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In previous work we showed that the only finite nonabelian
simple group acting by diffeomorphisms on a homology 3-
sphere is the alternating or dodecahedral group A5. Here we
characterize finite nonsolvable groups that act on a homology
3-sphere preserving orientation. We find exactly the finite
nonsolvable groups that act orthogonally on the 3-sphere, plus
two families of groups for which we do not know at present if
they really can act on a homology 3-sphere.

1. Introduction

A finite group acting freely on a homology n-sphere has periodic cohomol-
ogy of period n + 1, and the groups with periodic cohomology have been
characterized by Zassenhaus and Suzuki (see [AM, Theorem 6.15] or [W,
Chapter 6.3]). Specializing to dimension three one gets a list of the possible
finite groups which may act freely on a homology 3-sphere (see [Mn]). The
complete classification of such groups remains open (the difficulty lies in the
class of groups Q(8n, k, l) defined below).

Here we are interested in (not necessarily free) actions of finite groups on
homology 3-spheres. Such groups no longer have periodic cohomology. It
has been shown in [Z2] that the only finite nonabelian simple group acting
on a homology 3-sphere is the alternating group A5

∼= PSL(2, 5). Continuing
work begun in [R] (see also [Z1]), the main result of the present paper is a
characterization of the finite nonsolvable groups which act on homology 3-
spheres. We find exactly the finite nonsolvable groups admitting orthogonal
actions on the 3-sphere (subgroups of SO(4)), plus two additional classes
of groups for which we cannot decide at present if they can really act on a
homology 3-sphere. We remark that a similar analysis should be possible
also for the case of solvable groups, but the list of such groups will be
inevitably much longer and more technical.

In order to state our results we introduce some notation.
By [Mn], any finite group acting freely on a homology n-sphere has at

most one involution, which consequently belongs to the center of the group;
in the following, we denote by Z ∼= Z2 the subgroup generated by such an
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involution. If G1 and G2 are two such groups, we denote by

G1 ×Z G2

the central product of G1 and G2, which is the product of the two groups
with the two central involutions identified (the quotient of the product by
the order-two subgroup generated by (involution of G1, involution of G2);
see [S1, p. 137]). Thus G1 and G2 commute elementwise and G1 ∩G2 = Z.

We denote by D∗
4n, A∗

4, S∗
4 and A∗

5 the binary dihedral, tetrahedral, octa-
hedral and dodecahedral group (of orders 4n, 24, 48 and 120, respectively).
These are the preimages under the surjection of Lie groups S3 → SO(3) of
the dihedral group D2n, the tetrahedral group A4, the octahedral group S4

and the dodecahedral group A5. Together with the cyclic groups Zn, these
are exactly the finite subgroups of the orthogonal group SO(3).

Following [Mn], for relatively coprime positive integers 8n, k and l, let
Q(8n, k, l) denote the group with presentation

〈x, y, z |x2 = (xy)2 = y2n, zkl = 1, xzx−1 = zr, yzy−1 = z−1〉,
where r ≡ −1 mod k and r ≡ +1 mod l. Then Q(8n, k, l) is an extension with
normal subgroup Zk × Zl

∼= Zkl and factor group the binary dihedral group
D∗

8n
∼= Q(8n, 1, 1). Among the groups Q(8n, k, l) are the only candidates

of finite groups not admitting free orthogonal actions on the 3-sphere but
possibly admitting nonorthogonal free actions. Some of these groups act
freely on homology 3-spheres, but it is not known if any of them can act on
S3 (see Section 2).

Theorem. Let G be a finite nonsolvable group of orientation-preserving
diffeomorphisms of a homology 3-sphere. Then G is isomorphic to one of
the following groups:

(i) A5 or A5 × Z2.
(ii) A∗

5 ×Z A∗
5, A∗

5 ×Z S∗
4, A∗

5 ×Z A∗
4, A∗

5 ×Z D∗
4n or A∗

5 ×Z Z2n.
(iii) A∗

5 ×Z Q(8n, k, l), for relatively coprime integers 8n, k and l, with n
odd and n > k > l ≥ 1.

