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By a cone is meant a warped product I ×g F, where I is an interval and the
warping function g : I → R≥0 lies in FK , i.e., satisfies g′′ + K g = 0. Cones
include metric products and linear cones (K =0), hyperbolic, parabolic, and
elliptical cones (K < 0), and spherical suspensions (K > 0). A cone over a
geodesic metric space supports a natural K -affine function, that is, a func-
tion whose restriction to every unit-speed geodesic is in FK . Conversely,
the main theorems of this paper show that on an Alexandrov space X of
curvature bounded below or above, the existence of a nonconstant K -affine
function f forces X to split as a cone (subject to a boundary condition or
geodesic completeness, respectively).

For K = 0 and curvature bounded below, X splits as a metric product
with a line; this case is due to Mashiko (2002). Some special cases for
complete Riemannian manifolds were discovered much earlier: by Obata
(1962), for K > 0, with the strong conclusion that X is a standard sphere;
and by Innami (1982), for K = 0. For K < 0, with the additional assump-
tion that f has a critical point, our theorem now gives the dual to Obata’s
theorem, namely, X is hyperbolic space.

1. Introduction

Cone constructions are intimately related to the study of spaces with curvature
bounds. These fundamental constructions allow control of curvature bounds ei-
ther above or below in the sense of Alexandrov (see definitions in Section 4),
and appear as model spaces in rigidity theorems. The simplest cone construction
is Cartesian product with a line. By Toponogov’s Splitting Theorem [1959], a
nonnegatively curved, complete Riemannian space that contains a line splits as a
Cartesian product; the extension to Alexandrov spaces is due to Milka [1967]. By
the Flat Strip Theorem, in a nonpositively curved Alexandrov space the convex hull
of a collection of asymptotic lines splits as a Cartesian product (see [Bridson and
Haefliger 1999]). Other cone constructions were introduced by Berestovskii in the
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context of curvature bounded above [Berestovskii 1983; Aleksandrov et al. 1986].
(See [Bridson and Haefliger 1999, Ch. II.3].) In the context of curvature bounded
below, cone constructions were discussed by Burago, Gromov and Perelman in
[Burago et al. 1992, §4], namely, linear, hyperbolic, parabolic and elliptic cones
and spherical suspensions. These constructions can be traced to their classical roots
by noting that En is the linear cone over Sn−1; Sn is the spherical suspension of
Sn−1; and H n is the hyperbolic cone over H n−1, the parabolic cone over En−1,
and the elliptic cone over Sn−1.

Here we introduce the notion of K -affine functions on geodesic metric spaces,
and prove that in the presence of a curvature bound, such functions correspond
precisely to the cone constructions. Our cone splitting theorem holds both for Alex-
androv spaces of curvature bounded below (CBB), subject to a necessary boundary
condition, and for geodesically complete Alexandrov spaces of curvature bounded
above (CBA). In the latter setting, not only do the above-mentioned cones appear,
but also spaces formed by gluing them together on their vertices.

For Alexandrov spaces of CBB, the case K = 0 (that is, the Cartesian product
case) of our theorem is due to Mashiko [2002]. A new argument is needed to
embed Mashiko’s theorem in a family of splitting theorems, which moreover has
a dual family for spaces of CBA.

Alexandrov spaces play a key role in the convergence theory of spaces with
curvature bounds, and our cone splitting theorems should be a tool to identify limit
spaces. Our theorems exhibit a new rigidity phenomenon: namely, if X carries a
nonconstant K -affine function but does not have K as a curvature bound, then X
is a Cartesian product or a hyperbolic cone.

2. Main theorems

Let FK denote the family of (one-variable) solutions of the differential equation
f ′′

+ K f = 0. Then ( f ′)2
+ K f 2 is constant for f ∈ FK . By definition, a K -affine

function is a continuous function whose restriction to every unit-speed geodesic
lies in FK . We single out a special basis of FK : csK and snK are the functions in
FK such that the value and derivative at 0 are 1, 0 and 0, 1, respectively.

By a cone we mean a warped product I ×g F , where I is an interval and the
warping function g : I → R≥0 is in FK . For K = 0, we obtain Cartesian products
and linear cones, defined by g = B and g = Bx , respectively; for K > 0, spherical
suspensions, with g = B sin

√
K x ; and for K <0, hyperbolic, parabolic and elliptic

cones, with g = B cosh
√

−K x, B exp
√

−K x, and B sinh
√

−K x , respectively.
(These are precisely the cones described somewhat differently in [Burago et al.
1992, §4].)

