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We construct a Jacobian of dimension three whose theta di-
visor contains an elliptic curve. We work over an algebraically
closed field of characteristic zero.

Let E be an elliptic curve and F a principally polarized abelian variety
of dimension 3. Let L and N be their principal polarizations.

Lemma 1. There exist E′ and F ′ such that we have isogenies ψE : E′ → E
and ψF : F ′ → F of degree two.

Proof. Let F ′ = (F /̌Z/2Z)̌ and the same with E. �

Let L′ = ψ∗EL and N ′ = ψ∗FN . Then ϕL′ : E′ → (E′)̌ and ϕN ′ : F ′ →
(F ′)̌ have degree four. Let HL′ and HN ′ be their kernels. Then we have
theta groups

1→ Gm → GL′ → HL′ → 0
and

1→ Gm → GN ′ → HN ′ → 0.
By Mumford theory we have two torsion elements αL and βL of GL′ such
that αL·βL = (−1)βL·αL and the same with N . Here the images of αL and
βL generate HL′ . Consider M = π∗E′L′ ⊗ π∗F ′N ′. Then HM = HL′ ×HN ′ .

Lemma 2. We have an inclusion K = (Z/2Z)2 ⊂ GM.

Proof. αL ⊗ αN and βL ⊗ βN generate the group. �

Let X = E′⊗F ′/Im K and let R be the quotient ofM by (Z/2Z)2. Then
R gives a principal polarization on X. Let γ be a nonzero section of X. Let
θ be the zeroes of γ.

Lemma 3. θ contains some translate of Im E′.

Proof. γ corresponds to a section of M that is invariant under K. Let τ
and µ be nonzero sections of L′ and N ′ invariant under αL and αN . Let
τ ′ = βL(τ) and µ′ = βN (µ). Then τ ′ and µ′ are anti-invariant under αL
and αN . Consider the section η = τ ⊗ µ + τ ′ ⊗ µ′ 6= 0 of M. Then
η is invariant under (Z/2Z)2. Then the inverse image of θ is the zeroes
η ⊃ E×(µ = µ′ = 0), where the second set is nonempty as N 2 is ample. �
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Assume that F contains no elliptic curve.

Lemma 4. (µ = µ′ = 0) is a finite set.

Proof. Let D be the largest divisor in the intersection. Then D is invariant
under the group P generated by the image of αN and βN . Then D comes
from an effective divisor D′ on F ′/P where #P = 4. So (D2)

4 = 4 (D′)2

2 and
(D2)

2 ≤ (µ=0)2

2 = 2. So by [1], D′ comes from a divisor on a quotient of F ′/D
which is a point. So D′ is empty. �

Lemma 5. (X, θ) is a Jacobian.

Proof. We need to see that θ is irreducible. If θ is reducible, we have X =
E⊕R by [1], where θ is the sum of divisors depending on the factors. Thus
θ ⊃ E × x for a curve x. But this contradicts Lemma 4. �
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