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Using asymptotic morphisms between graded C∗-algebras, we construct for
every open m-dimensional spin manifold M a fundamental class in the m-th
analytic K -homology group of M. This class is associated to the not neces-
sarily essentially self-adjoint Dirac operator on M. A careful treatment is
given of the main properties of these fundamental K -homology classes.

Introduction

Atiyah [1970] suggested a way of constructing K -homology — the dual theory
to topological K -theory — using functional analysis and the properties of elliptic
pseudo-differential operators. He defined the cycles in the K -homology group
K0(X) of a compact polyhedron X , but left open the problem of finding the appro-
priate equivalence relation that will turn these cycles into an abelian group. The
problem was solved by Kasparov [1976]. Later Kasparov [1981] constructed a
bivariant theory, which for any separable C∗-algebras A and B associates abelian
groups KKn(A, B), n ∈Z. If A=C(X) and B=C, then KKn(C(X),C)= Kn(X),
n = 0, 1, 2, . . . , are the K -homology groups of X . Connes and Higson [1989;
1990] concretely realized the universal bivariant theory — which they called E-
theory — in terms of asymptotic morphisms between C∗-algebras. One recovers
again K -homology through the groups E−n(C(X),C)' KKn(C(X),C).

In our paper we use the E-theoretical description of K -homology to give full
details of the construction of the K -homology cycles corresponding to Dirac op-
erators on open manifolds. The idea is that some complicated technical details in
Kasparov’s approach [Higson and Roe 2000, Chapters 9–11] become easier when
using asymptotic morphisms instead of Kasparov cycles. The other novelty of this
article is the consistent use of graded objects, which simplifies the presentation.
Ideas contained in this paper first appeared in [Higson 1988; 1991; 1993].

In Section 1 we present three equivalent ways of defining asymptotic morphisms,
one being new (Definition 1.11); we discuss some constructions involving graded
C∗-algebras that are used in the context of E-theory; and we introduce the analytic
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K -homology groups using the language of E-theory. In Section 2 we briefly cover
the needed notions from spin geometry. The main construction of the paper is
contained in Section 3: to an m-dimensional Spin-manifold M we associate an
asymptotic morphism S⊗̂C0(M) 99K K⊗̂C−m , where C−m is the Clifford algebra
of Rm . This asymptotic morphism is based on the not necessarily essentially self-
adjoint Dirac operator on M . The technical tool in its definition is the family {Dt }t ,
and we show that its class does not depend on the various choices that enter into
the construction. It is the K -homology class of this asymptotic morphism what we
call the fundamental K -homology class of M . In Section 4 we present the main
properties of the fundamental K -homology classes: behavior under external prod-
uct, homotopy invariance, and invariance under the boundary map. To illustrate
the usefulness of these properties, we end the article by presenting in Section 5 a
short proof of the cobordism invariance of the index for compact manifolds.

1. Review of E-theory

Asymptotic morphisms. The entire presentation of the paper is in the category of
graded C∗-algebras: all the C∗-algebras will be Z/2-graded and separable; all ∗-
homomorphisms and asymptotic morphisms will map homogeneous elements to
homogeneous elements, the grading degree being preserved. We shall use ∂x to de-
note the degree of the element x belonging to the graded object (C∗-algebra, Hilbert
module, bundle, bundle of C∗-algebras) under consideration. All the commutators
that appear are graded ones: [a, b] = ab − (−1)∂a ∂bba. See [Blackadar 1998,
Section 14] for more details about graded C∗-algebras. The C∗-algebra C0(X), of
complex valued vanishing at infinity functions on a locally compact space X , will
always be trivially graded, for any X .

Definition 1.1. A graded complex C∗-algebra AC is a Real C∗-algebra if there is
a grading-preserving map : AC→ AC satisfying a+αa′ = a+ αa′, aa′ = aa′,
a∗= (a)∗, and a= a, for all a, a′ ∈ A and α ∈C. Any ∗-homomorphism ϕ : A→ B
between Real C∗-algebras must satisfy the additional relation ϕ(a)= ϕ(a), for all
a ∈ A.

Remarks 1.2. Given a Real C∗-algebra AC, the fixed-point algebra of , namely
AR = {a ∈ AC | a = a}, is what is known as a real C∗-algebra. A real C∗-algebra
is a real Banach algebra with involution that is ∗-isometrically isomorphic to a
norm-closed subalgebra of B(HR), where HR is a graded real Hilbert space. From
a real C∗-algebra AR we can form its complexification AC = AR ⊗R C, which
is a Real C∗-algebra with the involution given by complex conjugation in the
second variable. (Here C is trivially graded.) Realification and complexification
induce an equivalence between the category of real C∗-algebras and the category
of Real C∗-algebras. Spectral theory and functional calculus for elements in a real
C∗-algebra are by definition the corresponding ones in its complexification. Our
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focus is real C∗-algebras, but the facts above show that a careful treatment of Real
C∗-algebras will suffice. From now on the term “C∗-algebra” will refer to either
complex or Real graded C∗-algebras.

We will present three equivalent definitions for asymptotic morphisms between
two C∗-algebras. The first one requires some preliminaries:

Definition 1.3. Let B be a Real C∗-algebra. The asymptotic algebra AB of B is
the quotient Real C∗-algebra

AB =
Cb([1,∞), B)
C0([1,∞), B)

,

where Cb([1,∞), B) is the space of bounded continuous functions from [1,∞)
into B, and C0([1,∞), B) is the closed ideal of functions vanishing at infinity.
(See [Connes and Higson 1989, Section 1, Def. 2], or [Dădărlat 1994, following
Lemma 2].)

Definition 1.4. Let A and B be Real C∗-algebras. An asymptotic morphism ϕ

from A to B is a grading-preserving ∗-homomorphism ϕ : A → AB. We write
ϕ : A 99K B, with a broken arrow. Let Asym1(A, B) be the set of asymptotic
morphisms from A to B.

Example 1.5. Any grading-preserving ∗-homomorphism ϕ : A→ B determines an
asymptotic morphism assigning to a ∈ A the class of the constant function ϕ(a).

We turn to the second approach:

Definition 1.6. Let A and B be Real C∗-algebras. An asymptotic family from A to
B [Connes and Higson 1990, Def. 1] is a family of grading-preserving functions
{ϕt }t∈[1,∞) : A→ B such that

(1–1) t 7→ ϕt(a) is bounded and norm-continuous for all a ∈ A,

and

(1–2) lim
t→∞


ϕt(a+αa′)−ϕt(a)−αϕt(a′)

ϕt(aa′)−ϕt(a)ϕt(a′)

ϕt(a∗)−ϕt(a)∗

ϕt(a)−ϕt(a)

= 0, for all a, a′ ∈ A, α ∈ C.

We use the same broken arrow notation: {ϕt } : A 99K B.

Remarks 1.7. (i) Despite the weak continuity conditions in this definition, (1–2)
assures “automatic continuity” in the sense that lim supt ‖ϕt(a)‖ ≤ ‖a‖, for
all a ∈ A. See [Samuel 1997, Lemma 1.2] for a proof.

