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We establish useful upper bounds for the (n − 1)-area of a level set ρ−1{r}
of a general distance function ρ to an (n − 1)-dimensional compact subset
C of Rn, in terms of r and the area of C . These bounds nicely complement
general isoperimetric inequalities that provide lower bounds for the same
area. We allow distance functions induced from asymmetric norms, and
prove our results without assuming that C is smooth. Unlike standard up-
per bounds using Federer’s Coarea Formula, which hold only for some val-
ues of r and which become arbitrarily large if we restrict r to be contained
in sufficiently small intervals, our estimates hold for L1-almost every r > 0.

Our main result both extends and improves upon an important result of
Almgren, Taylor, and Wang. First, our estimates hold for general distance
functions. Second, in the case of ordinary distance functions, our estimates
are sharper than theirs. Because our estimates hold for L1-almost every r ,
we can easily integrate to obtain volume estimates, such as those typically
required for Hölder continuity theorems for flows in Rn. Indeed, Almgren,
Taylor, and Wang used a weaker inequality to establish their main Hölder
continuity theorem for curvature-driven flow of the boundary of a single
crystal. In that setting, our estimate would lead to a similar result, but with
a better coefficient.

We also establish several general results about asymmetric norms and
their associated distance functions to compact sets. For example, the latter
are Lipschitz continuous and have, for Ln-almost every x ∈ Rn, gradients
with norms bounded a priori from above and below.

1. Introduction

Suppose C is any nonempty compact subset of Rn , such as the boundary of an
n-dimensional compact subset K ⊂ Rn , or just a piece of a surface. It might just
consist of a few points.

Suppose ρ = dist( · , C) is the usual Euclidean distance function to the set C ,
and let

ρ−1
{r} =

{
x ∈ Rn

: ρ (x) = r
}

denote the r -level sets of ρ.
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If we let r = r(t)≥ 0 (with r(0)= 0), we can define a flow in Rn
×R+ by setting

C(t) = ρ−1{r(t)
}

for t ≥ 0.

If C = ∂K , we could use this formulation to model a set K ∈ Rn which is
shrinking or expanding uniformly. If r(t) is a nondecreasing function, we can
model a front expanding uniformly away from C in general. For such isotropic
growth, this model could apply.

In practice, the conditions favorable for motion of a front may be quite different
in different directions. For example, we may have a front moving across a medium
with variable bulk density or concentration, or we might have a crystal lattice that
prefers certain orientations.

In order to formally incorporate some anisotropy, we use general distance func-
tions associated with asymmetric norms.

In Section 2 we introduce asymmetric norms and give some of their key proper-
ties (Theorem 2). We discuss general distance functions (defined using asymmetric
norms) in Section 3. We show that such functions are within a constant factor of
Euclidean distance (Theorem 3), are Lipschitz continuous (Theorem 4), and have
gradients Ln-almost everywhere having norms bounded a priori from above and
below (Theorem 5).

We are thus led to studying nonuniform flows C(t) = ρ−1
{r(t)} associated with

9-induced distance functions ρ of the form

ρ(x) = inf
z∈C

{
9(x − z)

}
.

In practice, it is often highly desirable to have good upper bounds for the areas
Hn−1

(
ρ−1

{r}
)

of the level sets ρ−1
{r}. For typical surface energies, which are

usually within a constant factor of surface area, such bounds translate immediately
into vital energy estimates.

General isoperimetric and relative isoperimetric inequalities provide useful lower
bounds to these areas, but finding good upper bounds can be much more difficult.

If we have some estimate of the form

Ln(ρ−1(I )
)
≤ A < ∞,

where I ⊂ R1
∩ {x : x ≥ 0} is an interval, we can use Federer’s Coarea Formula

[Federer 1969, 3.2.11] to prove there exists a value of r in I for which

Hn−1(ρ−1
{r}

)
≤

A
L1(I )

.

While these estimates are extremely useful in general, they do not provide good
control over the value of r , and these upper bounds become quite useless when
L1(I ) is too small. In particular, such an approach cannot be used to give an upper
bound for Hn−1

(
ρ−1

{r}
)

for a specific value of r .
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Also, it may be that our goal is to estimate from above the volume of a region.
Good upper bounds for Hn−1

(
ρ−1

{r}
)

for L1 every r , together with the Coarea
Formula, which expresses the volume as the integral of these areas, would be ex-
tremely useful in such a situation. Such situations arise in both static and dynamical
systems.

