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Let A be a separable unital C∗-algebra. Let π : A → L(H)
be a faithful representation of A on a separable Hilbert space
H such that π(A) ∩ K(H) = {0}. We show that OE, the
Cuntz–Pimsner algebra associated to the Hilbert A-bimodule
E = H ⊗C A, is simple and purely infinite. If A is nuclear
and belongs to the bootstrap class to which the UCT applies,
the same applies to OE. Hence by the Kirchberg–Phillips
Theorem the isomorphism class of OE only depends on the
K-theory of A and the class of the unit.

In his seminal paper [Pm], Pimsner constructed a C∗-algebra OE from
a Hilbert bimodule over a C∗-algebra A as a quotient of a concrete C∗-
algebra TE , an analogue of the Toeplitz algebra, acting on the Fock space
associated to E. There has recently been much interest in these Cuntz–
Pimsner algebras (or Cuntz–Krieger–Pimsner algebras), which generalize
both crossed products by Z and Cuntz–Krieger algebras, as well as the as-
sociated Toeplitz algebras. The structure of these C∗-algebras is not yet
fully understood, though considerable progress has been made. For exam-
ple, Pimsner found a six-term exact sequence for the K-theory of OE that
generalizes the Pimsner–Voiculescu exact sequence (see [Pm, Theorem 4.8]);
conditions for simplicity were found in [Sc2, MS, KPW1, DPZ] and for
pure infiniteness in [Z].

The purpose of the present note is to analyze the structure of Cuntz–
Pimsner algebras associated to a certain class of Hilbert bimodules. Let
A be a separable unital C∗-algebra and let π : A → L(H) be a faithful
nondegenerate representation of A on a separable Hilbert space H such that
π(A) ∩ K(H) = {0}. Then E = H ⊗C A is a Hilbert bimodule over A in a
natural way. We show that OE is separable, simple and purely infinite. If A
is nuclear and in the bootstrap class, then the same holds for OE and thus by
the Kirchberg–Phillips theorem the isomorphism class of OE is completely
determined by the K-theory of A together with the class of the unit (since
OE is KK-equivalent to A).

Many examples of Cuntz–Pimsner algebras found in the literature arise
from Hilbert bimodules that are finitely generated and projective; in such
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cases the left action must consist entirely of compact operators. Our exam-
ples do not fall in this class; in fact, the left action has trivial intersection
with the compacts. And this has some interesting consequences: OE

∼= TE

(see [Pm, Corollary 3.14]) and the natural embedding A ↪→ OE induces a
KK-equivalence (see [Pm, Corollary 4.5]).

In §1 we review some basic facts concerning the construction of TE as
operators on the Fock space of E and the gauge action λ : T → Aut (TE).
We assume that the left action of A does not meet the compacts K(E) and
identify OE with TE . The fixed point algebra FE , the analogue of the AF-
core of a Cuntz–Krieger algebra, contains a canonical descending sequence of
essential ideals indexed by N with trivial intersection. The crossed product
OE oλ T has a similar collection of essential ideals indexed by Z on which
the dual group of automorphisms acts in a natural way. By Takesaki–Takai
duality,

OE ⊗K(L2(T)) ∼= (OE oλ T) obλ Z ;

hence, much of the structure of OE is revealed through an analysis of the
double crossed product.

In §2 we show that if E is the Hilbert bimodule over A associated to a
representation as described above, then for every nonzero positive element
d ∈ OE there is a z ∈ OE such that z∗dz = 1; it follows that OE is simple
and purely infinite (see Theorem 2.8). The proof of this proceeds through
a sequence of lemmas and is patterned on the proof of [Rø, Theorem 2.1],
which is in turn based on a key lemma of Kishimoto (see [Ks, Lemma 3.2]).
Our argument uses the version of this lemma found in [OP3, Lemma 7.1]
and this requires that we show that the Connes spectrum of the dual action
is full (this is also an ingredient in the proof of simplicity found in [DPZ]).
We invoke a version of a key lemma of Rørdam for crossed products by Z
that arise from automorphisms with full Connes spectrum. The fact that
OE embeds equivariantly into (OE oλ T)obλ Z allows us to apply this lemma
to OE .

