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We give sufficient conditions for an R-covered codimension
one foliation F of a closed 3-manifold to be carried by an R-
covered branched surface; that is, a branched surface carrying
only foliations with the R-covered property. These conditions
can be readily verified for many examples. In cases where
the branched surface is generated by disks, the R-covered
property is stable for F in the sense that all nearby foliations
are also R-covered.

Introduction

In this paper, we study codimension one C1 foliations of Riemannian 3-
manifolds. In particular, we examine foliations of a closed manifold M that
are covered by the canonical foliation of R3 by parallel hyperplanes, which
we refer to as R-covered. These foliations are particularly nice in the sense
that they are completely determined by the induced action of π1(M) on the
real line, which is the leaf space of the universal cover [So].

The R-covered property has been important in the study of foliations,
especially those arising from Anosov flows. For example, if an Anosov folia-
tion is R-covered, then the other Anosov foliation associated with the flow
also has this property and the Anosov flow can be shown to be transitive
[So, Ba1, Ba2]. Certain restrictions on the manifold in combination with
the R-covered property have been used to show the Anosov flow is conju-
gate to a standard model, that is, a geodesic flow or a suspension of an
Anosov diffeomorphism [Pl1, Pl2, Gh]. More recently, Fenley has used the
R-covered hypothesis to uncover the rich structure of metric and homotopy
properties of flow lines in many Anosov flows [Fe1, Fe2]. He has also shown
that each leaf in the lift of an incompressible R-covered foliation (not nec-
essarily Anosov) of a hyperbolic 3-manifold to the universal cover limits on
all of S2

∞ [Fe3].
Foliations of a closed orientable manifold M 6= S2×S1 that are R-covered

constitute a subset of the well-studied taut foliations. Tautness is a key to
Roussarie’s [Ro] and Thurston’s [Th] results on isotoping incompressible
tori and to Thurston’s study of norm minimizing leaves. Gabai [Ga1, Ga2,
Ga3] later used these results, by tautly foliating knot complements, to find
the minimal genus spanning surface for a large class of knots and links.
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While tautness indicates the absence of Reeb components, it does not im-
ply the R-covered property. For example, there are many Anosov foliations
that are not R-covered. (See [Fr-Wi], [Bo-La].) Unlike the property of
being taut, the R-covered property is remarkably complex. In general, it
is quite difficult to determine whether a foliation is R-covered or not. It
is known that foliations with a compact leaf L are never R-covered except
when the ambient manifold fibers over S1 with L as fiber [Go-Sh]. How-
ever, when the foliation has no compact leaves, very little is known. One
of the few things that is known is that foliations transverse to a non-R-
covered pseudo Anosov flow φ are R-covered precisely when φ is regulating;
there are, however, many examples of R-covered Anosov flows transverse to
R-covered foliations that are not regulating [Fe5].

It is well-known that the property of being taut is stable in the sense that
all foliations sufficiently close to a taut foliation (in the C1 metric defined by
Hirsch [Hi]) are also taut [Su]. In contrast, the R-covered property is much
more delicate. There are simple examples demonstrating the R-covered
property is not stable in this sense. In fact, Calegari has described a way in
which one could use shearing to perturb a foliation of a hyperbolic surface
bundle over a circle to possibly obtain an arbitrarily close non-R-covered
foliation [Ca]. While Calegari does not prove whether a non-R-covered
foliation can result from such a shearing, his observations indicate that one
might, and his example seems similar to one of Fenley’s examples [Fe5]
proving nonstability of the R-covered property.

In this article, we find conditions that guarantee an R-covered foliation
F of a closed orientable manifold M 6= S2 × S1 is carried by an R-covered
branched surface W (i.e., a branched surface carrying only R-covered foli-
ations). If in addition to being R-covered, W is generated by disks, then
we can apply a result in [Sh2] to obtain stability of the R-covered property
for all foliations carried by W . As a consequence, we say an R-covered W
generated by disks is stably R-covered.

We shall expand on results in [Go-Sh] in which a class of R-covered
branched surfaces was defined. (See Theorem 2.1.) Intuitively, these are
branched surfaces that carry only taut foliations and do not contain the
local behavior one would expect if there were a pair of leaves in the universal
cover corresponding to a pair of nonseparable points in the leaf space. More
specifically, a nonseparable pair of leaves in the universal cover gives rise
to a smoothly immersed arc in the branched surface W called a branching
arc whose ends branch into smooth local subsets of W from the same side.
These arcs are discussed in Section 2 where we prove:

Theorem 2.2. Given a stably taut branched surface W constructed from
a foliation of a closed orientable 3-manifold M 6= S2 × S1, let Ŵ be the lift
of W to the universal cover. Suppose there exists a finite set Γ of branching
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arcs in W such that the lift of any non-R-covered foliation carried by W to a
foliation carried by Ŵ contains a pair of nonseparable leaves linked by a lift
of some arc in Γ. For any R-covered foliation F carried by W , there exists
a stably R-covered branched surface W ′ also carrying F ; in particular, the
R-covered property is stable for F .

The branched surface W ′ does not necessarily satisfy the hypothesis of
Theorem 2.1. In particular, the class of stably R-covered branched surfaces
obtained here properly contains that which was described in [Go-Sh]. It is
also worth noting that every R-covered foliation is carried by a stably taut
branched surface (defined in Section 2) [Go-Sh]. So the key hypothesis of
Theorem 2.2 is the existence of the set Γ.

Corollary 2.3. Given a stably taut branched surface W with disk sectors
constructed from an R-covered foliation F of a closed orientable 3-manifold
M 6= S2 × S1, let Ŵ be the lift of W to the universal cover M̂ . If for every
non-R-covered foliation carried by W there is a branching arc contained in
the boundary of some component of M̂ − Ŵ linking nonseparable leaves in
the universal cover, then there exists a stably R-covered branched surface
W ′ carrying F and the R-covered property is stable for F .

In Section 3, we find verifiable conditions on the branch set µ of a branched
surface W constructed from an R-covered foliation F that guarantee the
existence of an R-covered branched surface carrying F . (See Theorem 3.2.)
For many explicit examples, the W we construct satisfies these conditions.
In fact, it seems likely that all R-covered foliations of orientable 3-manifolds
are carried by an R-covered branched surface (not necessarily generated
by disks). So while it is known that the R-covered property is not always
stable, there is often (perhaps always) a large class of R-covered foliations
near any R-covered foliation F of a closed manifold; specifically, there exists
a transverse flow φ and a finite set ∆ of compact integral surfaces of F such
that any foliation transverse to φ whose leaves contain the elements of ∆ is
R-covered.

The author would like to thank the referee for numerous suggestions that
improved this paper.

