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We investigate, for a given smooth closed manifold M , the
existence of an algebraic model X for M (i.e., a nonsingu-
lar real algebraic variety diffeomorphic to M) such that some
nonsingular projective complexification i : X → XC of X
admits a retraction r : XC → X. If such an X exists, we
show that M must be formal in the sense of Sullivan’s mini-
mal models, and that all rational Massey products on M are
trivial.

We also study the homomorphism on cohomology induced
by i for algebraic models X of M . Using étale cohomology, we
see that mod p Steenrod powers give an obstruction for the
induced map on cohomology, i∗ : Hk(XC, Zp) → Hk(X, Zp), to
be onto, if we require that X is defined over rational numbers.

1. Introduction

Let M be a closed smooth manifold. In [T] Tognoli, generalizing the results
of Seifert [S] and Nash [N], proved that there is a nonsingular real algebraic
variety X diffeomorphic to M , which we call an algebraic model of M . Later
Akbulut and King improved Tognoli’s result, proving that if M ⊆ RN then
M can be isotoped to a nonsingular real algebraic subvariety of RN × R
[AK3, AK4].

In 1978 Kulkarni considered the following problem in [Ku]: Is there an
algebraic model X of M such that the inclusion i : X → X0

C of X into some
quasiprojective complexification X0

C is a homotopy equivalence? He calls
such X0

C a minimal complexification of M . Using mixed Hodge structures he
showed that if M has a minimal complexification the Euler characteristic of
M is nonnegative. He also showed that any homogeneous space G/H, where
G is a compact Lie group, admits a canonical minimal complexification.

Since any nonsingular complex projective variety has a fundamental class,
by dimension reasons the inclusion of X into any nonsingular projective
complexification, i : X → XC, is never a homotopy equivalence. Instead
one can consider the following problem: Is there an algebraic model X of
M with a smooth projective complexification, i : X → XC, that admits a
retraction r : XC → X?
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IfM is S1 or a closed orientable surface, M has an algebraic modelX with
a smooth projective complexification that retracts onto X. In dimensions
larger than two it turns out that, as in the case of Kulkarni’s result, there
are topological obstructions to the existence of such X in terms of Massey
products and Sullivan’s rational minimal models:

Theorem 1.1. Let M be a closed smooth manifold admitting an algebraic
model X with a smooth projective complexification that retracts onto X.
Then, M is formal. In particular, all Massey products in M are trivial.

This is an immediate consequence of Theorems 2.1 and 2.3. The following
corollary of Theorem 1.1 will be proved in Section 2:

Corollary 1.2. Let N be the total space of an S1-bundle over an orientable
closed surface F of positive genus. Then N has an algebraic model X with a
projective complexification that retracts onto X if and only if the S1-bundle
is trivial; that is, N = F × S1.

In Section 3, we will see that the manifold N in this corollary has an
algebraic model X such that i∗ : H∗(XC,Z) → H∗(X,Z) is surjective for
any projective complexification XC (Corollary 3.3). However, by the result
above, none of these complexifications retract onto X.

On the positive side we have the following result:

Proposition 1.3. Let Z be a smooth complex projective variety. Regarded
as smooth manifolds, both Z and Z×S1 admit algebraic models with smooth
projective complexifications that retract onto them.

Remark 1.4. Let Fg be a Riemann surface of genus g. The algebraic sur-
face (Fg × CP1) \ nCP2, the blowup of Fg × CP1 at n points, has Euler
characteristic 4(1− g)+n, and this can be any integer if n and g are chosen
appropriately. Hence, unlike Kulkarni’s result, in Theorem 1.1 there is no
restriction on the Euler characteristic.

In the next section we review Sullivan’s theory of minimal models, formal-
ity and Massey products. At the end of that section we construct manifolds
with nonnegative Euler characteristic that do not admit minimal complexi-
fications in the sense of Kulkarni’s result. Hence, the condition in Kulkarni’s
theorem that χ(M) ≥ 0 is necessary but not sufficient.