(ii) The composition of an asymptotic morphism or family with a ∗-morphism (to
the left or to the right) is again an asymptotic morphism or family.
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Definition 1.8. Two asymptotic families {ϕt }t∈[1,∞), {ψt }t∈[1,∞) : A 99K B are
said to be asymptotically equivalent if limt→∞

(
ϕt(a) − ψt(a)

)
= 0, for all a ∈

A. Asymptotic equivalence is an equivalence relation on the set of asymptotic
families, and we denote by Asym2(A, B) the set of asymptotic equivalence classes
of asymptotic families.

Lemma 1.9. Asym2(A, B) and Asym1(A, B) are in bijective correspondence.

Remark 1.10. Because of this lemma we shall use the term “asymptotic mor-
phism” to refer also to an asymptotic family (or its asymptotic equivalence class).

Proof of Lemma 1.9. Let {ϕt }t∈[1,∞) be an asymptotic family. Consider the map
ϕ̃ : A → Cb([1,∞), B) defined by (ϕ̃(a))(t) = ϕt(a), and let ϕ = q ◦ ϕ̃ be the
∗-homomorphism given by the composition with the quotient map

q : Cb([1,∞), B)→ AB.

The desired bijection is given by {ϕt } 7→ ϕ. The inverse map is obtained by
considering any set theoretic section s : AB → Cb([1,∞), B). It sends a ∗-
homomorphism ϕ : A→ AB to the family {(s ◦ϕ(·))(t)}t∈[1,∞). �

One can relax things even more:

Definition 1.11. Let A be a dense ∗-subalgebra of A. A family of maps {ϕt }t∈[1,∞) :

A→ B is called asymptotically continuous if (1–2) holds true for all a, a′ ∈ A,
and (1–1) is replaced by the following condition: for every a ∈ A and for every
ε > 0, there exists T = T (ε, a) such that

(1–3) t ≥ T H⇒ ‖ϕt(a)‖< ‖a‖+ ε

and

(1–4) ∀t0 ≥ T ∃δ = δ(ε, a, t0) s.t. |t − t0|< δ H⇒ ‖ϕt(a)−ϕt0(a)‖< ε.

Let Asym(A, B) be the set of all asymptotic equivalence classes of such densely
defined asymptotically continuous families. The next result shows that one can use
these less stringent requirements when working with asymptotic morphisms. This
characterization will be used later.

Lemma 1.12. For every dense ∗-subalgebra A of A, the inclusion of Asym2(A, B)
into Asym(A, B) is a bijection.

Proof. That every nonzero element of Asym2(A, B) restricts to a nonzero element
of Asym(A, B) is obvious. For surjectivity, let {ϕt }t∈[1,∞) be as in Definition 1.11
and fix a∈A. For every n=0, 1, 2, . . . , we can find k(n) real numbers T (2−n, a)=
tn,1< tn,2< · · ·< tn,k(n)=T (2−(n+1), a) such that (1–4) is satisfied and the union of
the open intervals (tn,i−δi , tn,i+δi ), for δi = δi (2−n, a, tn,i ) and i = 1, . . . , k(n),
covers

[
T (2−n, a), T (2−(n+1), a)

]
. We ask also that limn→∞ T (2−n, a)=∞.

Construct a norm-continuous function ϕ̂t(a) : [1,∞)→ B by joining linearly
the consecutive values ϕtn,i (a), for all possible n and i . From these functions, form
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an asymptotic morphism {ϕ̂t }t∈[1,∞) : A→ B as in Definition 1.6, by using property
(1–3) to perform a construction of ϕ̂t(a) for a ∈ A \A. The restriction of {ϕ̂t } to
A is asymptotically equivalent to the family {ϕt } that we started with. �

Remark 1.13. The lemma shows that the choice of the dense ∗-subalgebra A of A
in Definition 1.11 is not so important, and we shall use the notation Asym3(A, B)
to designate Asym(A, B), for any “convenient” A.

Graded C∗-algebras and the structure of the graded category. An important and
useful operation when working with C∗-algebras is the tensor product. For two
graded C∗-algebras A1 and A2, we denote by A1 ⊗̂ A2 their maximal graded tensor
product. Because in this paper at least one of the C∗-algebras that appear in tensor
products is nuclear, we do not have to worry about other possible completions.
We recall the following rules that are to be satisfied in graded tensor products:
(a1 ⊗̂ a2)(b1 ⊗̂ b2)= (−1)∂a2 ∂b1a1b1 ⊗̂ a2b2, (a1 ⊗̂ a2)

∗
= (−1)∂a1 ∂a2a∗1 ⊗̂ a∗2 , and

a1 ⊗̂ a2 = a1 ⊗̂a2, for all a1, b1 ∈ A1, and a2, b2 ∈ A2. The maximal graded tensor
product is characterized by the following universal property:

Lemma 1.14 (Universal property of the maximal tensor product). Let A1, A2, B
be graded C∗-algebras, and let ϕ : A1 → B, ψ : A2 → B be ∗-homomorphisms
such that every element of ϕ(A1) gradedly commutes with every element of ψ(A2).
Then there is a unique ∗-homomorphism ϕ ⊗̂ψ : A1 ⊗̂ A2→ B such that(
ϕ ⊗̂ψ

)
(a1 ⊗̂a2)=ϕ(a1)ψ(a2)= (−1)∂a1 ∂a2ψ(a2)ϕ(a1) for all ai ∈ Ai , i = 1, 2.

We also mention that there is a transposition isomorphism τ : A1⊗̂A2→ A2⊗̂A1,
and that the maximal graded tensor product is associative. External tensor products
of asymptotic morphisms can be constructed in two situations:

Basic Lemma 1.15. (i) Consider dense ∗-subalgebras A1 and A2 of the C∗-
algebras A1 and A2. Let {ϕt } : A1 99K B and {ψt } : A2 99K B be asymptotic
families such that limt→∞[ϕt(a1), ψt(a2)] = 0 for all a1 ∈ A1, a2 ∈ A2, with
[ , ] denoting the commutator. Then there exists an asymptotic family {ϕt⊗̂ψt } :

A1 ⊗̂ A2 99K B.
(ii) Let {ϕt } : A1 99K B1 and {ψt } : A2 99K B2 be asymptotic families. There exists

an asymptotic family {ϕt ⊗̂ψt } : A1 ⊗̂ A2 99K B1 ⊗̂ B2.

