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Let H be a subgroup of a finite group G. We use Markov
chains to quantify how large r should be so that the decom-
position of the r tensor power of the representation of G on
cosets on H behaves (after renormalization) like the regular
representation of G. For the case where G is a symmetric
group and H a parabolic subgroup, we find that this ques-
tion is precisely equivalent to the question of how large r
should be so that r iterations of a shuffling method randomize
the Robinson–Schensted–Knuth shape of a permutation. This
equivalence is remarkable, if only because the representation
theory problem is related to a reversible Markov chain on the
set of representations of the symmetric group, whereas the
card shuffling problem is related to a nonreversible Markov
chain on the symmetric group. The equivalence is also useful,
and results on card shuffling can be applied to yield sharp
results about the decomposition of tensor powers.

1. Introduction

Let χ be a faithful character of a finite group G. A well-known theorem
of Burnside and Brauer [I] states that if χ(g) takes on exactly m distinct
values for g ∈ G, then every irreducible character of G is a constituent of
one of the characters χj for 0 ≤ j < m. It is very natural to investigate
the decomposition of χj , and the results in this paper are a step in that
direction.

Let Irr (G) denote the set of irreducible representations of a finite group
G. The Plancherel measure on Irr (G) is a probability measure that assigns
mass dim(ρ)2/|G| to ρ. The symbol χρ denotes the character associated
to the representation ρ. The notation Ind, Res stands for induction and
restriction of class functions. We remind the reader that the character of
the r-fold tensor product of a representation of G is given by raising the
character to the r-th power. The inner product 〈f1, f2〉 denotes the usual
inner product on class functions of G defined by

1
|G|

∑
g∈G

f1(g)f2(g).
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Thus if f1 is an irreducible character and f2 any character, their inner prod-
uct gives the multiplicity of f1 in f2. We let gG denote the conjugacy class
of g in G.

In Section 2 of this paper, we prove the following result:

Theorem 1.1. Let H be a subgroup of a finite group G and let id denote
the identity element. Let π denote the Plancherel measure of G. Suppose
that |G| > 1. Let

β = max
g 6=id

|gG ∩H|
|gG|

=
|H|
|G|

max
g 6=id

Ind G
H(1)[g].

Then ∑
ρ∈Irr (G)

∣∣∣∣( |H||G|

)r

dim(ρ)〈χρ, (Ind G
H(1))r〉 − π(ρ)

∣∣∣∣ ≤ |G|1/2βr.

Note that if β < 1, the right-hand side approaches 0 as r → ∞. The
quantity β has been carefully studied in the (most interesting) case that G
is simple and H a maximal subgroup; references and an example where H
is not maximal are given in Section 2.

The idea behind the proof of Theorem 1.1 is to investigate a natural
Markov chain J on the set of irreducible representations of G. This chain is
essentially a probabilistic reformulation of Frobenius reciprocity. This chain
can be explicitly diagonalized and then Theorem 1.1 follows from spectral
theory of reversible Markov chains, with 1− β having the interpretation of
a spectral gap. In fact Theorem 1.1 is a generalization of a result in our
earlier paper [F1], where this Markov chain arose for the symmetric group
case H = Sn−1 and G = Sn and was combined with Stein’s method to
sharpen a result of Kerov on the asymptotic normality of random character
ratios of the symmetric group on transpositions.

The main insight of the current paper is that when G is the symmetric
group Sn and H is a parabolic subgroup, the bound of Theorem 1.1 can
be improved by card shuffling. Let us describe this in detail for the case
H = Sn−1. In Theorem 1.1, β = 1 − 2

n , and one can see using Stirling’s
approximation for n! that for

r >
n log(n) + 2c

2 log( 1
β )

,

the bound in Theorem 1.1 is at most (2π)1/4e−c (and hence small). Note
that all logs in this paper are base e. Thus r slightly more than 1