For a wide variety of flows (curvature flow, grain growth, surface diffusion,
and so on), variational formulations involve energy terms that depend on the dis-
tance an interface has moved. Using the Coarea Formula, we can express the
volume swept out by a moving interface over a given time interval as the integral
of Hn−1

(
ρ−1

{r}
)
, for an appropriate range of r .

For example, Almgren, Taylor, and Wang, in the very important paper [Almgren
et al. 1993], consider general curvature flows of n-dimensional crystals K (t). Their
main results concern the existence, Hölder continuity, and regularity of such flows.
Their Hölder continuity inequality is of the form

(1–1) Ln(K (s) 4 K (t)
)
≤ c|t − s|α,

where 4 as usual denotes symmetric difference. Their key estimate [Almgren et al.
1993, 4.2] is an upper bound for the areas Hn−1

(
ρ−1

{r}
)

in the special case where
ρ is ordinary Euclidean distance — i.e., where

9 = 9E : x 7→ |x |

is the Euclidean norm on Rn . They use those upper bounds to obtain a good esti-
mate of the form (1–1).

Our main result extends their estimate to more general distance functions, those
induced by asymmetric norms that are C2-smooth except at the origin. In the
special case 9 = 9E , our estimate is sharper, exhibiting a better constant than the
one in [Almgren et al. 1993].

Almgren and Wang [2000] gave an important extension of the model from [Alm-
gren et al. 1993] by incorporating Gibbs–Thomson curvature effects. Here, too,
estimates of the areas of level sets of distance functions play a central role.

Our results should prove useful for establishing Hölder continuity estimates for
a wide variety of flows. They can also be used to estimate the speed with which
an interface is moving.

The cases where Hn−1(C) = ∞ (Remark 8) and where n = 1 (Remark 9) are
fairly trivial, so hereafter we assume that Hn−1(C) < ∞ and n ≥ 2.

By itself, the constraint Hn−1(C) < ∞ does not do too much to preclude wild
level sets, especially in the absence of any regularity assumptions on C itself. Even
if C is smooth, the level sets ρ−1

{r} might fail to be smooth altogether (if 9 is not
smooth enough) or might be smooth only for small values of r (for example, if C
consists of two disjoint spheres in Rn and 9 = 9E).
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Indeed, even if C is the unit sphere in Rn , in general there is no hope of finding
useful a priori upper bounds for the areas Hn−1

(
ρ−1

{r}
)
, for L1-almost every

r > 0, if 9 is an arbitrary function.
Because the Euclidean norm 9E is C2-smooth on Rn

\ {0}, it is natural for us
to require that 9 be C2-smooth on Rn

\ {0} in general.
We make no such smoothness assumptions on asymmetric norms until Section

4, where we need a reasonable upper bound for the distribution Laplacian of ρ.
The assumption that 9 is C2-smooth away from the origin is sufficient.

If C were C2-smooth, and if we had a priori upper bounds on its curvature, we
would certainly expect to be able to find upper bounds for the areas Hn−1

(
ρ−1

{r}
)
.

In fact, even without the curvature bounds, the smoothness of C alone would suf-
fice.

In this paper, we do not assume that C is even Lipschitz continuous. Instead, we
make an extremely weak regularity assumption: that C has uniform lower (n −1)-
dimensional density ratio bounds at each point. This assumption does imply that
Hn−1(C) > 0, which, when combined with the assumption that Hn−1(C) < ∞,
shows that C must have Hausdorff dimension n − 1. In particular, our main result
does not hold if the Hausdorff dimension of C is strictly less than n − 1.

Our main theorem (Section 4) shows that, under the stated hypotheses on 9 and
C , the areas Hn−1

(
ρ−1

{r}
)

can be very effectively bounded in terms of Hn−1(C)

and rn−1, and so the level sets do not grow too quickly.
For more general applicability, we state our results in terms of Hn−1

(
ρ−1

{r}
)

rather than in terms of Hn−1
(
ρ−1

{r(t)}
)
. In fact, none of our results depends on

the form of the function r = r(t).
Because we rely on local estimates, our results and arguments are also indepen-

dent of the diameter of the set C .
Our strategy is to use a general divergence theorem for sets of finite perimeter,

along with the bounds on the distribution Laplacian of ρ, to establish estimates on
the areas of level sets inside small balls (Sections 4.1 and 4.2). Then we combine
those estimates using a covering argument, and we apply the lower density ratio
bounds for C to complete the proof of the main theorem (Section 4.3).

