, and so form a
3-dimensional space H, each h in H being determined by its values on V0,
which is regarded as the boundary of SG. (In general, harmonic extensions
from Γn give functions that are harmonic everywhere except at the points
of Vn.) Of course H contains the constants, since these have zero energy.
A basis for H consists of the functions hk such that hk(qj) = δkj , and
h1 + h2 + h3 = 1.

One easy consequence of this description is that E is determined by the
space H and the 3 conductance coefficients d1 = c(q2, q3), d2 = c(q1, q3),
d3 = c(q1, q2). We will demonstrate this in a constructive manner by deriving
an algebraic formula for the 9 conductances on V1 in terms of this data
(more precisely, the coefficients dk and the values of hk at the points in V1).
The same formula may be used inductively to find all coefficients of the
restrictions En, using the values of hk on points in Vn.

To complete the description it would be desirable to have necessary and
sufficient conditions on the data to be associated with a Dirichlet form, but
we have been unable to do this. We will exhibit some necessary conditions on
the data already on the level V1 that involve both the initial conductances
and the values of hk. The analogous conditions on all levels Vn are also
necessary, but since they are expressed in terms of the conductances on
Vn−1, which are derived from the data in a complicated way, we have been
unable to write them down explicitly. Nevertheless, we are able to show
that there are no “dead ends”, in the sense that every resistance network
on Γn is the restriction of a point-sensitive regular Dirichlet form on SG.
Note that this says more than just that there are no algebraic obstructions
to extending from Γn−1 to Γn, since it involves the analytic property that
the conductances tend to infinity in the limit.

In Section 4 we show that the functions in H already determine the ini-
tial conductances (up to a constant multiple) under a seemingly reasonable
hypothesis that has the form of a local Harnack inequality. We also give an
example when the initial conductances are not determined by H.

Given a compatible sequence of Dirichlet forms {En} there exists a lim-
iting Dirichlet form E on SG. For any function f on SG the sequence
En(f |Vn , f |Vn) is monotone increasing, so

E(f, f) = lim
n→∞

En(f |Vn , f |Vn)(1.2)

is always defined (allowing +∞) for a function f on V∗, and we may define
dom E as all functions with E(f, f) < ∞. It is not hard to see that En

is the restriction of E to Γn. In what follows we always assume that the
conductances c(x, y) are positive.
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It is evident that E is point-sensitive, as demonstrated in Proposition 7.1
(Theorem 7.2 gives another proof). Many questions related to such se-
quences of Dirichlet forms En are studied in [Ki4] in detail. An important
tool in this study is an effective resistance metric R to be defined in Section 7.
If Ω is the R-completion of V∗, any function in dom E is a restriction of an
R-continuous function on Ω. We will show in Section 7 that any point of Ω
has positive capacity, and relate it to some properties of Green’s function.

In the case when harmonic functions are continuous, Ω can be naturally
considered to be a subset of SG. Under this assumption an important ques-
tion is whether the harmonic structure is regular, that is Ω = SG. The
answer is positive if all the conductances tend to infinity, but this condition
is not necessary, as demonstrated by an example in Section 7. We also give
an example where harmonic functions are continuous but Ω 6= SG.

Another set of objects naturally associated with E is the set of energy
measures ([Ku]). For every f ∈ dom E there is a positive measure νf such
that E(f, f) = νf (SG) and more generally there is a signed measure νf,g for
each pair f, g ∈ dom E (with νf,f = νf ) such that

E(f, g) = νf,g(SG).

It is conceivable that it determines E but we have been unable to prove this.
To put our results into perspective, let us review the situation when the

underlying space is the unit interval. Given a Dirichlet form, let h denote the
harmonic function satisfying the boundary conditions h(0) = 0, h(1) = 1.
The reciprocals of the conductances determine a finite positive measure µ
of total mass c−1, where c is the conductance coefficient c(0, 1), and h(x) =
cµ([0, x]). The only conditions on the measure are that it be continuous
and assign positive mass to nontrivial intervals. The only conditions on
the function h are that it be continuous and strictly increasing. Note that
µ determines h but h only determines µ up to a constant multiple. The
Dirichlet form is expressible in terms of c and h as

E(f, f) = c

∫ 1

0

∣∣∣∣ ddx(f ◦ h−1(x))
∣∣∣∣2 dx,

with dom E consisting of all functions f for which f ◦ h−1 belongs to the
Sobolev space L2

1. In this case the energy measure for h satisfies νh = c2µ.
The reader can find an extensive exposition of the analysis on fractals in

[B, Ki4]. These books also contain lengthy bibliographies.

2. Basic equations

We consider graphs Γ0 and Γ1 as shown in Figure 2.1. Γ0 has vertices q1, q2,
q3 with conductances d1, d2, d3 on the opposite edge. Γ2 has an additional
3 vertices x, y, z and 9 edges, with conductances c1, . . . , c9 as shown. The
boundary of Γ consists of the vertices q1, q2, q3. We refer to c2, c5, c8 as
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�������
�

TTTTTTT
T

q1 q3
q2d3 d1d2 �������

�������
�

TTTTTTT
TTTTTTT

T
�������

�
TTTTTTT

T
q1 q3

q2

y
z x
7


3

6


1

8 
5
2


9 
4
Figure 2.1. The graphs Γ0 and Γ1 with vertices and con-
ductances on edges labeled.

inner conductances since the edges do not connect to the boundary vertices,
and the others as outer conductances.

We let hj denote the harmonic function on Γ1 with boundary values
hj(qk) = δjk. Note that h1 + h2 + h3 = 1. We write xj = hj(x), yj = hj(y)
and zj = hj(z).

The equations that express the fact that hj is harmonic at the 3 vertices
x, y, z can be expressed in terms of a matrix X which we write as a sum
X = Xo +Xi, with

Xo =

c1 + c6 0 0
0 c4 + c9 0
0 0 c3 + c7

 ,(2.1)

Xi =

c2 + c5 −c5 −c2
−c5 c5 + c8 −c8
−c2 −c8 c2 + c8

 ,(2.2)

corresponding to the contributions from the outer and inner conductances,
respectively. We also need matrices

H =

x1 x2 x3

y1 y2 y3

z1 z2 z3

(2.3)

and

J =

 0 c1 c6
c9 0 c4
c7 c3 0

 .(2.4)

The harmonic equation is then

XH = J.(2.5)
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Since

det J = c1c4c7 + c3c6c9,(2.6)

which is positive, it follows that X and H are invertible. It is also clear by
inspection that detX is positive since all terms except −2c2c5c8 are positive,
and these cancel 2c2c5c8 from the diagonal. A lengthy computation reveals
that detX is given by

c1c4c7 + c3c6c9 + c1c3(c4 + c9) + c4c6(c3 + c7) + c7c9(c1 + c6)(2.7)

+ c2(c4 + c9)(c1 + c3 + c6 + c7) + c5(c3 + c7)(c1 + c4 + c6 + c9)

+ c8(c1 + c6)(c3 + c4 + c7 + c9)

+ (c2c5 + c5c8 + c2c8)(c1 + c3 + c4 + c6 + c7 + c9).

