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The k-th finite subset space of a topological space X is
the space expkX of nonempty subsets of X of size at most k,
topologised as a quotient of Xk. Using results from our earlier
paper on the finite subset spaces of connected graphs we show
that the k-th finite subset space of a connected cell complex
is (k − 2)-connected, and (k − 1)-connected if in addition the
underlying space is simply connected. We expect expkX to
be (k+m−2)-connected if X is an m-connected cell complex,
and reduce proving this to the problem of proving it for finite
wedges of (m+1)-spheres. Our results complement a theorem
due to Handel that for path-connected Hausdorff X the map
on πi induced by the inclusion expkX ↪→ exp2k+1X is zero for
all k≥ 1 and i ≥ 0.

1. Introduction

The k-th finite subset space of a topological space X is the space expkX of
nonempty subsets of X of size at most k, topologised as a quotient of Xk

via the map

(x1, . . . , xk) 7→ {x1} ∪ · · · ∪ {xk}.

The construction is functorial, with f : X → Y inducing expkf : expkX →
expkY sending α ⊆ X to f(α) ⊆ Y , and moreover expkf and expkg are
homotopic if f and g are, so that expk is in fact a homotopy functor.

Handel [3] has shown that for path-connected Hausdorff X the map on
πi induced by the inclusion expkX ↪→ exp2k+1X is zero. Using results from
our paper [6] on the finite subset spaces of connected graphs we complement
this result, proving the following connectivity theorem for the finite subset
spaces of a connected cell complex:

Theorem 1. The k-th finite subset space of a connected cell complex X is
(k − 2)-connected, in other words πi(expkX) vanishes for i ≤ k − 2.

Using results from [7], if X is a simply connected cell complex, then
the conclusion may be strengthened to expkX is (k − 1)-connected. We
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expect further that expkX should be (k + m − 2)-connected if X is an m-
connected cell complex. We discuss this in Section 3 after proving the result
in Section 2.

2. Proof of Theorem 1

We note that Theorem 1 is immediate for k = 2, since the finite subset
spaces of a path-connected space are again path-connected, so in proving it
we assume k ≥ 3. In this case the conclusion is equivalent to the statement
that expkX is simply connected with vanishing reduced homology in dimen-
sions less than k − 1, by the Hurewicz theorem, and we shall freely use this
formulation. We first prove the result for finite complexes and then pass to
the infinite case via a compactness argument.

Proof of Theorem 1 for finite X. The proof is by induction on the dimen-
sion of X, with the base case dim X = 1 given by our paper [6], in which
we studied the finite subset spaces of connected finite graphs. The keys to
the inductive step are the following two observations:

(1) If P1, . . . , Pk+1 are disjoint subsets of X then a k element subset of X
must lie in X \ P` for some `.

(2) If X is a connected finite (n + 1)-complex, n ≥ 1, and P ⊆ X lies in
the open (n+1)-cells and intersects each in a nonempty finite set, then
X \ P has the homotopy type of a connected finite n-complex.

We use these in conjunction with the following lemma, itself proved induc-
tively using the Mayer–Vietoris sequence.

Lemma 1. Let Y be a union of open sets U1, . . . , Ur such that U1∩· · ·∩Ur is
nonempty and each Ui1 ∩· · ·∩Uis has vanishing reduced homology in dimen-
sions less than j. Then Y has vanishing reduced homology in dimensions
less than j also.

Suppose the theorem holds for connected finite n-complexes, for some
n ≥ 1, and let X be a connected finite (n + 1)-complex. Let v be a vertex
of X and let P1, . . . , Pk+1 be disjoint subsets of X each consisting of exactly
one point from each open (n + 1)-cell. By observation (1) the sets

U` = expk(X \ P`)

cover expkX, and each U` is open since (X \ P`)k is open in Xk. Moreover
the intersection U1 ∩ · · · ∩ Uk+1 contains {v} and is therefore nonempty.

Consider

U`1 ∩ · · · ∩ U`s = expk

(
X \ (P`1 ∪ · · · ∪ P`s)

)
.

By observation (2) the space X \ (P`1 ∪· · ·∪P`s) has the homotopy type of a
connected finite n-complex, so by the inductive hypothesis U`1∩· · ·∩U`s has
vanishing reduced homology in dimensions less than k − 1. It follows that
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the hypotheses of Lemma 1 are satisfied by the cover {U`} with j = k − 1,
and we conclude that expkX has vanishing reduced homology in dimensions
less than k − 1.

To complete the inductive step it remains to show that expkX is simply
connected. This follows immediately from the van Kampen theorem applied
to the cover {U`} with basepoint {v}. By the inductive hypothesis we have
π1(U`, {v}) ∼= {1} for all `, and since each Uj ∩ U` is path-connected we get
immediately π1(expkX, {v}) ∼= {1} also. �

To pass to the infinite-dimensional case we use the following lemma, which
we prove with no assumptions on X.

Lemma 2. If C ⊆ expkX is compact in expkX then
⋃

C =
⋃

α∈C α is
compact in X.