Cones over geodesic metric spaces support K -affine functions (Theorem 6.1).
Moreover, on an Alexandrov space X of CBB or CBA, the existence of a non-
constant K -affine function, subject to a boundary condition if the boundary is



A CONE SPLITTING THEOREM FOR ALEXANDROV SPACES 3

nonempty for CBB, and geodesic completeness for CBA, forces the space to split
as a cone (Theorems 3.1 and 3.2). The following two theorems summarize the
correspondence between K -affine functions and cone structures. Linear cones are
the only type not occurring on the following lists; this is because the natural affine
functions associated with them are constant functions, which have no structural
implications.

Theorem 2.1. Let X be a complete, finite-dimensional Alexandrov space of CBB by
K . Then X carries a nonconstant K -affine function f that satisfies the boundary
condition (†) below if and only if K ≤ K and X splits as a cone over a complete,
finite-dimensional Alexandrov space F , in one of the following ways:

(1) K > 0 and X = [0, π/
√

K ]×snK x F , a spherical suspension of an Alexandrov
space F of CBB by 1.

(2) K < 0 and X = [0, ∞)×snK x F , an elliptic cone over an Alexandrov space F
of CBB by 1.

(3) K < 0 and X = R ×exp
√

−K x F , a parabolic cone over an Alexandrov space
F of CBB by 0.

(4) K < 0 and X = R×cosh
√

−K x F , a hyperbolic cone over an Alexandrov spaces
F of CBB by K .

(5) K = 0 and X = R × F , a Cartesian product where F is an Alexandrov space
of CBB by K .

In cases (1), (2) and (3), X has CBB by K .

If ∂ X 6= ∅, the boundary condition on f in Theorem 2.1 is:

(†) The tautological extension of f to the double of X is K -affine.

Case (5) of Theorem 2.1 was proved by Mashiko [2002], who used different
regularity hypotheses on f . Here we merely assume (†) at boundary points, while
in Mashiko’s article, f is assumed of D2,2 class. This means that

(a) the differential D f p of f is well defined and continuous on the direction space
6p (= unit tangent vectors) at every p ∈ X (“ f ∈ D1 ”), and similarly for the
differential of D f p on the direction space of 6p at every u ∈ 6p (“ f ∈ D2 ”);
and

(b) the average directional derivative of f at any p ∈ X vanishes, and similarly
for D f p at any u ∈ 6p.

However, a K -affine function (more generally, a continuous “λ-concave” func-
tion) on a space with curvature bounded below is locally Lipschitz on the interior, as
follows from the theory of quasigeodesics [Petrunin ≥2008; Perelman and Petrunin
1994]. Indeed, locally in the interior, geodesics can be extended as quasigeodesics
for a fixed distance, and the λ-concavity inequality ( f ◦ γ )′′ ≤ −2λ holds on the
extensions [Perelman and Petrunin 1994, 5.1, 6.1]. Similarly, a K -affine function
on a locally compact, geodesically complete space of curvature bounded above is
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locally Lipschitz. For any locally Lipschitz K -affine f on a space of curvature
bounded below or above, D f p is well-defined and Lipschitz (see [Kleiner 1999]),
and is a 1-affine function on a space with curvature bound 1 (see Section 4). In
particular, condition (a) always holds in the interior of X if f is K -affine (in
fact f ∈ Dr , with 1 ≤ r ≤ dim X ), and we shall show that the same is true for
condition (b). At points of ∂ X , we have chosen the more geometric condition (†).

An analogue of Theorem 2.1 holds in the CBA setting if we assume local com-
pactness and geodesic completeness (meaning that every geodesic can be extended
to R). In addition to the spaces of type (1)–(5) listed in Theorem 2.1, we find that
K -affine functions for K 6=0 can also be supported by spaces constructed by gluing
together those of type (1) and (2). For example, consider a necklace of m copies
of Sn , each glued at its north and south poles to the adjacent ones. If m is even,
this space carries an 1-affine function whose restriction to each copy of Sn is the
cosine of distance from one of the poles.

Theorem 2.2. Let X be a complete, locally compact, geodesically complete Alex-
androv space of CBA by K . Then X carries a nonconstant K -affine function f if
and only if K ≥ K and X splits as a cone over a complete, geodesically complete
Alexandrov space F , in one of the following ways:

(1) K > 0 and X is obtained from a family of spherical suspensions

Xα = [0, π/
√

K ] ×snK x Fα,

where the Fα are CAT(1) spaces, by gluing a pole of Xα1 to a pole of Xα2 ,
with α2 6= α1, so that any loop in the gluing pattern contains an even number
of Xα’s (the “even loop condition”).

(2) K < 0 and X = [0, ∞) ×snK x F is an elliptic cone over a (not necessarily
connected) CAT(1) space.

(3) K < 0 and X = R ×exp
√

−K x F , a parabolic cone over an Alexandrov space
F of CBA by 0.