We can use (2.5) to solve H = X−1J to obtain the harmonic function values
explicitly in terms of the conductances, but we will wait until the next
section to give the details. Note, however, that (2.5) implies detH > 0.
Also, the condition h1 + h2 + h3 = 1 becomes H1 = 1, where 1 denotes the
vector of 1’s.

Another interesting observation from (2.5) is that if we know H and all
the outer conductances, we can find all the inner conductances via

Xi = −Xo + JH−1,(2.8)

since J only involves outer conductances.
Now we consider the consistency condition for the Dirichlet forms on Γ1

and Γ0. There are many ways to express this condition, but we concentrate
on one that involves only the outer conductances and H, namelyd2 + d3 −d3 −d2

−d3 d1 + d3 −d1

−d2 −d1 d1 + d2

=

c7 + c9 0 0
0 c1 + c3 0
0 0 c4 + c6

−J∗H.(2.9)

Using the off-diagonal terms, we obtain the set of equations

(
x3 z3

x1 z1

)(
c1

c3

)
=
(
d1

d3

)
,(

y1 x1

y2 x2

)(
c4

c6

)
=
(
d2

d1

)
,(

z2 y2

z3 y3

)(
c7

c9

)
=
(
d3

d2

)
.

(2.10)

We may easily solve (2.10) for the outer conductances, obtaining
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c1 =

∣∣∣∣d1 z3

d3 z1

∣∣∣∣∣∣∣∣x3 z3

x1 z1

∣∣∣∣ , c4 =

∣∣∣∣d2 x1

d1 x2

∣∣∣∣∣∣∣∣y1 x1

y2 x2

∣∣∣∣ , c7 =

∣∣∣∣d3 y2

d2 y3

∣∣∣∣∣∣∣∣z2 y2

z3 y3

∣∣∣∣ ,

c3 =

∣∣∣∣x3 d1

x1 d3

∣∣∣∣∣∣∣∣x3 z3

x1 z1

∣∣∣∣ , c6 =

∣∣∣∣y1 d2

y2 d1

∣∣∣∣∣∣∣∣y1 x1

y2 x2

∣∣∣∣ , c9 =

∣∣∣∣z2 d3

z3 d2

∣∣∣∣∣∣∣∣z2 y2

z3 y3

∣∣∣∣ .
(2.11)

In the next section we will show that all the denominators are positive.
We then use (2.8) to obtain

c2 =
(
c1

∣∣∣∣x1 x3

y1 y3

∣∣∣∣− c6

∣∣∣∣x1 x2

y1 y2

∣∣∣∣)/detH,

c5 =
(
c1

∣∣∣∣x3 x1

z3 z1

∣∣∣∣− c6

∣∣∣∣z1 z2

x1 x2

∣∣∣∣)/detH,

c8 =
(
c9

∣∣∣∣x3 x2

y3 y2

∣∣∣∣− c4

∣∣∣∣x1 x2

y1 y2

∣∣∣∣)/detH.

(2.12)

By substituting (2.11) into (2.12) and simplifying we obtain

c2 =

∣∣∣∣∣∣
x1 y1 z1

d1x1 d2y2 d3z3

x3 y3 z3

∣∣∣∣∣∣
/(∣∣∣∣x3 z3

x1 z1

∣∣∣∣ detH
)
,

c5 =

∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

d1x1 d2y2 d3z3

∣∣∣∣∣∣∣
/(∣∣∣∣y1 x1

y2 x2

∣∣∣∣ detH
)
,

c8 =

∣∣∣∣∣∣
d1x1 d2y2 d3z3

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
/(∣∣∣∣z2 y2

z3 y3

∣∣∣∣ detH
)
.

(2.13)

We may summarize these computations in the following theorem:

Theorem 2.1. Given the conductances {dj} on Γ0 and the harmonic values
H on Γ1 satisfying H1 = 1, there is at most one choice of conductances {cj}
on Γ1 which yields these values, and there is such a choice, with values given
by (2.11) and (2.13), if and only if these values are all positive.

Proof. We deduced (2.11) and (2.13) under the assumption that such con-
ductances exist, so this proves uniqueness. Conversely, assume all values
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given in (2.11) and (2.13) are positive. From (2.11) we obtain (2.10). This
is equivalent to (2.9) under the assumption H1 = 1; this yields the diagonal
terms. From (2.13) and (2.11) we get (2.12), and also the other 3 expressions
for c2, c5, c8, which together yield (2.8), or equivalently (2.5). But (2.5) says
that H gives the correct values for the harmonic functions determined by
the conductances {cj}, and then (2.5) and (2.9) tell us that the restriction
of the Dirichlet form on Γ1 to Γ0 gives the conductances {dj}. �

To use these expressions iteratively it is useful to put them in a form
that is relative to any choice of 3 linearly independent harmonic functions,
not just the choice (h1, h2, h3) made above. Let (h̃1, h̃2, h̃3) denote such
functions. For any vertices (p1, p2, p3) of Γ1 define the 3× 3 matrix

h̃(p1, p2, p3) =
{
h̃j(pk)

}
.(2.14)

Corollary 2.2. Suppose (h̃1, h̃2, h̃3) is any set of 3 linearly independent har-
monic functions on Γ1 for conductances {cj}, and suppose the restriction to
Γ0 yields conductances {dj}. Then the outer conductances are given by

c1 =
d1 det h̃(q2, q3, z) + d3 det h̃(q2, q1, z)

det h̃(q2, x, z)
,

c3 =
d1 det h̃(q2, x, q3) + d2 det h̃(q2, x, q1)

det h̃(q2, x, z)
,

c4 =
d1 det h̃(q3, q2, x) + d2 det h̃(q3, q1, x)

det h̃(q3, y, x)
,

c6 =
d1 det h̃(q3, y, q2) + d2 det h̃(q3, y, q1)

det h̃(q3, y, x)
,

c7 =
d2 det h̃(q1, q3, y) + d3 det h̃(q1, q2, y)

det h̃(q1, z, y)
,

c9 =
d2 det h̃(q1, z, q3) + d3 det h̃(q1, z, q2)

det h̃(q1, z, y)
,

(2.15)

and the inner conductances by



c2 =
d1 det eh(x,q2,q3) det eh(q2,y,z)−d2 det eh(q1,y,q3) det eh(q2,x,z)+d3 det eh(q1,q2,z) det eh(q2,x,y)

det eh(q1,q2,q3) det eh(q2,x,z)

c5 =
d1 det eh(x,q2,q3) det eh(q3,y,z)+d2 det eh(q1,y,q3) det eh(q3,x,z)−d3 det eh(q1,q2,z) det eh(q3,y,x)

det eh(q1,q2,q3) det eh(q3,y,x)

c8 =
−d1 det eh(x,q2,q3) det eh(q1,z,y)+d2 det eh(q1,y,q3) det eh(q1,x,z)+d3 det eh(q1,q2,z) det eh(q1,x,y)

det eh(q1,q2,q3) det eh(q1,z,y)
.