(iv) A∗
5 ×Z (D∗

4n × Zk), with n odd and k > 1 coprime to 4n.
In case (i), each involution of A5 has nonempty connected fixed-point set

and in all other cases, each factor of the central products acts freely.
The groups of type (i) and (ii) are exactly the finite nonsolvable groups

that admit orientation-preserving orthogonal actions on the 3-sphere.

Considering S3 as the group of unit quaternions, we have the surjection
of Lie groups S3 × S3 → SO(4) induced by left and right multiplication of
S3. The kernel of this surjection is the group Z of order two generated by
(−1,−1), so SO(4) is isomorphic to the central product S3×Z S3. The finite
subgroups of S3 are exactly the cyclic groups Zn and the binary polyhedral
groups D∗

4n, A∗
4, S∗

4 and A∗
5. Thus all groups of type (ii) in the theorem act
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orthogonally on the 3-sphere. (See [DV] for a list of all finite groups acting
orthogonally on S3.)

The group A∗
5 ×Z A∗

5 occurs as the symmetry group of the 4-dimensional
regular 120-cell whose boundary is the 3-sphere with a regular tessellation by
120 regular spherical dodecahedra with dihedral angles 2π/3. The character-
istic cell (simplex) of the regular spherical 2π/3-dodecahedron is the Coxeter
tetrahedron of type [3,3,5], so A∗

5 ×Z A∗
5 is the orientation-preserving sub-

group of index two in the corresponding Coxeter group (generated by the
reflections in the faces of the tetrahedron). Similarly, an action of A5 on
S3 comes from the orientation-preserving symmetry group of the regular
4-simplex, which induces a regular tessellation of S3 by five regular 2π/4-
tetrahedra having the Coxeter tetrahedron of type [3,3,3] as their charac-
teristic cell. There is another action of A5 on S3, obtained by doubling
the standard action of A5 on the 3-ball. See [Du] for a geometric descrip-
tion of the quotient orbifolds of the finite subgroups of SO(4) occurring in
the theorem.

2. Preliminaries

Any finite group G acting freely on the 3-sphere or on a homology 3-sphere
has cohomological period four and at most one involution. By [Mn], the
groups of period four and with at most one involution are exactly the fol-
lowing:

2.1. . The groups 1, D∗
4n, A∗

4, S∗
4 and A∗

5.

2.2. . The split metacyclic groups D2k(2n+1) with presentation

〈x, y |x2k
= 1, y2n+1 = 1, xyx−1 = y−1〉,

where k ≥ 2 and n ≥ 1. The group D4(2n+1) is isomorphic to D∗
4(2n+1).

2.3. . The groups P ′
8·3k with presentation

〈x, y, z |x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3k
= 1〉,

where k ≥ 1; these groups are extensions with normal subgroup the quater-
nion group Q8 of order eight (generated by x and y) and factor group the
cyclic group of order 3k. The group P ′

24 is isomorphic to A∗
4.

2.4. . The groups Q(8n, k, l), for relatively coprime integers 8n, k and l and
either:

(a) n odd and n > k > l ≥ 1, or
(b) n ≥ 2 even and k > l ≥ 1.
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2.5. . The groups P ′′
48r, with r ≥ 3 odd, which are extensions with normal

subgroup Zr and factor group S∗
4 such that the 3-Sylow subgroup is cyclic,

and such that the commutator subgroup A∗
4 of S∗

4 acts trivially on Zr and
the remaining elements by -identity. See [L, p. 195] for presentations of
these groups.

2.6. . The product of any of these groups with a cyclic group of relatively
prime order.

The groups of types 2.1–2.3 and their products with a cyclic group of
relatively prime order are exactly the groups that act orthogonally and freely
on S3. It has been shown in [L] that the groups of types 2.4(b) and 2.5 do
not act freely on a homology 3-sphere. The situation for the groups of type
2.4(a) is not completely understood: some of them act freely on homology
3-spheres, some do not, and it doesn’t seem to be known at present if any
of them can act on the 3-sphere (see [Mg]; see also [K, problem 3.37, p.
173]: in contrast to the claim in the updated version of the problem list
the classification of the finite groups acting on the 3-sphere remains open,
however).

We collect some other results needed for the proof of the main theorem.
For a proof of Proposition 1, see [B, Theorems 7.9 and 8.1], and [RZ, Lemma
3] for part (c).