4n
2 log n

suffices to make the bound small. The bound of Theorem 1.1 is proved by
analyzing a certain Markov chain J on Irr (Sn), started at the trivial repre-
sentation. The irreducible representations of Sn correspond to partitions of
n (the one row partition is the trivial representation), so J is a Markov chain
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on partitions. Although we do not need this observation, we remark that
viewing partitions as Young diagrams, this Markov chain amounts to remov-
ing a single box with certain probabilities and reattaching it somewhere. We
show that the distribution on partitions given by taking r steps according to
J has a completely different description. Namely starting from the identity
permutation (viewed as n cards in order), perform the following procedure
r times: remove the top card and insert it into a uniformly chosen random
position. This gives a nonuniform random permutation, and there is a natu-
ral map called the Robinson–Schensted–Knuth or RSK correspondence (see
[Sa] for background), which associates a partition to a permutation. We will
show that applying this correspondence to the permutation obtained after
r iterations of the top to random shuffle gives exactly the same distribution
on partitions as that given by r iterations of the chain J started at the
trivial representation. This will allow us to use facts about card shuffling
to sharpen 1

4n
2 log n to roughly n log n, and even to see that the n log(n)

is sharp to within a factor of two. Precise statements and results for more
general parabolic subgroups are given in Section 3.

To close the introduction we make some remarks. First, recall that a
Markov chain M on a finite set X is called reversible with respect to the
probability measure µ on X if µ(x)M(x, y) = µ(y)M(y, x) for all x, y (this
implies µ is stationary for M , i.e., µ(y) =

∑
x µ(x)M(x, y) for all y). The

top to random shuffle and its cousins that arise in connection with parabolic
subgroups are nonreversible chains. Thus it is rather miraculous that the
top to random shuffle has real eigenvalues; this observation is the starting
point of a general theory [BHR]. And it is doubly surprising that the top
to random shuffle should be connected with the reversible chains J . Since
Proposition 3.3 shows these chains to have the same set of eigenvalues, this
gives an application of the eigenvalue formulas in [BHR]. See [F4] for some
other connections between the top to random shuffle and reversible Markov
chains. Second, the problem of studying the convergence rate of the RSK
shape after iterated shuffles to the RSK shape of a random permutation is of
significant interest independent of its application in this paper. It is closely
connected with random matrix theory and in some cases with Toeplitz deter-
minants. See [St], [F2], [F3] and the references therein for details. Third,
since Solomon’s descent algebra generalizes to finite Coxeter groups, it is
likely that the results in this paper can be pushed through to that setting.
(However that would require an analog of the RSK correspondence for finite
Coxeter groups). Fourth, we note that some of the results in this paper have
now been from extended to arbitrary real valued characters of finite groups
and to spherical functions of Gelfand pairs [F5], [CF]; as an application
one obtains a probabilistic proof of a result of Burnside and Brauer on the
decomposition of tensor products [F6].
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2. General groups

This section proves Theorem 1.1 and gives an example. Throughout this
section X = Irr (G) is the set of irreducible representations of a finite group
G, endowed with Plancherel measure πG. We also suppose that we are given
a subgroup H of G.

To begin, we use H to construct a Markov chain on Irr (G) that is re-
versible with respect to πG. For ρ an irreducible representation of G and
τ an irreducible representation of H, we let κ(τ, ρ) denote the multiplicity
of τ in Res G

H(ρ). By Frobenius reciprocity, this is the multiplicity of ρ in
Ind G

H(τ).

Proposition 2.1. The Markov chain J on irreducible representations of G
that moves from ρ to σ with probability

|H|
|G|

dim(σ)
dim(ρ)

∑
τ∈Irr (H)

κ(τ, ρ)κ(τ, σ)

is in fact a Markov chain (the transition probabilities sum to 1), and is
reversible with respect to the Plancherel measure πG.

Proof. First let us check that the transition probabilities sum to 1. Indeed,∑
σ∈Irr (G)

|H|
|G|

dim(σ)
dim(ρ)

∑
τ∈Irr (H)

κ(τ, ρ)κ(τ, σ)

=
|H|
|G|

1
dim(ρ)

∑
τ∈Irr (H)

κ(τ, ρ)
∑

σ∈Irr (G)

dim(σ)κ(τ, σ)

=
1

dim(ρ)

∑
τ∈Irr (H)

κ(τ, ρ) dim(τ) = 1.

The second equality follows since the dimension of a representation induced
from a subgroup is its original dimension multiplied by the index of the
subgroup.

The reversibility with respect to Plancherel measure is immediate from
the definitions. �

Next we quickly review some facts from Markov chain theory. We consider
the space of real valued functions `2(π) with the norm

‖f‖2 =
(∑

x

|f(x)|2π(x)
)1/2

.