In §3 we use the Kirchberg–Phillips theorem to collect some consequences
of this theorem as indicated above and discuss certain connections with
reduced (amalgamated) free products.

We fix some notation and terminology. Given a C∗-algebra B we let B̂
denote its spectrum, that is, the collection of irreducible representations
modulo unitary equivalence endowed with the Jacobson topology (see [Pd,
§4.1]). If I is an ideal in a C∗-algebra B, every irreducible representation of
I extends uniquely to an irreducible representation of B. This allows one
to identify Î with an open subset of B̂, the complement of which consists
of the classes of irreducible representations that vanish on I. Given a *-
automorphism β of a C∗-algebra B, let Γ(β) denote the Connes spectrum
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of β (see [O, Co] or [Pd, §8.8]); recall that

Γ(β) =
⋂
H

Sp (β|H)

where the intersection is taken over all nonzero β-invariant hereditary sub-
algebras H. A C∗-algebra is said to be purely infinite if every nonzero
hereditary subalgebra contains an infinite projection.

1. Preliminaries

We review some basic facts concerning Cuntz–Pimsner algebras; we shall
be mainly interested in those that arise from bimodules for which the left
action has trivial intersection with the compacts (see Remark 1.3). Let A
be a C∗-algebra.

Definition 1.1 (see [L, pp. 2–4], [Ka, pp. 134, 135] and [Ri1, Def. 2.1]).
Let E be a right A-module. Then E is said to be a (right) pre-Hilbert A-
module if it is equipped with an A-valued inner product 〈 · , · 〉A satisfying
the following conditions for all ξ, η, ζ ∈ E, s, t ∈ C, and a ∈ A:

(i) 〈ξ, sη + tζ〉A = s〈ξ, η〉A + t〈ξ, ζ〉A.
(ii) 〈ξ, ηa〉A = 〈ξ, η〉Aa.
(iii) 〈η, ξ〉A = 〈ξ, η〉∗A.
(iv) 〈ξ, ξ〉A ≥ 0 and 〈ξ, ξ〉A = 0 only if ξ = 0.
E is said to be a (right) Hilbert A-module if it is complete in the norm
‖ξ‖ = ‖〈ξ, ξ〉A‖1/2.

A Hilbert A-module E is said to be full if the span of the values of the
inner product is dense. The collection of bounded adjointable operators on
E, L(E), is a C∗-algebra. The closure of the span of operators of the form
θξ,η for ξ, η ∈ E (where θξ,η(ζ) = ξ〈η, ζ〉A for ζ ∈ E) forms an essential ideal
in L(E), denoted by K(E). A Hilbert space is a Hilbert module over C.

Definition 1.2. Let E be a Hilbert A-module and let ϕ : A→ L(E) be an
injective ∗-homomorphism. The pair (E,ϕ) is said to be a Hilbert bimodule
over A (or a Hilbert A-bimodule).

Pimsner defines the Cuntz–Pimsner algebra OE as a quotient of the ana-
logue of the Toeplitz algebra, TE , generated by creation operators on the
Fock space of E (see [Pm]). The injectivity of ϕ is not really necessary (see
[Pm, Remark 1.2(1)]). We will henceforth assume that E is full (see [Pm,
Remark 1.2(3)]).

The Fock space of E is the Hilbert A-module

E+ =
∞⊕

n=0

E⊗n
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where E⊗0 = A, E⊗1 = E and for n > 1, E⊗n is the n-fold tensor product:

E⊗n = E ⊗A · · · ⊗A E.

The tensor product used here is called the inner tensor product by Lance
(see [L, p. 41], but note Lance uses different notation; see also Theorem 5.9
of [Ri1]). Observe that E+ is also a Hilbert A-bimodule with left action
defined by ϕ+(a)b = ab for a, b ∈ A = E⊗0 and

ϕ+(a)(ξ1 ⊗ · · · ⊗ ξn) = ϕ(a) ξ1 ⊗ · · · ⊗ ξn

for a ∈ A and ξ1 ⊗ · · · ⊗ ξn ∈ E⊗n.
Then TE ⊂ L(E+) is the C∗-algebra generated by the creation operators

Tξ for ξ ∈ E where Tξ(a) = ξa and

Tξ(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

Note that Tξ
∗Tη = ϕ+(〈ξ, η〉A) for ξ, η ∈ E. Since E is full, ϕ+(A) ⊂ TE ;

let ι : A ↪→ TE denote the embedding. One may also define Tξ for ξ ∈ E⊗n

in an analogous manner and we have Tξ
∗Tη = ι(〈ξ, η〉A) for ξ, η ∈ E⊗n.