Proposition 1.
(a) The fixed-point set of a diffeomorphism of prime period p of a Zp-

homology 3-sphere is either empty or connected.
(b) For a prime p, the group Zp×Zp does not act freely on a Zp-homology

3-sphere.
(c) For a prime p, let A ∼= Zp × Zp be a finite group of orientation-

preserving diffeomorphisms of a Zp-homology 3-sphere. Then there are
exactly two subgroups Zp of A with nonempty fixed-point sets (two dis-
joint circles) or, if p = 2, all three involutions in A may have nonempty
fixed-point sets which are three circles intersecting in exactly two points
(so A has two global fixed points).

Proposition 2. Let G be a finite group of orientation-preserving diffeo-
morphisms of a closed orientable 3-manifold. Suppose that G contains an
element h with nonempty connected fixed-point set. Then the normalizer
NGh of the subgroup generated by h in G is isomorphic to a subgroup of a
semidirect product Z2 n (Za × Zb), for some nonnegative integers a and b,
where Z2 acts on the normal subgroup Za × Zb by sending each element to
its inverse.

Proof. The fixed-point set of h is a simple closed curve K invariant under
the action of NGh. By a result of Newman [N] (see also [Dr]), a periodic
transformation of a connected manifold that is the identity on an open subset
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is the identity. Thus the action of an element of NGh is determined by its
action in a regular neighbourhood of K where it is a standard action on a
solid torus. Every element of NGh restricts to a reflection (strong inversion)
or to a (possibly trivial) rotation on K. The subgroup of rotations is abelian
and has index one or two in NGh. It has a cyclic subgroup (the elements
acting trivially on K), with cyclic quotient group, so it is abelian of rank at
most two. �

Proposition 3.
(a) The only finite abelian group of rank ≥ 3 that acts on a homology 3-

sphere preserving orientation is the elementary abelian 2-group Z2 ×
Z2 × Z2.

(b) Let H be a metacyclic group, with normal subgroup Zp and factor
group Zq, for a prime number p and an integer q ≥ 2. If H acts by
orientation-preserving diffeomorphisms on a homology 3-sphere, any
generator of Zq acts as ± identity on Zp.

Proof. (a) An abelian group A of rank three has subgroups Zp×Zp, for some
prime p ≥ 2. By Proposition 1, some element h of order p has nonempty
connected fixed-point set, so A is a semidirect product of the type described
in Proposition 2. The only abelian group of rank three of such type is the
group Z2 × Z2 × Z2.

(b) Follows from [Z2, Proof of Proposition 1]. �

3. Proof of the theorem

A finite group F is quasisimple if it is perfect (the abelianized group is trivial)
and the factor group F/Z(F ) of F by its center Z(F ) is a nonabelian simple
group. A group E is semisimple if it is perfect and the factor group E/Z(E)
is a direct product of nonabelian simple groups. A semisimple group E is a
central product of quasisimple groups, which are uniquely determined. Any
finite group G has a unique maximal semisimple subgroup E = E(G) (see
[S2, Chapter 6.6]).

Let G be a finite group of orientation-preserving diffeomorphisms of a ho-
mology 3-sphere, and E its maximal semisimple subgroup. If E is trivial it
is shown in [R, Section 4, case (a)] that G is solvable. We will assume in the
following that E is nontrivial. It is shown in [Z2] that the only nonabelian
simple group acting on a homology 3-sphere is the dodecahedral group A5.
Now it follows from [Z1, Proposition 3] that the maximal semisimple sub-
group E of G is of one of the following three types:

(1) E ∼= A5, and every involution in A5 has nonempty connected fixed-
point set.

(2) E ∼= A∗
5, and E acts freely.

(3) E ∼= A∗
5 ×Z A∗

5, and each factor A∗
5 acts freely.
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Since E is normal in G its centralizer CGE is also normal. Let C be
the subgroup of G generated by E and CGE. Then C is normal in G,
and the factor group G/C is a subgroup of the outer automorphism group
Out E = Aut E/InnE of E. The intersection of E and CGE is the center Z
of E, which implies

C ∼= E ×Z CGE.

Because the normalizer in C of any element in CGE contains E and hence
is nonsolvable, by Propositions 1(a) and 2 the group CGE acts freely.