1. Branched surfaces constructed from foliations

In this section we examine branched surfaces constructed from codimension
one, transversely orientable foliations of an orientable 3-manifold M . These
branched surfaces are in the class of regular branched surfaces introduced by
R. Williams [Wi]. Since the construction, first suggested to S. Goodman by
C. Danthony, is in an unpublished paper of Christy and Goodman [Ch-Go],
we describe it here, including all details necessary for this article.
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Branched surface construction. We begin with a foliation F , a nonsin-
gular flow φ transverse to F , and a generating set ∆ = {Di} of disjoint
embedded compact surfaces with boundary (which is finite if the ambient
manifold M is closed), satisfying the following general position requirements:

(i) Each Di is embedded in a leaf of F (hence is transverse to φ).
(ii) Every orbit of φ meets the interior of some element of ∆ in forward

and backward time.
(iii) For every i0, the set of points in Bdy(Di0) whose orbit under φ (or

φ−1) meets ∪Bdy(Di) before meeting ∪ Int (Di) is finite.
(iv) Any orbit of φ meets ∪Bdy(Di) at most twice.

It is worth noting that we can always choose a generating set ∆ consisting
of embedded disks. For example, cover M with foliation boxes for F and let
∆ contain a slice from each box. Then modify each slice slightly so that ∆
satisfies the general position requirements above.

We cut M open along the interior of each element of ∆ to obtain a sub-
manifold M∗ which can be embedded in M so that its boundary contains
∪Bdy(Di). This can be thought of as blowing air into the leaves of F to
create an air pocket at each element of the generating set. By requirement
(ii) above, the restriction of φ to M∗ is a flow φ∗ with the property that each
orbit is homeomorphic to the unit interval [0, 1]. We next form a quotient
space by identifying points that lie on the same orbit of φ∗. That is, we
take the quotient M∗/ ∼, where x ∼ y if x and y lie on the same interval
orbit of φ∗. We may think of this as enlarging the components of M −M∗

until each interval orbit of φ∗ is contracted to a point in M . The embedded
copy of the resulting quotient space is the branched surface W ; it is called
the branched surface corresponding to (F, φ, ∆). By its construction, W can
be made transverse to φ. The general position requirements for ∆ imply
that W is a connected 2-dimensional complex with a set of charts defining
local orientation preserving diffeomorphisms onto one of the models in Fig-
ure 1.1, such that the transition maps are smooth and preserve transverse
orientation indicated by the arrows. Each local model projects horizontally
onto a vertical model of R2. So W has a smooth structure induced by TR2

when we pull back each local projection.
A branched surface constructed from a foliation shall be a branched sur-

face embedded in the ambient manifold and obtained in the above fashion
using some transverse flow φ. Each is a connected 2-manifold except on a
dimension one subset µ called the branch set. The elements of ∆ can be
assumed to be chosen large enough to ensure that µ is connected. The set µ
is a 1-manifold except at isolated points called crossings where it intersects
itself transversely. (There are only finitely many of these points when M is
closed.) Each component of W − µ is called a sector of W .
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Figure 1.1.

Curves in the branched surface. Formally, a curve in M is a continuous
map from a connected subset of R into M . However, we consider a curve to
be the image of such a map, where the map parameterizes the curve. We say
the curve is immersed (embedded) if this map is an immersion (embedding
respectively.) For example, a curve immersed in a branched surface W ⊆ M
is the image of an immersion from a connected subset of R into W . The
beginning and end of a curve refer to the negative and positive boundary,
respectively, induced by the parameterization. For the sake of simplicity,
we consider two curves γ and γ′ to be the same if γ(t) = γ′(t) after some
orientation preserving reparameterization of each. We say a curve γ′ is
contained in a second curve γ (or more simply γ′ is in γ) only if γ′ is a
subarc of γ. That is, there exist curves α1 and α2 such that γ is equal to the
composition α2 ∗ γ′ ∗ α1. A loop in γ will be a subarc of γ with nonempty
interior that begins and ends at the same point. A smooth arc in W is an
arc contained in W that is smooth under the structure inherited from W .
Throughout, we shall not consider curves in W for which some subarc is
homotopic, through a sector of W , to an arc in the branch set containing
no crossings.
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Given a point x contained in the branch set µ of W that is not a crossing,
there are locally 3 sectors, S1, S2, and S3 that are adjacent at x such that
cl (S1) ∪ S3 and cl (S2) ∪ S3 are smooth submanifolds of W (i.e., the set of
charts locally defines a smooth immersion into a planar subset of R3 on
cl (S1) ∪ S3 and cl (S2) ∪ S3). Assume that in a local neighborhood of x,
forward orbits under φ of points in S1 flow into S2. For any arc α immersed
in W that is transverse to µ at x, we can choose a subarc β of α that has
nonempty interior and meets µ only at x. We say S2 is an upper branch
along α if β ∩ S2 = ∅ for any choice of β. See Figure 1.1(b). Similarly, S1

is a lower branch along α if β ∩ S1 = ∅ for any choice of β. A branch along
α is an incoming sector branching into α at x if there is a subarc β of α
(chosen as above) that either ends at x and is contained in S1 ∪ S2 ∪ {x} or
begins at x and is contained in S3 ∪ {x}. Likewise, a branch along α is an
outgoing sector branching from α at x if there is a subarc β as above that
either ends at x and is contained in S3∪{x} or begins at x and is contained
in S1 ∪ S2 ∪ {x}.

We can extend the notion of incoming and outgoing sectors to a curve α
immersed in the branch set µ of W . For each crossing x of µ contained in α,
we can choose a subarc β of α that is bounded by x and contains no other
crossings of µ. (Each time int (α) meets x, β can be chosen to either begin
or end at x.) There is precisely one sector S whose boundary is transverse
to β at x. If the subarc β can be chosen to begin (end) at x and the union
of cl (S) with those sectors whose boundaries both contain x and do not
intersect int (β) is smooth, then S is an outgoing (incoming, respectively)
sector branching from α. For example, in both Figures 1.2(a) and 1.2(b),
a curve β is indicated by the directed arcs. The corresponding sector S for
each is shaded. In Figure 1.2(a), S is a lower outgoing sector branching
from any α containing β, whereas in Figure 1.2(b) the sector S is not a
lower outgoing sector along any such α. In the case where α ends (begins)
at x, the sector S is an outgoing (incoming, respectively) sector branching
from α if for some subarc β chosen as above, the sector S is an outgoing
(incoming) sector branching from a smooth curve in µ that contains β and
meets no crossings other than x. For example, the sector S in Figure 1.2(b)
is a lower incoming sector along any α beginning with β.

Foliations carried by a branched surface. Note that if we thicken the
branched surface W in the transverse direction to recover the interval or-
bits of φ∗, we retrieve M∗ which, for that reason, we shall henceforth call
N(W ), the neighborhood of W . Also note that the boundary of N(W ) is an
embedded closed surface which has a smooth structure except along curves
corresponding to the boundaries of the generating surfaces.