(4) K < 0 and X = R×cosh
√

−K x F , a hyperbolic cone over an Alexandrov space
F of CBA by K .

(5) K = 0 and X = R × F , a Cartesian product, where F is an Alexandrov space
of CBA by K .

In cases (1), (2) and (3), X has CBA by K .

In cases (1) and (2) of Theorems 2.1 and 2.2, the fiber F is the direction space
at a critical point of f . If X is Riemannian, this means F = Sn−1. The following
Riemannian rigidity theorem is a corollary. For K > 0, it is due to Obata [1962]
(the only reference we know that considers K -affine functions for K 6= 0), and for
K = 0, to Innami [1982]. We shall see that these two Riemannian rigidity theorems
have a companion for K < 0:



A CONE SPLITTING THEOREM FOR ALEXANDROV SPACES 5

Corollary 2.3. Suppose X is a complete Riemannian manifold without boundary,
carrying a nonconstant K -affine function. Then X is isometric to Sn(K ) if K > 0,
to a Cartesian product with a line if K = 0, and to H n(K ) if K < 0 and f has a
critical point.

3. Structure of spaces carrying K -affine functions

Now we give more specific information on the “only if” implication in Theorems
2.1 and 2.2. A critical point of f is a point p such that D f p = 0. A gradient
vector of f at p is an element ∇ f p of the tangent cone C p = [0, ∞)×x 6p whose
direction u ∈ 6p is a maximum point of D f p and whose length is |∇ f p| = D f p(u).
We say u is a gradient direction, and denote it by ∇̂ f p.

Theorem 3.1. Let X be a complete, finite-dimensional Alexandrov space with
curvature bounded below by K . If X carries a nonconstant K -affine function f
that satisfies the boundary condition (†), then K ≤ K and:

(a) If f has a critical point p, either:

(1) K > 0, f = λ csK dp, and X = [0, π/
√

K ]×snK x F , a spherical suspen-
sion of the direction space F = 6p.

(2) K < 0, f = λ csK dp, and X = [0, ∞)×snK x F , an elliptic cone over the
direction space F = 6p.

(b) If f has no critical point, either:

(3, 4) K < 0, |∇ f |
2
+ K f 2

= E for some constant E ≥ 0, and X = R ×g F ,
a hyperbolic or parabolic cone with warping function g ∈ FK , where
g ◦ πR = |∇ f | and the fiber F has curvature ≥ K E. If E = 0, we have
f = exp

√
−K dZ , where Z = f −1(1). If E > 0, we have

f =
√

−E/K sinh
√

−K dZ ,

where Z = f −1(0).
(5) K = 0, f = λdZ , where Z = f −1(0) and dZ is signed distance to Z , and

X = R × F , a Cartesian product with the factor F isometric to Z.

Theorem 3.2. Let X be a complete, locally compact, geodesically complete Alex-
androv space with curvature bounded above by K . If X carries a nonconstant K -
affine function f , then K ≥ K and the conclusions of Theorem 3.1 hold, but with
gluings satisfying the even loop condition allowed in (1), and “ ≤ K E” instead of
“ ≥ K E” in (3, 4).

The proof will be in the following steps. Steps (i) and (ii) for the CBB case will
be similar to arguments in [Mashiko 1999; 2002; Perelman and Petrunin 1994], but
the rest of the proof uses a new method. A gradient geodesic of f is a geodesic
with right-hand tangents everywhere equal to a gradient direction of f .
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(i) At any noncritical point p ∈ X , the gradient directions ∇̂(± f )p are unique,
and the direction space 6p is a spherical suspension of {v ∈ 6p : D f p(v) = 0}

with ∇̂(± f )p as poles.
(ii) Let p be a noncritical point of f and let A be the level set f −1(r) for f (p) <

r < sup f . Then there is a unique minimizer from p to A, and it is the unique
gradient geodesic from p to A.

(iii) The level sets of f are equidistant from one another, |∇ f | is constant on each
level set, and |∇ f |

2
+ K f 2 is constant on X .

(iv) The level sets of f are homothetic.