We now consider separately the three cases above.

3.1. . Suppose first that E ∼= A5, and that every involution in A5 has
nonempty connected fixed-point set.

Then E contains a subgroup A ∼= Z2 × Z2 (the Sylow 2-subgroup of A5).
Let h be a nontrivial involution in A. As all three involutions in A have
nonempty fixed-point set, by Proposition 1(c) the two other involutions in
A act as reflections (strong inversions) on the fixed-point set of h. The
centralizer CGE of E in G is contained in the centralizer CGA of A in G,
which in turn is contained in the centralizer CGh of h in G. Now Proposi-
tions 2 and 3 imply that CGA, and hence also CGE, is an elementary abelian
2-group of rank at most three. Then C is isomorphic to A5 or to A5 × Z2.

The outer automorphism group of A5 has order two and is generated,
modulo inner automorphisms, by conjugation of A5 with any odd permuta-
tion in the symmetric group S5. Thus C has index one or two in G. In the
symmetric group S5 the equation xyx−1 = y2 holds for the cycles x = (4532)
of order four and y = (12345) of order five. Suppose that C has index two
in G. Then there is an element in G that induces by conjugation the same
automorphism of A5 as the cycle x, which contradicts Proposition 3. Thus
G = C, and G is isomorphic to A5 or A5 × Z2.

3.2. . Suppose that E ∼= A∗
5. Since the outer automorphism group of A∗

5

has order two, C ∼= A∗
5×Z CGE has index one or two in G. Representing the

elements of A∗
5
∼= SL(2, 5) by 2× 2-matrices of determinant one, the unique

nontrivial outer automorphism is given by conjugation with the matrix of
order four A :=

(
2
0

0
1

)
. The equation ABA−1 = B2 holds for the matrix

B :=
(

1
0

1
1

)
representing an element of order five in SL(2, 5).

Supposing that C has index two in G we get again a contradiction to
Proposition 3. Thus G = C ∼= A∗

5 ×Z CGE.
Recall that CGE acts freely, hence CGE is isomorphic to one of the groups

in the list 2.1–2.6 (actually, it cannot be isomorphic to A∗
5 because otherwise

E would not be the maximal semisimple subgroup of G; for the following
arguments this makes no difference, however).

We denote by Q8 = {±1,±i,±j,±k} the quaternion group of order eight
(isomorphic to D∗

8); the center Z ∼= Z2 of Q8 is generated by −1.
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Lemma. For a positive integer m > 1, the groups Q8 ×Z Q8 × Zm and
Q8×Z Q8×Z Z2m do not act on a homology 3-sphere preserving orientation.

Proof. The central product Q8 ×Z Q8 has the subgroup
{
(±1, 1), (±i, i),

(±j, j), (±k, k)
}

isomorphic to Z2 × Z2 × Z2. Now the lemma follows from
Proposition 3(a). �

Using the lemma we shall exclude various types of groups 2.1–2.6.

(i) Suppose that CGE is isomorphic to a group P ′
8·3k of type 2.3. This con-

tains a subgroup Q8×Z3k−1 . The Sylow 2-subgroup of A∗
5 is the quaternion

group Q8
∼= D∗

8, hence G ∼= A∗
5×ZCGE contains a subgroup Q8×ZQ8×Z3k−1 .

By the lemma this is possible only for k = 1, so CGE is isomorphic to the
binary tetrahedral group A∗

4
∼= P ′

24.

(ii) Suppose that CGE is isomorphic to a group D2k(2n+1) of type 2.2.
Then G ∼= A∗

5×Z D2k(2n+1) contains a subgroup Q8×Z Z4 where Z4 is gener-
ated by u := x2k−2

(see the presentation of D2k(2n+1) in 2.2). Suppose k > 2.
The subgroup of G containing the elements (±1, 1) and (±i, u) is isomor-
phic to Z2 × Z2 (note that u2 is the unique central involution in D2k(2n+1)

that is identified with −1 in Q8). By Proposition 2, the central involution
(−1, 1) = (1, u2) in G has empty fixed-point set, so by Proposition 1 we can
assume that the involution h := (i, u) has nonempty connected fixed-point
set. The centralizer of h in G contains the generators x and y of D2k(2n+1).
Then both x and y act as rotations along the circle of fixed points of h (and
not as reflections, see the proof of Proposition 2). This implies that x and
y commute, which is a contradiction. Thus k = 2 and D2k(2n+1) = D4(2n+1)

is isomorphic to the binary dihedral group D∗
4(2n+1).