Throughout, π : N(W ) → W will denote the quotient map which iden-
tifies points in the same orbit of φ∗. We say the image x of a point under
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this map is the projection of that point. Accordingly, we say points in the
preimage of x lie over x. In particular, the interval orbit of φ∗ that projects
onto x will be referred to as the fiber of N(W ) over x. (See Figure 1.3.)

A foliation F transverse to φ clearly gives rise to a foliation of N(W ),
which we shall also denote by F , with leaves transverse to the fibers of N(W ).
Each boundary component of N(W) is contained in a leaf of this foliation.
These leaves containing the boundary components of N(W ) are precisely
the (cut-open) leaves of the original foliation containing the elements of ∆.
(They can be thought of as leaves of the original foliation with air blown
into them.) Figure 1.4 shows a local picture of the foliation of N(W ).

There are, of course, many foliations like F that are transverse to the
fibers of N(W ) with the property that each boundary component of N(W )
is contained in a leaf. When we collapse the components of M −N(W ) (i.e.,
the air pockets), each of these foliations of N(W ) yields a foliation of M ,
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Figure 1.4.

also transverse to φ, which we say is carried by W . Indeed, W carries a
foliation G if and only if W corresponds to (G, φ,∆).

In what follows, W will be a branched surface constructed from a foliation
F of a closed manifold M as described above, and Ŵ will be the lift of W to
the universal cover M̂ . In other words, if W corresponds to (F,∆, φ), then
Ŵ is the branched surface corresponding to (F̂ , ∆̂, φ̂), where F̂ , ∆̂ and φ̂
represent the lifts of F , ∆, and φ, respectively, to the universal cover. The
covering map ρM of M by M̂ acts on N(Ŵ ) and induces a covering map
p : Ŵ → W such that π ◦ ρM = ρ ◦ π̂, where π̂ is the quotient map from
N(Ŵ ) onto Ŵ . (Details are given in [Sh1].)

2. Stability of the R-covered property

Throughout, F will be a codimension one C1 foliation of a closed orientable
3-manifold M 6= S2 × S1. Passing to a double cover of M if necessary, we
may assume that F is transversely orientable.

If W is a branched surface constructed from a foliation F whose generating
set ∆ consists of embedded disks, then all foliations sufficiently close to F
are also carried by W [Sh2]. (Here we are using the C1 metric defined in
[Hi], where a nearby foliation is obtained by perturbing the tangent bundle
to the leaves to another integrable plane field.) In particular, if a branched
surface W is generated by disks and every foliation carried by W has a
certain topological property, then we know that property is stable for all
foliations carried by W .

Here we give conditions that guarantee a branched surface W constructed
from a foliation is R-covered ; that is, W has the property that every foliation
carried by it is R-covered. If a branched surface W is R-covered and gener-
ated by disks, then we say it is stably R-covered since any foliation F carried
by that W is R-covered and this property is stable for each such F (in the
sense that all foliations sufficiently close to F are also R-covered). We re-
alize that this latter terminology is slightly misleading. That is, a branched
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surface could carry only foliations for which the R-covered property is sta-
ble without being generated by disks. However, our stability results rely
on the branched surface being generated by disks. So for simplicity in our
discussion, we define stably R-covered as above.

Every R-covered foliation of a closed orientable manifold M 6= S2×S1 is
taut; i.e., there exists a positive transverse arc from any leaf to any other leaf.
(For details, see Lemma B [Go-Sh].) So we first review the characterization
of branched surfaces carrying only taut foliations.

Clearly any leaf in a foliation carried by a branched surface W projects
onto several sectors of W and each sector has a transverse orientation, which
it inherits from the leaves. So to ensure tautness, it suffices that there exists
a positive transversal to W between any two sectors. When we regard the
branched surface as a simplicial complex, this translates to a condition on the
dual graph. More precisely, we define the dual graph to the branched surface
W as follows: each component of M−W will contain one vertex. There will
be an edge through each sector of W , oriented according to the transverse
orientation of W , joining two vertices. In particular, the dual graph is a
directed graph in M that is transverse to W . If for any ordered pair of
vertices (v, w) of the dual graph there is a positively oriented path from v to
w, then the dual graph is said to be transitive. When a foliation is carried by
a branched surface with a transitive dual, then there is a positively oriented
transverse arc from any leaf to any other leaf; specifically, there exists a
positively oriented transverse loop through each leaf, so the foliation is taut.
The converse is also true. Indeed, any branched surface constructed from a
taut foliation using a volume-preserving transverse flow has a transitive dual.
So the transitive dual property characterizes branched surfaces carrying only
taut foliations [Go-Sh]. Consequently, if W has a transitive dual we say it
is a taut branched surface. If, in addition, W is generated by disks, we say
W is stably taut.

Now suppose W is a taut branched surface corresponding to (F,∆, φ),
where the surfaces in the generating set ∆ are not necessarily embedded
disks. In this case, there is a transverse loop through every leaf of F , which
ensures the absence of Reeb components. This, in turn, precludes vanishing
cycles. So when we lift F to the universal cover, we obtain a foliation F̂ of
R3 where all the leaves are topologically closed planes (since M is assumed
to be orientable and not homeomorphic to S2 × S1) and the leaf space is a
1-manifold, possibly non-Hausdorff [Ha]. At this stage, the only obstruction
to F being R-covered is the existence of two leaves in the universal cover
which are nonseparable in the leaf space; in other words, a pair of leaves
Â and B̂ in F̂ which do not have disjoint saturated neighborhoods. In
particular, there is a 1-parameter family {K̂n} of leaves, parameterized by
n ∈ I (where I is the real interval (0, 1)), which lie on the same side of
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Â and B̂ and monotonically approach both Â and B̂ in the leaf space as
n → 1. (We assume points in the leaf space are ordered according to the
transverse orientation of F̂ induced by the transverse flow φ̂). This sort of
local behavior occurs, for example, in the lifts of certain Anosov foliations,
like the one constructed in [Fr-Wi]. We can choose points x̂n, ŷn in K̂n for
each n, such that {x̂n} converges to a point x̂ in Â along an orbit of φ̂ (or φ̂−1)
and {ŷn} converges to a point ŷ in B̂ along an orbit of φ̂ (φ̂−1, respectively).
Now for every N ∈ (0, 1) the orbit from x̂N to x̂ is finite, so there are at
most finitely many points along this orbit that are contained in a generating
surface for Ŵ . (If not, such points would accumulate along this orbit on
some point ẑ. However the generating set for W is finite and each element
is compact. So if we consider the point z covered by ẑ, the intersection of
all generating surfaces for W with any evenly covered neighborhood U of z
has finitely many components. Furthermore, we can choose U small enough
so that any orbit of φ|U intersects each of these components in at most one
point, a contradiction.) So if each K̂n lies on the negative (positive) side
of Â and B̂, then we can choose N large enough so that orbits of φ̂ (φ̂−1

respectively) from x̂N to Â and from x̂N to B̂ do not meet any generating
surface for Ŵ . These orbits are, up to orientation, contained in fibers of
N(Ŵ ), so the local picture in Ŵ is as shown in Figure 2.1.