(2.16)
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Proof. First we observe that for the initial choice h̃ = h, (2.15) is the same as
(2.11) and (2.16) is the same as (2.13), so the result is valid in that case. But
in general h̃j =

∑
k Bjkhk for some invertible matrix B, hence h̃(p1, p2, p3) =

h(p1, p2, p3)B∗. Thus ratios of quantities of the form det h̃(p1, p2, p3) are
independent of the choice of h̃, and (2.15) and (2.16) are composed entirely
of such ratios. �

It is also possible to express these identities in terms of resistances rather
than conductances. If we write Rj = d−1

j and rj = c−1
j , we have

r1 = R1R3

∣∣∣∣x3 z3
x1 z1

∣∣∣∣∣∣∣∣R3 z3
R1 z1

∣∣∣∣ , etc.(2.17)

and

r2 = R1R2R3 detH

∣∣∣∣x3 z3
x1 z1

∣∣∣∣∣∣∣∣∣∣
x1 y1 z1

R2R3x1 R1R3y3 R1R2z3
x3 y3 z3

∣∣∣∣∣∣
, etc.(2.18)

Corollary 2.3. Two Dirichlet forms on SG (giving points positive capacity)
having the same harmonic functions and the same initial conductances on
Γ0 must be equal. In particular, the space of Dirichlet forms may be pa-
rameterized by a subset of the space of 6-tuples (d1, d2, d3, h1, h2, h3) where
dj > 0, and hj are continuous functions SG → R satisfying hj(qk) = δjk
and h1 + h2 + h3 = 1.

Proof. Applying Theorem 2.1 inductively we see that the two Dirichlet forms
have the same conductances at each level, hence by (1.2) they are equal. �

In the next section we will find some necessary conditions that the 6-tuple
must satisfy. However, we have not been able to find really explicit necessary
and sufficient conditions for a 6-tuple to correspond to a Dirichlet form.

3. Positivity conditions

Our first goal is to show that the denominators in (2.11) are all positive.
To do this we return to the explicit solution of (2.5) for H in terms of
the conductances {cj}. In (2.7) we have expressed detX as a sum of 50
positive terms, each a product of 3 distinct conductances. We may describe
all the terms in a scheme that allows three types. There are 8 of type I, a
product of 3 outer conductances corresponding to edges in the graph that are
disconnected. There are 24 of type II, a product of one inner conductance
and 2 outer conductances where one of the outer edges is connected to the
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inner edge, and the other outer edge is not connected to the inner edge.
There are 18 of type III, a product of 2 inner and one outer conductance
without any other restrictions.

Each entry of H is a ratio with denominator detX and numerator equal
to a sum of terms selected from the 50 terms in detX, as follows:

x1 detX = (c2c5 +c2c8 +c5c8)(c7 +c9) + c7c9(c2 +c5)
+ c2c4c7 +c3c5c9

y1 detX = (c2c5 +c2c8 +c5c8)(c7 +c9) + c7c8(c1 +c6)
+ (c3 +c7)c9(c2 +c5) + c9(c1 +c6)(c2 +c3 +c7 +c8)

z1 detX = (c2c5 +c2c8 +c5c8)(c7 +c9) + c9c8(c1 +c6)
+ (c4 +c9)c7(c2 +c5) + c7(c1 +c6)(c4 +c5 +c8 +c9)

x2 detX = (c2c5 +c2c8 +c5c8)(c1 +c3) + c2c3(c4 +c9)
+ c1(c3 +c7)(c5 +c8) + c1(c4 +c9)(c2 +c3 +c7 +c8)

y2 detX = (c2c5 +c2c8 +c5c8)(c1 +c3) + c1c3(c5 +c8)
+ c1c5c7 + c3c6c8

z2 detX = (c2c5 +c2c8 +c5c8)(c1 +c3) + c1c2(c4 +c9)
+ c3(c1 +c6)(c5 +c8) + c3(c4 +c9)(c1 +c2 +c5 +c6)

x3 detX = (c2c5 +c2c8 +c5c8)(c4 +c6)+c4c5(c3 +c7)
+ c6(c4 +c9)(c2 +c8) + c6(c3 +c7)(c4 +c5 +c8 +c9)

y3 detX = (c2c5 +c2c8 +c5c8)(c4 +c6) + c5c6(c3 +c7)
+ c4(c1 +c6)(c2 +c8)+c4(c3 +c7)(c1 +c2 +c4 +c5)

z3 detX = (c2c5 +c2c8 +c5c8)(c4 +c6) + c4c6(c2 +c8)
+ c2c6c9 + c1c4c8.

(3.1)

Note that x1 detX, y2 detX and z3 detX consist of 10 terms each, while
the others consist of 20 terms.

Theorem 3.1. Each of the determinants
∣∣∣∣y1 x1

y2 x2

∣∣∣∣, ∣∣∣∣z2 y2

z3 y3

∣∣∣∣ and
∣∣∣∣x3 z3
x1 z1

∣∣∣∣ is
positive.

Proof. We give two proofs. The first is computational, while the second is
conceptual. For the first proof we show

(y1 detX)(x2 detX)− (y2 detX)(x1 detX) > 0(3.2)

by showing that it is a sum of 300 positive terms. Note that the first prod-
uct consists of 400 terms and the second product consists of 100 terms. We
claim that all 100 terms in the second product are contained among the 400
terms of the first product. In fact, 9 of the 10 terms in x1 detX, namely
all except c2c4c7, are among the 20 terms of y1 detX. Similarly, 9 of the
10 terms in y2 detX, all except c3c6c8, are among the 20 terms of x2 detX.
This already takes care of 81 terms of the product. It remains to check
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the 19 terms of the product that have either c3c6c8 or c2c4c7 as one of the
factors. This may be seen by inspection. For example, (c3c6c8)(c2c4c7) ap-
pears as (c2c3c4)(c6c7c8), and (c3c6c8)(c2c7c9) appears in 2 different ways,
(c2c3c9)(c6c7c8) or (c2c3c8)(c6c7c9). The positivity of the other 2 determi-
nants follows by symmetry.