(iii) Suppose that CGE is isomorphic to a group P ′′
48r of type 2.5. As CGE

acts freely, it follows from [Mn, Lemma 2] that r = 3k, and by [L, Corollary
4.17] the group P ′′

48·3k does not act freely on a homology 3-sphere, for k ≥ 1.
A direct argument that, for r > 1, the group G ∼= A∗

5×Z P ′′
48r does not act

on a homology 3-sphere is as follows: the group P ′′
48r has S∗

4 as a quotient; the
preimage of A∗

4 ⊂ S∗
4 in P ′′

48r is a group of type 2.3 and contains a subgroup
Q8 × Zr [see part (i) of the proof]. Then G has a subgroup Q8 ×Z Q8 × Zr

and the lemma implies r = 1, so CGE is isomorphic to the binary octahedral
group S∗

4
∼= P ′′

48.

By (i)–(iii), the remaining possibilities for CGE are the groups of type 2.1,
2.4 and the product of any of these groups with a cylic group of relatively
prime order (type 2.6).

Suppose that CGE is a product of one of the groups D∗
4n with n even, A∗

4,
S∗

4, A∗
5 or Q(8n, k, l) with a cyclic group Zm. Then CGE has a subgroup

Q8×Zm, so G ∼= A∗
5×Z CGE has a subgroup Q8×Z Q8×Zm and the lemma

implies m = 1.
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By [L, Corollary 4.15] the groups Q(8n, k, l) with n even do not act freely
on a homology 3-sphere. This leaves for G exactly the possibilities (ii), (iii)
and (iv) of the theorem.

3.3. . Finally, suppose that E ∼= A∗
5×Z A∗

5. Then E has a subgroup Q8×Z

Q8. It follows from the lemma that, for C ∼= E ×Z CGE, the group CGE is
equal to Z. Thus C = E ∼= A∗

5 ×Z A∗
5.

The outer automorphism group of E ∼= A∗
5 ×Z A∗

5 is the dihedral group
of order eight: considering centralizers of elements, each element (x, 1) is
mapped to an element of the form (y, 1) or (1, y), so each automorphism of
E either preserves each factor (and the subgroup generated by such auto-
morphisms is isomorphic to Z2 × Z2) or exchanges them. It follows that E
has index at most eight in G.

It follows as in case 3.2 of the proof of the theorem that any nontrivial
outer automorphism of E induced by conjugation with an element of G has
to interchange the two factors of E ∼= A∗

5 ×Z A∗
5; in particular, E has index

at most two in G. Up to inner automorphisms, an outer automorphism α
of order two of A∗

5 ×Z A∗
5 and interchanging its two factors is of the form

α(x, y) = (β(y), β(x)), for an automorphism β of A∗
5.

Suppose that α is induced by conjugation by an element g in G. We
consider the subgroup A5 of A∗

5×Z A∗
5 consisting of all elements of the form

(x, x). If β represents the unique nontrivial outer automorphism of A∗
5 then

conjugation by g induces the unique nontrivial outer automorphism of A5.
By the argument in case 3.1 of the proof of the theorem this is not possible,
so we can assume β is the trivial automorphism of A∗

5. Then α2 is the trivial
automorphism of A∗

5 ×Z A∗
5, and g induces the trivial automorphism of A5.

Proposition 2 implies that g acts without fixed points (because its centralizer
contains A5).

There are the two possibilities g2 = 1 or g2 = z (where z denotes the
nontrivial element of Z). If g2 = 1 then the subgroup of G generated by g
and z is isomorphic to Z2 × Z2, and Proposition 1 implies that g or z has
nonempty fixed-point set, which is not possible by Proposition 2. If g2 = z
then g has order four and G contains a subgroup A5 × Z4 and hence also a
subgroup Z2 × Z2 × Z4, which is not possible by the lemma.

Thus G = E, and g is isomorphic to A∗
5 ×Z A∗

5. This finishes the proof of
the theorem.
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