In Section 3, we first review some basic material in real algebraic geometry,
needed to prove Proposition 1.3. Then we study the homomorphism on
cohomology, induced by i : X → XC, for algebraic models X of a smooth
closed manifold M . In particular, using étale cohomology we see that mod p
Steenrod powers give an obstruction for the induced map on cohomology,
i∗ : Hk(XC,Zp) → Hk(X,Zp), to be onto, whenever X is defined over Q.
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2. Minimal models, formality and Massey products

In this section we mainly follow [GM] and [DGMS]. A differential graded
algebra is an algebra A =

⊕
k≥0Ak with a differential d : A → A of degree

+1, such that A is graded commutative (i.e., xy = (−1)deg x deg y yx) and d
is a derivation with d2 = 0. We will denote its cohomology by H∗(A). Note
that H∗(A) together with the zero differential, d = 0, is again a differential
graded algebra. In this work, A0 denotes the ground field, which will be
either Q or R. Each Hk(A) is assumed to be finite-dimensional.

If H0(A) = A0 then A is called connected, and if also H1(A) = 0 then A
is called 1-connected.

A minimal differential graded algebra M is a differential graded algebra
such that:

(1) M is free as a graded commutative algebra; i.e., it is a tensor product of
polynomial algebras on generators of even degrees and exterior algebras
on generators of odd degrees.

(2) d is decomposable; i.e., d(M) ⊆M+ ∧M+, where M+ =
⋃

i>0Mi.
A minimal model for a differential graded algebra A is a degree-zero ho-

momorphism φ : A →M to a minimal algebra M, inducing an isomorphism
on cohomology.

It is well-known that any connected differential algebra A having finite-
dimensional cohomology in each degree has a minimal model φ : A → M.
Moreover, M is unique up to isomorphism.

Let K be a simplical complex and E∗(K) the rational de Rham complex
of K, that is, the complex of Q-polynomial forms on K. For a smooth
manifold M , let E∗(M) denote the differential algebra of smooth differential
forms on M . Minimal models of these two algebras are related as follows:
if K is a C1-triangulation of M , the minimal model of E∗(M) is isomorphic
to the minimal model of E∗(K) tensored with R.

For a simply connected finite CW -complex K, the rational homotopy of
K can be read from its rational minimal model. Namely, πi(K) ⊗ Q ∼=
Ii(K), where Ii(K) denotes the vector space of irreducibles of degree i in
M(E∗(K)).

A differential graded algebra A is called formal if there is a map ψ : A →
H∗(A) of degree zero and inducing isomorphism on cohomology, the latter
being endowed with the zero differential map. This is equivalent to saying
that A and H∗(A) have isomorphic minimal models.

A smooth manifold M is called formal if E∗(M) is formal. Some examples
of formal manifolds are wedges of spheres, compact connected Lie groups,
Eilenberg–Mac Lane spaces K(π, n), n > 1, Riemannian symmetric spaces
and compact Kähler manifolds.

Next we give an obstruction against M being formal, in terms of Massey
products. Let X be a space and let a, b, c ∈ H∗(X,R) classes of degree p, q, r



294 YILDIRAY OZAN

respectively, such that a ∪ b = 0 = b ∪ c, where R is any commutative ring
with unity. Choose cochain representatives α, β, γ for a, b, c respectively.
Also let µ and τ be cochains such that dµ = α ∧ β and dτ = β ∧ γ. Then

µ ∧ γ − (−1)pα ∧ τ

is a closed form, called a triple Massey product of a, b, c. It passes to a
well-defined class in the quotient group

Hp+q+r−1(X,R)/
(
a ∪Hq+r−1(X,R) + c ∪Hp+q−1(X,R)

)
,

called the Massey triple product of the classes a, b, c and denoted by 〈a, b, c〉.
We will also use the same notation 〈a, b, c〉 to denote the coset

µ ∧ γ − (−1)pα ∧ τ +
(
a ∪Hq+r−1(X,R) + c ∪Hp+q−1(X,R)

)
;

i.e., the set of all Massey triple products of the classes a, b, c. There are also
higher Massey products, 〈a1, a2, . . . , ak〉, which are defined if all the lower
Massey products formed from the elements a1, a2, . . . , ak are zero.