2. Asymmetric norms

Definition 1. An asymmetric norm on Rn is a function 9 : Rn
→ [0, ∞) which

satisfies

(a) 9(x) ≥ 0 for all x ∈ Rn , with 9(x) = 0 if and only if x = 0;
(b) 9(cx) = c9(x) whenever c ≥ 0 and x ∈ Rn;
(c) 9(x + y) ≤ 9(x) + 9(y) for all x, y ∈ Rn (triangle inequality).

If p ∈ Rn and r ≥ 0, we let

Bn(p, r) =
{

x ∈ Rn
: |x − p| ≤ r

}
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denote the closed (Euclidean) ball in Rn with center p and radius r . More generally,
if 9 is an asymmetric norm on Rn , for each r > 0 we let

B9(p, r) =
{

x ∈ Rn
: 9(x − p) ≤ r

}
denote the closed 9-ball in Rn with center p and radius r . For brevity, we set

B9(r) = B9(0, r).

Because 9 is positively homogeneous of degree 1, it suffices to study the unit balls
B9(1).

Here are some essential properties of asymmetric norms and their associated
unit balls.

Theorem 2. Suppose 9 is an asymmetric norm on Rn .

(1) 9 is a convex function on Rn .
(2) 9 is continuous on Rn . Define

m = inf
{
|9(v)| : |v| = 1

}
, M = sup

{
|9(v)| : |v| = 1

}
.

Then 0 < m ≤ M < ∞.
(3) 9 is Lipschitz continuous on Rn , with constant Lip 9 = M.
(4) 9 is a norm if and only if it is an even function (meaning that 9(−x) = 9(x)

for all x).
(5) For each r > 0, the ball B9(r) is a compact, convex set containing the origin.
(6) There exist positive constants c1 and c2 for which

c1|x | ≤ 9(x) ≤ c2|x | for all x ∈ Rn.

The best such constants are c1 = m and c2 = M.
(7) For all x ∈ Rn ,

9(x) =
1
z
, where z = sup

{
λ : λ > 0 and λx ∈ B9(1)

}
.

Proof. Suppose λ1 and λ2 are nonnegative real numbers for which λ1 + λ2 = 1.
Suppose x, y ∈ Rn . Then

9(λ1x + λ2 y) ≤ 9(λ1x) + 9(λ2 y) = λ19(x) + λ29(y),

which proves (1).
Since any convex function defined on a nonempty, open, convex subset of Rn is

continuous on that set, it follows that 9 is continuous on Rn . Since 9 is continuous,
and since the unit ball in Rn is compact, the values m and M are actually attained
for unit vectors v. Since 0 < 9(v) < ∞ whenever v is not the zero vector, (2)
follows.

We do not need the positive homogeneity of 9 to show that 9 is locally Lipschitz
continuous, but we will use it for the global estimate. Fix any x, y ∈ Rn . If x = y,
clearly

∣∣9(x) − 9(y)
∣∣ ≤ M |x − y|, as desired.
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Next we suppose that x 6= y. The relations x = (x − y)+ y and y = (y − x)+ x
and the triangle inequality imply that

9(x) − 9(y) ≤ 9(x − y), 9(y) − 9(x) ≤ 9(y − x),

and therefore∣∣9(x) − 9(y)
∣∣ ≤ max

{
|9(x − y)| , |9(y − x)|

}
= |x − y| max

{∣∣∣9( x − y
|x − y|

)∣∣∣, ∣∣∣9( y − x
|y − x |

)∣∣∣} ≤ M |x − y|,

which completes the proof of (3).
If 9 is also even, then

9(cx) = c9(x) = |c|9(x)

if c ≥ 0, and
9(cx) = 9(−cx) = −c9(x) = |c|9(x)

if c < 0, so 9 is a norm. That completes the proof of (4).
Because 9 is positively homogeneous of degree 1, it suffices to prove (5) for the

unit ball B9(1). The convexity of B9(1) follows immediately from the convexity
of 9, and it is also clear that B9(1) must be closed. We will show it is also bounded
by comparing it to a multiple of the Euclidean norm.

Define 91(x) = m|x | for all x ∈ Rn . Clearly,

B91(1) =
{

x ∈ Rn
: m|x | ≤ 1

}
= Bn

(
0,

1
m

)
.

Also, 9(0) = 91(0) = 0, and, if x 6= 0,

9(x) = |x |9
( x
|x |

)
≥ m|x | = 91(x),

which implies that B9(1) ⊂ B91(1) = Bn(0, 1/m), and so B9(1) is bounded, as
needed.