The second proof is based on the following interpretation of the result.
Note that ∣∣∣∣y1 x1

y2 x2

∣∣∣∣ =
∣∣∣∣∣∣
y1 x1 0
y1 x2 0
y3 x3 1

∣∣∣∣∣∣ = deth(y, x, q3),

and (y, x, q3) are the vertices of a small triangle in Γ1 traversed in the same
order as (q1, q2, q3) traverses the large triangle. Since the determinant is a
continuous function of the conductances, and it is clearly positive for the
choice of equal conductances (y1 = x2 = 2

5 , y2 = x1 = 1
5), it suffices to

show that it is never zero. The determinant being zero means that there is a
nonzero harmonic function whose restriction to the points (x, y, q3) is zero.
We now show that this is impossible.

Suppose h is a harmonic function on Γ1 satisfying h(y) = h(x) = h(q3) = 0.
If h is not identically zero we may arrange to have h(q1) > 0, without loss
of generality. Since h is harmonic at y we must have h(z) < 0. Since h
is harmonic at x we then must have h(q2) > 0. But then h will not be
harmonic at z. �

The unique extension property for harmonic functions from small trian-
gles proved above is not usually valid for graphs that arise in the study of
self-similar fractals. It fails for the pentagasket ([ASST]) and hexagasket
fractals, for examples.

The next result is a relativized version of the result, analogous to Corol-
lary 2.2. Note that h(q1, q2, q3) is the identity matrix so deth(q1, q2, q3) = 1.

Corollary 3.2. Let (h̃1, h̃2, h̃3) be linearly independent harmonic functions
for which det h̃ (q1, q2, q3) > 0. Then det h̃ (y, x, q3), det h̃(z, q2, x) and
det h̃(q1, z, y) are all positive.

Proof. As in the proof of Corollary 2.2 we write h̃ = hB∗. Since each matrix
is multiplied by B∗, we must have detB∗ > 0 from the hypothesis. Then
multiplication by B∗ preserves the sign of the other determinants. �

Since the denominators in (2.11) are all positive, so are the numerators.
These inequalities may be summarized as

z1
z3
>
d3

d1
>
x1

x3
,

x2

x1
>
d1

d2
>
y2

y1
,

y3

y2
>
d2

d3
>
z3
z2
.(3.3)
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Note that the positivity of the determinants in Theorem 3.1 means that the
inequalities in (3.3) are valid without the middle term. Also, by multiplying
the 3 rows of (3.3) the middle term becomes 1, and we obtain

x1y2z3 < x2y3z1, x1y2z3 < x3y1z2.(3.4)

It would also be possible to give a computational proof of (3.4) along the
lines of the first proof of Theorem 3.1.

Theorem 3.3. Given positive conductances {dj} and a matrix H with pos-
itive entries satisfying H1 = 1, a necessary and sufficient condition for the
existence of positive conductances {cj} such that H is the matrix of harmonic
values and {dj} is the restriction to Γ0 is that the following 13 determinants
all be positive:

detH,(3.5) ∣∣∣∣y1 x1

y2 x2

∣∣∣∣ , ∣∣∣∣z2 y2

z3 y3

∣∣∣∣ , ∣∣∣∣x3 z3
x1 z1

∣∣∣∣ ,(3.6) ∣∣∣∣d1 z3
d3 z1

∣∣∣∣ , ∣∣∣∣x3 d1

x1 d3

∣∣∣∣ , ∣∣∣∣d2 x1

d1 x2

∣∣∣∣ , ∣∣∣∣y1 d2

y2 d1

∣∣∣∣ , ∣∣∣∣d3 y2

d2 y3

∣∣∣∣ , ∣∣∣∣z2 d3

z3 d2

∣∣∣∣ ,(3.7) ∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
d1x1 d2y2 d3z3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
x1 y1 z1
d1x1 d2y2 d3z3
x3 y3 z3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
d1x1 d2y2 d3z3
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .(3.8)

Proof. We have already observed the necessity of the positivity of (3.5),
(3.6) and (3.7), and the condition H1 = 1. The positivity of the inner con-
ductances (2.13) then requires the positivity of (3.8). Conversely, if all 13
determinants are positive then (2.11) and (2.13) show that all the conduc-
tances {cj} are positive, and the result follows from Theorem 2.1. �

We now turn to the problem of characterizing all possible matrices H of
harmonic values. This is just the problem of finding all H such that there
exists a choice of {dj} so that the 13 determinants are positive.

Theorem 3.4. Given a matrix H with positive entries satisfying H1 = 1,
there exists a set {cj} of positive conductances on Γ1 having H as its matrix
of harmonic values, if and only if the 4 determinants (3.5) and (3.6) are
positive, and there exists an open half-space in R3 containing all 12 of the
following vectors:

(1,0,0), (0,1,0), (0,0,1),(3.9)

(x1,y1,z1)×(x2,y2,z2), (x2,y2,z2)×(x3,y3,z3), (x3,y3,z3)×(x1,y1,z1),(3.10)

(0,1,0)×(x1,y1,z1), (0,0,1)×(x2,y2,z2), (1,0,0)×(x3,y3,z3),(3.11)

(x1,y1,z1)×(0,0,1), (x2,y2,z2)×(1,0,0), (x3,y3,z3)×(0,1,0).
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Moreover, if these conditions hold, (d1, d2, d3) may be chosen so that the
vector (d1x1, d2y2, d3z3) has positive inner product with all 12 of the vectors
above.

Proof. By choosing {dj} appropriately, we can make the vector

v = (d1x1, d2y2, d3z3)

equal to any vector with positive entries. This means the inner products of
v with the vectors (3.9) are all positive. The positivity of the determinants
(3.8) is clearly equivalent to the positivity of the inner product of v and the
vectors (3.10). We claim the same equivalence with (3.7) and (3.11). For
example, ∣∣∣∣d1 z3

d3 z1

∣∣∣∣ > 0 ⇐⇒ (d1x1)z1 − (d3z3)x1 > 0,

and the left-hand side of this last inequality equals v ·
(
(0, 1, 0)×(x1, y1, z1)

)
.