4. Background

A CAT(K ) space is a metric space in which any two points at distance less than
π/

√
K (=∞ if K ≤0) are joined by a distance-realizing geodesic, and any triangle

4 of perimeter less than 2π/
√

K is thinner than its model triangle in the simply
connected, 2-dimensional space form SK of curvature K . That is, the distance be-
tween any two points of 4 is no greater than the distance between the corresponding
points on a triangle with the same side lengths in SK . We assume the space is in-
trinsic, but allow infinite distance between points not joined by a rectifiable path. A
metric space has CBA by K if it is locally CAT(K ). For CBB by K , inequalities are
reversed. An Alexandrov space of CBB by K is a complete, locally compact length
space satisfying triangle comparisons for triangles in some neighborhood of each
point. Here, we assume connectedness, but also allow the exceptional case of two
points. We shall only consider such spaces of finite dimension [Burago et al. 1992;
2001]. There is no distinction between the local and global triangle comparison
properties in complete CBB spaces [Burago et al. 1992], or in complete, simply
connected spaces with CBA by K ≤ 0 ([Gromov 1981; Alexander and Bishop
1998]; see also [Ballmann 1995; Bridson and Haefliger 1999]). (In the case of
CBB by K > 0, circles of length > 2π/

√
K and intervals of length > π/

√
K are

understood to be excluded.) Recent texts and monographs on Alexandrov spaces
include [Ballmann 1995; Berestovskii and Nikolaev 1993; Bridson and Haefliger
1999; Burago et al. 2001; Buyalo 1995; Jost 1997; Plaut 2002]; see also [Gromov
1999, §1.19+].

The direction space 6p at a point p has CBB by 1 in a CBB space [Burago
et al. 1992], and is CAT(1) in a CBA space [Nikolaev 1995]. If f is Lipschitz and
K -affine, the differential D f p is well defined and 1-affine on 6p, and its extension
to a homogeneous function of degree 1 on the tangent cone C p = [0, ∞) ×x 6p
is affine. Indeed, both f and − f are FK -convex, and so D f p and −D f p inherit
F1-convexity on 6p, as is discussed in [Alexander and Bishop 2003].

One property not inherited by the tangent cone in the general case of CBA
is geodesic completeness; that is why we have assumed local compactness. The
following inheritance property is used repeatedly to get briefer proofs in the CBA
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case, and we do not know alternative proofs of all parts in the non locally compact
case.

Theorem 4.1 [Buyalo 1995, Theorem 6.4]. If a complete, locally compact CBA
space is geodesically complete, so are its direction spaces and tangent cones. Ev-
ery direction is represented by a geodesic.

5. Proof of Theorems 3.1 and 3.2

Throughout this section, f is a nonconstant K -affine function on X , where X is
either a complete CBB space with empty boundary (see Remark 5.5) or a complete,
locally compact, geodesically complete CBA space. Then f is locally Lipschitz
(see Section 2). We carry out the steps listed in Section 3, beginning with a lemma
on maximum points.

Lemma 5.1. If p is a local maximum point of f , then p is a critical point of f ,
K 6= 0, and f = f (p) csK dp.

Proof. For the CBB case the essential part of the proof has been given in [Perelman
and Petrunin 1994, Lemma 6.2]. It proceeds by induction on dimension. For
dim X = 1 the space consists of a single geodesic; clearly f = f (p) csK dp. If the
result is true for dimensions < n = dim X , then we can apply it to D f p on 6p at
a maximum point u. Thus we conclude that D f p = D f p(u) csK dp, and since p
is a maximum point, D f p ≤ 0. Hence D f p(u) = 0 and then D f p = 0. Since f is
K -affine, the initial conditions along any geodesic starting at p determine f and
are simply that f (p) is the initial value and D f p = 0 is the initial derivative. Hence
f = f (p) csK dp. K 6= 0 by the assumption that f is nonconstant.

For the CBA case we again have D f p ≤ 0. But for all u ∈ 6p, a geodesic
extension determines an opposite direction v for which D f p(v) = −D f p(u) ≤ 0,
so D f p(u) = 0. The formula for f follows from the initial conditions as before. �

Proof of Step (i), CBB. Suppose p is a noncritical point of f . Since the function
h = D f p on the compact space 6p is 1-affine and nonzero, it has a maximum point
u, and h = h(u) cos du by Lemma 5.1. For −h there is also a maximum point v,
which must be at distance π from u, since the formula yields critical points only at
multiples of π and the diameter of 6 is at most π. Moreover, since u and v realize
the maximum possible diameter, 6 is the spherical suspension of their midpoint
set, h−1(0). �

Proof of Step (i), CBA, topological structure. The existence of maximum and min-
imum points for h = D f p again follows from the compactness of 6p. By Lemma
5.1, local extrema are isolated critical points of h, at least π apart, with the local
maximum values the same, nonzero and the negative of the local minimum values.
Then there is a unique maximum (and minimum) point, since if there were two,
representative geodesic segments beginning at p could be joined to form a longer
geodesic segment with those two directions opposite at p.