Proof. For (i), use Lemma 1.9 to construct the ∗-homomorphisms ϕ : A1→ AB
and ψ : A2→ AB that correspond to {ϕt } and {ψt }. The hypothesis implies that
[ϕ(a1), ψ(a2)] = 0 for all a1 ∈A1, a2 ∈A2, and the universal property of the max-
imal tensor product ensures the existence of the tensor product ∗-homomorphism
ϕ ⊗̂ψ : A1 ⊗̂ A2 → AB, satisfying (ϕ ⊗̂ψ)(a1 ⊗̂ a2) = ϕ(a1)ψ(a2). Use again
Lemma 1.9 to construct now from ϕ ⊗̂ψ an asymptotic family

{ϕt ⊗̂ψt } : A1 ⊗̂ A2 99K B,
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as required. Notice that limt→∞
(
(ϕt ⊗̂ψt)(a1 ⊗̂ a2)− ϕt(a1)ψt(a2)

)
= 0 for all

a1 ∈ A1, a2 ∈ A2.
To prove (ii), let {ut }t∈[1,∞) and {vt }t∈[1,∞) be approximate units for B1 and B2,

respectively, consisting of even elements. The external tensor product from the
statement is the external tensor product, as constructed in (i), of the asymptotic
morphisms {ϕ′t } : A1 99K B1 ⊗̂ B2 and {ψ ′t } : A2 99K B1 ⊗̂ B2, defined by ϕ′t(a1)=

ϕt(a1)⊗ vt and ψ ′t (a2)= ut ⊗ψt(a2). �

We show the usefulness of the Basic Lemma:

Example 1.16 (Basic example of asymptotic morphism). Consider the differenti-
ation operator D =−id/dx as an unbounded self-adjoint operator on L2(R). Let
Mg : L2(R)→ L2(R) be the bounded operator of pointwise multiplication by the
function g. The family of functions

C0(R)⊗C0(R)−→ K(L2(R)), f ⊗ g 7→ f (t−1 D)Mg, t ∈ [1,∞)

(where f (t−1 D) must be understood through the functional calculus) defines an
asymptotic morphism from C0(R)⊗C0(R) into the compact operators of L2(R).
(The C∗-algebras C0(R) and K(L2(R)) are trivially graded here, with given by
complex conjugation.)

To see this we follow [Higson 1991]. Consider first f (x) = (x ± i)−1 and
g ∈ C∞c (R). Then f (t−1 D)Mg is compact, for every t ∈ [1,∞). Indeed,∥∥∥∥−t−1i

dξ
dx
± iξ

∥∥∥∥2

L2
= t−2

∥∥∥∥dξ
dx

∥∥∥∥2

L2
+‖ξ‖2L2 ≥ t−2

‖ξ‖2H1
loc
, for ξ ∈ C∞c (R),

shows that (t−1 D±i) is invertible, with (t−1 D±i)−1
: L2(R)→H 1

loc(R). The com-
pactness of Mg(t−1 D±i)−1 now follows from Rellich’s lemma, and the claimed re-
sult is obtained from this by taking adjoints. Next, limt→∞

[
(t−1 D±i)−1,Mg

]
=0.

Finally, notice that the C∗-subalgebras generated by (x±i)−1 and C∞c (R) are dense
in C0(R), hence we can apply Basic Lemma 1.15 to obtain the required result.

The advantage of using 1.6 as the definition for asymptotic morphisms should
now be manifest: some computations are easier to perform when working with
carefully chosen representatives of the equivalence classes. The advantage of using
1.11 as the definition for asymptotic morphisms will become clear in Section 3.

In this paper three graded Real C∗-algebras will play key roles: K, the algebra
of compact operators on a separable Z/2-graded Hilbert space; S, the algebra of
complex-valued continuous functions on R that vanish at infinity; and Cn,m , the
Clifford algebra of Rn+m . We present some of the properties of these C∗-algebras.
• K = K(H) is the C∗-algebra of compact operators on a separable Real Z/2-

graded Hilbert space H , with the standard even grading [Blackadar 1998, 14.1.2],
and with Real structure defined by:

T (h)= T (h) for T ∈ K and h ∈ H .
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Proposition 1.17. There is a ∗-isomorphism K⊗̂K
k- K, unique up to homotopy

and unitary equivalence.

• S denotes the C∗-algebra C0(R) of complex-valued continuous functions on
R that vanish at infinity, with the grading given by even and odd functions; the map

is complex conjugation. Two ∗-homomorphisms ε :S→C and 1 :S→S⊗̂S
can be constructed in a natural way. For f ∈ S, let ε( f )= f (0). To define 1 one
needs to introduce the notion of unbounded multiplier. Whatever the definition,
such a multiplier admits a functional calculus ∗-homomorphism; see [Higson et al.
1998, A.3]. Consequently, regarding (x ⊗ 1+ 1⊗ x) as an essentially self-adjoint
unbounded multiplier of S ⊗̂ S, 1 is nothing but the functional calculus for it:
f 7→ f (x ⊗ 1+ 1⊗ x). On the set of generators {e−x2

, xe−x2
} of S we obtain

1(e−x2
)= e−x2

⊗̂ e−x2
and 1(xe−x2

)= xe−x2
⊗̂ e−x2

+ e−x2
⊗̂ xe−x2

.

Proposition 1.18. The ∗-homomorphims 1 : S→ S ⊗̂S and ε : S→ C form an
associative, commutative comultiplication and a counit for S, respectively.

Remark 1.19. The philosophy behind this proposition is that S is an “organizer”
for algebra, and should not be regarded merely as a space of continuous functions
on R.

• Cm,0=C−m =Cliff(Rm) is the Real Clifford algebra of Rm , i.e., the universal
Real algebra with odd generators {e1, . . . , em} satisfying ei e j + e j ei = −2δi j for
1 ≤ i, j ≤ m, plus ei

∗
= −ei , ei = ei , and ‖ei‖ = 1. (The grading is the standard

one, and the notation agrees with [Kasparov 1976].) One can also define Cm,n , the
Real Clifford algebra of Rm+n , with generators {e1, . . . , em, ε1, . . . , εn} satisfying
the additional properties εiε j + ε jεi = +2δi j , εi e j + e jεi = 0, εi

∗
= εi , εi = εi ,

and ‖εi‖= 1. We denote C0,n by C+n . We shall need the following result [Lawson
and Michelsohn 1989, I.1.5]:

Proposition 1.20. Consider the inclusions

C−m→ C−(m+n), ei 7→ ei and C−n→ C−(m+n), e j 7→ em+ j .

The universal property of the maximal tensor product gives a ∗-isomorphism γ :

C−m ⊗̂ C−n→ C−(m+n). Its inverse is given by v 7→ v1 ⊗̂ 1+ 1 ⊗̂ v2 for v1 ∈ Rm ,
v2 ∈ Rn , v = v1+ v2 ∈ Rm+n

= Rm
⊕Rn .

E-Theory. Given C∗-algebras A and B, a homotopy between two asymptotic mor-
phisms from A to B is a ∗-homomorphism from A to A

(
C([0, 1], B)

)
. We denote

by [[A, B]] the set of homotopy classes of asymptotic morphisms from A to B, and
by [[ϕ]] or [[ϕt ]] the homotopy class of an asymptotic morphism. Homotopy is an
essential equivalence relation for the definition of E-theory groups and for the con-
struction of the composition of asymptotic morphisms. Asymptotically equivalent
asymptotic morphisms are homotopic.
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Definition 1.21. Let A and B be separable graded Real C∗-algebras. For any
nonnegative integer n, the n-th E-theory group of A and B, denoted E−n(A, B), is
the set of homotopy classes of asymptotic morphisms from S⊗̂ A to K⊗̂B ⊗̂C−n:

E−n(A, B)= [[S ⊗̂ A,K ⊗̂ B ⊗̂C−n]] for n = 0, 1, 2, . . . .