More precisely, if F̂ contains a pair of leaves Â and B̂ that are nonsepara-
ble on their negative (positive) sides, then there is a smoothly embedded arc
β̂ in Ŵ transverse to µ̂ and containing no crossings of µ̂ with the property
that the ends of β̂ branch into the negative (positive) side of two smooth
local subsets of Ŵ . In particular, the arc β̂ has an upper (lower) outgoing
sector branching from its initial point and an upper (lower) incoming sector
branching into its terminal point. Any arc embedded in Ŵ with these prop-
erties is called a negatively (positively) branching arc in Ŵ . Each branching
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arc β̂ in Ŵ covers a branching arc β in W . A branching arc corresponding
to a nonseparable pair of leaves Â and B̂ as above can be chosen so that its
ends lie in π̂(Â) and π̂(B̂), respectively, and some integral curve κ̂ of F̂ lies
over it in N(Ŵ ). In this case, we say β̂ is a branching arc linking Â and B̂.

If the branched surface Ŵ (W ) has only disk sectors, then certain branch-
ing arcs in Ŵ (W , respectively) can be regarded as essentially the same. In
particular, the boundary of each disk sector S is contained in the branch set
and can be partitioned by crossings into disjoint open arcs. Any two curves
whose interiors lie in S are equivalent if their initial points both lie in the in-
terior of S or in the same interval of the partition, and if the same condition
holds for their terminal points. Now, any finite topologically closed curve
immersed in Ŵ (W ) that is transverse to the branch set is a composition
of finitely many curves whose interiors are contained in the disk sectors of
Ŵ (W , respectively). Two such curves are equivalent if they contain no
crossings of the branch set and are piecewise equivalent. It is worth em-
phasizing that this definition applies only to curves contained in branched
surfaces with disk sectors. Also, note that if β̂ is a branching arc in Ŵ

linking nonseparable leaves Â and B̂, and β̂′ is equivalent to β̂, then β̂′ is
also a branching arc linking Â and B̂.

Now let W be a taut branched surface carrying a foliation F that has
sectors of any type and is not necessarily generated by disks. Although
nonseparable leaves in the lift F̂ of F to the universal cover give rise to
branching arcs in a branched surface Ŵ carrying F̂ , not every branching
arc in Ŵ indicates a pair of nonseparable leaves. In fact, any smoothly
embedded integral curve of F̂ whose interior is contained in an element
of ∆̂ (generating Ŵ ) and whose endpoints are in the boundary of that
generating surface has two images in Ŵ , both of which are branching arcs.
So branching arcs also occur in branched surfaces carrying only R-covered
foliations. Certain curves embedded in Ŵ , called bypasses, offer a topological
means for identifying those branching arcs that cannot link nonseparable
leaves. Specifically, a smoothly embedded arc δ̂ in Ŵ transverse to µ̂ and
fixed point homotopic to a negatively branching arc β̂ is a bypass for β̂ if it
contains no crossings of µ̂ or negatively branching arcs. (Figure 2.2 shows
a bypass for a branching arc β̂.) A bypass for a positively branching arc is
defined in an analogous manner. Clearly a bypass δ̂ for a branching arc β̂

in Ŵ covers an immersed arc δ homotopic to β (the branching arc covered
by β̂) with the same properties. Accordingly, such an arc δ is a bypass for β.

We say that a branching arc β in a taut branched surface W (as above)
is critical if it lifts to an arc linking nonseparable leaves in some foliation
carried by Ŵ . In particular, critical branching arcs have no bypasses. For
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suppose, to the contrary, that a branching arc β̂ has a bypass δ̂ yet links
leaves Â and B̂ which are nonseparable on, say, their negative sides. If the
projection of Â branches away from δ̂ along an upper outgoing sector at
some point x̂ in δ̂, then there are no upper incoming sectors branching into
δ̂ after x̂. In this case, there exists a positive transversal from B̂ to Â, a
contradiction. So π̂(Â) branches away from δ̂ along a lower outgoing sector
at some point x̂ in δ̂. Similarly, we find π̂(B̂) branches into δ̂ along a lower
incoming sector at some point after x̂ in δ̂; more precisely, δ̂ contains a
positively branching arc with π̂(Â) and π̂(B̂) branching from its respective
ends. However, the uppermost leaf whose projection meets this arc is cut
by positive transversals (not necessarily fibers) from Â and B̂, contradicting
our assumption that Â and B̂ are nonseparable on their negative sides. So
if a foliation F is carried by a taut branched surface W and every branching
arc has a bypass, then F is R-covered. If, in addition, W is stably taut
(hence, is generated by disks), then the R-covered property is stable for F .

These observations lead to the following:

Theorem 2.1 ([Go-Sh]). Given a stably taut branched surface W con-
structed from a foliation of a closed orientable 3-manifold M 6= S2 × S1,
if every branching arc has a bypass, then W is R-covered and the R-covered
property is stable for each foliation F carried by W ; in particular, F and all
foliations sufficiently close to F are R-covered.

If a foliation F is R-covered, then we can construct a branched surface W
from it using a generating set consisting of embedded disks and a transverse
flow that is volume-preserving. As noted earlier, W will be stably taut.
However, such a W will often contain branching arcs without bypasses.
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In [Go-Sh], a technique was given for modifying W to produce bypasses
for certain branching arcs. Unfortunately, this can create annuli in the
generating set. So while W will still be taut after these modifications, it
might not be stably taut. Moreover, application of this technique frequently
does not produce a branched surface where every branching arc has a bypass.
One obstruction is that it can only be applied to branching arcs that are
contained in the projection of an integral curve of F . Another is that most
branched surfaces contain infinitely many branching arcs. For example, an
infinite set of branching arcs may share a nontrivial loop and differ only in
the number of times this loop is traversed. (Here a loop in a branching arc
is a subarc with nonempty interior that begins and ends at the same point.)

Consequently, we shall weaken the hypotheses of Theorem 2.1 signifi-
cantly. To prove stability of the R-covered property under these new con-
ditions, we modify W using a different technique that will not create annuli
in the generating set.

The main result is as follows:

Theorem 2.2. Given a stably taut branched surface W constructed from a
foliation of a closed orientable 3-manifold M 6= S2 × S1, let Ŵ be the lift
of W to the universal cover. Suppose there exists a finite set Γ of branching
arcs in W such that the lift of any non-R-covered foliation carried by W to a
foliation carried by Ŵ contains a pair of nonseparable leaves linked by a lift
of some arc in Γ. For any R-covered foliation F carried by W , there exists
a stably R-covered branched surface W ′ also carrying F ; in particular, the
R-covered property is stable for F .