If J(x, y) is the transition rule for a Markov chain on a finite set X, the
associated operator (also denoted by J) on `2(π) is given by Jf(x) =∑

y J(x, y)f(y). Let Jr(x, y) = Jr
x(y) denote the chance that the Markov

chain started at x is at y after r steps.
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If the Markov chain with transition rule J(x, y) is reversible with respect
to π (i.e., π(x)J(x, y) = π(y)J(y, x) for all x, y), then the operator J is self
adjoint with real eigenvalues

−1 ≤ βmin = β|X|−1 ≤ · · · ≤ β1 ≤ β0 = 1.

Let ψi (i = 0, . . . , |X| − 1) be an orthonormal basis of eigenfunctions such
that Jψi = βiψi and ψ0 ≡ 1. Define β = max{|βmin|, |β1|}.

The total variation distance between two probability measures Q1, Q2

on a set X is defined as ‖Q1 − Q2‖TV = 1
2

∑
x∈X |Q1(x) − Q2(x)|. It is

elementary that ‖Q1 −Q2‖TV = maxA⊆X |Q1(A)−Q2(A)|. Thus when the
total variation distance is small, the Q1 and Q2 probabilities of any event A
are close.

The following lemma is well-known; for a proof see [DSa].

Lemma 2.2.
1) 2‖Jr

x − π‖TV ≤ ‖(Jr
x/π)− 1‖2.

2) Jr(x, y) =
|X|−1∑
i=0

βr
i ψi(x)ψi(y)π(y).

3) ‖(Jr
x/π)− 1‖2

2 =
|X|−1∑
i=1

β2r
i |ψi(x)|2 ≤

1− π(x)
π(x)

β2r.

Proposition 2.3. Let G be a finite group and H a subgroup of G. Then the
eigenvalues and eigenfunctions of the operator J are indexed by conjugacy
classes C of G.

1) The eigenvalue parameterized by C is |C ∩H|/|C|.
2) An orthonormal basis of eigenfunctions ψC is defined by

ψC(ρ) =
|C|

1
2χρ(C)

dim(ρ)
.

Proof. First, note that the transition probability in the definition of J can
be rewritten as
|H|dim(σ)
|G|dim(ρ)

〈
χσ, Ind G

HRes G
H(χρ)

〉
=
|H|dim(σ)
|G|dim(ρ)

1
|G|

∑
g∈G

χσ(g)
1
|H|

∑
t∈G

t−1gt∈H

χρ(t−1gt)

=
dim(σ)
dim(ρ)

1
|G|

∑
g∈G

χσ(g)χρ(g)
|gG ∩H|
|gG|

.

The first equality used the well-known formula for induced characters [I].
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Now to see that ψC is an eigenfunction with the asserted eigenvalue, one
calculates that∑

σ∈Irr (G)

dim(σ)
dim(ρ)

1
|G|

∑
g∈G

χσ(g)χρ(g)
|gG ∩H|
|gG|

|C|
1
2
χσ(C)
dim(σ)

=
|C|

1
2

dim(ρ)

∑
g∈G

|gG ∩H|
|gG|

χρ(g)
|G|

∑
σ∈Irr (G)

χσ(g)χσ(C)

=
|C|

1
2χρ(C)

dim(ρ)

∑
g∈C

|gG ∩H|
|gG|

1
|gG|

=
|C|

1
2χρ(C)

dim(ρ)
|C ∩H|
|C|

.

The second inequality used the orthogonality relations of the characters ofG.
Finally, the fact that ψC are orthonormal follows from the orthogonality

relations for irreducible characters. They are a basis since the number of ir-
reducible representations of a finite group is equal to its number of conjugacy
classes. �

Next we prove Theorem 1.1 from the introduction.