Massey products are functorial in the sense that if f : X → Y is a
continuous map then

f∗
(
〈a1, a2, . . . , ak〉

)
⊆

〈
f∗(a1), f∗(a2), . . . , f∗(ak)

〉
.

In particular, if f∗ is an isomorphism on cohomology it preserves Massey
products.

Indeed, Massey products can be defined in any differential graded algebra
(A, d); all higher Massey products are zero if d = 0. Hence, on a smooth
formal manifold M all higher rational Massey products are 0. In particular:

Theorem 2.1 ([DGMS]). Any compact Kähler manifold M is formal. In
particular, all higher rational Massey products in M are zero.

Any minimal model M is isomorphic to

P [V2 ⊕ V4 ⊕ · · · ]⊗
∧

[V1 ⊕ V3 ⊕ · · · ],

where each Vi is a vector space that contains elements of degree i only and
P [V2 ⊕ V4 ⊕ · · · ] is the polynomial algebra part and

∧
[V1 ⊕ V3 ⊕ · · · ] the

exterior algebra part of M.
Let Ci denote the subspace of closed elements in Vi. The theorem below

shows that M is formal if and only if all Massey products are zero in a
uniform way:

Theorem 2.2 ([DGMS]). M is formal if and only if there is in each Vi

a complement Ni to Ci, such that any closed form a in the ideal I(⊕Ni) is
exact. Choosing such an Ni is equivalent to choosing a ψ : M → H∗(M)
that induces an isomorphism on cohomology.

The key observation of this section is:
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Theorem 2.3. Let M be closed smooth manifold such that there exists a
retraction r : N → M , where N is a closed smooth formal manifold. Then
M is formal. In particular, all higher rational Massey products in M are
zero.

Remark 2.4.
(1) Theorem 1.1 follows from Theorems 2.1 and 2.3.
(2) It follows from the preceding theorem that the product M1 ×M2 of

two closed manifolds is formal if and only if M1 and M2 are formal.
(3) As stated before, any compact Lie group is formal. On the other

hand, we know that any compact Lie group has the structure of a
unique real linear algebraic group [DM] that and G, equipped with
this real algebraic structure, satisfies the following: for any smooth
projective complexification i : G → GC, the induced map on coho-
mology i∗ : H i(GC,Q) → H i(G,Q) is trivial for i > 0 (see [O1]).
Hence, for this canonical algebraic structure there is no smooth pro-
jective complexification of i : G → GC that retracts onto G. On the
contrary, in Kulkarni’s result mentioned in the introduction the affine
complexification of G is homotopy equivalent to G via the inclusion
map.

Proof of Theorem 2.3. Let M and N denote the minimal models of M and
N respectively. We know that

N ' P [V2 ⊕ V4 ⊕ · · · ]⊗
∧

[V1 ⊕ V3 ⊕ · · · ]
and

M' P [V ′2 ⊕ V ′4 ⊕ · · · ]⊗
∧

[V ′1 ⊕ V ′3 ⊕ · · · ]
where Vi and V ′i are the vector subspaces that contain the elements of degree
i only. The maps i : M → N and r : N → M induce homomorphisms
i∗ : M→N and r∗ : N →M such that i∗ ◦ r∗ = id|M.