The other equivalences follow similarly. The result now follows from the
observation that the existence of an open half-space {u : u·v > 0} containing
a set of vectors is equivalent to the existence of a vector with positive inner
product with all of them. �

The next result shows that we will never hit a “dead end” in extending a
Dirichlet form from Γn to SG.

Theorem 3.5. Every resistance network on Γn−1 is the restriction of a
Dirichlet form on SG which is a self-similar regular Dirichlet form on every
small triangle in Γn.

Proof. It suffices to give a proof for Γ0. Let positive conductances d1, d2, d3

be fixed. We will show that, for any small enough ε > 0, the network
is the restriction of a network on Γ1 such that c9 = c7 = εc8 = 1/s1,
c1 = c3 = εc2 = 1/s2, and c4 = c6 = εc5 = 1/s3.

Let Rj be the effective resistances in the network Γ0 and let Fj(s1, s2, s3, ε)
be the effective resistances between points in V0 in the network Γ1. We have
to show that the equations Rj = Fj(s1, s2, s3, ε), j = 1, 2, 3, have positive
solutions s1, s2, s3 for all small enough ε > 0.

Note that we can take ε = 0, since in this case we have a well-defined
network with zero inner resistances. Considering all indices mod 3, we have

Fj(s1, s2, s3, 0) = 1
2(sj−1 + sj+1).

It is easy to see that if ε = 0 then the equations have unique positive
solutions s1, s2, s3 since R1, R2, R3 satisfy the triangle inequalities. One can
also see that the 3× 3 matrix{

∂Fj

∂si
(s1, s2, s3, 0)

}
i,j=1,2,3
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is nonsingular. The functions Fj are rational, and so for any small enough
ε > 0, positive solutions exist by the implicit function theorem and the
continuity of the derivatives.

Then each of the three triangles in Γ1 has conductances proportional to
(1, 1, 1/ε). Each such triangle of conductances is the restriction of a regular
self-similar Dirichlet form for any ε > 0, as shown in [Sa] (see also [Ki4],
Exercise 3.1). �

4. Uniqueness of the initial conductances

We now show that, under certain assumptions, the initial conductances
d1, d2, d3 are uniquely determined up to a constant multiple by the space
of harmonic functions H. These assumptions have the form of local Har-
nack inequalities at the boundary points. In particular, ifH corresponds to a
self-similar harmonic structure then the initial conductances are determined
uniquely up to a constant multiple.

Let z(n) = Fn
1 (q2) and y(n) = Fn

1 (q3), in particular z = z(1) and y = y(1).
Also let z(n)

j = hj(z(n)) and y(n)
j = hj(y(n)).

Lemma 4.1 (monotonicity). For any n ≥ 0,

z
(n−1)
3

z
(n−1)
2

<
z
(n)
3

z
(n)
2

<
d2

d3
<
y

(n)
3

y
(n)
2

<
y

(n−1)
3

y
(n−1)
2

.(4.1)

Proof. Let

M (n) =

(
z
(n)
2 y

(n)
2

z
(n)
3 y

(n)
3

)
.

One can show that for any m ≥ 0 we have detM (n) > 0 and

z
(m)
3

z
(m)
2

<
d2

d3
<
y

(m)
3

y
(m)
2

.(4.2)

The argument is similar to (3.3) because M (n) satisfies a relation analogous
to (2.10). Set

An =

(
a

(n)
11 a

(n)
12

a
(n)
21 a

(n)
22

)
= (M (n−1))−1M (n).

It is clear from the definition that, for a harmonic function h with h(q1) = 0,
AT

n transforms the values of h at z(n−1), y(n−1) into its values at z(n), y(n).
That is, (

h(z(n))
h(y(n))

)
=

(
a

(n)
11 a

(n)
21

a
(n)
12 a

(n)
22

)(
h(z(n−1))
h(y(n−1))

)
.(4.3)
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Hence an, bn, cn, dn are all positive. Then the required inequalities

z
(n−1)
3

z
(n−1)
2

<
z
(n)
3

z
(n)
2

and
y

(n)
3

y
(n)
2

<
y

(n−1)
3

y
(n−1)
2

(4.4)

are easy to check by induction since M (n) = M (n−1)An. Together, (4.2) and
(4.4) yield (4.1). �

Corollary 4.2. If

lim
n→∞

y
(n)
3

y
(n)
2

− z
(n)
3

z
(n)
2

= 0(4.5)

then
d2

d3
is uniquely determined and

lim
n→∞

y
(n)
3

y
(n)
2

= lim
n→∞

z
(n)
3

z
(n)
2

=
d2

d3
.(4.6)

Theorem 4.3. Suppose the following local form of the Harnack inequality
at q1 holds: there exists δ > 0 such that if h is harmonic and satisfies

h(q1) = 0, h(y(n−1)) > 0, and h(z(n−1)) > 0,

then

δ <
h(z(n))
h(y(n))

<
1
δ

(4.7)

for all n ≥ 0. Then the ratio
d3

d2
is uniquely determined by the space H.

Proof. Our aim is to show that Corollary 4.2 applies. Let M (n) and An be as
defined in the proof of Lemma 4.1. Then it is easy to see that both a(n)

11 /a
(n)
12

and a(n)
21 /a

(n)
22 are in (δ, 1/δ). Then

y
(n)
3

y
(n)
2

− z
(n)
3

z
(n)
2

=
detM (n)

y
(n)
2 z

(n)
2

(4.8)

=
detM (n−1) detAn(

z
(n−1)
2 a

(n)
11 + y

(n−1)
2 a

(n)
21

)(
z
(n−1)
2 a

(n)
12 + y

(n−1)
2 a

(n)
22

)
≤ detM (n−1)

z
(n−1)
2 y

(n−1)
2

detAn

a
(n)
11 a

(n)
22

≤
(
y

(n−1)
3

y
(n−1)
2

− z
(n−1)
3

z
(n−1)
2

)
(1− δ2),

which implies (4.6). �

Example 4.4. We will now see that the space of harmonic functions need
not determine the initial conductances uniquely. The harmonic functions in
this example are not continuous, however. On each level n all the conduc-
tances are positive, but some tend to zero as n→∞.
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Let

Hε =

 ε2 ε− ε2 1− ε
1− ε ε2 ε− ε2

ε− ε2 1− ε ε2

 .

If H = Hε then, as ε→ 0,

c1 = d1 + d1O(ε) + d3O(ε),

c3 =
1
ε
d3 + d1O(1) + d3O(1),

c2 = εd3 + d1O(ε2) + d2O(ε2) + d3O(ε2).