We also define 92(x) = M |x | for all x ∈ Rn . Arguing as above, we see right
away that 9(x) ≤ 92(x) for all x , and Bn

(
0, 1/M

)
= B92(1) ⊂ B9(1). Therefore

(6) holds with c1 = m and c2 = M .
To see that m and M must be optimal, note that the inequality in (6) implies that

c2 ≥ sup
{9(x)

|x |
: x 6= 0

}
= sup

{
9

( x
|x |

)
: x 6= 0

}
= M,

and likewise that c1 ≤ m.
Finally, z = sup

{
λ : λ > 0 and λx ∈ B9(1)

}
= sup

{
λ : λ > 0 and 9(λx) ≤ 1

}
=

sup
{
λ : λ > 0 and λ9(x) ≤ 1

}
. If x 6= 0, 9(x) > 0, and clearly the supremum is

obtained when λ = 1/9(x), which gives z = 1/9(x), as claimed in (7). If x = 0,
we see that z = ∞, which correctly gives 9(0) = 0 if we follow the convention
that 1/∞ = 0. �
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Asymmetric norms have a wide variety of applications. Of course, all norms
are asymmetric norms. Asymmetric norms which are not norms are also very
important.

In many instances, a deviation (of, for example, the path of an object) in one
direction may be more significant than a deviation in another direction.

While a typical norm would treat an overestimate and an equal underestimate
the same way, an asymmetric norm easily allows these to be treated differently.
In particular, it is easy to use asymmetric norms to derive alternative least-squares
algorithms that use asymmetry to great advantage.

3. Distance functions induced by asymmetric norms

Associated with 9, we have distance functions dp to points p ∈ Rn:

dp(x) = 9(x − p)

for all x ∈ Rn . If c1 and c2 are any positive real numbers for which the inequality
in Theorem 2(6) holds, then clearly

c1|x − p| ≤ dp(x) ≤ c2|x − p|

for all x, p ∈ Rn .
If X is any nonempty subset of Rn , we define the distance function to X (induced

by 9) as follows:
dist9(x, X) = inf

{
dp(x) : p ∈ X

}
.

If 9 is even, dist9( · , X) is the usual norm-induced distance function to X . In
particular, when 9(x) = |x |, the function dist9( · , X) = dist( · , X) is the ordinary
Euclidean distance to the set X .

Theorem 3. Suppose 9 is an asymmetric norm on Rn and X ⊂ Rn is nonempty.
Suppose c1 and c2 are any positive constants satisfying the inequality in Theorem
2(6). Then, for all x ∈ Rn ,

c1 dist(x, X) ≤ dist9(x, X) ≤ c2 dist(x, X).

Proof. Fix x and pick any ε > 0. Choose a point p in X satisfying

|x − p| ≤ dist(x, X) +
ε

c2
.

Then
dist9(x, X) ≤ 9(x − p) ≤ c2

∣∣x − p
∣∣ ≤ c2 dist(x, X) + ε.

Next we fix a point p in X for which

9(x − p) ≤ dist9(x, X) + ε.

It follows that

dist9(x, X) ≥ 9(x − p) − ε ≥ c1
∣∣x − p

∣∣ − ε ≥ c1 dist(x, X) − ε,
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The result now follows since ε may be arbitrarily small. �

It is well-known that distance functions induced by norms are Lipschitz contin-
uous. We show this is also the case for asymmetric norms:

Theorem 4 (The Lipschitz constant of dist9). Suppose that 9 is an asymmetric
norm on Rn , and m and M are the constants given in Theorem 2. If X is any
nonempty subset of Rn , the function

σ(x) = dist9(x, X)

is Lipschitz continuous, with Lip σ = M.

Proof. Suppose x, y ∈ Rn . Since

σ(x) = inf
{
9(x − p) : p ∈ X

}
,

for any p ∈ X we have σ(x) ≤ 9(x − p). Also, for any ε > 0, there exists a point
p ∈ X such that

σ(x) ≤ 9(x − p) ≤ σ(x) + ε|x − y|.

Then

σ(y) ≤ 9(y − p) ≤ 9(y − x) + 9(x − p) ≤ σ(x) + (M + ε)|x − y|,

which gives
σ(y) − σ(x) ≤ M |x − y|

once we let ε → 0. The same argument with x and y switched gives

σ(x) − σ(y) ≤ M |x − y|. �

Theorem 5. Suppose X ⊂ Rn is nonempty and compact, 9 is an asymmetric norm
on Rn , and σ(x) = dist9

(
x, X

)
is the 9-induced distance to the set X. Suppose m

and M are the constants given in Theorem 2. Then, for Ln-almost every x ∈ Rn
\X ,

the function σ is differentiable and

m ≤
∣∣(∇σ)(x)

∣∣ ≤ M.