Proof. First note that the equivalence of the definitions of β follows from
the general formula for induced characters. Now let 1 denote the trivial
representation of G. From Proposition 2.3 and part 2 of Lemma 2.2,

Jr
1 (ρ) = dim(ρ)

∑
C

(
|C ∩H|
|C|

)r |C|χρ(C)
|G|

= dim(ρ)
1
|G|

∑
g∈G

(
|gG ∩H|
|gG|

)r

χρ(g)

= dim(ρ)
(
|H|
|G|

)r

〈χρ, (Ind G
H(1))r〉,

where in the third equality we have used the well-known formula for induced
characters used in the proof of Proposition 2.3. The theorem now follows
from part 1 of Proposition 2.3 and parts 1 and 3 of Lemma 2.2. �

Remarks.
1) The quantity β has been well studied in the case that G is simple and

H is a maximal subgroup of G. See for instance [GK], [LSh] and the
references therein. We defer discussion of the case that G = Sn and
H is a parabolic subgroup to Section 3. The remarkable paper [GM]
classifies all pairs (G,H) where G is a finite group, H is maximal in G,
and β is at least 1/2.
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2) Observe that if β = 1 the upper bound of Theorem 1.1 is useless. And
it can happen that β = 1. For instance if H is a nontrivial normal
subgroup of G, there are conjugacy classes of G contained in H. On
the representation theory side, suppose for simplicity that H is normal
of index 2. Then except in trivial cases, the state space of the Markov
chain J isn’t connected, so the the quantity bounded in Theorem 1.1
won’t go to 0 as r →∞. Indeed, either Ind G

HRes G
H(ρ) is two copies of

ρ or else the sum of ρ and ρ′, where the character of ρ′ is equal to the
character of ρ on H but takes opposite values on G−H [FH, p. 64].

3) If β = 0, then |H| = 1, which implies that the decomposition of
Ind G

H(1) is given exactly by Plancherel measure. Then the bound in
Theorem 1.1 is an equality.

4) Note that Propositions 2.1 and 2.3 involve the idea of first restricting
a representation of G to H and then inducing. There is a similar
(but less natural) result for inducing and then restricting. Namely the
Markov chain in Proposition 2.1 becomes a reversible Markov chain
on irreducible representations of H (with respect to the Plancherel
measure of H), where one moves from ρ to σ with probability

|H|
|G|

dim(σ)
dim(ρ)

∑
τ∈Irr (G)

κ(ρ, τ)κ(σ, τ).

If G conjugacy classes of H coincide with conjugacy classes of H, then
the eigenvalues are parameterized by conjugacy classes C of H: the
eigenvalue is |C|/|CG| (the denominator is the size of the conjugacy
class of C in G), and the eigenvector is |C|

1
2χρ(C)/dim(ρ). For the

pair (Sn, Sn+1) this was applied in [F1] and the proof method is similar
to that of Proposition 2.3. However we believe that it is more natural
to restrict and then induce as this involves only the internal structure
of the group. Hence we do not develop this remark further.

To conclude this section we compute β in the case that G = GL(n, q) and
H = GL(n−1, q) (which is not a maximal subgroup). There are clearly more
examples in this direction that can be worked out using Wall’s formulas for
conjugacy class sizes [W]— though as in Proposition 2.4 below some (minor)
effort is required to determine when |gG ∩ H|/|gG| is largest for nontrivial
g. However as we have no need for them we stop here.

Proposition 2.4. Suppose that G = GL(n, q) and H = GL(n − 1, q), and
that n ≥ 2. Then

β =
(1− 1/qn−1)
q2(1− 1/qn)

for q > 2 and β =
(1− 1/qn−2)
q2(1− 1/qn)

for q = 2.

Proof. The conjugacy classes C of GL(n, q) are parameterized by all ways
of associating a partition λφ to each monic irreducible polynomial φ(z) with
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coefficients in Fq such that |λz| = 0 and
∑

φ deg(φ)|λφ| = n. Here |λ| denotes
the size of a partition λ and deg(φ) denotes the degree of the polynomial φ.
Moreover the size of the conjugacy class with this data is ([M], p. 181)

|GL(n, q)|∏
φ

∏
j≥1 q

deg(φ)(λ′φ,j)
2
(1− 1/qdeg(φ)) · · · (1− 1/qdeg(φ)mj(λφ))

.

Here mj(λφ) is the number of parts of λφ of size j, and λ′φ,j is the number of

parts of λφ of size at least j. In order that |gG∩H|
|gG| is nonzero, it is necessary

that g has its conjugacy data satisfying m1(λz−1(g)) ≥ 1. Then gG ∩H is
a single conjugacy class of H, with conjugacy data the same as for g except
that a part of size 1 is removed from the partition corresponding to the
polynomial z − 1. Thus one sees that

|gG ∩H|
|gG|

=
|GL(n− 1, q)|
|GL(n, q)|

(1− 1/qm1(λz−1(g)))q2λ′z−1,1(g)−1.