This is the definition of E-theory groups introduced in [Higson and Kasparov
1997].

Definition 1.22. Let A be a separable graded Real C∗-algebra. The n-th analytic
K -homology group of A, denoted by E−n(A), is

E−n(A)= E−n(A,C)= [[S ⊗̂ A,K ⊗̂C−n]] for n = 0, 1, 2, . . . .

For X a locally compact topological space, the n-th analytic K -homology group of
X is

En(X)= E−n (C0(X))= E−n (C0(X),C) for n = 0, 1, 2, . . . ,

C0(X) being trivially graded.

In order to keep the paper self-contained, we shall not use the bivariant groups
and the powerful composition product that relates them. We gave Definition 1.21
to make clear the context in which we define the K -homology groups. The main
properties of these K -homology groups are summarized now:

Theorem 1.23. (1) The E−n(A) are abelian groups for any separable graded
Real C∗-algebra A and any n=0, 1, 2, . . . . If A and B are Real C∗-algebras,
any ∗-homomorphism α : A→ B induces group homomorphisms

α∗ : E−n(B)→ E−n(A) for n = 0, 1, 2, . . . .

(2) (Bott periodicity) E−n(A) ' E−n−b(A) for all n ∈ N, with b = 2 if A is a
complex C∗-algebra and b = 8 if A is a Real C∗-algebra.

(3) (Half-exactness) For any short exact sequence of C∗-algebras

0→ J → A→ A/J → 0

there is an exact sequence

E−n(J )← E−n(A)← E−n(A/J ) for n = 0, 1, 2, . . . .

(4) (Homotopy invariance) Let α0, α1 : A→ B be homotopic ∗-homomorphisms.
Then α∗0 = α

∗

1 : E
−n(B)→ E−n(A), for n = 0, 1, 2, . . . .

(5) The association X 7→ E∗(X) is a generalized homology theory in the category
of locally compact metrizable spaces.

(The last assertion implies among others the existence of a long exact sequence

· · ·
∂- En(Y )→ En(X)→ En(X, Y ) ∂- En−1(Y )→ · · ·

for any compact pair (X, Y ), and after defining En(X, Y )= En(X \ Y ).)
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Example 1.24. Let X = • be a point. Then E0( •)= E0(C)=[[S,K]]= [S,K]=Z.
The third equality is a generalization to the graded category of [Guentner et al.
2000, 2.19]. The result says that in each homotopy class of asymptotic morphisms
from S to K there is a unique homomorphism up to homotopy. As explained in
[Trout 2000], to any ∗-homomorphism ϕ : S→ K(H) there corresponds a pair
(H0, D), where H0 is a subspace of H and D is an operator on H0 such that ϕ is
equivalent to the functional calculus for D: f 7→ f (D). The isomorphism with Z is
given by the Fredholm index of D. A generator can be described as the homotopy
class of the ∗-homomorphism f 7→ f (0)e11, where e11 is a rank-one projection in
K, or as the pair with H0 = C and D = 0.

We shall see in Section 4 that Hn(R
n)= Z.

2. Spinor bundles and Dirac operators

The spinor bundle of a Spin-manifold. Let Mm be an m-dimensional oriented
Riemannian manifold, possibly noncompact, possibly with boundary. We adopt
the following definition (see also [Higson and Roe 2000, 11.2], [Hitchin 1974,
4.2], or [Lawson and Michelsohn 1989, III.10]):

Definition 2.1. A spinor bundle S=SM on Mm is a Real vector bundle satisfying:

(i) S is Z/2-graded.
(ii) S admits a left action of C(TM), the bundle with fibers

C(TM)x = Cliff(TMx);

we denote by · the left Clifford action.
(iii) Each fiber of S is a right Hilbert C−m-module. We denote by 〈 , 〉x the C−m-

valued inner product on Sx and by � the right action of elements of C−m . The
following compatibility condition between the Clifford action and the Hilbert
C−m-module structure is required: 〈ξ ·s1, s2〉x+〈s1, ξ ·s2〉x = 0, for ξ ∈ TMx ,
and s1, s2 ∈ Sx .

(iv) For any x ∈ M there exists an open set Ux containing x such that S |Ux is
isomorphic to Ux × C−m , as bundles satisfying (i)–(iii) above, with the left
module structure on S |Ux determined by an oriented local orthonormal frame
on TM .

The existence of a spinor bundle is an extra structure that the underlying man-
ifold may or may not possess (see Definition 2.6). We give below three construc-
tions associated to the existence of spinor bundles.

Construction 2.2 (Restriction to an open subset). Let U be an open subset of M
and S a spinor bundle on M . Then S|U satisfies properties (i)–(iv) of Definition
2.1 and is a spinor bundle on U .
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Construction 2.3 (A spinor bundle on the product). Let SM and SN be spinor
bundles on M and N , respectively. Then T (M × N ) = TM ⊕ TN , and this gives
the action of C(T (M × N )) on SM ⊗̂SN . Indeed, fiberwise this action is exactly
the one given in the statement of Proposition 1.20. Consequently, SM ⊗̂SN is a
spinor bundle on M × N .

Construction 2.4 (Restriction to the boundary). Let Mm be a manifold with bound-
ary ∂M , and with collaring neighborhood of the boundary ∂Mm−1

× [0, 1). Let
ν ∈ TM |∂M be the outward-pointing normal vector field, and let S be a spinor
bundle on M . Consider the following self-adjoint automorphism:

σ : S
∣∣
∂M

- S
∣∣
∂M , σ (sx)= (−1)∂sx νx · sx � em,

for x ∈ ∂M , sx ∈Sx homogeneous, em the m-th generator of C−m , · denoting Clif-
ford action, � denoting the right C−m action, and with the above formula extended
by linearity to all the elements. The automorphism σ commutes with the Clifford
action by vectors from T (∂M), with the right action of C−(m−1), and obviously
satisfies σ 2

= id. Consequently, with the structure that it inherits from S, the +1
eigenbundle of σ is a spinor bundle on ∂M , called the the induced spinor bundle
on the boundary.

Definition 2.5. Let (M, g′) and (M, g′′) be two Riemannian manifolds with the
same underlying smooth manifold M , and let S′ and S′′ be spinor bundles on
(M, g′) and (M, g′′), respectively. The triples (M, g′,S′) and (M, g′′,S′′) are
concordant [Higson and Roe 2000, 11.2.6] if there is a pair consisting of a Rie-
mannian metric g and a spinor bundle S on R×M such that S

∣∣
(a,b)×M =S(a,b)⊗̂S′

and S
∣∣
(c,d)×M =S(c,d) ⊗̂S′′, where the intervals (a, b) and (c, d) of R are disjoint.

Definition 2.6. A Spin-structure on M is a concordance class of Riemannian
metrics and spinor bundles on M. A Spin-manifold is a manifold with a given
Spin-structure.