There is an embedding ιn : K(E⊗n) ↪→ TE (identify K(E⊗0) with A),
given for n > 0 by ιn(θξ,η) = TξTη

∗ for ξ, η ∈ E⊗n. Such operators preserve
the grading of E+ and there is an embedding K(E⊗n) ↪→ L(E⊗m) for m ≥ n.
Let Cn denote the C∗-subalgebra of TE generated by operators of the form
TξTη

∗ for ξ, η ∈ E⊗k with k ≤ n (by convention C0 = ι(A)). Then the Cn

form an ascending family of C∗-subalgebras.

Remark 1.3. With notation as above the natural map Cn → L(E⊗m) is an
embedding for m ≥ n. Suppose ϕ(A)∩K(E) = {0}; then by [Pm, Corollary
3.14] TE

∼= OE and the inclusion A ↪→ OE induces a KK-equivalence (see
[Pm, Corollary 4.5]). Under the isomorphism of TE with OE ,

⋃
nCn is

mapped to FE , the analog of the AF core of a Cuntz–Krieger algebra.

For the remainder of this section we shall assume that ϕ(A)∩K(E) = {0}
and identify TE with OE .

Proposition 1.4. For each n ∈ N the C∗-subalgebra Jn generated by the
ιk(K(E⊗k)) for k ≥ n is an essential ideal in FE. We obtain a descending
sequence of ideals

J0 ⊃ J1 ⊃ J2 ⊃ · · ·
with J0 = FE and

⋂
n Jn = {0}. Furthermore, Jn/Jn+1

∼= K(E⊗n) (thus
Jn/Jn+1 is strongly Morita equivalent to A) and the restriction of the quo-
tient map yields an isomorphism Cn

∼= FE/Jn+1.

Proof. Given n ∈ N it is clear that Jn is an ideal (see [Pm, Definition 2.1]).
To see that Jn is essential it suffices to show that for every m and nonzero
element c ∈ Cm there is an element d ∈ K(E⊗k) for some k ≥ n such that
cιk(d) 6= 0. Let k be an integer with k ≥ max(m,n); since the map from
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Cm to L(E⊗k) is an embedding for k ≥ m, cξ 6= 0 for some ξ ∈ E⊗k. Then
cTξTξ

∗ 6= 0 and we take d = θξ,ξ.
The Jn form a descending sequence of ideals by construction. Since ϕ(A)

and K(E) have trivial intersection and K(E) ↪→ L(E⊗k) is nondegenerate
for k ≥ 1, the image of A in L(E⊗k) has trivial intersection with K(E⊗k)
for k ≥ 1; it follows that

ιm(K(E⊗m)) ∩ ιn(K(E⊗n)) = {0}
and, hence, Cm ∩ Jn = {0} for m < n. Thus,

⋂
n Jn = {0}, for FE is the

inductive limit of the Cm. Further, for each n we have

Jn = ιn(K(E⊗n)) + Jn+1 and ιn(K(E⊗n)) ∩ Jn+1 = {0};
it follows that Jn/Jn+1

∼= K(E⊗n). Finally, since

FE = Cn + Jn+1 and Cn ∩ Jn+1 = {0},
we have Cn

∼= FE/Jn+1. �

There is a strongly continuous action

λ : T → Aut (OE)

such that λt(Tξ) = tTξ. The fixed point algebra under this action is FE and
we have a faithful conditional expectation PE : OE → FE given by

PE(x) =
∫

T
λt(x) dt.

Consider the spectral subspaces of OE under this action: for n ∈ Z

(OE)n = {x ∈ OE : λt(x) = tnx for all t ∈ T}.