8 STEPHANIE B. ALEXANDER AND RICHARD L. BISHOP

Now let u, v be the maximum and minimum points. For any z ∈ h−1(0) there
is a unique minimizer of length π/2 connecting z to u, and similarly for v. These
minimizers vary continuously with z, and for every other direction w the unique
minimizer to the closer of u, v can be extended to reach h−1(0). This establishes
the topological suspension structure of 6p over h−1(0). We delay establishing the
metric structure until after the next step. �

Proof of Step (ii). Let p be a noncritical point of f , and A be the level set f −1(r)

for f (p) < r < sup f . First we show there is a minimizer from p to A, and any
such is a gradient geodesic. If f has a maximum point q, then f = f (q) csK dq
and a minimizer γ from p to q crosses A. It is a gradient geodesic of f up to
q , since the tangent directions to any level set of dq make an angle of π/2 with
the minimizers from q . Those tangent directions constitute exactly the zero set of
D f p, and as we just showed in the preceding step, the directions at angle π/2 are
∇̂(± f )p.

If sup f is not realized, A is nonempty, because for any q such that r < f (q) <

sup f , a minimizer from p to q must cross A. Let γ be a minimizer from p to A.
Then γ ′(0) maximizes D f p among directions in 6p that are tangent to geodesics
to A. This is because any other geodesic from p to its first intersection with A is
at least as long as γ ; along such a geodesic, f is a strictly increasing element of
FK , uniquely determined by its two end values and the length, and having initial
derivative no more than that for γ . Thus, to show that γ is a gradient geodesic,
it suffices to show that max D fγ (t) is realized by a direction tangent to a geodesic
extending to A. This is certainly true for CBA. For CBB, it can be obtained using
the properties of quasigeodesics developed in [Perelman and Petrunin 1994]; but a
more elementary argument is not long, so we give it now.

We may take γ (t) = p, and construct a sequence of geodesics γi from p to A,
with initial directions converging to ∇̂ f p. The end in A of each of these geodesics
is the end of an approximate gradient curve σi constructed by transfinite induction.
We obtain σi as a chain of geodesic segments and limit points defined for each
ordinal. Specifically, start with p1 = p; for a successor ordinal α + 1, attach
a geodesic segment, starting at pα and ending at pα+1 for which f (pα+1) ≤ r ,
with initial direction at distance less than 1/ i from ∇̂ f pα

; for a limit ordinal α let
pα = limβ<α pβ . The construction needs a few remarks for justification. There is
a geodesic τ on which f increases, which starts at p and ends after crossing A.
Suppose the initial direction of τ is not ∇̂ f p. Then the rate of increase of f along σi ,
for i sufficiently large, will be greater than on τ at points with the same arclengths
from p. Thus the points pβ in the definition of pα for a limit ordinal α will have
Cauchy subsequences whose limit is pα. Moreover, the 2-point determination of
f ◦γi is based on an even shorter curve than σi for the amount of change in f , so the
initial derivative of f must be greater than for σi . Therefore, limi→∞ σ ′

i (0) = ∇̂ f p.
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Then a convergent subsequence of σi will have a limit geodesic γ tangent to ∇̂ f p,
and γ will be no longer than any other geodesic from p to A.

It remains to show the uniqueness of gradient geodesics. We have already proved
the uniqueness of the direction at a point. For CBB, uniqueness is immediate
because geodesics cannot bifurcate. For CBA, it is certainly possible, even in
a space carrying a K -affine function, for geodesics to bifurcate. Examples are
given by applying Theorem 6.1 to a fiber F with geodesic bifurcations. However,
there can be no bifurcating pair of gradient geodesics of a K -affine function. This
follows from Lemma 5.2 below, according to which the distance between gradient
geodesics connecting two level sets is governed by a first-order differential equation
with Lipschitz defining function having 0 as a solution. �

Completion of proof of Step (i), CBA. We must show that the metric stucture of 6p
is that of a spherical suspension, or equivalently, that any two points of the cone
C p lie in a flat strip. Since D f p is a nonzero affine function on C p, the level sets
are totally convex and the nearest point projection to a level set is nonexpanding.
As we have just seen, this means that gradient geodesics extend to all of R and
have bounded separation in both directions. Thus the Flat Strip Theorem applies
[Bridson and Haefliger 1999, p. 182]. �

The remaining steps will depend on the following lemma, as did the uniqueness
of gradient geodesics in the CBA case of Step (ii). The lemma is local, but we
shall not lengthen the statement with local specifications, except to note that the
distances w(t) must be sufficiently small when K > 0 that snK w(t) is never 0.

Lemma 5.2. Let A′
= f −1(a′) and A = f −1(a) be level sets for which no critical

value of f is between a′ and a. Let γ−, γ+ be minimizers from p−, p+ ∈ A′ to
A, parametrized by the values t of f , and denote by E−, E+ the constant values
of |∇ f |

2
+ K f 2 along γ−, γ+. Then the distance 2w = 2w(t) = d(γ−(t), γ+(t))

satisfies the differential equation

(5–1) 2
dw

dt
= −

t K snK w

csK w

(
1

E− − K t2 +
1

E+ − K t2

)
.