Proof. Since σ is Lipschitz continuous, Rademacher’s theorem implies that σ is
differentiable for Ln-almost every x . Fix any such point x ∈ Rn

\ X . Then (∇σ)(x)

exists, as does the directional derivative

(Dvσ)(x) = (∇σ)(x) · v

for any unit vector v ∈ Rn .
Since X is closed, there exists a point z, which depends on x , for which σ(x) =

9(x − z). Fix z and let y = x + tv for t > 0 and for any unit vector v. Then

σ(y) ≤ 9(y − z) ≤ 9(y − x) + 9(x − z) = 9(y − x) + σ(x),

and so
σ(x + tv) − σ(x)

t
=

σ(y) − σ(x)

|y − x |
≤ 9

( y − x
|y − x |

)
≤ M.
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We set v =
(∇σ)(x)∣∣(∇σ)(x)

∣∣ and let t → 0 to deduce that
∣∣(∇σ)(x)

∣∣ ≤ M .

To prove the lower bound for
∣∣(∇σ)(x)

∣∣, we let

y = (1 − t)x + t z for 0 ≤ t ≤ 1,

so that
9(x − z) = 9(x − y) + 9(y − z).

It follows that

σ(y) ≤ 9(y − z) = 9(x − y) + 9(y − z) − 9(x − y)

= 9(x − z) − 9(x − y) = σ(x) − 9(x − y),

and so
σ(y) − σ(x)

|y − x |
≤ −9

( y − x
|y − x |

)
≤ −m.

Letting t → 0 gives −
∣∣(∇σ)(x)

∣∣ ≤ (Dvσ)(x) ≤ −m, and the result follows. �

4. The main result

Theorem 6. Suppose n ≥ 2. Suppose C is a nonempty compact subset of Rn with
Hn−1(C) < ∞, 9 is an asymmetric norm on Rn ,

ρ(x) = dist9(x, C)

for each x ∈ Rn , and the restriction of 9 to Rn
\ {0} is C2-smooth:

9
∣∣Rn

\ {0} ∈ C2.

Suppose also that there exist positive constants δ and θ such that

Hn−1
(
C ∩ Bn(p, γ )

)
γ n−1 ≥ θ

for all p ∈ C and γ ∈ (0, δ]. Then, for L1-almost every r ∈
(
0, ∞

)
,

(4–1) Hn−1(ρ−1
{r}

)
≤

(µnβ(n)mn−1

θ

)
sup

{
1,

( r
mδ

)n−1}
Hn−1(C),

where

0 < m = inf
{9(x)

|x |
: x 6= 0

}
≤ sup

{9(x)

|x |
: x 6= 0

}
= M < ∞,

CL = sup
{
(19)(x) : |x | = 1

}
,

µn =
M
m

α(n) 4n
(
1 +

√
CL

)2

mn ,

α(n) is the volume of the unit ball in Rn , and β(n) is the optimal constant from the
Besicovitch Covering Theorem.
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Remark 7. In the special case where 9(x) = |x |, our estimate is a little stronger
than the original estimate from [Almgren et al. 1993, 4.2], which was proven using
a similar strategy. In this special case, clearly m = M = 1, and CL = n − 1.

Remark 8. If Hn−1(C) = ∞, obviously (4–1) is true as well. Since we assume
(without loss of generality) that Hn−1(C) < ∞, the uniform lower density ratio
bounds imply that Hn−1(C) > 0, and so C has Hausdorff dimension n − 1.

Remark 9. Since H0 is just counting measure, it is easy to derive a corresponding
(but not very interesting) result for the case n = 1:

H0(ρ−1
{r}

)
≤ 2H0(C)

for all r > 0. This result holds for arbitrary nonempty compact subsets C ⊂ R1

and for arbitrary asymmetric norms 9. If H0(C) = ∞, the result is immediate. If
C = {p1, p2, . . . , pN }, where N < ∞, we note that, for each r > 0,

H0(ρ−1
{r}

)
≤H0

( N⋃
i=1

{
x∈R1

:9(x − pi )=r
})

≤

N∑
i=1

H0(
{x∈R1

:9(x − pi )=r}
)
,

and the result follows.

Our proof of Theorem 6 proceeds in several steps, given in the next three sec-
tions. Hereafter, we assume that C , 9, m, M , CL , α(n), β(n), and µn are as stated
in the theorem.

4.1. A divergence theorem estimate. The following theorem shows, essentially,
that the (n − 1)-dimensional area of the level sets does not grow too quickly com-
pared to the n-dimensional volume swept out.