Let Ci and C ′i denote the subspaces of closed elements in Vi and V ′i . Since
N is formal, by Theorem 2.2 there is in each Vi a complement Ni to Ci such
that any closed form a in the ideal I(⊕Ni) is exact. Then V ′i = (V ′i ∩Ci)⊕
(V ′i ∩ Ni), where (V ′i ∩ Ci) is clearly C ′i. Hence, again by Theorem 2.2, it
suffices to show that any closed element a′ in the ideal I(⊕N ′

i) is exact,
where N ′

i = V ′i ∩Ni.
Let a′ be a closed element in the ideal I(⊕N ′

i). Then a = r∗(a′) is
a closed element in I(⊕Ni) and thus a = d(b) for some b ∈ N . Now,
a′ = i∗(d(b)) = d(i∗(b)) finishes the proof. �

Although the proof below is well-known to experts, we will reproduce it
here for the sake of completeness.

Proof of Corollary 1.2. Let N be the total space of an S1-bundle over an
orientable closed surface F of positive genus. Suppose that the first Chern
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class of the S1-bundle is nonzero. The Gysin sequence associated to the
S1 bundle implies that H1(F,R) maps isomorphicaly onto H1(N,R) and
H2(F,R) maps to zero in H2(N,R). In particular, we may identify H1(F,R)
with H1(N,R). Let a, b ∈ H1(F,R) such that c1(N) = a ∪ b. Then by
Chern–Weil theory there is a connection on the S1-bundle whose associated
1-form η satisfies d(η) = c1(N) = a ∪ b. Moreover,

(η ∪ a ∪ b)([N ]) = (η ∪ d(η))([N ]) = c1(N)([F ]) 6= 0.

Hence, the Massey product 〈a, a, b〉, which is represented by η ∪ a, is not
zero. In particular, N is not formal.

The ‘if’ part of the Corollary follows from Proposition 1.3. �

Example 2.5. One can find simply connected smooth manifolds containing
nonzero Massey products as follows: let K be a simply connected finite CW -
complex with nontrivial Massey products. For example, let K be a finite
CW -approximation of the free loop space ΛS2k, k > 1, which supports a
nontrivial Massey product (see [SVP]). Embed K into some Euclidean
space, RN , and let M be the double of a tubular neighborhood ν(K) in
RN . Since M retracts onto K, by Theorem 2.3 M contains nonzero Massey
products.

Example 2.6. For finitely presentable groups there is another notion of
formality, called 1-formality. The fundamental group of any formal space is
1-formal. The group

Γ =
〈
x, y, z, t | [x, y][z, t], [[[[y, x], x], x], y]

〉
is not 1-formal; see [ABCKT, Proposition 3.20 and Example 3.22, pp. 32–
38]. Therefore, if M is any smooth manifold with fundamental group Γ—
such an M exists in dimensions at least 4 (see the remark below) —M is
not formal but the Massey triple products of elements in H1(M,Q) are all
zero. In particular:

Corollary 2.7. If M is a smooth manifold with fundamental group Γ as
above, M does not admit an algebraic model X with a smooth projective
complexification that retracts onto X.

Remark 2.8. By a result of Morgan, the group Γ of Example 2.6 cannot
be the fundamental group of a smooth quasiprojective complex variety (see
Corollary 3.53 and the subsequent paragraph in [ABCKT, p. 463]). Con-
struct a 4-manifold N by taking the connected sum of four copies of S3×S1

and gluing two 2-handles along smooth embedded loops representing the
relations of Γ. Then N has Γ as its fundamental group and its Euler char-
acteristic is −2. So, if n ≥ 2, the connected sum M = N \ nCP2 has
nonnegative Euler characteristic n − 2 and fundamental group Γ. Hence,
the condition in Kulkarni’s theorem that χ(M) ≥ 0 is necessary but not
sufficient.



RELATIVE TOPOLOGY OF REAL ALGEBRAIC VARIETIES 297

3. Algebraic models

All real algebraic varieties considered here are compact and nonsingular. It
is well-known that real projective varieties are affine (Proposition 2.4.1 of
[AK2] or Theorem 3.4.4 of [BCR]). Compact affine real algebraic varieties
are projective (Corollary 2.5.14 of [AK2]), so we will not distinguish between
real compact affine varieties and real projective varieties.