Proof. By Step (ii), γ− and γ+ are reparametrized gradient geodesics (uniqueness
is not assumed). We use first variation for 2w, which requires us to prove that
various limits of minimizers connecting γ−(t) and γ+(t) make the same angles
with γ− and γ+ [Burago et al. 2001]. Along a minimizer ρt between γ−(t), γ+(t)
parametrized by arc length, f ◦ ρt(u) = mt csK (u), −w(t) ≤ u ≤ w(t). Let θ− be
the angle between ρt and γ−, and θ+ be the angle between oppositely directed ρt
and γ+. Then

D fγ−(t)(ρ
′

t(−w(t))) =
∣∣∇ fγ−(t)

∣∣ cos θ− = mt cs′

K (−w(t))

= −mt K snK (−w(t)) = mt K snK (w(t)),
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and
∣∣∇ fγ+(t)

∣∣ cos θ+ is the same, by the symmetry of f ◦ ρt . Thus cos θ± does
not depend on the choice of minimizer ρt . Evaluating f at an end of ρt gives
t = mt csK (w(t)), mt = t/ csK (w(t)).

By first variation,

2
dw

dt
= −

(
cos θ−

ds−

dt
+ cos θ+

ds+

dt

)
= − cos θ−

∣∣∇ fγ−

∣∣−1
− cos θ+

∣∣∇ fγ+

∣∣−1

= −mt K (snK w)
∣∣∇ fγ−

∣∣−2
− mt K (snK w)

∣∣∇ fγ+

∣∣−2
,

from which (5–1) follows. �

In order to apply the differential equation (5–1), we need two lemmas:

Lemma 5.3. The gradient-length function |∇ f | is locally Lipschitz.

Proof. This is clear if f has a critical point p, since then |∇ f | =
∣∣ f (p)K snK dp

∣∣
and dp is Lipschitz. Otherwise, we restrict to an open set on which f has Lipschitz
constant C . It has been shown for Step (ii) that for a sufficiently small closed ball
Br (p), the gradient geodesic from the center p is the minimizer to the maximum
point q of f on the ball and q is on the boundary of the ball. Define F(p, r)= f (q).
Then F(p, r + s) = f (q ′), where d(q, q ′) = s; hence

F(p, r) ≤ F(p, r + s) = f (q) + f (q ′) − f (q) ≤ F(p, r) + Cs.

Then Br (p) ⊂ Br+s(p′), where s = d(p, p′), so

F(p, r) = f (q) ≤ F(p′, r + s) = f (q ′′) ≤ F(p′, r) + Cd(p, p′),

where q ′′
∈ Br+s(p′). That is, F(p, r) is Lipschitz continuous in both variables.

Along gradient geodesics, f satisfies f = f (p) csK (s)+|∇ f |(p) snK (s), where
s is arc length. Then f (q) = f (p) csK r + |∇ f |(p) snK (r), so

|∇ f |(p) = ( f (q) − f (p) csK r)(snK r)−1
= (F(p, r) − f (p) csK r)(snK r)−1.

Hence,∣∣|∇ f |(p)−|∇ f |(p′)
∣∣ =

∣∣F(p, r)− f (p) csK r − F(p′, r)+ f (p′) csK r
∣∣ (snK r)−1

≤ C(1+csK r)(snK r)−1d(p, p′). �

Lemma 5.4. If A = f −1(a) is a noncritical level set, the nearest point map from a
neighborhood of A to A is locally Lipschitz.

Proof. By Lemma 5.2, the distances 2w(a′) between pairs of points on a nearby
level set f −1(a′) are initial values for the differential equation (5–1) and the extrin-
sic distances in A are the final values 2w(a). The right-hand side of (5–1) depends
on the parameters E− = |∇ f p−

|
2
+ K f (p−)2 and E+ = |∇ f p+

|
2
+ K f (p+)2. By

Lemma 5.3 and the assumption on f , this dependence is locally Lipschitz. Thus
2w(a) must also be a locally Lipschitz function of p±, and hence also the nearest-
point map between level sets.
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More generally, the local Lipschitz property of the nearest point map from
a whole neighborhood of A to A follows from that for pairs of points on the
same level set, using the triangle inequality. Indeed, for p−, p+ in a neighbor-
hood of A, let p′

−
be the nearest point to p− on the level set through p+. Then

d(p′
−
, p+) ≤ d(p′

−
, p−)+d(p−, p+) ≤ 2d(p−, p+), so that the Lipschitz constant

for the projection from a neighborhood is at most twice that for the projection from
level sets. �

Now we are ready to complete steps (iii) and (iv), and Theorems 3.1 and 3.2.
Comparing with Mashiko’s proof [2002] for CBB by 0, we note that the analogue
there of Step (iii) is a global argument that fails for CBB by K <0. Another concern
here is the intrinsic geometry of level sets; since they are not totally geodesic when
K 6= 0, we must consider how to transmit a precise curvature bound from a warped
product to its fiber.