Finally, in order to describe the Dirac operator we introduce the following:

Definition 2.7. A spinor connection on a spinor bundle S is a bilinear map ∇ :
C∞(TM)⊗C C∞(S) - C∞(S), (X, s) 7→ ∇X s, compatible with the Real
structure, with the right action, and with the Clifford action as follows: ∇X (Y ·s)=
(∇LC

X Y ) · s+Y · ∇X s, where X, Y ∈ C∞(TM) are vector fields on M , and ∇LC is
the Levi-Civita connection familiar from Riemannian geometry. Such a connection
always exists and is unique for a given S.

Definition 2.8. Let M be a Spin-manifold, with spinor bundle S, and spinor con-
nection ∇. The Dirac operator on M is the formally self-adjoint odd first order
elliptic operator D = DM acting on sections of S, which over a trivialization chart
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U is given by:

DM(s)=
m∑

i=1

Vi · ∇Vi s,

for s ∈ C∞(S|U ), and {Vi }i=1,m an oriented local orthonormal frame for TM |U .
Taking into account the grading on L2(S) induced from the grading of S, DM has
the following matrix form:

(2–1) DM =

(
0 D−
D+ 0

)
.

3. The K -homology class of an elliptic operator

Definition 3.1. Let Mm be a Spin-manifold without boundary, S=SM be a spinor
bundle in the given concordance class, and D = DM be the corresponding Dirac
operator, as explained in the previous section. A localized family of Dirac-type
operators on M is a family {Dt }t∈[1,∞) of essentially self-adjoint operators, acting
on sections of S, and satisfying the following condition: for every compact K ⊆M ,
there is a real number t (K ) such that Dt(s)= D(s), for every section s of S with
support included in K , and for every t > t (K ).

Lemma 3.2. Localized families {Dt }t∈[1,∞) as in Definition 3.1 do exist.

Proof. Indeed, start with a family {χt }t∈[1,∞) of cutoff functions on M , i.e., positive,
smooth, compactly supported, with χt1 ≤χt2 ≤1, for t1≤ t2, and such that for every
x ∈ M there exists t = t (x) with χt (x)(x) = 1. We construct a localized family of
operators by defining Dt = χt D χt . �

Remark 3.3 (More on the existence of the family {Dt }t∈[1,∞)). The presence of
cutoff functions guarantees that the operators Dt = χt D χt are essentially self-
adjoint. There are nevertheless situations when the self-adjointness can be obtained
from a different source, and in such cases the construction given in the previous
lemma can be simplified. For example, if M is a complete Spin-manifold then D is
already essentially self-adjoint. One chooses {Dt }t∈[1,∞) to be the constant family
{D}t∈[1,∞). The same choice of a constant family can obviously be made when M is
compact, a compact manifold being complete. If M has boundary some boundary
conditions must be taken into account, but we shall not enter into this here.

The main construction of the paper is the following: to a Spin-manifold without
boundary M of dimension m, we associate an asymptotic morphism {ϕM

t }t∈[1,∞) :

S ⊗̂C0(M) 99K K ⊗̂C−m given by

(3–1) ϕM
t ( f ⊗̂ g)= f

( 1
t Dt

)
· g for f ∈ S, g ∈ C0(M).

Here {Dt }t∈[1,∞) is a localized family as in Definition 3.1. The operator f
( 1

t Dt
)

is then given by the functional calculus and is an element of B(L2(S)), the space
of bounded operators on the Hilbert C−m-module of square integrable sections of
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S. The operator denoted by g is the pointwise left multiplication operator with the
function (x 7→ g(x) 1), where 1 is the unit of C(TM)x , for x ∈ M ; see Definition
2.1(ii). It is also an element of B(L2(S)).

Theorem 3.4. Let Mm be a Spin-manifold without boundary. The homotopy class
of the asymptotic morphism {ϕM

t }t∈[1,∞) of (3–1) gives an element

(3–2) [[DM ]] ∈ Em(M)= [[S ⊗̂C0(M),K ⊗̂C−m]].

This element is called the fundamental K -homology class of M.

We collect the results needed to support the theorem above in the form of three
lemmas.

Lemma 3.5. For g compactly supported and t large,

f
( 1

t Dt
)
· g ∈ K(L2(S))' K ⊗̂C−m .

Lemma 3.6. {ϕM
t }t∈[1,∞) is an asymptotic morphism of type Asym3.

Lemma 3.7. [[DM ]] does not depend on the choice of the family {Dt }t∈[1,∞).

Proof of Lemma 3.5. Using f (x) = (x ± i)−1 and g ∈ C∞c (M), let t > t (supp g).
Then g · (1

t Dt ± i)−1
: L2(S)→ L2(S), as a bounded operator between Hilbert

C−m-modules, is defined by the composition

L2(S)

( 1
t Dt±i

)−1

- H 1
loc(S)

g- H 1
c (S)

⊂
I- L2(S).

The first map is functional calculus, but relies on the characterization of the do-
main of the Dirac operator. One can use the realization via cutoff functions of the
localized family (Lemma 3.2) to show that Dom

( 1
t Dt± i

)
is contained in H 1

loc(S).
(The Hilbert C−m-module structure permits the definition of the Sobolev spaces in
a way similar to the classical case.) The proof of the classical theorem of Rellich
also generalizes to this context, and it shows that I is a compact operator. Conse-
quently g ·

( 1
t Dt±i

)−1
∈K

(
L2(S)

)
. At this point one has to make an identification

K
(
L2(S)

)
' K ⊗̂C−m . The desired result is obtained by taking adjoints. �

Proof of Lemma 3.6. The key fact is

(3–3) lim
t→∞

[
f
( 1

t Dt
)
, g

]
= 0 for f (x)= (x ± i)−1, g ∈ C∞c (M).

(Recall that C0(M) is trivially graded, so the commutator in (3–3) is ordinary.)
Indeed,[( 1

t Dt ± i
)−1

, g
]
=

(1
t Dt ± i

)−1
g− g

( 1
t Dt ± i

)−1

= (1
t Dt ± i)−1 (

g
( 1

t Dt ± i
)
−

( 1
t Dt ± i

)
g
)
( 1

t Dt ± i)−1

=
(1

t Dt ± i
)−1 1

t [g, D]
( 1

t Dt ± i
)−1

=
(1

t Dt ± i
)−1 1

t ∇g
( 1

t Dt ± i
)−1 t→∞- 0.
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This is a simple generalization of the proof from [Higson 1991] used for Example
1.16. (The explicit formula in local coordinates of the Dirac operator is also used
to obtain the last equality above.) Part (i) of Basic Lemma 1.15 gives the extension
to S ⊗̂C0(M).

We use a similar computation to prove the asymptotic continuity of the map
t 7→ ϕt( f ⊗̂ g), for f (x) = (x ± i)−1, and g ∈ C∞c (M). Recall Definition 1.11.
In our case a = f ⊗̂ g is the fixed element. Let ε > 0 be given. We have to
show that there exists T = T (ε) satisfying (1–3) and (1–4), which here means that∥∥ f

( 1
t Dt

)
g
∥∥< ‖ f ‖‖g‖+ε (this is obvious), and that for a given t0≥ T there exists

δ = δ(ε, t0) such that∥∥ f
( 1

t Dt
)
g− f

( 1
t0

Dt0
)
g
∥∥

B(L2(S))
< ε for |t − t0|< δ.