For real algebraic varieties X ⊆ Rr and Y ⊆ Rs a map F : X → Y is
said to be entire rational if there exist fi, gi ∈ R[x1, . . . , xr], i = 1, . . . , s,
such that each gi vanishes nowhere on X and F = (f1/g1, . . . , fs/gs). We
say X and Y are isomorphic if there are entire rational maps F : X → Y ,
G : Y → X such that F ◦G = idY and G ◦ F = idX . We regard isomorphic
algebraic varieties as being the same. A complexification XC ⊆ CPN of X
will mean that X is embedded into some projective space RPN and XC ⊆
CPN is the complexification of the pair X ⊆ RPN . We also require the
complexification to be nonsingular (blow up XC along smooth centers away
fromX defined over reals if necessary, [Hi, BM]). We refer the reader for the
basic definitions and facts about real algebraic geometry to [AK2, BCR].

Suppose that R is a commutative ring with unity and X is R-orientable.
Let KHk(X,R) denote the kernel of the induced map

i∗ : Hk(X,R) → Hk(XC, R)

on homology. Then KHk(X,R) is independent of the complexification X ⊆
XC and thus an (entire rational) isomorphism invariant of X. Similarly, the
image of the homomorphism

i∗ : Hk(XC, R) → Hk(X,R),

denoted by ImHk(X,R), is also an isomorphism invariant of X, [O2]. In
[BK2], Bochnak and Kucharz also studied KHk(X,R) independently.

Example 3.1.
a) If Z is a compact nonsingular complex algebraic variety, we can view

Z as a real algebraic variety, which we denote by ZR. This is just
the fixed-point set of the antiholomorphic involution σ : Z × Z →
Z × Z given by σ(x, y) = (y, x), where Z is the complex conjugate
of Z. It is well-known that there is a complex algebraic subvariety
W of some projective space CPN defined by real polynomials which is
biregularly isomorphic to Z × Z. Moreover, the real part W ∩ RPN

is isomorphic to ZR. However, any projective real algebraic variety is
affine (Proposition 3.4.4 in [BCR]) and hence ZR can be viewed as an
affine real algebraic variety (see Sections 1 and 2 of [Hu]). Now clearly,
there is a retraction W = (ZR)C → ZR, and therefore ImH∗(ZR, R) =
H∗(ZR, R). In particular, for CPn, regarded as a real algebraic variety,
we have ImH∗(CPn,R) = H∗(CPn,R); see [O2].
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b) The quaternion projective space HPn has also a canonical real algebraic
structure. The canonical quaternion line bundle ξ over HPn is strongly
algebraic [BBK] and thus p1(ξ) ∈ ImH4(HPn, R) [O2, AK5]. In
particular, ImH∗(HPn, R) = H∗(HPn,R).

c) Let X be any nonsingular real algebraic curve diffeomorphic to S1 such
that XC−X is connected. So, topologically, XC is an orientable closed
surface andX is a nonseparating simple closed curve on it. Again there
is a retraction of XC onto X (and therefore ImH∗(X,R) = H∗(X,R)).

Since X is a nonseparating simple closed curve on XC, its homotopy
class, say α, is an element of some generating set for the fundamental group
π1(XC). Also, up to homotopy, a retraction XC → X is completely deter-
mined by the induced surjective homomorphism π1(XC) → π1(X) ' 〈α〉
sending α to itself. In particular, there are many homotopically different
retractions.

Proof of Proposition 1.3. The proof follows from parts (a) and (c) of the
preceding example. �

Theorem 3.2. Let M be closed smooth manifold. Then M has an algebraic
model X such that ImH∗(X,Z) contains Hk(X,Z) for k = 1, 2, 4. In par-
ticular, if the cohomology ring H∗(X,Z) is generated by elements of degree
1, 2 and 4 then ImH∗(X,Z) = H∗(X,Z).