Proof of Step (iii). By Lemma 5.4, any pair p± ∈ A′ is joined by a rectifiable
curve in A′, since the projection to A′ of any rectifiable curve connecting them in
a neighborhood of A′ is again rectifiable. For such a join a direction exists almost
everywhere. Those directions and their images under the nearest point map to A are
perpendicular to the gradient directions of f , so that by first variation the gradient
geodesics have constant length as their initial points move along the curve in A′.
This proves equidistance, from which the other claims follow. �

Proof of Step (iv). By Step (iii) the constants E± in the differential equation of
Lemma 5.2 for 2w(t) are the same and independent of p±. Thus the differential
equation gives a constant ratio between the “input” initial value w(a′) and the
“output” final value w(a) which depends only on a′, a and that initial value. Then
lim w(a)/w(a′) as w(a′) → 0 is the magnification factor on intrinsic distances of
the nearest-point map from A′ to A. �

Proof of Theorems 3.1 and 3.2. We must identify the magnification factor of
Step (iv) in terms of f and choose a level set of f , appropriately scaled, to be
the fiber F of a warped product. To identify the magnification factor we again
refer to the differential equation of Lemma 5.2, writing E± = E = |∇ f |

2
+ K f 2. It

is also more convenient to regard w=w(t, v), with v =w(a′) as the initial value, as
an analytic function of two variables (since the defining function is analytic). Then
the magnification factor at t is z(t) = (∂w/∂v)(t, 0) = limv→0

(
w(t, v)/v

)
, since

w(t, 0)=0. Thus dz/dt = (∂2w/∂t∂v)(t, 0)= (∂2w/∂v∂t)(t, 0)= limv→0
(

∂w
∂t /v

)
.

Substituting (5–1) gives

dz/dt = −K tz(E − K t2)−1.

This is easily solved by separation of variables:

z =

√
E − K t2

/√
E − K (a′)2 = |∇ f | f =t

/
|∇ f | f =a′ .
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It follows that the closure of each component of X − {critical points} is a warped
product, Xα = I ×gα

Fα, and the lift of gα to Xα is a constant multiple of |∇ f |.
g ∈ FK implies Xα contains totally geodesic surfaces isometric to domains in SK
(namely, those projecting to geodesics of the fiber). Therefore K ≤ K in Theorem
3.1 (CBB), and K ≥ K in Theorem 3.2 (CBA).

Cases (1) and (2): By Lemma 5.1, |∇ f | is
∣∣ f (qα)K snK dqα

∣∣, where qα is a
critical point, and we may scale F so that Xα = [0, π/

√
K ]×snK x Fα. The tangent

cone Cα = [0, ∞)×x 6α to Xα at qα is the blowup of Xα at qα. Since sn′

K (0) = 1,
it follows that Cα = [0, ∞) ×x Fα, hence 6α = Fα.

For CBB, there is only one component X = Xα, because geodesics cannot bi-
furcate. For CBA, any collection of connected CAT(1) spaces 6α may occur, and
this describes all possible X ’s in CBA case (2). In CBA case (1), i.e., when K > 0,
more Xα’s may be introduced subject to further gluings at the poles, subject only to
the condition that there is a globally defined K -affine function f whose restriction
to each Xα is f (q) csK dq , where q is a critical point. This simply means that
maximum points may be glued to each other and minimum points may be glued to
each other, but not maximum to minimum; equivalently, the even loop condition
holds.

Cases (3, 4): Along a gradient geodesic we may take f ′
= g, and hence g′

=

−K f . If E = 0, then f = exp
√

−K dZ , where Z = f −1(1). If E > 0, then
f =λ sinh

√
−K dZ , where Z = f −1(0), dZ is signed distance to Z , and −λ2K = E .

It remains to show that the fiber F has curvature bound K E . If E > 0, then
g =

√
E cosh

√
−K x . At the minimum point of g, the copy g(0)F of the fiber is

totally geodesic in X , by the definition of warped product, and so has curvature
bound K . Since g(0) =

√
E , the desired curvature bound follows.