There are similar formulas for the other conductances sinceHε is rotationally
invariant. One can see that there exist K,K ′ > 0 such that if

max
i,j=1,2,3

di

dj
<
K

ε
(4.9)

then

max
k,`=1,2,3

ck
c`
<
K ′

ε2
.

We suppose that for each w ∈Wn the matrix Hw that defines the continua-
tion of a harmonic function from Fw{q1, q2, q3} to Fw{x, y, z} is Hεn , where
the εn > 0 are to be chosen later. In terms of (2.14) this means that

Hw = h
(
Fw(x), Fw(y), Fw(z))(h(Fw(q1), Fw(q2), Fw(q3))

)−1 = Hεn .(4.10)

Then all the conductances for all n are positive if (4.9) is satisfied with small
enough ε = ε0 and εn+1 ≤ Kε2n/K

′ for all n ≥ 0.

5. A parameterization of compatible Dirichlet forms

In this section we describe the compatibility conditions in going from con-
ductances on Γ0 to conductances on Γ1 in parametric form. Specifically,
for each choice of conductances {dj} we give an algorithm that constructs
all compatible Dirichlet forms on Γ1 based on the choice of 6 parameters
chosen without restriction from (0, 1)6. The correspondence between pa-
rameters and Dirichlet forms is one-to-one. We use the ∆–Y transform and
its inverse ([Ki4]) several times.

Algorithm 5.1. Given any positive conductances {dj} on Γ0, for each
choice of (α1, α2, α3, β1, β2, β3) ∈ (0, 1)6 perform the following steps to ob-
tain a distinct compatible Dirichlet form on Γ1:

Step 1. Compute initial resistances R1, R2, R3 > 0 for the ∆–Y transformed
triangle in Figure 5.1, so that

Rj =
dj

d1d2 + d2d3 + d1d3
and dj =

Rj−1Rj+1

R1 +R2 +R3
.(5.1)



DIRICHLET FORMS ON THE SIERPIŃSKI GASKET 165

R1

R2

R3

q1

q2

q3

R̃1

R̃2

R̃3

(1 − α1)R1

(1 − α2)R2

(1 − α3)R3

β1R̃1

β2R̃2

β3R̃3 (1 − β1)R̃1

(1 − β2)R̃2

(1 − β3)R̃3

(1 − α1)R1

(1 − α2)R2

(1 − α3)R3

α1R1

α2R2

α3R3

(1 − α1)R1

(1 − α2)R2

(1 − α3)R3

Step 1. Initial network Step 2.

Step 3. Step 4.

Figure 5.1. Pictorial description of Steps 1–4.

For convenience we identify indices mod 3, so R0 = R3, etc.

Step 2. Choose any three numbers α1, α2, α3 ∈ (0, 1) to split the resistances
Rj into αjRj and (1− αj)Rj .

Step 3. Do a Y–∆ transform for resistances (α1R1, α2R2, α3R3):

R̃j =
α1α2R1R2 + α1α3R1R3 + α2α3R2R3

αjRj
.(5.2)

Step 4. Choose any three numbers β1, β2, β3 ∈ (0, 1) to split the resistances
R̃1, R̃2, R̃3. Then for each j = 1, 2, 3 do a Y-∆ transform on the triple of
resistances

(Rj
1, R

j
2, R

j
3) =

(
(1− αj)Rj , (1− βj+1)R̃j+1, βj−1R̃j−1

)
.(5.3)

These 4 steps are summarized in Figure 5.1. The results give resistances
on Γ1, whose reciprocals define the compatible Dirichlet form.
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Remarks. To simplify computations in this algorithm one can consider the
resistances Rj as the initial data and avoid the Y–∆ transform in Step 4.

The algorithm can easily yield an explicit but complicated formula for the
conductances c1, . . . , c9 as a rational function of the initial conductances and
the parameters. The points where R̃j are divided into βjR̃j and (1− βj)R̃j

are the points x, y, z. Thus we can also recover the values of the harmonic
functions at x, y, z, although this is not necessary for the algorithm.

To obtain a parametric description of all compatible Dirichlet forms on
Γk we just use the algorithm iteratively on each of the triangles on each level
up to k; the choices of the 6 parameters can be made independently.

Corollary 5.2. The space of all Dirichlet forms on Γ1 compatible with a
fixed Dirichlet form on Γ0 is a manifold of dimension 6. More generally,
the space of all Dirichlet forms on Γk compatible with a fixed Dirichlet form
on Γ0 is a manifold of dimension 3(3k − 1).

Given any choice of the 6 parameters αw
1 , α

w
2 , α

w
3 , β

w
1 , β

w
2 , β

w
3 ∈ (0, 1)6 for

each word w of finite length, we obtain a compatible sequence of Dirichlet
forms on {Γn}. This yields a Dirichlet form on SG with all points having
positive capacity exactly when all the conductances tend to infinity (resis-
tances tend to 0). We have not been able to find necessary and sufficient
conditions on the parameters for this, but we will give some related results
in Section 7 and we can give sufficient conditions for harmonic functions to
be continuous.

Next we will show that harmonic functions are continuous if the parame-
ters are uniformly separated from 0 and 1, and if the parameters are chosen
at random. First we need the following lemmas:

Lemma 5.3. Let M(h) = maxx∈SG h(x) − minx∈SG h(x) for a harmonic
function h. Then, for any j = 1, 2, 3,

M(h ◦ Fj) ≤ (1−m)M(h),(5.4)

where m is the minimum of the off-diagonal elements of matrix H.

Proof. By the maximum principle M(h) = maxi=1,2,3 h(qi)−mini=1,2,3 h(qi).
It is enough to give a proof in the case j = 1 and h(q1) = 0. Then we have

(y2 + y3) min
i=1,2,3

h(qi) ≤ h(y) ≤ (y2 + y3) max
i=1,2,3

h(qi)

and y2 + y3 = 1− y1 ≤ 1−m. Therefore

(1−m) min
i=1,2,3

h(qi) ≤ h(y) ≤ (1−m) max
i=1,2,3

h(qi),

since mini=1,2,3 h(qi) ≤ 0 and maxi=1,2,3 h(qi) ≥ 0. A similar estimate holds
for h(z), and the result follows. �

Lemma 5.4. Let δ = δ(α1, · · · , β3) = mini=1,2,3 min {αiβi+1, αi(1−βi−1)}.
Then δ ≤ m.
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Proof. Since h1 ≥ 0, we have z1 = h1(z) ≥ α1(1− β3). Similarly y1 ≥ α1β2

etc. One can obtain these inequalities, for example, from harmonic equations
h1(a1) = α1 + h(a)(1 − α1) and h1(z) = (1 − β3)h(a1) + β3h(a2), where
a, a1, . . . , a3 are defined in Section 6. �

We will denote δ(αw1···wk
1 , . . . , βw1···wk

3 ) by δw1···wk
.