Our proof proceeds by finding lower and upper bounds to the integral of the
Laplacian of a regularization σε of σ , and then letting ε go to zero.

The upper bound holds because of the bound CL on the Laplacian of 9. This
estimate leads to an upper bound on the Laplacian of the σ -induced distance func-
tions to a point, and then to an upper bound on the distribution Laplacian of the
infimum σ of a countable collection of such functions.

The lower bound is an application of the divergence theorem for sets of finite
perimeter (noting that ∇σ is normal to the level sets of σ ); the key estimates are a
priori lower and upper bounds for |∇σ | on level sets; see Theorem 5.

Good references for sets of finite perimeter include [Ambrosio et al. 2000; Evans
and Gariepy 1992; Federer 1969; Krantz and Parks 1999; Mattila 1995].

Below, n�(x) is the measure-theoretic exterior unit normal to � at x , as defined
for sets of finite perimeter. (See [Federer 1969, § 4.5.5], for example.]

Remark 10. Theorem 11 and Proposition 13 will not be applied directly to the
entire set C . To avoid confusion, we will use X and σ in place of C and ρ in the
statements of these results.
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Theorem 11. Suppose n ≥ 2. Let X be a nonempty compact subset of Rn . Suppose
9, m, M , and CL are as stated in Theorem 6, and suppose that σ(x) = dist9(x, X)

for all x ∈ Rn.

Then, for L1-almost every R ∈ (0, ∞) and for L1-almost every S ∈ (R, ∞),

� = σ−1(R, S) =
{

x ∈ Rn
: R < σ(x) < S

}
is a set of finite perimeter with the following properties:

(1) Hn−1(∂�) < ∞, and

Hn−1((∂�) 4
(
σ−1

{R} ∪ σ−1
{S}

))
= 0,

where A 4 B is the symmetric difference of A and B.
(2) For Hn−1-almost every x ∈ σ−1

{R}, the function σ is differentiable,

m ≤
∣∣(∇σ)(x)

∣∣ ≤ M,

and

n�(x) = −
(∇σ)(x)∣∣(∇σ)(x)

∣∣ .
The same holds true (with the sign of n�(x) reversed) for Hn−1-almost every
x ∈ σ−1

{S}.

(3) mHn−1(σ−1
{S}

)
− MHn−1(σ−1

{R}
)
≤

MCL

R
Ln(�).

Proof. Since X is compact, for each N > 0 we have

Ln(σ−1(0, N )
)
< ∞.

Conclusions (1) and (2) are then straightforward consequences of the Coarea For-
mula [Federer 1969, 3.2.11], together with Theorem 5 and the chain rule.

Suppose that η : Rn
→ [0, ∞) is of class C∞, with suppt η ⊂ Bn(0, 1) and∫

Rn η dLn
= 1. Define the smooth mollifier ηε in the usual way:

ηε(x) =
1
εn η

( x
ε

)
.

Then ηε is also of class C∞ and is supported in Bn(0, ε).
Let σε be the convolution of σ with ηε :

σε = σ ∗ ηε.

Then σε → σ uniformly and ∇σε → ∇σ pointwise almost everywhere as ε → 0.
Suppose R and S satisfy properties (1) and (2). Let �=σ−1(R, S). For L1-almost
every such R ∈ (0, ∞) and for L1-almost every such S ∈ (R, ∞), we have

(4–2) lim
ε→0

∫
∂�

∣∣∇σ − ∇σε

∣∣ dHn−1
= 0.
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For the remainder of the proof, we will assume that R and S satisfy properties
(1) and (2) above and Equation (4–2). The proof of (3) proceeds by showing that

(4–3) mHn−1(σ−1
{S}

)
− MHn−1(σ−1

{R}
)
≤ lim

ε→0

∫
�

1σε dLn
≤

MCL

R
Ln(�)

.

Let χ� be the characteristic function of �. Then, for any ε > 0,

(4–4)
∫

�

1σε dLn
= lim

δ→0

∫
Rn

(χ� ∗ ηδ) 1σε dLn

= lim
δ→0

∫
Rn

(
1(χ� ∗ ηδ)

)
σε dLn

= lim
δ→0

∫
Rn

(
1(χ� ∗ ηδ ∗ ηε)

)
σ dLn.

The first equality above holds because χ� ∗ ηδ → χ� uniformly as δ → 0. The
second follows from the integration by parts formula. The third equality holds with
1 replaced by Di i for each i = 1, 2, 3, . . . , n, and so the result follows.