If E = 0, we prove F has curvature bound 0 by showing that angular excesses
of triangles in F are nonnegative (CBB) or nonpositive (CBA). By scaling of the
metric and f , we reduce to the case K = −1, f = g = exp. First consider CBB by
K , so global triangle comparisons hold in X . For a triangle T in F , the image in
X of each side τ sweeps out, as x varies, a totally geodesic surface Sτ , isometric to
a convex region in the hyperbolic plane and in which each {x} × τ is a horocyclic
arc. The side lengths of the triangle {x} × T are scaled by ex relative to those
of T , while the (upper) angles α, β, γ are the same. Consider a triangle Tx in X
with the same vertices as {x} × T , where each side of Tx is a chord in Sτ of a
horocyclic side τ . Hence Tx has angles αx , βx , γx → α, β, γ as x → −∞. But
αx +βx + γx ≥ −K Ax +π, where Ax is the area of a model triangle for Tx , so by
taking x → −∞ we obtain the desired comparison α + β + γ ≥ π.

For CBA the same proof works with the inequalities reversed, except that we
must restrict to neighborhoods U in F such that all triangles Tx with vertices in
R ×g U admit comparisons. We show that such neighborhoods exist. For an open
subset of a CBA space such that minimizers joining any pair of its points are unique
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and vary continuously, the corresponding triangles admit the Alexandrov patch-
work construction, so they admit comparisons. Let U be the projection of such
an open set in X to F . Then U has the continuous bipoint uniqueness property: a
minimizer projects to a minimizer, and if a pair in U had a second minimizer in
F , it could be combined with the projection to R of the original minimizer in X
to get a second minimizer in X with the same ends. Continuity follows from local
compactness and uniqueness. But then R×g U has the bipoint uniqueness property
since each Sτ does. �

Remark 5.5. The assumption (†) in Theorem 3.1 allows us to assume ∂ X = ∅.
Indeed, by Perelman’s doubling theorem [1991], the double X∗ of X is a CBB
space with empty boundary, and so our proof above applies to the tautological
extension of f to X∗. The uniqueness of gradient geodesics then implies that the
splitting respects the doubling structure.

6. Proof of Theorems 2.1 and 2.2

Now we turn to the converse, which is all that remains to complete the proof of
Theorems 2.1 and 2.2. When K = 0, projection to the first factor of R× F is affine.
Let us construct K -affine functions on K -cones when K 6= 0. As was shown in
[Alexander and Bishop 1998], in any warped product of geodesic metric spaces,
the geodesics satisfy an energy equation, analogous to Clairaut’s equation on a
surface of revolution.

Theorem 6.1. Let F be a geodesic metric space and K 6= 0. Let g : I → R be
a nonconstant function in FK , where I is the maximal interval containing 0 on
which g ≥ 0. Then there is a function f ∈ FK such that f ′

= g, and whose lift to
the warped product X = I ×g F is K -affine.

Proof. Take f =−K −1g′, so f ′
= g and f ∈FK . From the energy equation we see

that, letting x be the standard coordinate on I ⊂R, the horizontal speed v =|dx/ds|
on any geodesic in X with arclength parameter s satisfies v2

+(c2/g2)= 1 for some
constant c [Alexander and Bishop 1998]. Forgetting the distinction between f and
its lift f ◦πI , write d f/ds for the derivative of the latter along the geodesic. Then

d f
ds

= f ′
dx
ds

= ± f ′v = ± f ′
√

1 − (c2/g2)

= −
(
±g

√
1 − (c2/g2)

)
= −

(
±

√
g2 − c2

)
,

where ± is the sign of dx/ds. Therefore

d2 f
ds2 = −

(
±

g(dg/ds)√
g2 − c2

)
= −

(
±

gg′(dx/ds)√
g2 − c2

)
= −

gg′
√

1 − (c2/g2)√
g2 − c2

= −K f. �
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Proof of Theorems 2.1 and 2.2. By the preceding theorem, the K -cones (1)–(5)
in Theorems 2.1 and 2.2 carry K -affine functions. Since in the CBB case their
construction respects doubling, (†) holds. It only remains to verify that K -cones
have the stated curvature bounds. It is well-known that (1)–(3) have curvature
bound K ; see [Burago et al. 2001, pp. 132 and 355]. In (4), we are assuming that
K < 0, g = cosh

√
−K x and F has curvature bound K , where K ≤ K for CBB

and K ≥ K for CBA; we claim that X = R ×g F has curvature bound K . By the
general criterion for curvature bounds for warped products [Alexander and Bishop
≥ 2008], we need only check for CBB that g′′

+ K g ≤ 0 and that the curvature
bound K of the fiber satisfies K ≥ K g2, and for CBA that g′′

+ K g ≥ 0 and
K ≤ K (inf g)2. All of this is clear. �
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