Theorem 5.5.

(1) If for any infinite word w1, w2, . . .

∞∑
k=0

δw1···wk
= ∞,(5.5)

then harmonic functions are continuous.
(2) Suppose

δinf = inf
w∈W∗

δw > 0.(5.6)

Then harmonic functions are Hölder continuous with Hölder exponent
1− δinf .

Proof. By (5.4) and Lemma 5.3 we have, for any finite word w = w1 · · ·wn,

M(h ◦ Fw) ≤M(h)
n−1∏
k=0

(1− δw1···wk
). �(5.7)

Strictly speaking, the algorithm above defines harmonic functions on V∗
only. However, the continuity on V∗ implies the existence of a unique con-
tinuation to SG.

Corollary 5.6.

(1) Suppose that ξw = (αw
1 , α

w
2 , α

w
3 , β

w
1 , β

w
2 , β

w
3 ) ∈ (0, 1)6 are independent

identically distributed random 6-dimensional vectors indexed by the
words w of finite length. Then with probability one harmonic func-
tions are continuous.

(2) Suppose that there is ε > 0 such that αw
j , β

w
j ∈ [ε, 1−ε] for all w, j.

Then harmonic functions are Hölder continuous with Hölder exponent
1− ε2.

Proof. Under the assumptions of part (1) of the corollary, the δw are inde-
pendent identically distributed random variables which are strictly positive.
Therefore the conclusion holds by (5.7) and the Law of Large Numbers.

Part (ii) follows from Theorem 5.5 and the definition of δw. �
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6. Geometric interpretation

Algorithm 5.1 can be uniquely presented (up to a constant factor) in geo-
metric terms. This presentation is based on an idea of Kigami to consider a
pair of harmonic functions as coordinates for SG [Ki3].

To each point p ∈ SG there corresponds a point (h3(p), h2(p)) ∈ R2. If
harmonic functions separate points — and we always assume this — then the
correspondence is one-to-one. In this section we identify p and (h3(p), h2(p)).
This yields a different embedding SG ⊂ R2. We have q1 = (0, 0), q2 = (0, 1),
q3 = (1, 0). Also, we assume that a harmonic function changes linearly along
each resistor, and so a resistor corresponds to a line segment in R2.

For A,B,C ∈ R2 we denote by T (A,B,C) the triangle with vertices
A,B,C.

It is easy to see that choosing the matrix H is equivalent to choosing
three points x, y, z inside of T (q1, q2, q3). The positivity of the determinants
in Theorem 3.3 is equivalent to the fact that none of the line segments shown
in Figure 6.1 intersect or coincide.������������z yxq1 q3

q2

Figure 6.1. Geometric interpretation of conditions of Theorem 3.3.

The Monotonicity Lemma 4.1 corresponds to the fact that the triangles
of level n+ 1 are nested inside of those of level n (Figure 6.2).

Going back to Section 5, choosing conductances R1, R2, R3 up to a con-
stant factor corresponds to choosing a point a inside of T (q1, q2, q3). The
coordinates of this point a can be thought of as the values of the harmonic
functions h3, h2 at the imaginary point a, the point of intersection of the
resistances R1, R2, R3. This point is imaginary in the sense that it may not
correspond to any point in SG. The point a may be thought of as the center
of mass of SG. Thus Step 1 is choosing a point a inside of T (q1, q2, q3). Step
2 is choosing aj in each of the line segments [qj , a], j = 1, 2, 3, and drawing a
new triangle T (a1, a2, a3) instead of line segments [aj , a]. Step 3 is choosing
points x, y, z inside of the line segments [aj , aj+1].

We summarize the preceding discussion as follows:
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Figure 6.2. Geometric interpretation of the Monotonicity
Lemma 4.1 for n = 2.

���������������PPPPPPPPPBBBBBBB
BB

a
�������������� PPPPP
BBBBB������a1

a2 a3
�������������� PPPPP
BBBBB������r rrxz y

Figure 6.3. Geometric interpretation of the construction in §5.

Proposition 6.1. Let distinct points x, y, z ∈ T (q1, q2, q3) correspond to
a matrix H as described above. Then H corresponds to positive conduc-
tances c1, . . . , c9 if and only if there are three points aj inside of triangles
T (q1, y, z), T (q2, x, z), T (q3, x, y) such that:

(1) x ∈ [a2, a3], y ∈ [a1, a3], z ∈ [a2, a3],
(2) three straight lines from qj to aj intersect in a single point a.
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn

for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation
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to Ω that is R-continuous. We will denote this continuation by the same
symbol u and the set of such functions by F .

Remark. It is proved in Proposition 3.3.2 of [Ki4] that if harmonic func-
tions are continuous then there is a continuous injective map θ : Ω → SG
which is the identity on V∗. Therefore in this case we can (and will) consider
Ω as a subset of SG. Then Ω is the R-closure of V∗. In a sense, Ω is the set
where the Dirichlet form lives. If Ω is not just an abstract completion then
the name “Dirichlet form on the SG” is more justified. Strictly speaking,
Proposition 3.3.2 in [Ki4] is formulated for self-similar harmonic structures,
but self-similarity is not used in the proof.

An important question is whether Ω is equal to SG. The answer is positive
if all the conductances tend to infinity. This happens, for example, in the
case of a regular self-similar harmonic structure. Thus it is natural to say
that a harmonic structure is regular if Ω = SG and nonregular otherwise.
It is easy to see that a harmonic structure is regular if all the conductances
tend to infinity, but in Example 7.5 we show that the converse is not true.
In Example 7.4 we describe a nonregular harmonic structure on SG where
harmonic functions are Hölder continuous.

The proof of the next theorem is a part of the proof of Theorem 3.5.6 in
[Ki4].

Theorem 7.2. If x ∈ Ω then {x} has positive capacity.

Proof. Let F0 = {u ∈ F : u|V0 = 0}. Then (F0, E) is a Hilbert space. If
x ∈ Ω, u ∈ F0 and p ∈ V0, then |u(x)|2 ≤ R(x, p)E(u, u) and so u 7→ u(x)
is a continuous functional on the Hilbert space (F0, E). Hence there exists
h ∈ F0 such that u(x) = E(u, h) for any u ∈ F0. This implies the result by
[Fu] or [FOT]. �

The converse of this statement is proved in [Ki4] for any self-similar
harmonic structure. If harmonic functions are continuous then Ω is just the
R-closure of V∗ in SG.