Proof. Suppose W and Γ are as in the hypotheses. In particular, W is
stably taut, so it is generated by disks and all foliations carried by W are
taut. Let F be an R-covered foliation carried by W and let β be any
critical branching arc in Γ. Without loss of generality, we may assume β is
negatively branching. Substituting a homotopic branching arc if necessary,
we may also assume that β does not begin and end at the same point; that
is, β(0) 6= β(1). We first consider the case where β and its lift β̂ to Ŵ are
projections of integral curves of F and F̂ respectively. In particular, β̂ is
contained in π̂(L̂) for some leaf L̂ of F̂ .

Since β̂ has no bypass, the positive ends of the fibers over β̂(0) and β̂(1)
lie in distinct boundary components of N(Ŵ ) which correspond respectively
to elements D̂0 and D̂1 of ∆̂. Let L̂0 and L̂1 be the leaves of F̂ containing
D̂0 and D̂1 respectively. In the natural ordering of the leaves of F̂ (induced
by a copy of the leaf space R which, in turn, is oriented according to the
direction of the transverse flow φ̂), we have either:

(i) L̂0 < L̂1,
(ii) L̂0 > L̂1, or
(iii) L̂0 = L̂1.
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In case (i), L̂ < L̂0 < L̂1, and since the fiber t̂1 over β̂(1) meets L̂ and
L̂1, it meets all leaves between L̂ and L̂1. It follows that t̂1 also meets L̂0,
so we can find a curve γ̂F smoothly embedded in L̂0 that begins in ∂D̂0

and cuts the fiber t̂1. When choosing γ̂F , we shall want to ensure that its
quotient γF does not cut t0 or t1 more than once: i.e., we choose γ̂F so it
descends to a smoothly immersed integral curve γF of F whose interior does
not meet t0 or t1. We can then find a disk D̂ embedded in a leaf of F̂ that
does not intersect any generating disks for Ŵ and lies sufficiently close to
D̂0 on the positive side so that all orbits from γ̂F meet D̂ before meeting
a generating disk. Adding D̂ to the generating set ∆̂ (and its quotient D
to ∆) changes the branched surface by splitting it along an embedded disk
containing π̂(γ̂F ) (π(γF ) respectively). By the way we chose γ̂F , we can
ensure no covering translate of D̂ cuts t̂0 or the new fiber t̂∗1 over β̂(1). So
after this modification, there is a smoothly embedded arc δ̂ in Ŵ containing
π̂(γ̂F ) which is fixed point homotopic to β̂ and has only one upper branch
along its interior at the initial point of π̂(γ̂F ). (See Figure 2.3.) In this way,
we create bypasses δ̂ and δ for β̂ and β respectively.

Cases (ii) and (iii) are analogous. (In case (iii), the curve δ̂ that we create
has an upper incoming sector branching into it at π̂(γ̂F (0)) and an upper
outgoing sector branching from it at π̂(γ̂F (1)), but contains no negatively
branching arcs.)

So whenever a critical branching arc β is the projection of an integral
curve of F , we can modify W to create a bypass δ for β. If, on the contrary,
β is not the projection of an integral curve of F , then it can be destroyed.
Reversing the orientation of β if necessary, there exists an integral curve
γF (t)0≤t≤1 of F beginning in the intersection of ∂N(W ) with the interior of
a fiber over int (β) such that for some ε > 0, π(γF (t))0≤t≤1−ε is contained in
β, β∩π(γF (t))1−ε<t≤1 = ∅ and γF (1−ε) /∈ ∂N(W ). See Figure 2.4. So there
exist incoming and outgoing branches along β at π(γF (0)) and π(γF (1− ε))
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respectively. Moreover, we can choose γF so that if the sector branching
into β at π(γF (0)) is an upper (lower) incoming sector, then the sector
branching from β at π(γF (1 − ε)) is a lower (upper, respectively) outgoing
sector containing π(γF (t))1−ε<t≤1. (For details, see [Sh1].) Clearly, the
initial point of γF lies in the boundary of some generating disk D0 as before.

If there is an upper (lower) sector branching into β at π(γF (0)), we may
add an embedded disk D to the generating set which lies sufficiently close
to D0 on the positive (negative) side so that all forward (backward, respec-
tively) orbits from γF meet D before meeting any other generating disk.
This change in ∆ corresponds to splitting W along a disk containing π(γF )
to destroy β. Specifically, no foliation carried by the original branched sur-
face W with an integral curve over β is carried by the new branched surface
W ′.

So given any critical branching arc β ∈ Γ, we may modify W to obtain
a new branched surface W ′, also generated by disks and carrying F , such
that any foliation carried by Ŵ and containing nonseparable leaves linked
by a lift β̂ of β is not carried by Ŵ ′. By applying Lemma A [Go-Sh], we
see that W ′ also has a transitive dual and so is stably taut. Furthermore,
every foliation carried by W ′ is carried by W , since N(W ) can be obtained
from N(W ′) by pinching together a component of ∂N(W ′) (contained in a
branched leaf of the foliation). This amounts to removing a disk from the
generating set for W ′ to obtain the original generating set ∆ for W .

By hypothesis, the set Γ = {β1, . . . , βn} is finite and the lift of any non-
R-covered foliation carried by W to a foliation carried by Ŵ contains a pair
of nonseparable leaves linked by a lift of some arc in Γ. Moreover, we may
assume each arc in Γ is critical. In particular, we can modify W as above
to either destroy β1 or create a bypass for it. We do so in a way that splits
N(W ) along a curve meeting each βi, i 6= 1, either transversely at interior
points or not at all. In this sense, the new branched surface W1 contains a
branching arc corresponding to βi for every i > 1. Furthermore, the lift of
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any non-R-covered foliation carried by W1 contains a pair of leaves linked
by a lift of one such arc.

We next apply the same technique to either destroy the branching arc in
W1 corresponding to β2 or create a bypass for it; this yields a new branched
surface W2. Continuing in this manner, we obtain a finite string of branched
surfaces W = W0,W1, . . . ,Wn, each carrying F . Let W ′ = Wn.

Now suppose there is a foliation G carried by W ′ whose lift Ĝ to the
universal cover has a non-Hausdorff leaf space. The foliation G is also carried
by W , so for some 1 ≤ i ≤ n, a lift β̂i of βi links nonseparable leaves Â and
B̂ in Ĝ. However, Wi was obtained by modifying Wi−1 to either destroy
the branching arc (in Wi−1) corresponding to βi or create a bypass for it.
Since some lift of this branching arc also links Â and B̂, the foliation Ĝ is
not carried by Ŵi, a contradiction.

It follows that every foliation carried by W ′ is R-covered. �

As noted above, any transversely orientable R-covered foliation of a closed
orientable 3-manifold M 6= S2 × S1 is carried by a stably taut branched
surface. So the essential hypothesis of Theorem 2.2 is the existence of the
set Γ. It is also worth mentioning that if we omit the assumption that disks
generate W , the proof above can still be used to show F is carried by an
R-covered branched surface W ′. The only thing that is lost is the guarantee
that W ′ is stably R-covered.