Fix δ > 0. Outside the set �′
=

{
x : dist(x, �) ≤ ε + δ

}
, the integrand in (4–4)

vanishes. Suppose x ∈ �′ and p ∈ X .

Claim 12. (1dp)(x) ≤
CL

R/M − δ − ε
; moreover, for all nonnegative test functions

ϕ supported in �′,∫
�′

(1ϕ) dp dLn
≤

CL

R/M − δ − ε

∫
�′

ϕ dLn.

Proof. The upper bound on the Laplacian of 9 (on unit vectors) gives (after trans-
lating and scaling appropriately)

(1dp)(x) ≤
CL

|x − p|
.

The first inequality in the claim is then a consequence of the following lower bound
on |x − p|:

|x − p| ≥ inf
{

dist(x, X) : x ∈ �
}
−δ−ε ≥ inf

{σ(x)

M
: x ∈ �

}
−δ−ε ≥

R
M

−δ−ε.

The second inequality follows from the first and the integration by parts formula.
�

The next step is to use this pointwise bound to obtain an upper bound on the
distribution Laplacian of σ . In general (see [Almgren et al. 1993, 4.2]), if f and g
are summable functions such that (for some k > 0)

sup
{∫

�′

(1ϕ) f dLn,

∫
�′

(1ϕ) g dLn
}

≤ k
∫

�′

ϕ dLn
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for each nonnegative test function ϕ supported in �′, then∫
�′

(1ϕ) inf{ f, g} dLn
≤ k

∫
�′

ϕ dLn.

Note that σ is the infimum of a countable set of functions {dpi }, where the pi ’s
are a countable, dense subset of X, and use Lebesgue’s Dominated Convergence
Theorem and Claim 12 to conclude that∫

�′

(1ϕ) σ dLn
≤

CL

R/M − δ − ε

∫
�′

ϕ dLn

for each ϕ (as above). Using (4–4) and applying this result with ϕ = χ� ∗ ηδ ∗ ηε

yields ∫
�

1σε dLn
= lim

δ→0

∫
�′

(
1(χ� ∗ ηδ ∗ ηε)

)
σ dLn

≤ lim
δ→0

CL

R/M − δ − ε

∫
�′

(
χ� ∗ ηδ ∗ ηε

)
dLn

=
CL

R/M − ε

∫
�′

(
χ� ∗ ηε

)
dLn.

Letting ε → 0 completes the proof of the second inequality in (4–3).
The idea behind proving the first inequality in (4–3) is to apply the Divergence

Theorem and (1) and (2) in �:∫
�

1σε dLn
=

∫
�

div ∇σε dLn
=

∫
∂�

∇σε · n� dHn−1

=

∫
σ−1{S}

(∇σ) ·
∇σ(x)∣∣∇σ(x)

∣∣ dHn−1
−

∫
σ−1{R}

(∇σ) ·
∇σ(x)∣∣∇σ(x)

∣∣ dHn−1

+

∫
σ−1{S}∪σ−1{R}

(∇σε − ∇σ) · n� dHn−1

=

∫
σ−1{S}

∣∣∇σ(x)
∣∣ dHn−1

−

∫
σ−1{R}

∣∣∇σ(x)
∣∣ dHn−1

+

∫
σ−1{S}∪σ−1{R}

(∇σε − ∇σ) · n� dHn−1

≥ mHn−1(σ−1
{S}

)
− MHn−1(σ−1

{R}
)

+

∫
σ−1{S}∪σ−1{R}

(∇σε − ∇σ) · n� dHn−1.

Since (4–2) implies that

lim
ε→0

∫
σ−1{S}∪σ−1{R}

(∇σε − ∇σ) · n� dHn−1
= 0,

the left-hand inequality in (4–3) follows by letting ε→0. Statement (3) is therefore
proven. �
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4.2. The area of level sets of σ inside balls.

Proposition 13. Suppose n ≥ 2. Let X be a compact subset of Rn . Suppose
that 9, m, M , CL , α(n), β(n), and µn are as stated in Theorem 6, and define
σ(x) = dist9(x, X) for all x ∈ Rn . Then, for any point q ∈ X and for L1-almost
every r > 0, we have

Hn−1
((

σ−1
{r}

)
∩ Bn

(
q,

2
m

r
))

≤ µnrn−1.

Proof. It suffices to consider the case r = 1, for then the proposition follows by
scaling by the factor r . Since only boundaries inside Bn

(
q, 2

m

)
are being consid-

ered, and since r = 1, there is no loss of generality in assuming that X ⊂ Bn
(
q, 3

m

)
.