Thus to find β, it is necessary study the maximum of the function

(1− 1/qm1(λ))q2λ′1

among partitions λ of size at most n having at least 1 part equal to 1, but
excluding the partition of size n that consists of all 1’s. Here m1(λ) denotes
the number of parts of λ of size 1, and λ′1 denotes the number of parts of λ.
It is straightforward to see that if |λ| < n, this function is maximized when
|λ| = n− 1 and λ consists of n− 1 1’s. For |λ| = n it is straightforward that
the function is maximized for the partition consisting of 1 part of size 2 and
n−2 parts of size 1. Comparing these two cases one sees that the maximum
occurs for the first case. The first case occurs for q > 2 but can not occur for
q = 2 (since z − 1 is the only polynomial of degree 1 with nonzero constant
term), and for q = 2 it is straightforward to see that the second case is the
maximum. �

3. Symmetric groups

This section considers the Markov chain J in the case of the symmetric
group and develops connections with card shuffling. We assume through-
out that the reader is familiar with the Robinson–Schensted–Knuth (RSK)
correspondence. See [Sa] for background on this topic.

Consider the symmetric group Sn. Let Π = {ε1−ε2, · · · , εn−1−εn} be a
set of simple roots for the root system consisting of the n(n − 1) vectors
εi − εj , where 1 ≤ i 6= j ≤ n. The positive roots are εi − εj where i < j and
the negative roots are those with i > j. The descent set of a permutation
g consists of the elements in Π that g maps to negative roots. For L ⊆ Π,
let XL denote the set of permutations whose descent set is disjoint from
L. It is well-known [H] that |XL| = n!/|SL|, where |SL| is the parabolic
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subgroup generated by adjacent transpositions corresponding to the roots
in L. Consequently if the pL ≥ 0 satisfy the equality

∑
L⊆Π pL = 1, the

element
∑

L⊆Π

pL|SL|
n!

XL defines a probability measure on the symmetric
group.

Given an element
∑

g∈Sn
cgg of the group algebra of the symmetric group,

by the inverse element we mean
∑

g∈Sn
cgg

−1. It is known that the RSK
correspondence associates the same partition to g and to g−1, so when dis-
cussing the RSK correspondence one need not be concerned with whether we
are considering an element in the group algebra or its inverse. The inverse
of the element

∑
L⊆Π

pL|SL|
n! XL can be thought of as a shuffle. For instance

if pΠ−{ε1−ε2} = 1, this shuffle is simply the top to random shuffle. One rea-
son these shuffles are important is a result of Solomon [So] that states that
xLxK =

∑
N⊆Π aLKNxN for certain constants aLKN . Thus one can at least

in principle compute powers( ∑
L⊆Π

pL|SL|
n!

XL

)r

,

which corresponds to understanding iterates of shuffles.
Now the main theorem of this section can be stated. Recall that the

irreducible representations of the symmetric group Sn are parameterized by
partitions λ of n.

Theorem 3.1. Suppose that pL ≥ 0 satisfy
∑

L⊆Π pL = 1. For L ⊆ Π,
let J [L] denote the Markov chain associated to the pair G = Sn and H =
SL, and let J [~p] =

∑
L pLJ [L] denote the mixture of the Markov chains

J [L]. Then J [~p]r1(λ) (the chance that the mixed chain started at the trivial
representation is at the representation parameterized by λ after r steps) is
equal to the chance that an element of the symmetric group distributed as(∑

L⊆Π
pL|SL|

n! XL

)r has RSK shape λ.

Proof. From Proposition 2.3, the functions ψC(λ) are a common orthonor-
mal basis of eigenfunctions for the chains J [L]. Hence they are an orthonor-
mal basis of eigenfunctions for the mixed chain J [~p]. This allows one to
compute J [~p]r1(λ) by the same method used in the proof of Theorem 1.1,
and one concludes that it is equal to

dim(λ)

〈
χλ,

(∑
L

pL|SL|
n!

Ind Sn
SL

(1)
)r

〉
.

As explained in the preliminary remarks of Section 4 of [BBHT], the
coefficients aLKN are related to tensor products of representations:

Ind Sn
SL

(1)× Ind Sn
SK

(1) =
∑
N⊆Π

aLKN Ind Sn
SN

(1).
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Letting cN,r,~p denote the coefficient of XN in( ∑
L⊆Π

pL|SL|
n!