A negatively (positively) branching arc β with no upper (lower respec-
tively) branches along its interior is contained in the boundary of some
component of M −W . In particular, β is the projection of a smoothly im-
mersed curve whose interior is contained in some element of the generating
set ∆ and whose endpoints are in the boundary of that generating surface.
If W is generated by disks and has all disk sectors, then there are at most
finitely many such branching arcs in W up to equivalence. In particular, we
have the following:

Corollary 2.3. Given a stably taut branched surface W with disk sectors
constructed from an R-covered foliation F of a closed orientable 3-manifold
M , let Ŵ be the lift of W to the universal cover M̂ . If for every non-
R-covered foliation carried by W there is a branching arc contained in the
boundary of some component of M̂ − Ŵ linking nonseparable leaves in the
universal cover, then there exists a stably R-covered branched surface W ′

carrying F and the R-covered property is stable for F .

3. R-covered branched surfaces

In this section, we find a condition on the branch set of a taut branched sur-
face W constructed from R-covered foliation F of a closed orientable mani-
fold M 6= S2 × S1 that guarantees the existence of an R-covered branched
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surface carrying F . It is always possible to ensure all sectors of W are em-
bedded disks, so throughout we assume this is the case. However, we shall
not assume that disks generate W unless this is explicitly stated. Since this
means the map of W (Ŵ ) into the ambient manifold M (M̂ respectively) by
inclusion is not always π1-injective, we assume the range of all homotopy
maps is the branched surface unless otherwise stated.

An arc embedded in the branch set µ̂ of Ŵ with an upper (lower) outgoing
sector branching from its initial point and an upper (lower respectively)
incoming sector branching into its terminal point is called a branching arc
in µ̂. (Each branching arc in µ̂ covers a branching arc in µ.)

For example, if W is a taut branched surface with disk sectors, then any
branching arc β̂ in Ŵ transverse to µ̂ is homotopic to a curve containing
such an arc, provided that it links nonseparable leaves Â and B̂ in the lift
of some foliation G carried by W . Specifically, there is, by definition, a
smoothly embedded curve κ̂ in some leaf K̂ of Ĝ that projects injectively
onto β̂. It follows that β̂ is smoothly embedded in π̂(K̂) and there exists an
arc immersed in µ̂ that is piecewise homotopic to β̂ through disk sectors of
Ŵ contained in π̂(K̂). By Reeb stability [Re], each of these disk sectors is
covered injectively by a disk embedded in K̂. So there is a curve γ̂ immersed
in K̂ and homotopic to κ̂ whose projection π̂(γ̂) is a curve in µ̂ homotopic
to β̂. If γ̂ contains a loop, i.e., if there exist subarcs γ̂1 and γ̂2 of γ̂ and
a closed subarc λ̂ of γ̂ that begins and ends at the same point such that
γ̂ can be written as a composition γ̂1 ∗ λ̂ ∗ γ̂2, then λ̂ is null homotopic in
K̂. In this case, the curve γ̂1 ∗ γ̂2, obtained by removing λ̂ from γ̂ and
reparameterizing the remaining arcs, γ̂1 and γ̂2, is also homotopic to κ̂ in
K̂. So we may assume γ̂ contains no loops. It follows that π̂(γ̂) contains no
loops, since otherwise there are two distinct points x̂ and ŷ in γ̂ that project
onto the same point of Ŵ . However, if this occurs, we could construct a
closed curve by taking the composition of a curve in K̂ joining x̂ and ŷ

with a curve contained in a fiber of N(Ŵ ) up to orientation. Modifying
this curve slightly, we could then produce a closed loop transverse to Ĝ that
is null homotopic in M̂ , contradicting our assumption that every foliation
carried by W is taut. Now since π̂(γ̂) begins and ends in π̂(Â) and π̂(B̂)
respectively, it has a subarc β̂µ which is also embedded in µ̂ and whose ends
both branch into the negative (or positive) side of two smooth local subsets
of π̂(Â) and π̂(B̂) respectively. Furthermore, there is a curve embedded in
K̂ that lies over β̂µ in N(Ŵ ); namely the corresponding subcurve of γ̂. An
arc β̂µ with these properties is called a critical branching arc in µ̂ linking Â

and B̂. Its quotient βµ is a critical branching arc in µ. Since β̂µ contains
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no loops that are null homotopic in Ŵ , the curve βµ contains no loops that
are null homotopic in W .

It is worth noting that branching arcs in the branch set are not necessarily
smooth. Moreover, a branching arc in µ̂ with π̂(Â) and π̂(B̂) branching from
its respective ends is not necessarily critical, since to link Â and B̂ the arc
must lie in a smoothly embedded plane in Ŵ . It is also worth noting that
there seems to be no natural way to extend the notion of equivalence to
branching arcs in µ̂.

A bypass for a negatively (positively) branching arc in µ̂ will be a homo-
topic curve, either embedded in µ̂ or smoothly embedded in Ŵ and trans-
verse to µ̂, that contains no negatively (positively) branching arcs. Its quo-
tient in W is a bypass for the corresponding branching arc in µ. We say
a finite arc τ embedded in µ is inescapable if every upper (lower) outgoing
sector along τ branches from some negatively (positively) branching arc that
is both contained in τ and has a bypass with no upper (lower, respectively)
outgoing sectors. A finite arc τ̂ embedded in µ̂ is inescapable if it is the lift
of an inescapable arc in µ.

Lemma 3.1. Given a branched surface W constructed from a foliation F

of a closed orientable 3-manifold M , let F̂ and Ŵ be the lifts of F and W ,
respectively, to the universal cover. If the projection π̂(L̂) of some leaf L̂ of
F̂ meets the initial point of an inescapable curve τ̂ in the branch set µ̂ of
Ŵ , then π̂(L̂) also meets the terminal point of τ̂ .

Proof. Suppose τ̂(t)0≤t≤1 is an inescapable curve embedded in the branch set
µ̂ of Ŵ . Let L̂ be a leaf in a foliation F̂ carried by Ŵ such that its projection
π̂(L̂) meets τ̂(0). Any time π̂(L̂) branches away from τ̂ , it does so along an
outgoing sector at a crossing of µ̂ contained in τ̂ . By our construction of
W and Ŵ , crossings of µ̂ cannot accumulate in the lift of an evenly covered
neighborhood of W . So since τ̂ is compact, it contains only finitely many
crossings. As a consequence, if π̂(L̂) does not meet τ̂(1), there is a last point
τ̂(t′) along τ̂ that is contained in π̂(L̂).