Remark 1.5. Note that (OE)n is the closure of the span of elements of the
form TξTη

∗, where ξ ∈ E⊗k and η ∈ E⊗l with n = k − l. For n ≥ 0 and
x ∈ (OE)n we have x∗x ∈ FE and xx∗ ∈ Jn. We may regard (OE)n as a Jn-
FE-equivalence bimodule (or Jn-FE-imprimitivity bimodule; see [Ri1, Def.
6.10]). Hence, Jn is strongly Morita equivalent to FE for each n ≥ 0 (see
[Ri2, Def. 1.1], [L, p. 74]). If we regard (OE)1 as a Hilbert FE-bimodule,
we have

E ⊗A FE
∼= (OE)1,

where the isomorphism is implemented by the map ξ⊗a 7→ Tξa (the Hilbert
FE-module E ⊗A FE is denoted E∞ in [Pm, §2]). The crossed product
OEoλT may be identified with the closure of the subalgebra ofOE⊗K(`2(Z))
consisting of finite sums of the form∑

xij ⊗ eij ,

where eij are the standard rank-one partial isometries in K(`2(Z)) and xij ∈
(OE)j−i.
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Let λ̂ : Z → Aut (OE oλ T) denote the dual automorphism group.

Proposition 1.6. There is an embedding ε : FE ↪→ OE oλ T onto a cor-
ner and a collection of essential ideals {In}n∈Z in OE oλ T satisfying the
following conditions:

(i) For all n ∈ Z, FE is strongly Morita equivalent to In and A is strongly
Morita equivalent to In/In+1.

(ii) For all n ≥ 0, ε(Jn) = ε(1)Inε(1).
(iii) In ⊂ Im if m ≤ n.
(iv)

⋂
n In = {0}.

(v)
⋃

n In = OE oλ T.
(vi) λ̂k(In) = In+k.

Proof. We use the identification, given in Remark 1.5, between OE oλT with
a C∗-subalgebra of OE ⊗K(`2(Z)). For each n let In be the ideal generated
by pn = 1⊗ enn. Since FE = (OE)0, it follows that FE is isomorphic to the
corner determined by pn and thus is strongly Morita equivalent to In. The
desired embedding ε : FE ↪→ OE oλ T is given by ε(a) = a⊗ e00.

Given an element of the form amn = xmn ⊗ emn in OE oλ T with m ≤ n,
we have

amn
∗amn = xmn

∗xmn ⊗ enn and amnamn
∗ = xmnxmn

∗ ⊗ emm,

with xmnxmn
∗ ∈ Jn−m; since pn may be expressed as a finite sum of elements

of the form amn
∗amn, it follows that In ⊂ Im and that

pmInpm = Jn−m ⊗ emm.(∗)

Moreover, In is essential in Im, since Jn−m is an essential ideal in FE (by
Proposition 1.4). Since qn =

∑n
i=−n pi ∈ In and {qn}n forms an approximate

identity, we have
⋃

n In = OE oλ T. Thus In is an essential ideal in OE oλ T
for all n ∈ Z. Assertion (ii) follows immediately from (∗). Assertion (vi)
follows from the fact that λ̂k(pn) = 1 ⊗ pn+k. The remaining assertions
follow from Proposition 1.4. �

2. OE is simple and purely infinite

Let A be a separable unital C∗-algebra and let π : A → L(H) be a faithful
nondegenerate representation of A on a separable nontrivial Hilbert space
H; since π is nondegenerate we have π(1) = 1.

Proposition 2.1. With A and π : A→ L(H) as above,

E = H⊗C A

is a full Hilbert bimodule over A under the operations

〈ξ ⊗ a, η ⊗ b〉A = 〈ξ, η〉a∗b, ϕ(a)(ξ ⊗ b) = π(a)ξ ⊗ b
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for all ξ, η ∈ H and a, b ∈ A. Moreover, if π(A) ∩ K(H) = {0}, then
ϕ(A) ∩ K(E) = {0} and OE

∼= TE.