XL

)r

,

it follows that J [~p]r1(λ) is equal to

dim(λ)
∑
N⊆Π

cN,r,~p

〈
χλ, Ind Sn

SN
(1)

〉
.

Letting µ denote the type ofN (that is SN is the direct product of symmetric
groups whose sizes are the parts of the partition µ), the multiplicity of λ in
Ind Sn

SN
(1) is by definition the Kostka–Foulkes number Kλµ discussed in [Sa].

Thus J [~p]r1(λ) is equal to

dim(λ)
∑

µ

Kλ,µ

∑
N :type(N)=µ

cN,r,~p

where the sum is over all partitions µ of n.
Next it is necessary to show this is equal to the chance that an element

of the symmetric group distributed as
(∑

L⊆Π
pL|SL|

n! XL

)r has RSK shape λ.
By the definition of cN,r,~p, we know that( ∑

L⊆Π

pL|SL|
n!

XL

)r

=
∑
N⊆Π

cN,r,~pXN .

So it suffices to show that the number of summands of the element XN (or
equivalently the inverse of XN ) that the RSK correspondence maps to λ is
dim(λ)Kλ,type(N). But writing SN = Sa1 × Sa2 · · · × Sar the summands of
the inverse of xN correspond (in an RSK shape preserving way) to words
on the letters {1, . . . , r} in which the letter l appears al times. But such
words with RSK shape λ correspond to pairs (P,Q) of Young tableau with
Q standard of shape λ and P semistandard of shape λ and content type(N).
Since the number of these is dim(λ)Kλ,type(N), the theorem is proved. �

Corollary 3.2 is an important consequence of Theorem 3.1.

Corollary 3.2. Let tv(r, ~p) denote the total variation distance between the
probability measure

(∑
L⊆Π

pL|SL|
n! XL

)r on the symmetric group and the uni-
form distribution on the symmetric group. Let π be the Plancherel measure
of Sn. Then

1
2

∑
λ∈Irr (Sn)

∣∣∣∣∣∣dim(λ)
〈
χλ,

(∑
L⊆Π

pL|SL|
n!

Ind Sn
SL

(1)
)r〉

− π(λ)

∣∣∣∣∣∣ ≤ tv(r, ~p).
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Proof. From the proof of Theorem 3.1, we know that

1
2

∑
λ∈Irr (Sn)

∣∣∣∣∣∣dim(λ)
〈
χλ,

(∑
L⊆Π

pL|SL|
n!

Ind Sn
SL

(1)
)r〉

− π(λ)

∣∣∣∣∣∣
is equal to the total variation distance between the measure J [~p]r1 and the
Plancherel measure of the symmetric group. Theorem 3.1 gives that this
is equal to the total variation distance between the RSK pushforward of
the measure

(∑
L⊆Π

pL|SL|
n! XL

)r and the Plancherel measure. Since the
Plancherel measure is the RSK pushforward of the uniform distribution on
the symmetric group, the corollary follows. �

The significance of Corollary 3.2 is that it allows one to apply work on
convergence rates of shuffles to the study of tensor products. We now give
some examples showing that the bound of Corollary 3.2 can be much sharper
than that of Theorem 1.1. Note that here we only treat examples with
pL = 1 as these are the most natural from the viewpoint of decomposition
of tensor products. The convergence rate of the RSK shape for other shuffles
is considered in [F2], [F3].

Example 1 (The defining representation). The first example is when pL =
1 for L = Π − {ε1 − ε2}. Then G = Sn and H = Sn−1. The representation
theory problem in this case is the study of decompositions of the r-th tensor
power of the defining (n-dimensional) representation, and the card shuffling
problem is the r fold iteration of the top to random shuffle.

Consider the bound of Theorem 1.1. Letting n1(g) denote the number of
fixed-points of g, it is clear that |gG ∩H|/|gG| = n1(g)/n. Thus β = 1− 2

n .
It follows that∑

λ∈Irr (Sn)

∣∣∣∣dim(λ)
nr

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣ ≤ √
n!

(
1− 2

n

)r
.

Using Stirling’s approximation [Fe]

n! ≤
√

2πe−n+ 1
12n

+(n+ 1
2
) log(n),

one sees that for r > n log(n)+2c

2 log( 1
β

)
, this is at most

(2π)1/4er log(β)+
n log(n)

2 ≤ (2π)1/4e−c.