In case of rational coefficients, M has an algebraic model X such that
ImH∗(X,Q) contains Heven(X,Q) and H1(X,Q).

As an immediate consequence we get:

Corollary 3.3. Any closed smooth three-manifold with positive first Betti
number has an algebraic model X such that ImH∗(X,Z) = H∗(X,Z).

Proof of Theorem 3.2. Choose generating sets a1, . . . , an1 , b1, . . . , bn2 and
c1, . . . , cn4 for the Z-modules H1(M,Z), H2(M,Z) and H4(M,Z). We can
regard each ai, bi and ci as a smooth map ai : M → K(Z, 1) = S1,
bi : M → K(Z, 2) = CPN and ci : M → K(Z, 4) = HPN for N large
enough (2N > dimM would suffice).

It is well-known that the Grassmann varieties, in particular CPN and
HPN , have canonical real algebraic structures that have totally algebraic
homology [AK1]. Let E be a connected nonsingular real elliptic curve
diffeomorphic to S1 and regard ai as a smooth map ai : M → E. Note that
EC−E is connected and E has also totally algebraic homology. By a result
of Akbulut and King (Lemma 2.7.1 and Theorem 2.8.4 of [AK2]) there exist
an algebraic model X of the smooth manifold M and an entire rational map

Φ : X −→ En1 ×
(
CPN

)n2 ×
(
HPN

)n4

homotopic to the product map

(a1, . . . , an1 , b1, . . . , bn2 , c1, . . . , cn4) : X −→ En1 ×
(
CPN

)n2 ×
(
HPN

)n4
.
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Now Example 3.1 finishes the proof of the first part.
For the second part, note that the reduced K-group K̃0(M) of complex

vector bundles of any closed manifold M is finitely generated. So, as above,
we choose generators for K̃0(M) and represent all of them by a smooth map
from M into a product of Grassmann varieties. Consider all these maps
together with the maps ai : M → E, representing a generating set for the
first integer cohomology group. As above, M has an algebraic model X, so
all these maps are represented by entire rational maps. In particular, any
smooth complex vector bundle over X is strongly algebraic. It follows that
ImH1(X,Q) = H1(X,Q) and K̃0(X) ' K̃0(R(X,C)) and thus

K̃0(X)⊗Q ' K̃0(R(X,C))⊗Q,
the latter being the reduced K-group of strongly algebraic complex vec-
tor bundles over X tensored with Q, which is known to be isomorphic
to Heven

C−alg(X,Q) ⊂ImHeven(X,Q) (see [BBK]). Finally, it is well-known
that the Chern character gives an isomorphism Ch: K̃0(R(X)) ⊗ Q →
Heven(X,Q) (Theorem 3.27, p. 283 of [Ka]). Hence,

Heven(X,Q) = Heven
C−alg(X,Q) ⊆ ImHeven(X,Q) ⊆ Heven(X,Q)

and the proof is finished. �

Theorem 3.2 does not hold for arbitrary coefficients, in particular for the
cyclic group Zp, if we further require that the algebraic model X is defined
over rationals: Let M be a closed manifold having a class a ∈ H3(M,Zp)
with β ◦ P 1(a) 6= 0, where P 1 : H3(M,Zp) → H2p+1(M,Zp) is the first
Steenrod power for the prime p and β : H2p+1(M,Zp) → H2p+2(M,Zp)
is the Bockstein homomorphism corresponding to the exact sequence 0 →
Zp → Zp2 → Zp → 0. One can take p = 3 and M = S3/Z3 × S7/Z3,
a product of lens spaces [BHK]. In this case the triple Massey product
〈a, a, a〉 is defined and β ◦ P 1(a) ∈ 〈a, a, a〉 (see [Mc, p. 293] or [Kr]). So
the triple Massey product 〈a, a, a〉 is not trivial. Now suppose that M has
an algebraic model X defined over Q such that

ImH3(X,Z3) = H3(X,Z3).