Proof. E = H⊗CA is the tensor product of the Hilbert A-C-bimodule H and
the Hilbert C-A-bimodule A as defined by Rieffel in [Ri1, Theorem 5.9] (see
also [L, p. 41]). The natural map from L(H) to L(E) = L(H⊗C A) induces
an embedding L(H)/K(H) ↪→ L(E)/K(E) (since K(H) is mapped into K(E)
and the Calkin algebra L(H)/K(H) is simple). Hence, if π(A)∩K(H) = {0},
then ϕ(A) ∩ K(E) = {0}. The last assertion, OE

∼= TE , follows by [Pm,
Corollary 3.14]. �

Henceforth, we assume that π(A)∩K(H) = {0} and identify OE with TE .
The aim of this section is to show that OE is simple and purely infinite.
Simplicity may be proven directly by invoking [Sc2, Theorem 3.9]: if A
is unital and E is full, then OE is simple if and only if E is minimal and
nonperiodic. Lemma 2.3 would then be a consequence of [OP1, Theorem
6.5]. We follow a more indirect route patterned on the proof of [Rø, Theorem
2.1]; this will also show that OE is purely infinite.

Remark 2.2. With E = H ⊗C A as above, we have E⊗n ∼= H⊗n ⊗C A via
the map

(ξ1⊗a1)⊗ (ξ2⊗a2)⊗· · ·⊗ (ξn⊗an) 7→ (ξ1⊗π(a1)ξ2⊗· · ·⊗π(an−1)ξn)⊗an.

If σ : A → L(K) is a nondegenerate representation of A on a Hilbert space
K, then

E ⊗A K ∼= H⊗C A⊗A K ∼= H⊗C K

and, hence,

E⊗n ⊗A K ∼= E⊗n−1 ⊗A E ⊗A K ∼= E⊗n−1 ⊗A H⊗C K.

Recall that the action of FE on Fock space preserves the natural grading.
Let σ̃n denote the representation of FE on E⊗n ⊗A K given by left action
on E⊗n. Then the restriction of σ̃n to Cn−1 is faithful: indeed, this follows
from the facts that the natural map

L(E⊗n−1) → L(E⊗n−1 ⊗A H⊗ K) ∼= L(E⊗n ⊗A K)

is an embedding (since π is faithful) and that σ̃n|K(E⊗n−1) factors through
L(E⊗n−1). Note that σ̃n is equivalent to the representation of FE obtained
from σ as follows: use the strong Morita equivalence between A and Jn/Jn+1

to obtain a representation of Jn/Jn+1 and extend this to a representation
of FE . Since the restriction of σ̃n to Cn−1 is faithful, ker σ̃n ⊂ Jn (see
Proposition 1.4). It follows that the closure of a point in Ĵn− Ĵn+1 contains
the complement of Ĵn. A similar assertion holds for OE oλ T: for any n ∈ Z
the closure of a point in În − În+1 contains the complement of În.
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Lemma 2.3. With A and E as above, Γ(λ̂1) = T, where λ̂ is the dual action
of Z on OE oλ T.

Proof. By [OP2, Theorem 4.6] it suffices to find a dense invariant subset of
(OE oλ T)̂ on which λ̂∗1 acts freely. That is, we must find an irreducible
representation σ of OE oλ T such that {[σ ◦ λ̂n] : n ∈ Z}, the orbit of the
unitary equivalence class of σ under λ̂∗, is dense in (OE oλ T)̂ and satisfies
[σ ◦ λ̂m] 6= [σ ◦ λ̂n] if m 6= n. Let σ0 be an irreducible representation of
A and use the strong Morita equivalence between A and I0/I1 to obtain
an irreducible representation σ′ of I0/I1. Then σ, the extension of σ′ to
OE oλ T, is also irreducible. The classes [σ ◦ λ̂n] are distinct, for if m < n,
σ ◦ λ̂m vanishes on In. Moreover, for each n ∈ Z the closure of [σ ◦ λ̂n] in
(OE oλ T)̂ includes the classes of all irreducible representations that vanish
on In (since [σ ◦ λ̂n] ∈ În − În+1; see Remark 2.2). Hence, {[σ ◦ λ̂n] : n ∈ Z}
is dense in (OE oλ T)̂. �

Using Takesaki–Takai duality we show below that a C∗-algebra D equip-
ped with an action α of T may be embedded equivariantly as a corner in
(D oα T) obα Z. This fact is related to Rosenberg’s observation that the
fixed point algebra under a compact group action embeds as a corner in the
crossed product (see [Ro]).