Proof. Given an open cover O of
⋃

C, the set

O′ =
{
expk

⋃
O

∣∣ O ⊆ O finite
}

is an open cover of C. Extracting a finite subcover{
expk

⋃
O1, . . . , expk

⋃
Om

}
from O′ we obtain a finite subcover O1 ∪ · · · ∪Om of O. �

Since compact subspaces of cell complexes lie in finite subcomplexes we
have immediately:

Corollary 1. If X is a cell complex and C ⊆ expkX is compact, then
C ⊆ expkA for some finite subcomplex A of X.

Proof of Theorem 1 for X infinite. Let [φ] ∈ πi(expkX, {v}) for some vertex
v of X and i ≤ k − 2. By Corollary 1 φ(Si) lies in expkA for some finite
subcomplex A of X, and we may take A to be connected since X is. By
the finite case of the theorem [φ] is trivial in πi(expkA, {v}), and so in
πi(expkX, {v}) also. �

3. Discussion

Theorem 1 is consistent with the following conjecture on the finite subset
spaces of cell complexes, as the theorem follows from the conjecture together
with Handel’s inclusion result. We restrict our attention to complexes with a
single vertex in each component, with no loss of generality up to homotopy.

Conjecture. Let X be a finite n-complex with c components, each contain-
ing a single vertex. Then expkX has a cell structure obtained from expk−1X
by adding cells of dimensions k − c ≤ i ≤ nk.
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The conjecture is true in the connected case for n = 1 by Lemma 1 of [6],
and for n = 2 by Theorem 6 of [7]. To see that it implies Theorem 1 note
that it implies that the homotopy groups of expkX stabilise as k increases.
By Handel’s result the stable groups must be zero when X is connected,
and careful attention to the point at which the stabilisation occurs gives the
bound in the theorem.

Jacob Mostovoy (private communication) has indicated that finite sub-
set spaces of cell complexes may be shown to have cell structures using
the machinery of simplicial sets, which is described in [2] (E.B. Curtis) or
[4] (J.P. May). Given a simplicial set K we let expjK be the simplicial set
whose n-simplices are subsets of size at most j of the n-simplices of K, and
whose face and degeneracy operators are the face and degeneracy operators
of K acting elementwise. Then if X is the geometric realisation of K, expjX
will be the geometric realisation of expjK, showing that triangulated spaces
have triangulated finite subset spaces. However, the triangulations obtained
in this way apparently do not satisfy the lower bound k− c needed to prove
Theorem 1. This bound is motivated by the form of the lexicographic cell
structures of [7] and is arrived at as follows: we suppose that expkX has a
cell structure such that for each open cell e of X the set map

expkX → N : Λ 7→ |Λ ∩ e|

is constant on each open cell σ of expkX, and moreover that the dimension of
σ is at least the common number of points in X less the 0-skeleton for Λ ∈ σ.
In particular we suppose that the vertices of expkX can be chosen to be
subsets of the vertices of X, without adding more through subdivision. If X
has a single vertex in each component then an open cell of expkX \expk−1X
in such a cell structure would have dimension at least k − c.

Theorem 1 can be strengthened for simply connected complexes, and we
expect that it can be strengthened further for m-connected cell complexes.
With this in mind we prove the following theorem, showing it suffices to
prove any strengthened result for wedges of spheres.

Theorem 2. Suppose that finite wedges of (m+1)-spheres have r-connected
k-th finite subset spaces. Then m-connected cell complexes have r-connected
k-th finite subset spaces also.

Proof. We simply adapt the inductive step of the proof of Theorem 1, re-
placing observation (2) with the following:

(2′) If X is an m-connected finite (n + 1)-complex, n ≥ m + 1, and P ⊆ X
lies in the open (n+1)-cells and intersects each in a nonempty finite set,
then X \P has the homotopy type of an m-connected finite n-complex.

If X is an m-connected finite cell complex then up to homotopy we may
assume that the (m + 1)-skeleton of X is a finite wedge of (m + 1)-spheres.
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The base for the induction is then given by hypothesis and the argument
goes through exactly as before. �

According to [7, Theorem 6], expk

∨
n S2 has a cell structure obtained from

expk−1

∨
n S2 by adding cells in dimensions k and higher, and using Handel’s

inclusion result and Theorem 2 we conclude that simply connected cell com-
plexes have (k− 1)-connected k-th finite subset spaces. More generally, the
construction outlined in [7, Section 2.4] should yield cell structures for the
finite subset spaces of wedges of spheres in which expk

∨
n Sm+1 is obtained

from expk−1

∨
n Sm+1 by adding cells in dimensions k + m − 1 and higher.

Verifying the details of this construction would show that m-connected cell
complexes have (k + m− 2)-connected k-th finite subset spaces.

We conclude with an example showing the necessity of the connectedness
hypothesis in Theorem 1. Consider the third finite subset space of a pair of
circles, exp3(S1 q S1). This has three connected components, two “pure”
components consisting of subsets contained entirely in one or the other
component circle, and a “mixed” component consisting of subsets meeting
both. The two pure components are each homeomorphic to S3 (Bott [1];
see also [5]), but the mixed component is formed by gluing two copies of
exp2S

1×exp1S
1 ∼= Möb×S1 along their boundary. The gluing interchanges

the roles of the boundary of the Möbius strip and the S1 direction, and π1

of the resulting three-manifold has presentation
〈
a, b | [a, b2] = [a2, b] = 1

〉
.
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