Taking S = 1 in Theorem 11(3) then gives

(4–5) mHn−1(σ−1
{1}

)
≤ MHn−1(σ−1

{R}
)
+

MCL

R
Ln(σ−1(R, 1)

)
for L1-almost every R ∈ (0, 1). Since X ⊂ Bn

(
q, 3/m

)
, we have σ−1(R, 1) ⊂

Bn
(
q, 4/m

)
, and so

(4–6) Ln(σ−1(R, 1)
)
≤ α(n)

4n

mn .

For any w ∈
(
0, 1

)
, the Coarea Formula [Federer 1969, 3.2.11] guarantees the

existence of R ∈ (w, 1) for which

(4–7) Hn−1(σ−1
{R}

)
≤ α(n)

4n

(1 − w)mn ,

and so (4–5), (4–6), and (4–7) imply that

(4–8) Hn−1(σ−1
{1}) ≤

M
m

α(n)
4n

mn

1
1 − w

+
M
m

α(n)
4n

mn

CL

w

=
M
m

α(n)
4n

mn

( 1
1 − w

+
CL

w

)
.

Letting

h(w) =
1

1 − w
+

CL

w
,

elementary calculus shows that h(w) achieves its minimum value in (0, 1),

h(wmin) =
(
1 +

√
CL

)2
,

when

wmin =

√
CL

√
CL + 1

.

Substituting this into (4–8), we get

Hn−1(σ−1
{1}) ≤

M
m

α(n)
4n

mn

(
1 +

√
CL

)2
= µn,

as desired. �
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4.3. The covering step. Suppose n ≥ 2 and let C be as stated in Theorem 6. Fix
any r ∈ (0, ∞), and let F∗ be the collection of all closed balls Bn

(
p, 1

m r
)
, centered

at points p ∈C . The Besicovitch Covering Theorem (see [Evans and Gariepy 1992,
1.5.2], for example) guarantees that there exist subfamilies F1, F2, . . . , Fβ(n) of
F such that, for each i = 1, 2, . . . , β(n), Fi is a countable collection of pairwise
disjoint balls in F, and

C ⊂

β(n)⋃
i=1

⋃
B∈Fi

B.

Since C is compact, we can take the subfamilies to be finite and thereby ob-
tain a finite subcover. In other words, there exists a finite collection of points
p1, p2, . . . , pN ∈ C such that

C ⊂

N⋃
i=1

Bn
(

pi ,
1
m

r
)
,

and no point is covered more than β(n) times. Therefore,

(4–9)
N∑

i=1

Hn−1
(

C ∩ Bn
(

pi ,
1
m

r
))

≤ β(n)Hn−1(C).

Also,

(4–10) ρ−1
{r} ⊂

N⋃
i=1

Bn
(

pi ,
2
m

r
)
,

since each point x in ρ−1
{r} is no further than r (in ρ-distance, hence r/m in

Euclidean distance) from some point x ′
∈C , which in turn is at a Euclidean distance

of no more than r/m from one of the pi . Proposition 13 and (4–10) imply

(4–11) Hn−1(ρ−1
{r}

)
≤

N∑
i=1

Hn−1
(
ρ−1

{r} ∩ Bn
(

pi ,
2
m

r
))

≤

N∑
i=1

µnrn−1.

Next, the lower density ratio bounds in C will be used to obtain an appropriate
upper bound for rn−1. If r/m ≤ δ then, for each i ,

rn−1
≤

mn−1

θ
Hn−1

(
C ∩ Bn

(
pi ,

1
m

r
))

.

Combining this result with (4–11) and (4–9), we get

Hn−1(ρ−1
{r}

)
≤

µnmn−1

θ

N∑
i=1

Hn−1
(

C ∩ Bn
(

pi ,
1
m

r
))

≤
µnmn−1β(n)

θ
Hn−1(C),

which verifies (4–1) if r/m ≤ δ.
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If r/m > δ, an application of the uniform lower density ratio bounds at radius δ

yields

rn−1
=

( r
mδ

)n−1
mn−1(δ)n−1

≤

( r
mδ

)n−1
mn−1 Hn−1

(
C ∩ Bn

(
pi , δ

))
θ

≤

( r
mδ

)n−1
mn−1

Hn−1
(

C ∩ Bn
(

pi ,
1
m

r
))

θ
.

It follows that

Hn−1(ρ−1
{r}

)
≤

( r
mδ

)n−1 µnmn−1β(n)

θ
Hn−1(C).

This completes the proof of Theorem 6.
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