Proposition 2.4. Given a unital C∗-algebra D and a strongly continuous
action α : T → Aut (D), there is an isomorphism ψ of D onto a full corner
of (D oα T) obα Z which is equivariant in the sense that ̂̂αt ◦ ψ = ψ ◦ αt for
all t ∈ T. Moreover, ψ(1) ∈ D oα T.

Proof. By Takesaki–Takai duality [Pd, 7.9.3] there is an isomorphism

γ : D ⊗K(L2(T)) ∼= (D oα T) obα Z,

which is equivariant with respect to α ⊗ Ad ρ and ̂̂α (where ρ is the right
regular representation of T on L2(T)). The desired embedding is obtained
by finding an Ad ρ invariant minimal projection p in K(L2(T)) (cf. [Ro]):
set ψ(d) = γ(d ⊗ p) for d ∈ D. Since ψ is equivariant, ψ(1) is in the fixed
point algebra of ̂̂α; hence, ψ(1) ∈ D oα T. �

The following lemma is adapted from [Rø, Lemma 2.4]; the proof follows
Rørdam’s but we substitute [OP3, Lemma 7.1] for [Ks, Lemma 3.2].

Lemma 2.5. Let B be a C∗-algebra, let β be an automorphism of B such
that Γ(β) = T, and let P denote the canonical conditional expectation from
B oβ Z to B. For every positive element y ∈ B oβ Z and ε > 0 there are
positive elements x, b ∈ B such that

‖b‖ > ‖P (y)‖ − ε, ‖x‖ ≤ 1 and ‖xyx− b‖ < ε.
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If y is in the corner determined by a projection p ∈ B, then x, b may also be
chosen to be in the corner.

Proof. As in the proof of [Rø, Lemma 2.4] we may assume (by perturbing
y if necessary) that y is of the form

y = y−nu
−n + · · ·+ y−1u

−1 + y0 + y1u+ · · ·+ ynu
n

for some n, where yj ∈ B and u is the canonical unitary in B oβ Z imple-
menting the automorphism β; note that y0 = P (y) is positive.

By [OP3, Theorem 10.4] βk is properly outer for all k 6= 0. Hence, by
[OP3, Lemma 7.1] there is a positive element x with ‖x‖ = 1 such that

‖xy0x‖ > ‖y0‖ − ε and ‖xyku
kx‖ = ‖xykβ

k(x)‖ < ε/2n for 0 < |k| ≤ n.

Set b = xy0x; then a straightforward calculation yields ‖xyx − b‖ < ε. We
now verify the last assertion. Suppose that y is in the corner determined
by a projection p ∈ B; we may again assume that y is of the above form.
Since P is a conditional expectation onto B, y0 = P (y) is also in the corner
determined by p. In the proof of [OP3, Lemma 7.1] the positive element x
is constructed in the hereditary subalgebra determined by y0; hence we may
assume that x and therefore also b = xy0x lies in the same corner. �

Recall that Cn is the C∗-subalgebra of FE generated by operators of the
form TξTη

∗ for ξ, η ∈ E⊗k with k ≤ n and that they form an ascending family
of C∗-subalgebras with dense union. The subspace E⊗n is left invariant by
Cn and there is an embedding Cn ↪→ L(E⊗n).

Lemma 2.6. Given a positive element c ∈ Cn and ε > 0, there is ξ ∈ E⊗n

with ‖ξ‖ = 1 such that Tξ
∗cTξ ∈ C0 and ‖Tξ

∗cTξ‖ > ‖c‖ − ε.

Proof. The first assertion follows from a straightforward calculation: given
c ∈ Cn and ξ ∈ E⊗n, we have cξ ∈ E⊗n and

Tξ
∗cTξ = Tξ

∗Tcξ = ι(〈ξ, cξ〉A) ∈ C0.

The second assertion follows from the embedding Cn ↪→ L(E⊗n) and the
fact that

‖d‖ = sup
{
‖〈ξ, dξ〉A‖ : ξ ∈ E⊗n, ‖ξ‖ = 1

}
for d ∈ L(E⊗n) positive. �

Lemma 2.7. Given a positive element a ∈ A and ε > 0 with ‖a‖ > ε, there
is η ∈ E with ‖η‖ ≤ (‖a‖ − ε)−1/2 such that Tη

∗ι(a)Tη = 1.