In this case, π̂(L̂) branches away from τ̂ along, say, an upper outgoing
sector at τ̂(t′), 0 ≤ t′ < 1. By hypothesis, there exists t0 ≤ t′ ≤ t1,
t0 6= t1, such that τ̂(t)t0≤t≤t1 is a negatively branching arc. Furthermore,
this branching arc has a bypass δ̂ with no upper outgoing sectors branching
from it. So there is an embedded curve η̂ over δ̂, beginning and ending at the
uppermost points over τ̂(t0) and τ̂(t1) respectively, which is a composition
of integral curves of F̂ and positive transversals contained in fibers of N(Ŵ ).
Furthermore, we can find an embedded curve γ̂(t)t0≤t≤t1 where γ̂(t)t0≤t≤t′

lies over τ̂(t)t0≤t≤t′ and is contained in a leaf below L̂, and γ̂(t)t′≤t≤t1 lies
over τ̂(t)t′≤t≤t1 and consists of integral curves of F̂ and transversals to F̂
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contained in fibers of N(Ŵ ) up to orientation. See Figure 3.1. We then
have a disk in M̂ bounded by γ̂, η̂, and transversals over τ̂(t0) and τ̂(t1)
respectively which can be put in general position with respect to the foliation
F̂ . The leaf L̂ meets the boundary of this disk transversely at some point
over τ̂(t0). Furthermore, L̂ cannot cross any of the positive transversals in η̂

since F̂ is transversely orientable. So L̂ must cross either γ̂(t)t′≤t≤t1 or the
transversal over τ̂(t1). In both cases, we have a contradiction to the way we
chose t′. So π̂(L̂) contains τ̂(1). �

In what follows, a parameterized embedded copy of S1 in µ that does not
bound an embedded disk in W will be called an essential loop. Furthermore,
we shall say a branching arc in µ is elementary if it contains no loops.

The following theorem offers a verifiable condition on the branch set of
a branched surface carrying an R-covered foliation F that guarantees the
existence of an R-covered branched surface carrying F .

Theorem 3.2. Given a taut branched surface W with disk sectors con-
structed from a foliation of a closed orientable 3-manifold M 6= S2 × S1,
let α(t)0≤t≤1 be an arc embedded in the branch set µ that has an outgoing
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sector branching from its initial point and contains no loops. Suppose that
for every such α and every essential loop λ in µ based at α(1), there exist
homotopic curves η ⊆ α ∗ λ and τ ⊆ µ beginning at α(0) such that η has
nonempty interior and τ is inescapable. For any R-covered foliation F car-
ried by W , there exists an R-covered branched surface W ′ also carrying F ;
in particular, when W is generated by disks, the R-covered property is stable
for F .

Proof. Suppose G is a non-R-covered foliation carried by W and let β̂ be a
critical branching arc in the branch set µ̂ of Ŵ linking nonseparable leaves
Â and B̂ of Ĝ. We may choose β̂ so that it contains no other branching arc
linking Â and B̂. We may also assume, without loss of generality, that Â

and B̂ are nonseparable on their negative sides, so β̂ is negatively branching.
By definition, β̂ is the projection of an integral curve of Ĝ onto Ŵ . As noted
above, it descends to a branching arc β in µ that contains no loops which
are null homotopic in W (i.e., there is no subarc of β with nonempty interior
that begins and ends at the same point and is null homotopic).

So if β contains a loop, then it contains an essential loop. In this case,
let λ be the first essential loop in β and let α be the arc in β from its initial
point β(0) to the initial point of λ. We may now choose homotopic curves
η in α ∗ λ and τ in µ as in the hypotheses. Since τ is inescapable it is, by
definition, embedded in µ. So τ lifts to a curve τ̂ embedded in µ̂ with the
same initial point as β̂. In particular, τ̂ begins in π̂(Â) and, by Lemma 3.1,
τ̂ ends in π̂(Â) ∩ int (β̂). By assumption, B̂ meets the fiber over β̂(1), so
Â cannot meet this fiber. Therefore, π̂(Â) must branch away from int (β̂)
along an upper sector, a contradiction since we chose β̂ to contain no other
critical branching arcs linking Â and B̂.

It follows that any pair of nonseparable leaves Â and B̂ in Ĝ is linked by a
critical branching arc β̂ in µ which descends to an elementary branching arc
β in µ. Furthermore, β can be perturbed slightly onto adjacent sectors to
obtain a homotopic branching arc that is nowhere tangent to µ, contains no
crossings of µ and also lifts to a branching arc linking Â and B̂. Now for every
elementary branching arc β in µ, there are at most finitely many homotopic
branching arcs (up to equivalence) that can be obtained by perturbing β in
this manner. Since there are at most finitely many elementary branching
arcs in µ, the result now follows from the remark after Theorem 2.2. �

As above, let W be a taut branched surface with disk sectors and let F
be an R-covered foliation carried by W . We say a negatively (positively)
branching arc in the branch set µ of W is simple if it is elementary and
has no upper (lower, respectively) branches along its interior. Clearly there
are at most finitely many simple branching arcs in µ and each is contained
in the boundary of some component of M −W . In particular, each simple
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branching arc β is the projection of an integral curve of F . So we can split
N(W ) along disks embedded in leaves of F , as in the proof of Theorem 2.2,
to create bypasses for all the simple branching arcs in µ. (For each simple
negatively (positively) branching arc β, the disk we use is met by forward
(backward) orbits of an integral curve γF of F which meets the uppermost
(lowermost) point over one end of β and also meets the fiber over the other
end.) The branched surface we obtain, V , carries only foliations carried by
W , including F . (If the lift of each non-R-covered foliation carried by W
contains a pair of nonseparable leaves linked by a simple branching arc in
µ̂, then the branched surface V is R-covered.)

Now, we can choose an orientation for each simple negatively (positively)
branching arc β in µ so that for any foliation carried by V̂ , the leaves meeting
the fiber of N(Ŵ ) over β̂(0) either meet the fiber over β̂(1) or branch away
from β̂ along a lower (upper respectively) outgoing sector. (For example, if
β is negatively branching, the orientation is chosen so that γ̂F is contained
in the uppermost leaf of F̂ over β̂(0); if some leaf of F̂ meets the uppermost
point over both ends of β̂, then either orientation will suffice.) Then any
curve τ in the branch set of W yields an inescapable curve in V if every upper
(lower) outgoing sector branches from a negatively (positively) branching arc
contained in τ that either has a bypass with no upper (lower respectively)
outgoing sectors or is simple and oriented as above. So the τ in Theorem 3.2
need not be inescapable; rather, it need only satisfy this weaker condition.
In other words, it is not necessary to explicitly construct V from W to check
whether it satisfies the hypotheses of Theorem 3.2.