For c fixed and large n, n log(n)+2c

2 log( 1
β

)
is roughly 1

4n
2 log n.

The bound from Corollary 3.2 is much sharper. Indeed, it is known [AD]
that for r = n log(n) + cn, the total variation distance between r iterations
of the top to random shuffle and the uniform distribution is at most e−c, for
c ≥ 0, n ≥ 2.
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Next consider lower bounds for
1
2

∑
λ∈Irr (Sn)

∣∣∣∣dim(λ)
nr

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣ .
By Theorem 3.1, this is equal to the total variation distance between the
RSK pushforward of r iterations of the top to random shuffle and the
Plancherel measure. A result of Chapter 5 of [U] is that for large n at
least 1

2n log(n) iterations of the top to random shuffle are needed to ran-
domize the length of the longest increasing subsequence (actually he states
the result for the random to top shuffle, but this is the inverse of top to
random). Since the longest increasing subsequence is a function of the RSK
shape, it follows that

1
2

∑
λ∈Irr (Sn)

∣∣∣∣dim(λ)
nr

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣
requires r at least 1

2n log(n) to be small. Thus the upper bound on r in the
previous paragraph is sharp to within a factor of two.

The next two examples generalize Example 1, but in different directions.

Example 2 (Sn−k ⊂ Sn). This example is the case that

L = Π− {ε1 − ε2, . . . , εk − εk+1}

where k ≤ n − 1. Then G = Sn and H = Sn−k. The representation theory
problem is to study the decomposition of the rth tensor power of Ind Sn

Sn−k
(1),

and the relevant card shuffling is the top k to random shuffle, which proceeds
by removing the top k cards from the deck and sequentially inserting them
into random positions (this is equivalent to thoroughly mixing the top k
cards and then riffling them with the rest of the deck— i.e., choosing a
random interleaving).

First consider the bound of Theorem 1.1. Using the fact that two ele-
ments in a symmetric group are conjugate if and only if they have the same
structure, and that a conjugacy class with ni cycles of length i for all i has
size n!/

∏
i i

nini!, one finds that β = (n−k)(n−k−1)
n(n−1) . By the same argument

as Example 1, it follows that∑
λ∈Irr (Sn)

∣∣∣∣ dim(λ)
(n · · · (n− k + 1))r

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣ ≤ (2π)1/4e−c

when r > n log(n)+2c

2 log( 1
β

)
. For fixed c, k and large n, n log(n)+2c

2 log( 1
β

)
is roughly n2 log(n)

4k .

The convergence rate of the card shuffling problem was studied in [DFiP],
where it was shown that for k fixed and large n, the total variation distance
is small for r = n

k (log(n) + c). Thus the bound from Corollary 3.2 is much
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sharper. The argument for the lower bound also generalizes, showing that
r must be at least 1

2kn log(n) for

1
2

∑
λ∈Irr (Sn)

∣∣∣∣ dim(λ)
(n(n− 1) · · · (n− k + 1))r

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣
to be small.

The case of k = n
2 is also of interest. Then for n large, β is roughly

1
4 , and the upper bound of Theorem 1.1 shows that r roughly n log(n)

2 log(4) is
sufficient. Again the bound of Corollary 3.2 is shaper. To see this note
that one wants an upper bound on the total variation distance between r
iterates of the shuffle and the uniform distribution. The shuffle is a special
case of the Bidigare–Hanlon–Rockmore walks on chambers of hyperplane
arrangements, and a convenient upper bound for total variation distance is
in [BD] (this bound is somewhat weaker than the bound in [BHR] but is
easier to apply). In the case at hand the bound turns out to be

(
n
2

)
βr, which

shows that r roughly 2 log(n)
log(4) is sufficient.

Example 3 (Action on k-sets). The next example is the case that pL = 1,
where L = Π − {εk − εk+1}, and 1 ≤ k ≤ n/2. Then G = Sn and H =
Sk × Sn−k. The representation theory problem in this case is the study of
decompositions of the r-th tensor power of the permutation representation
on k-sets, and the card shuffling problem is the r-fold iteration of the shuffle
that proceeds by cutting off exactly k cards, and then riffling them with the
other n− k cards (i.e., choosing a random interleaving).