Proof. Let f be a continuous nonzero real-valued function supported on
the interval

[
‖a‖ − ε, ‖a‖

]
and choose a vector ζ ∈ π(f(a))H such that

〈ζ, π(a)ζ〉 = 1; we have

(‖a‖ − ε)‖ζ‖2 ≤
∥∥〈ζ, π(a)ζ〉

∥∥ = 1.

Then η = ζ ⊗ 1 ∈ E satisfies the desired conditions. �
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It will now follow that OE is simple and purely infinite (compare the proof
of [Rø, Theorem 2.1]).

Theorem 2.8. For every nonzero positive element d ∈ OE there is a z ∈
OE such that z∗dz = 1. Hence, OE is simple and purely infinite.

Proof. Let d ∈ OE be a nonzero positive element and choose ε such that
0 < ε < 1

4‖P (d)‖. By Proposition 2.4 there is a T-equivariant isomorphism
ψ from OE onto a corner of (OE oλ T) obλ Z determined by a projection
p ∈ OE oλ T. We now apply Lemma 2.5 to the element y = ψ(d) and the
automorphism β = λ̂1 (note that Γ(λ̂1) = T by Lemma 2.3). We identify OE

with the corner determined by p; under this identification FE is identified
with p(OE oλ T)p. There are then positive elements x, b ∈ FE such that

‖b‖ > ‖P (d)‖ − ε, ‖x‖ ≤ 1 and ‖xdx− b‖ < ε.

Since
⋃

nCn is dense in FE we may assume that b ∈ Cn for some n. Hence,
by Lemma 2.6 there is ξ ∈ E⊗n with ‖ξ‖ = 1 such that

Tξ
∗bTξ ∈ C0 and ‖Tξ

∗bTξ‖ > ‖b‖ − ε.

Let a denote the unique element of A such that ι(a) = Tξ
∗bTξ; then ‖a‖ >

‖P (d)‖ − 2ε and

‖Tξ
∗xdxTξ − ι(a)‖ = ‖Tξ

∗(xdx− b)Tξ‖ < ε.

By Lemma 2.7 there is η ∈ E such that Tη
∗ι(a)Tη = 1 and

‖η‖ ≤ (‖a‖ − ε)−1/2 < (‖P (d)‖ − 3ε)−1/2 < ε−1/2.

It follows that

‖Tη
∗Tξ

∗xdxTξTη − 1‖ = ‖Tη
∗(Tξ

∗xdxTξ − ι(a))Tη‖

≤ ‖Tξ
∗xdxTξ − ι(a)‖(ε−1/2)2 < 1.

Therefore, c = Tη
∗Tξ

∗xdxTξTη is an invertible positive element and we take
z = xTξTηc

−1/2. �

3. Applications and concluding remarks

We collect some applications of the theorem above and consider certain con-
nections with the theory of reduced (amalgamated) free product C∗-algebras.
First we consider criteria under which the Kirchberg–Phillips Theorem ap-
plies (see [Kr, Theorem C], [Ph, Corollary 4.2.2]).

Theorem 3.1. Let A be a separable nuclear unital C∗-algebra belonging to
the bootstrap class to which the uct applies (see [RS]); let π : A → L(H)
be a faithful nondegenerate representation of A on a nontrivial separable
Hilbert space H such that π(A) ∩ K(H) = {0} and let E denote the Hilbert
A-bimodule H⊗C A. Then OE is a unital Kirchberg algebra (simple, purely
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infinite, separable and nuclear) belonging to the bootstrap class. Hence, the
Kirchberg–Phillips Theorem applies and the isomorphism class of OE only
depends on (K∗(A), [1A]) and not on the choice of representation π.