Set T1= (3/ε) supx∈M
{
‖∇g(x)‖C−m

}
, T2= t (supp g), and T = 2 max{T1, T2}. For

a given t0 > T , put δ =min
{
T/2, εT/(12 ‖g‖)

}
. With these choices,∥∥g · f

( 1
t DT

)
−g · f

( 1
t0

DT
)∥∥

=
∥∥g

( 1
t DT ± i

)−1(( 1
t0
−

1
t

)
DT

)( 1
t0

DT ± i
)−1∥∥

≤
∥∥g

( 1
t DT ± i

)−1(1− t0
t

)( 1
t0

DT ± i
)( 1

t0
DT ± i

)−1∥∥
+

∥∥g
( 1

t DT ± i
)−1(1− t0

t

)( 1
t0

DT ± i
)−1∥∥

≤ 2 ‖g‖
∣∣∣1− t0

t

∣∣∣< ε

3
.

For the localized family {Dt }t , as already noted when proving (3–3), we have
[g, D] = [g, Dt ] for t > t (supp g). Putting things together, we get∥∥ f

( 1
t Dt

)
g− f

( 1
t0

Dt0
)
g
∥∥

≤
∥∥ f

( 1
t Dt

)
g− g f

( 1
t DT

)∥∥+ ∥∥g f
( 1

t DT
)
− g f

( 1
t0

DT
)∥∥

+
∥∥g f

( 1
t0

DT
)
− f

( 1
t0

Dt0
)
g
∥∥

<
ε

3
+
ε

3
+
ε

3
= ε,

completing the proof. �

Proof of Lemma 3.7. Let {Dt }t and {D′t }t be localized families as in Definition 3.1.
For f (x)= (x ± i)−1, g ∈ C∞c (M), and t > t (supp g), we have

f
( 1

t Dt
)
g− f

( 1
t D′t

)
g = f

( 1
t Dt

)
g− g f

( 1
t D′t

)
−

[( 1
t D′t ± i

)−1
, g

]
=

( 1
t Dt ± i

)−1 1
t ∇g

( 1
t D′t ± i

)−1
−

[( 1
t D′t ± i

)−1
, g

] t→∞- 0.

Thus the two asymptotic morphisms are asymptotically equivalent, showing that
the class [[DM ]] does not depend on the choice of the family {Dt }t∈[1,∞) �

Example 3.8. Let M = • be a point. Then S• = C0 = C, D• = 0, and [[D• ]] is
given by the class of the ∗–homomorphism S→ K , f 7→ f (0)e11, where e11 is
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a rank one projection in K. Recall from Example 1.24 that this is the generator of
E0( •).

Example 3.9. Let M = R. Then S(R)= R×C−1 ' R× (C⊕ e1C), and the Dirac
operator is

DR = e1
d

dx
=

(
0 −d/dx

d/dx 0

)
.

We shall see in Corollary 4.5 that E1(R) is isomorphic to Z, with generator [[DR]].

We end this section with a “contravariance” property satisfied by the K -homology
classes that we have constructed:

Theorem 3.10. Let Mm be an open Spin-manifold. For every open inclusion r :
U ↪→ M we have a “wrong-way” group homomorphism r ! : Em(M)→ Em(U ),
given by “extension by zero”, such that r !([[DM ]])= [[DU ]].

Proof. The group homomorphism r ! is induced by the ‘extension by zero’ ∗-
homomorphism r∗ : C0(U )→ C0(M). Indeed, for ϕ : S ⊗̂C0(M) 99K K ⊗̂C−m ,
r !(ϕ) is given by the composition

S ⊗̂C0(U )
id ⊗̂r∗- S ⊗̂C0(M)

ϕ- K ⊗̂C−m .

See also [Guentner 1994, 6.2.13], or [Higson and Roe 2000, 11.1.7]. For the second
part, let DU be the Dirac operator corresponding to the restriction of the spinor bun-
dle to U (see Construction 2.2), and consider {DU,t }t to be a family used to define
[[DU ]], and {DM,t }t to be a family used to define [[DM ]]. We show that the asymp-
totic morphisms

{
f
( 1

t DU,t
)
g
}

t∈[1,∞) and
{

f
( 1

t DM,t
)
g
}

t∈[1,∞), with f ∈ C0(R)

and g∈C∞c (U ), are asymptotically equivalent. Indeed, the same argument as in the
proof of Lemma 3.7 applies for {Dt }t ={DU,t }t and {D′t }t ={DM,t }t . Consequently
[[DM ]] 7→ [[DU ]] is well-defined and gives the desired homomorphism. �

4. Properties of the analytic K -homology groups

The external product. For any two C∗-algebras A and B and for any integers m
and n, there is the external product map

(4–1) E−m(A)⊗ E−n(B)−→ E−m−n(A ⊗̂ B),
(
[[ϕt ]], [[ψt ]]

)
7→ [[ϕt ]] �̂ [[ψt ]].

[[ϕt ]] �̂ [[ψt ]] is called the external product of the asymptotic morphisms

{ϕt } : S ⊗̂ A 99K K ⊗̂C−m and {ψt } : S ⊗̂ B 99K K ⊗̂C−n,

and is the class of the asymptotic morphism obtained as the composition of asymp-
totic morphisms

(4–2) S⊗̂A⊗̂B 1- S⊗̂A⊗̂S⊗̂B
ϕt ⊗̂ψt- K⊗̂C−m⊗̂K⊗̂C−n

'- K⊗̂C−(m+n).
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Here the first ∗-homomorphism incorporates the transposition isomorphism τ , and
the last incorporates τ , k of Proposition 1.17, and γ of Proposition 1.20. (The map
described in (4–1) and (4–2) is an example of product in E-theory .)

In the geometric context that interests us, given two Spin-manifolds without
boundary Mm and N n , by composing to the left with the isomorphism

S ⊗̂C0(M × N )→ S ⊗̂C0(M) ⊗̂C0(N )

in (4–2), the construction above makes possible an external multiplication of the
fundamental K -homology classes of M and N :

(4–3) Em(M)⊗En(N )−→ Em+n(M×N ),
(
[[DM ]], [[DN ]]

)
7→ [[DM ]]�̂[[DN ]].

One of the important features of analytic K -homology is contained in the next
result; see also [Higson and Roe 2000, 11.1.8].

Theorem 4.1. In Em+n(M × N ), one has [[DM ]] �̂ [[DN ]] = [[DM×N ]].

Proof. Taking into account Construction 2.3, it is clear that DM×N = DM ⊗̂1+1⊗̂
DN . (We consider as the initial domain of DM×N the algebraic tensor product of
the domains of DM and DN .) There are two asymptotic morphisms: the “analytic”
one, as described in (4–3) and (4–2),

(4–4) ϕa
t ( f ⊗̂ h ⊗̂ k)=

(
[[DM ]] �̂ [[DN ]]

)
( f ⊗̂ h ⊗̂ k),

and the “geometric” one, as described in (3–1),

(4–5) ϕ
g
t ( f ⊗̂ h ⊗̂ k)= f

( 1
t DM×N ,t

)
· h ⊗̂ k.