To define the Green’s function we use the construction invented by Kigami
for self-similar harmonic structures. Let G = X−1, where X = Xo +Xi is
defined by (2.1) and (2.2). We assume that the elementsGpq ofG are indexed
by p, q ∈ V1 \ V0 (this set was denoted by {x, y, z} in the previous sections).
Let ψp be the unique piecewise harmonic function such that ψp(q) = δpq for
any p, q ∈ V1 and ψp ◦ Fj is harmonic for any j = 1, 2, 3. We define

Ψ(x, y) =
∑

p,q∈V1\V0

Gpqψp(x)ψq(y).

For any p ∈ V1 \ V0 and any u ∈ F0 we have

E(Ψ(p, ·), u) = u(p)(7.3)



172 R. MEYERS, R.S. STRICHARTZ AND A. TEPLYAEV

(see Lemma 3.5.4 in [Ki4]). Let for any w ∈W∗ we define a Dirichlet form
Ew(u, u) on SG by

Ew(u, u) = lim
n→∞

∑
x,y∈Vn∩Fw(SG)

c(x, y)
(
u(F−1

w (x))− u(F−1
w (y))

)2
(the sum here is a part of the sum in (1.1)). Then we define Ψw(x, y) for
Ew(u, u) in the same way as Ψ(x, y) is defined for E(u, u). (This definition
differs by a factor of rw from the one in [Ki4].) Finally, Green’s function is

g(x, y) =
∑

w∈W∗

Ψw(x, y).(7.4)

Since all the terms in this sum are nonnegative, it either converges or is +∞.
Moreover, if x and y are distinct, all but a finite number of terms vanish.
Hence if harmonic functions are continuous then g(x, y) is continuous on the
set {(x, y) : x, y ∈ SG, x 6= y}.

Theorem 7.3. If x ∈ Ω then g(x, x) <∞, g(x, ·) ∈ F0,

E(g(x, ·), u) = u(x)(7.5)

for any u ∈ F0, and E(g(x, ·), h) = 0 for any harmonic function h.

Proof. Let

gn(x, y) =
n∑

k=0

∑
w∈Wk

Ψw(x, y).

Then gn(x, ·) ∈ F0 and for any u ∈ F0

E(gn(x, ·), u) = un(x),

where un is the unique piecewise harmonic function that coincides with u
on Vn.

It is easy to see that E(u−un, un) = 0 and E(un, un) → E(u, u) as n→ 0.
Hence E(u−un, u−un) → 0 as n → 0. Therefore un(x) → u(x) as n → 0
by (7.2). This implies (7.5) since gn+1(x, · ) − gn(x, · ) is an E-orthogonal
sequence and u 7→ u(x) is a bounded functional on F0. Therefore g(x, · ) lies
in F0 and g(x, x) = E(g(x, · ), g(x, · )) <∞. �

This theorem and its converse are proved in [Ki4] for any self-similar
harmonic structure. Again, if harmonic functions are continuous the result
holds for points in the R-closure of V∗ in SG.

Example 7.4. It is easy to construct an example of a nonregular self-similar
harmonic structure on SG using a modified self-similar structure. Consider
the set of 27 contractions {Fw : |w| = 3}, each with contraction ratio 1

8 .
We choose constants rw : |w| = 3 (see [Ki4]) as follows: we choose two
numbers r, r′ and then set rijk = r if all indices i, j, k are different and
rijk = r′ otherwise. It is easy to see that, because of symmetry, for any
choice of r > 0 there is an r′ > 0 that gives a self-similar harmonic structure.
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(The structure is dihedral-3 symmetric and so has the spectral decimation
property, although of a complicated form. See [MT].)

This harmonic structure is nonregular if we choose r ≥ 1. However it is
evident that the parameters described in Section 5 satisfy the condition of
Corollary 5.6(2) for any self-similar harmonic structure. Therefore harmonic
functions are Hölder continuous.

Example 7.5. We show that conductances need not tend to infinity for
a regular harmonic structure. We construct a Dirichlet form E which is
not self-similar, although it is “piecewise self-similar”. It is clear from the
construction that harmonic functions are continuous and the R-topology is
equivalent to the standard one.

First, we define an auxiliary family of Dirichlet forms Eδ as follows: let
Eδ

0 be the standard symmetric Dirichlet form on Γ0 for which all three con-
ductances are equal to one. For Eδ

1 let the inner conductances be equal to
δ > 0 and the outer conductances be such that Eδ

1 is compatible with Eδ
0 .

Clearly, this is possible for any choice of positive δ. Then we extend Eδ
1 to a

regular Dirichlet form Eδ on SG as in Theorem 3.5.
To construct E we choose an infinite sequence of finite words {w(n)}n≥1

such that Fw(n)(SG)
⋂
Fw(m)(SG) = ∅ if n 6= m. Then we choose a sequence

of positive numbers {δn}n≥1 such that δn ≤ (3
5)|w(n)|. Finally, we take the

standard Dirichlet form on SG and replace it on each triangle Fw(n)(SG) by
(5
3)|w(n)|Eδn

(
f ◦ F−1

w(n), f ◦ F
−1
w(n)

)
.

Note added in proof. In [Ki5], a work submitted after our paper was
completed, Kigami proves some extensions of results from his book [Ki4]
to a wider context which includes all the Dirichlet forms considered in this
paper.
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ymptotic problems in probability theory: stochastic models and diffusions on
fractals’ (K.D. Elworthy and N. Ikeda, eds.), Pitman Research Notes in Math.,
283, Longman, 1993, 201–218, MR 1354156 (96m:31014), Zbl 0793.31005.

[Ki4] J. Kigami Analysis on Fractals, Cambridge Tracts in Mathematics, 143, Cam-
bridge University Press, 2001, MR 1840042 (2002c:28015), Zbl 0998.28004.

[Ki5] J. Kigami, Harmonic analysis for resistance forms, J. Funct. Anal., 204 (2003),
399–444, MR 2017320.

[Ku] S. Kusuoka, Dirichlet forms on fractals and products of random matrices,
Publ. Res. Inst. Math. Sci., 25 (1989), 659–680, MR 1025071 (91m:60142),
Zbl 0694.60071.

[MT] L. Malozemov and A. Teplyaev, Self-similarity, operators and dynamics,
Math. Phys. Anal. Geom., 6 (2003), 201–218, MR 1997913 (2004d:47012),
Zbl 1021.05069.

[Me] V. Metz, Self-similar fractals and self-similar energies, Fractals in Graz 2001,
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