First consider the bound of Theorem 1.1. The value of β is calculated in
[GM] for n ≥ 5 and shown to occur for the conjugacy class of transpositions,

where it is (n−2
k )+(n−2

k−2)
(n

k)
. For k fixed and large n, log( 1

β ) is roughly 2k
n , so

that r slightly more than n2 log(n)
4k will make∑

λ∈Irr (Sn)

∣∣∣∣∣dim(λ)(
n
k

)r

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣∣
small.

Now consider the bound from Corollary 3.2. To apply it we require an up-
per bound on the total variation distance between the uniform distribution
and r iterations of the shuffle that cuts off exactly k cards and riffles them
with the rest of the deck. This shuffle too is a special case of the Bidigare–
Hanlon–Rockmore walks on chambers of hyperplane arrangements, and a
convenient upper bound for total variation distance is in [BD]. In the case
at hand one can check that the total variation bound becomes(

n

2

)((
n−2
k−2

)
+

(
n−2

k

)(
n
k

) )r

,
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which is better than the bound
√

n!
2

(
(n−2

k )+(n−2
k−2)

(n
k)

)r

from Theorem 1.1. One

concludes that r slightly more than n log(n)
k makes

1
2

∑
λ∈Irr (Sn)

∣∣∣∣∣dim(λ)(
n
k

)r

〈
χλ, (Ind G

H(1))r
〉
− π(λ)

∣∣∣∣∣
small. Moreover, the argument for the lower bound in the other examples
generalizes, showing that r must be at least n log(n)

2k .
The case of k = n

2 is also of interest. Then for n large, β is roughly 1
2 , and

the upper bound of Theorem 1.1 shows that r roughly n log(n)
2 log(2) is sufficient.

Again the bound of Corollary 3.2 is shaper, showing that r roughly 2 log(n)
log(2)

is sufficient.

We remark that the fact that nonreversible Markov chains such as top
to random are related to the reversible Markov chain J by means of Theo-
rem 3.1 is quite mysterious. As a further result in this direction, we show
that the Markov chains J [~p] and

∑
L⊆Π

pL|SL|
n! XL have the same set of eigen-

values (of course the multiplicities are different).

Proposition 3.3. The Markov chain J [~p] and the element
∑

L⊆Π
pL|SL|

n! XL

have the same set of eigenvalues.

Proof. Since the chains J [L] have a common basis of eigenvectors, the eigen-
values of J [~p] are linear functions in the p’s. Similarly [BHR] finds a formula
for the eigenvalues of the element

∑
L⊆Π

pL|SL|
n! XL and shows that they are

linear in the p’s. Hence it is enough to prove the result when pL = 1 for
some L.

From Corollary 2.2 of [BHR], the eigenvalues of the element |SL|
n! XL are

indexed by permutations g ∈ Sn. Let µ be such that the orbits of SL on
{1, . . . , n} are {1 · · ·µ1}, {µ1 + 1 · · ·µ1 + µ2}, etc.; hence µ is a composition
of n. A block ordered partition of the set {1, . . . , n} is by definition a set
partition with an ordering on the blocks of the partition. We say that a
block ordered partition has type µ if the first block has size µ1, the second
block has size µ2 and so on. The result of [BHR] is that the eigenvalue
corresponding to g is the proportion of block ordered partitions of type µ
that are fixed by g in the sense that each block is sent to itself. This is
equivalent to requiring that each block is a union of cycles of g. Letting ni

denote the number of i-cycles of g, it follows that this proportion is

µ1!µ2! · · ·
n!

∑
P

k a
(k)
i =niP

i ia
(k)
i =µk all k

∏
i≥1

(
ni

a
(1)
i , a

(2)
i , . . .

)
.



CARD SHUFFLING AND TENSOR PRODUCTS 261

On the other hand, by Proposition 2.3, we know that the eigenvalues
of J are parameterized by conjugacy classes C of Sn. Let ni denote the
number of cycles of length i for elements in the class C. Using the fact that
|C| = n!/

∏
i i

nini!, it follows that

|C ∩ SL|
|C|

=
∏

i i
nini!
n!

∑
P

k a
(k)
i =niP

i ia
(k)
i =µk all k

∏
k

µk!∏
i i

a
(k)
i a

(k)
i !

.

This is equal to the expression of the previous paragraph, so the proof is
complete. �
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