Here f ∈ S, h ∈ C0(M), and k ∈ C0(N ); moreover we identify C0(M × N )
with C0(M) ⊗̂ C0(N ). Consequently we regard (4–4) and (4–5) as asymptotic
morphisms S⊗̂C0(M×N )99K K(L2(SM×N )), and the aim is to show that they are
asymptotically equivalent, which will imply exactly the statement of the theorem.
In other words, we want to show that

(4–6) lim
t 7→∞

∥∥ϕg
t ( f ⊗̂ h ⊗̂ k)−ϕa

t ( f ⊗̂ h ⊗̂ k)
∥∥= 0

for all f ⊗̂ h ⊗̂ k ∈ S ⊗̂ C0(M × N ), with ‖ ‖ denoting the operator norm in
B(L2(SM×N )).

We have to be careful with the construction of the family {DM×N ,t }. One way
to do it is to consider cutoff functions {χM

t }t∈[1,∞) and {χ N
t }t∈[1,∞) on M and N ,

and to define DM×N ,t = (χ
M
t ⊗̂ χ

N
t ) DM×N (χ

M
t ⊗̂ χ

N
t ). A simpler way is to use

DM×N ,t = DM,t ⊗̂1+1 ⊗̂ DN ,t , over C∞c (M× N ). With this detail taken care of,
we prove (4–6) by showing first that the two asymptotic morphisms are actually
equal for f = f (x) ∈ {e−x2

, xe−x2
} and h, k compactly supported. Everything is

reduced to showing that

e−((1/t)(DM,t ⊗̂1+1⊗̂DN ,t ))
2
= e−(1/t

2)D2
M,t ⊗̂ e−(1/t

2)D2
N ,t ,
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and this is explained in [Higson et al. 1998, Appendix A]. A density argument
finishes the proof. (Note that there is no hope to get equality as above for arbitrary
f , h, and k.) �

Corollary 4.2. [[DRk ]] �̂ [[DRl ]] = [[DRk+l ]].

Having the external product at our disposal, we can now prove other properties
of the K -homology groups. We start with Bott periodicity, already mentioned in
Theorem 1.23(2). Its essence, in a form that will be used in the proof of Theorem
4.4, is given by the following lemma. (Compare also with [Blackadar 1998, 19.2].)

Lemma 4.3. In E-theory, C and C0(R) ⊗̂ C+1 are equivalent as graded Real
C∗-algebras.

Proof. We shall construct two asymptotic morphisms, actually an asymptotic mor-
phism and a ∗-homomorphism, such that their compositions are asymptotically
equivalent to the identity. (These compositions are examples of products in E-
theory.)
(i) The first asymptotic morphism, d , is the Dirac element. Let D = DR = e1 ·

d
dxbe the Dirac operator on R. Then d is given by the composition

S ⊗̂C0(R) ⊗̂C+1
ϕR

t ⊗̂id- K ⊗̂C−1 ⊗̂C+1
'- K ⊗̂M2(C)

'- K,

f ⊗̂ g ⊗̂ v 7→ f
( 1

t D
)
g ⊗̂ v.

(ii) The second asymptotic morphism, β, is the dual Dirac element, and it is actu-
ally the ∗-homomorphism

S→ C0(R) ⊗̂C+1, f 7→ f (x ⊗̂ ε1).

The composition d ◦β is given by

S
1- S ⊗̂S

id ⊗̂β- S ⊗̂C0(R) ⊗̂C+1
d- K,

and it is asymptotically equivalent to the following family of ∗-homomorphisms;
see [Higson et al. 1998, Appendix B]:

(4–7) f 7→ f
( 1

t B
)
, where B = D+ (−1)degxe1.

Now B2
= −d2/dx2

+ x2
+ (−1)1+deg has one-dimensional kernel, generated by

e−x2/2. Denote by e11 the orthogonal projection onto the kernel of B2. The family
of ∗-homomorphisms (4–7) is asymptotically equivalent to the ∗-homomorphism
f 7→ f (0)e11, which is exactly the identity.

The composition β ◦ d is given by

S ⊗̂C0(R) ⊗̂C+1
1- S ⊗̂S ⊗̂C0(R) ⊗̂C+1

β⊗̂d- C0(R) ⊗̂C+1 ⊗̂K.

To prove that it is asymptotically equivalent to the identity, one uses the rotation
trick of Atiyah [Higson et al. 1998, Proof of Theorem 2.6 and Lemma 2.18] to
reduce the computation to the one already performed for the composition d ◦β. �
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Theorem 4.4. An isomorphism Em(Mm)→ Em+k(R
k
× Mm) is provided by the

external tensor product with [[DRk ]].

Proof. Induction reduces the problem to the case k = 1; denote this map by

bM : Em(M)
[[DR]]�̂- Em+1(R×M).

We shall attain our goal by constructing an inverse for bM , the “suspension map”
sM . Let [[ψt ]] be an element of Em+1(R×M), given by an asymptotic morphism
{ψt } : S ⊗̂C0(R× M) 99K K ⊗̂C−(m+1). The element sM([[ψt ]]) ∈ Em(M) is the
class of the asymptotic morphism obtained as result of the compositions

S⊗̂C0(M)
β◦1- S⊗̂C0(R)⊗̂C0(M)⊗̂C+1

ψt ⊗̂id- K⊗̂C−(m+1)⊗̂C+1
'- K⊗̂C−m .

The remaining part now follows easily from Lemma 4.3. Indeed, given an element
[[φt ]] ∈ Em(M), (sM ◦bM)([[φt ]]) is the class of the asymptotic morphism given by
the composition

S ⊗̂C0(M)
12
⊗̂id- S ⊗̂S ⊗̂S ⊗̂C0(M)

idS ⊗̂β⊗̂id- S ⊗̂C0(R) ⊗̂C+1 ⊗̂S ⊗̂C0(M)
[[DR]]�̂[[φt ]]- K ⊗̂C−1 ⊗̂C+1 ⊗̂K ⊗̂C−m ' K ⊗̂C−m .

Consequently,

(sM ◦ bM)
(
[[φt ]]

)
=

[[
(d ◦ (idS ⊗̂β) ◦1) ⊗̂ {φt }

]]
=

[[
1 ⊗̂ {φt }

]]
= [[φt ]],

the second equality following from Lemma 4.3.
Similarly, given [[ψt ]] ∈ Em+1(R × M), (bm ◦ sM)([[ψt ]]) is the class of the

asymptotic morphism given by the composition

S ⊗̂C0(R) ⊗̂C0(M)
1- S ⊗̂C0(R) ⊗̂S ⊗̂C0(M)

(idS⊗̂C0(R)
)⊗̂(β◦1)

- S ⊗̂C0(R) ⊗̂S ⊗̂C0(R) ⊗̂C0(M) ⊗̂C+1

[[DR]]�̂[[ψt ]]- K ⊗̂C−1 ⊗̂K ⊗̂C−(m+1) ⊗̂C+1 ' K ⊗̂C−(m+1).