For example, let G0 be a foliation of T 2 with two unstable Reeb compo-
nents, and consider a foliation G of T 2×S1 where each leaf is the product of
a leaf in G0 with an S1 fiber. Clearly an R-covered foliation F of T 2×S1 can
be chosen arbitrarily close to G. We construct a branched surface carrying
both F and G as follows:

Begin by choosing two annuli A1 and A2, contained in leaves of both F and
G, as shown in Figure 3.2. (We assume the figure is contained in a copy of
[0, 1]× [0, 1]× [0, 1] where opposite horizontal and vertical sides are identified
in the natural way to obtain T 2×S1.) Orbits of a flow φ transverse to both
F and G are indicated by the oriented dashed curves. The generating set
{A1, A2} together with the flow φ can be used to construct the branched
surface W shown in Figure 3.3. Note that this branched surface does not
have disk sectors and its branch set is not connected. However, we modify it
so that it has these desired properties by splitting along two disks D1 and D2

embedded in W as shown in Figure 3.4(a), and enlarging the two components
in the complement of W . The latter type of modification involves splitting
W along strips V1 and V2, like those shown in Figure 3.4(b), that do not
intersect the disks D1 and D2. (We can think this as “sticking our finger”
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Figure 3.3. Labels indicate closed curves in the branch set
that are identified.

into the branch set so that it meets the boundary of one of these strips Vi

and pushing it into the one-sheeted side at this branching so that it separates
the branched surface along Vi.) Each of these splittings corresponds to a
modification of the original generating set. The splittings along D1 and
D2 are the result of adding two disks to the original generating set, and the
splittings along V1 and V2 are the result of enlarging A1 and A2 respectively.
See [Sh1] for details.

Figure 3.5 shows the branch set for the resulting W . The 3-sheeted side
of each crossing of µ has been labeled R or L to distinguish between the
two possible local neighborhoods in Figures 1.1(c) and 1.1(d), respectively.
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Figure 3.4. Labels indicate arcs in the boundaries of V1 and
V2 that are identified.

We have labeled the two arcs bounding the 3-sheeted side of each crossing
with + or − to indicate an upper outgoing sector or a lower outgoing sector,
respectively, as we leave the crossing along that arc. The labels make it easy
to identify the negative and positive branching arcs in µ. However, deter-
mining whether a branching arc has a bypass and finding such a bypass if
one does exist, requires that we visualize how the splittings described above
change the original branched surface in Figure 3.3. For example, the six
elementary branching arcs indicated by the dotted lines in Figure 3.5 are
each contained in the image of either V1 or V2 after the splittings. Figure 3.6
shows three copies of the image of V2 in W . In each, a curve corresponding
to one of the three branching arcs in Figure 3.5 labeled λ1, λ2 and λ3 is in-
dicated. Clearly each of these branching arcs has a bypass with no branches
along its interior.

Next consider the eight remaining simple branching arcs in µ. Each lies
in the boundary of either D1 or D2. Precisely four of these branching arcs,
indicated by the dashed lines, have no bypass. (The other four each have a
bypass whose interior lies in a sector of W .) However, we can split N(W )
along disks in leaves of F , as described above, to create bypasses for these
branching arcs. For each of the two positively branching arcs, the disk we
use is met by the backward orbits of an integral curve γF which begins
and ends with the lowermost points of the fibers over the respective ends of
that branching arc. Likewise, the disk we use for each of the two negatively
branching arcs is met by forward orbits of an integral curve γF which begins
and ends with the uppermost points of the fibers over both ends of the
branching arc.

It is now straightforward to verify that for every α and λ as in the hy-
potheses of Theorem 3.2, a subarc η of α ∗ λ can be found homotopic to
some curve τ embedded in µ with the property that every upper (lower)
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outgoing sector along τ branches from a negatively (positively) branching
arc in τ that either has a bypass with no upper (lower respectively) out-
going sectors or is simple. Consequently, W can be modified to obtain an
R-covered branched surface.

There are, of course, branched surfaces carrying R-covered foliations that
do not satisfy the hypotheses of Theorem 3.2. For example, let M = Σ2×S1,
where Σ2 is the compact surface of genus two. Figure 3.7 shows a projection
p(µ) of the branch set µ for a stably taut branched surface W , constructed
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Figure 3.7.

from the trivial foliation F of M by compact surfaces transverse to the S1

fibers, onto the base space Σ2. (This projection p(µ) is shown embedded in
a planar model of Σ2, where we are assuming opposite sides of the octagon
are identified.) By the way we chose the generating disks, p(µ) is symmetric
under both horizontal and vertical reflection of Figure 3.7 and under forty
five degree clockwise and counterclockwise rotation of this planar model
about its center.

In particular, the generating set for W consists of six disks chosen in
three different leaves (so W carries all foliations sufficiently close to F ). The
transverse flow φ used for the construction is orthogonal to the foliation F ,
so its orbits are closed and contained in the S1 fibers. Consequently, the
boundary of each generating disk yields a smooth embedded copy of S1 in
the branch set. For example, Figure 3.8(a) shows projected parts of four
generating disks D1, D2, D3 and D4. Each boundary point marked with an
“X” yields a crossing of W . The remaining portions of the disk boundaries
have been labeled 1, 2, 3 or 4 to indicate whether the points in this portion
flow forward under φ into D1, D2, D3 or D4, respectively, before meeting
another disk. Figure 3.8(b) shows the corresponding piece of p(µ). We
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Figure 3.8. Left: (a), right: (b).

see, for example, that the two loops indicated by the dashed and bold lines
respectively correspond to essential loops in W which, up to orientation, are
homotopic to S1 fibers. (There are many other essential loops in µ.)

Now, one can construct non-R-covered foliations arbitrarily close to the
foliation F ([Ca], [Fe5]) so, as discussed in Section 2, W cannot be stably
R-covered. Indeed, if we choose λ to be the essential loop indicated by the
dashed curve in Figure 3.7 and let α be the embedded arc indicated by the
dotted line, it is straightforward to check that there are no corresponding
curves η and τ as in the hypotheses of Theorem 3.2. (As in Figure 3.5,
we have labeled the two arcs bounding the 3-sheeted side of each crossing
with + or − to indicate an upper outgoing sector or a lower outgoing sector,
respectively, as we leave the crossing along that arc.)

Finally, we note that for Theorem 3.2 we need only consider α and λ for
which α ∗ λ is contained in the projection of a surface smoothly embedded
in N(W ) and transverse to the fibers. (This is necessary for a branching arc
β containing α ∗ λ to be critical.) In the previous example, the indicated
curve α ∗ λ satisfies this additional restriction. So, as we should expect, the
hypotheses of Theorem 3.2 still fail to hold under these weaker conditions.
It is, however, possible that an R-covered branched surface carrying F could
be constructed using generating surfaces other than disks.

In fact, for many explicit examples of R-covered foliations it is possible
to construct a branched surface that satisfies the hypotheses of either The-
orem 2.2 or Theorem 3.2 if we allow the generating set to contain surfaces
other than disks. At this stage, we cannot claim that any R-covered folia-
tion is carried by some R-covered branched surface, although we conjecture
that it is so. On the other hand, not every R-covered foliation is carried
by a stably R-covered branched surface, since there are examples of non-
R-covered foliations arbitrarily near R-covered foliations. However, it is
possible that every R-covered foliation for which the R-covered property is
stable is carried by a stably R-covered branched surface.
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