It follows from the naturality of Steenrod operations and Bockstein homo-
morphisms that for any cohomology class b ∈ H3(XC,Z3) with i∗(b) = a,
β ◦ P 1(b) 6= 0. As above the triple Massey triple product 〈b, b, b〉 is defined
[Kr] and hence is nonzero, where i : X → XC is any smooth projective
complexification. It is well-known that for any finite abelian group G the
singular cohomology of XC is isomorphic to the étale cohomology of X; i.e.,
H i(XC, G) ∼= H i((XC)et, G) (Theorem 3.12, p. 117 in [Mi]). Since X is
defined over rationals, X is also defined over integers. Choose a big prime q
such that the mod q reduction Xq of X is a nonsingular variety in some alge-
braically closed field of characteristic q. Now by [Mi, Corollary 4.2, p. 230]
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we have H i((XC)et,Zd) ∼= H i((Xq)et,Zd), for any positive integer d prime to
q. We may take d = 3, in which case the cohomology algebra H i((Xq)et,Z3)
supports a nontrivial Massey triple product. However, Deligne’s proof of the
Weil conjectures implies that any Massey higher product in H i((Xq)et,Z3)
is trivial, as mentioned in the introduction of [DGMS]; thus we obtain a
contradiction.

Indeed the same works for higher mod p Steenrod powers. Let M be a
closed smooth manifold with a cohomology class a ∈ H2i+1(M,Zp) satisfying
β ◦ P i(a) 6= 0, where P i : H2i+1(M,Zp) → H2ip+1(M,Zp) is the i-th mod p
Steenrod power and β : H2ip+1(M,Zp) → H2ip+2(M,Zp) is the Bockstein
map. Then as above β ◦ P i(a) ∈ 〈a, . . . , a〉. In particular, we have proved:

Theorem 3.4. Let X be an algebraic model for the smooth manifold M
in the above paragraph. If X is defined over Q, then ImH2i+1(X,Zp) 6=
H2i+1(X,Zp).

Remark 3.5. Studying the example provided by [BHK] one can see that
the class a ∈ H3(M,Z3) is obtained from the generators of H1(S3/Z3,Z3)
and H1(S7/Z3,Z3) via some cohomology operations. Hence, by the results
above, at least one of these lens spaces do not admit an algebraic model X
defined over rationals with ImH1(X,Z3) = H1(X,Z3).

We now give a contrasting result: Fix an inclusion-preserving smooth
free action of a cyclic odd order group, Zr, on the telescoping sequence
of odd-dimensional spheres S3 ⊆ S5 ⊆ · · · ⊆ S2k+1 ⊆ · · · . Consider the
corresponding telescoping sequence lens spaces S3/Zr ⊆ S5/Zr ⊆ · · · ⊆
S2k+1/Zr ⊆ · · · .

Proposition 3.6. For any algebraic model X of first lens space S3/Zr in
the above sequence and each k > 1, the lens space S2k+1/Zr has an algebraic
model Y that contains X as a subvariety. If ImH1(Y,Zr) = H1(Y,Zr) then
ImH1(X,Zr) = H1(X,Zr).

Proof. Since r is odd, H i(S3/Zr,Z2) = 0 for i = 1, 2. Now Lemma 1.2
of [BK1] implies that any continuous vector bundle over X is stably triv-
ial. Hence, any continuous vector bundle over X is strongly algebraic (see
[BBK]). Consider X as a submanifold of S2k+1/Zr in the obvious way.
Using a theorem of Akbulut and King (Theorem 2.8.4 of [AK2]), we can
find an algebraic model Y for S2k+1/Zr having X as a subvariety. In other
words, the pair X ⊆ Y is an algebraic model for the pair S3/Zr ⊆ S2k+1/Zr.
The rest follows easily since the ImH∗ is functorial. �

We believe that S2k+1/Zr, for any k ≥ 1, has no algebraic model X with
ImH1(X,Zr) = H1(X,Zr).
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