Again using Atiyah’s rotation trick, this asymptotic morphism is asymptotically
equivalent to the one with the two copies of C0(R) switched in the middle line of the
composition above. In other words, its class is

[[
(d◦(idS ⊗̂β)◦1)⊗̂{ψt }

]]
=[[ψt ]].

�

Corollary 4.5. [[DR]] is nonzero and it generates E1(R).

Homotopy invariance of the fundamental K-homology classes.

Theorem 4.6. Let M be a Spin-manifold. Then [[DM ]] does not depend on the
choice of the spinor bundle SM in the given concordance class.
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Proof. The notation is that of Section 2, and the result follows from the commuta-
tive diagram

Em+1(R×M)

Em+1
(
(a, b)×M

)�

r!

Em+1
(
(c, d)×M

)
r !

-

Em+1(R×M)

'

wwww
Em+1(R×M)

'

wwww

Em(M) �
� s M

sM -

Remark 4.7. Consider a Spin-manifold M with metric g0, and a spinor bundle S0
in the given concordance class. Let g1 be another metric on M . The two metrics can
be joined by a path of metrics {gt }t∈[0,1] and there is a unique spinor bundle S1 over
M with the metric g1 and in the same concordance class with S0. Consequently,
Theorem 4.6 applies and gives the invariance of [[DM ]] with respect to the metric
on M.

The boundary map. In the remainder of this section we consider the case of man-
ifolds with boundary. Let Mm be a Spin-manifold with boundary ∂M . We shall
not enter into details about the relative E-theory groups; see [Guentner 1999] for
a careful treatment of these matters. Instead, we adopt E∗(M \ ∂M) as the defini-
tion for the relative groups E∗(M, ∂M), and then Theorem 1.23(5) gives, in this
particular case that interests us, the long exact sequence

(4–8) · · · → E p(M)→ E p(M \ ∂M) ∂- E p−1(∂M)→ E p−1(M)→ · · · .

Our goal is Theorem 4.9, and we shall attain it by explicitly computing the
boundary map ∂ in the sequence above. We start by abstractly defining ∂ , following
[Higson 1988].

(i) Given a sequence of half-exact contravariant functors F−n with objects C∗-
algebras, associated to a short exact sequence of C∗-algebras

0→ J → A
p- A/J → 0,

there are maps d : F−n(J )→ F−n(Σ(A/J )), making the diagram

F−n(J )
d - F−n(Σ(A/J ))

F−n(C p)

δ

-
�

h
1
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commute, where for any C∗-algebra B we setΣB=C0(R)⊗̂B with C0(R) trivially
graded, and where C p is the mapping cone of the quotient ∗-homomorphism p :
A→ A/J . The oblique maps come from the inclusions of J and Σ(A/J ) in C p.
The left oblique map h1 is an isomorphism.
(ii) For any C∗-algebra B, there are concrete isomorphisms

F−n(ΣB) s- F−n+1(B).

The boundary map ∂ is by definition the composition of the two maps appearing
in (i) and (ii):

∂ : F−n(J ) d- F−n(Σ(A/J )) s- F−n+1(A/J ).

For the short exact sequence 0→ C0(M \ ∂M)→ C0(M)→ C0(∂M)→ 0, the
map s of (ii) is the “suspension map” s∂M introduced in the proof of Theorem 4.4.
We need one more abstract fact. Let J be any C∗-algebra and let C J denote the
cone of J . For the short exact sequence 0→Σ J → C J → J → 0, d = id in (i).
As an immediate consequence we obtain the desired characterization of ∂:

Lemma 4.8. If M = [0, 1)× ∂M , then ∂ = s∂M .

We are now able to prove another property of the K -homology classes of Dirac
operators:

Theorem 4.9. Let Mm be a Spin-manifold with boundary ∂M , and let M̊=M\∂M.
Then

∂([[DM̊ ]])= [[D∂M ]].

Proof. Let U be a collaring neighborhood of ∂M , and assume that it is diffeomor-
phic to [0, 1)× ∂M . Note that ∂U = ∂M . The desired conclusion follows from
the commutative diagram

Em(M̊)
∂- Em−1(∂M)

Em(Ů )
?

∂- Em−1(∂U )

wwww

Em(R× ∂M)

' i
?

s∂M
- Em−1(∂M).

wwww
Indeed, the upper square is commutative due to the naturality of the boundary map
associated to the commutative diagram of split exact sequences:

0 - C0(M̊) - C0(M) - C0(∂M) - 0

0 - C0(Ů )

6

- C0(U )

6

- C0(∂U )

wwww
- 0.
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In the lower square, i([[DŮ ]])= [[DR×∂M ]] = [[D∂M ]] �̂ [[DR]], the second equality
being a consequence of Theorem 4.1. The diagram’s commutativity follows from
the description ∂ = s∂M given in Lemma 4.8. �

The key results about the K -homology classes that we have considered in this
paper are Theorems 3.10, 4.1, 4.4, 4.6, and 4.9. One may want to compare our
proofs with the ones given in [Higson and Roe 2000, Chapters 9–11] or [Baum et al.
1989], both using Kasparov cycles. See also [Guentner 1998] for a presentation
of some of these properties using also E-theory, but for ungraded C∗-algebras and
with other applications in mind.

5. An application: cobordism invariance of the index

Let N n be a compact Spin-manifold without boundary, with DN the Dirac operator
on N . Let ε = εN

: N → • be the map that crushes the entire manifold to a point.

Definition 5.1. The real index of DN is

Index(DN )= ε
N
∗
([[DN ]]) ∈ En( •).

Remark 5.2. Because En( •) = Z, 0, 0, 0,Z, 0,Z/2,Z/2 as n ranges from 0 to 7,
this real index is a bit subtle. If the manifold is spinc and n is even, the (complex)
index defined in Definition 5.1 equals the familiar Fredholm index

dim ker D+− dim ker D∗
+
∈ Z.

(The notation is that of (2–1), and recall that the ellipticity makes DN a Fred-
holm operator. One needs also the pairings with the K -theory groups to obtain the
claimed equality.) The above identification justifies the terminology of Definition
5.1. The cobordism invariance of the index is contained in the next result.

Theorem 5.3. Let Mm be a compact Spin-manifold with boundary ∂M. Then

Index(D∂M)= 0.

Proof. This follows easily after some moments of contemplation of the diagram

Em(M̊)
∂- Em−1(∂M)

i∗- Em−1(M)

Em−1( •)

ε∂M
∗

?� ε
M
∗

Indeed,

Index(D∂M)
def
= ε∂M
∗
([[D∂M ]])= ε

∂M
∗
(∂[[DM̊ ]]) (by Theorem 4.9)

=
(
εM
∗
◦ i∗

)
(∂[[DM̊ ]])

= εM
∗

(
(i∗ ◦ ∂)([[DM̊ ]])

)
= εM
∗
(0)= 0. �
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