Proof. By Theorem 2.8, OE is simple and purely infinite. If A is nuclear, the
argument given in the proof of [DS, Theorem 2.1] shows that OE must also
be nuclear (alternatively, the nuclearity of OE follows from the structural
results discussed in §1). Hence, OE is a unital Kirchberg algebra. Recall that
the inclusion A ↪→ OE defines a KK-equivalence (see [Pm, Corollary 4.5])
that induces a unit-preserving isomorphismK∗(A) ∼= K∗(OE). Hence, if A is
in the bootstrap class, so is OE . Therefore, the Kirchberg–Phillips Theorem
applies and the isomorphism class of OE only depends on (K∗(A), [1A]). �

Let X be a second countable compact Hausdorff space, let µ be a nona-
tomic Borel measure with full support and let

π : C(X) → L(L2(X,µ))

be the representation given by multiplication of functions. Then π is faithful
and

π(C(X)) ∩ K(L2(X,µ)) = {0}.
Hence, we may apply Theorem 3.1 with A = C(X) and H = L2(X,µ).

Corollary 3.2. Let X and µ be as above. Then

E = L2(X,µ)⊗C C(X)

is a Hilbert bimodule over C(X) and OE is a unital Kirchberg algebra.
The embedding C(X) ↪→ OE induces a (unit preserving) KK-equivalence.
Hence, the isomorphism class of OE only depends on (K∗(C(X)), [1C(X)])
(and not on µ); moreover, if X is contractible, then OE

∼= O∞.

The next proposition is Theorem 5.6 of [L] (see also [Ka, Theorem 3]);
Lance calls this the Kasparov–Stinespring–Gelfand–Naimark–Segal construc-
tion.

Proposition 3.3. Let B and C be C∗-algebras, let F be a Hilbert C-module
and let f : B → L(F ) be a completely positive map. Then there is a Hilbert
C-module Ef , a ∗-homomorphism ϕf : B → L(Ef ) and an element vf ∈
L(F,Ef ) such that f(b) = vf

∗ϕf (b)vf and ϕf (B)vfF is dense in Ef .

I am grateful to D. Shlyakhtenko for the following observation. Let T
be the “usual” Toeplitz algebra (TE , where E is the 1-dimensional Hilbert
bimodule over C) and let g denote the vacuum state on T .

Proposition 3.4. Let A be a separable unital C∗-algebra and let π : A →
L(H) be a faithful representation of A on a separable Hilbert space H such
that π has a cyclic vector ξ ∈ H. Let f denote the vector state 〈ξ, π( · )ξ〉
and let f̃ denote the corresponding completely positive map from A to L(A)
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(given by f̃(a) = f(a)1). Then E = E ef ∼= H⊗A and TE may be realized as
a reduced free product (see [A, V]):

(TE , h) ∼= (A, f) ∗ (T , g) for some state h on TE.

Proof. This follows from [Sh, Theorem 2.3, Corollary 2.5]. �

As a result of this observation, at least part of Corollary 3.2 follows from
the existing literature on reduced free products. The simplicity follows from
a theorem of Dykema [Dy, Theorem 2]. Criteria for when reduced free
products are purely infinite have been found by Choda, Dykema and Rørdam
in a series of papers [DR1, DR2, DC]; but none seem to apply generally
to the case considered in the corollary.

A theorem of Speicher (see [Sp]) on reduced amalgamated free products
(see [V, §5]) and Toeplitz algebras associated to Hilbert bimodules yields
a curious stability property of the algebras we have been considering. The
following is the version given in [BDS, Theorem 2.4].

Proposition 3.5. Suppose that E1 and E2 are full Hilbert bimodules over
the C∗-algebra A. Then

TE1⊕E2 = TE1 ∗A TE2 .

Corollary 3.6. Let A be a separable nuclear unital C∗-algebra belonging to
the bootstrap class to which the uct applies (see [RS]) and let π : A→ L(H)
be a faithful representation of A on a separable Hilbert space H such that
π(A) ∩ K(H) = {0}. Let E be the Hilbert bimodule H⊗C A. Then

OE
∼= OE ∗A OE .

Proof. Observe that E⊕E = (H⊕H)⊗CA. Since π⊕π : A→ L(H⊕H) is a
faithful representation and (π ⊕ π)(A) ∩K(H⊕H) = {0}, the result follows
from Theorem 3.1 and the above proposition. �

Acknowledgements. I thank D. Shlyakhtenko for helpful remarks relating
to material in §3.
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