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A theorem of Escobar asserts that if a three-dimensional smooth compact
Riemannian manifold M with boundary is of positive type and is not con-
formally equivalent to the standard three-dimensional ball, a necessary and
sufficient condition for a C2 function H on M to be the mean curvature
of some conformal scalar flat metric is that H be positive somewhere. We
show that, when the boundary is umbilic and the function H is positive
everywhere, all such metrics stay in a compact set with respect to the C2

norm and the total degree of all solutions is −1.

1. Introduction

José F. Escobar [1992a] raised the following question: When is a compact Rie-
mannian manifold with boundary conformally equivalent to one that has zero scalar
curvature and whose boundary has constant mean curvature? This problem can be
seen as a generalization to higher dimensions of the Riemann Mapping Theorem,
which says that an open, simply connected proper subset of the plane is conformally
diffeomorphic to the disk. In higher dimensions few regions are conformally dif-
feomorphic to the ball. However one can still ask whether a domain is conformal to
a manifold that resembles the ball in two ways: namely, it has zero scalar curvature
and its boundary has constant mean curvature. Escobar’s problem is equivalent to
seeking a smooth positive solution u to the following nonlinear boundary value
problem on an n-dimensional Riemannian manifold with boundary (Mn, g), where
n ≥ 3:

(P)


−1gu +

(n − 2)
4(n − 1)

Rgu = 0, u > 0 in M̊

∂u
∂ν

+
n − 2

2
hgu = cun/(n−2) on ∂M,

where Rg is the scalar curvature of M , hg is the mean curvature of ∂M , ν is the
outer normal vector with respect to g, and c is a constant whose sign is uniquely
determined by the conformal structure.
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For almost all manifolds, Escobar [1992a; 1996] established that (P) has a so-
lution. More recently in [Ould Ahmedou 2003] this problem was studied using
the tool of critical points at infinity developed by A. Bahri [1989] (see also [Bahri
and Coron 1988; Bahri and Brezis 1996]). Going beyond the existence results of
[Ould Ahmedou 2003], we proved in [Felli and Ould Ahmedou 2003] that, when
(M, g) is locally conformally flat with umbilic boundary but not conformal to the
standard ball, all solutions of (P) stay in a compact set with respect to the C2 norm
and the total degree of all solutions is −1.

The heart of the proof of the result above is some fine analysis of the possi-
ble blow-up behaviour of solutions to (P). More specifically, we obtained energy-
independent estimates of solutions to{

Lgu = 0, u > 0 in M̊,
Bgu = (n − 2)uq on ∂M,

where

1< 1 + ε0 ≤ q ≤
n

n − 2
, Lg =1g −

n − 2
4(n − 1)

Rg, Bg =
∂

∂νg
+

n − 2
2

hg.

Instead of looking for conformal metrics with zero scalar curvature and constant
mean curvature as in (P), one may also look for scalar-flat conformal metrics with
boundary mean curvature being a given function H ; this problem is equivalent to
finding a smooth positive solution u to

(PH )

{
Lgu = 0, u > 0 in M̊,
Bgu = Hun/(n−2) on ∂M.

Such a problem was studied by Escobar [1996], who proved that if a positive
three-dimensional smooth compact Riemannian manifold M is not conformally
equivalent to the standard three-ball, a necessary and sufficient condition for a C2

function H on M to be the mean curvature of some conformal flat metric is that H
be positive somewhere. Recall that a manifold is called of positive type, or simply
positive, if the quadratic part of the Euler functional associated to (P) is positive
definite.

In our work we assume that the boundary is umbilic, that is, the traceless part
of the second fundamental form vanishes on the boundary. Moreover we assume
that the function H is positive.

Consider for 1< q ≤ 3 the problem

(PH,q )

{
Lgu = 0, u > 0 in M̊ ,
Bgu = Huq on ∂M .

We use MH,q to denote the set of solutions of (PH,q ) in C2(M). Our first theorem
gives a priori estimates of solutions of (PH,q ) in H 1(M) norm.
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Theorem 1.1. Let (M, g) be a three-dimensional smooth compact Riemannian
manifold with umbilic boundary. Then, for all ε0 > 0,

‖u‖H1(M) ≤ C for all u ∈

⋃
1+εo≤q≤3

MH,q ,

where C depends only on M , g, ε0, ‖H‖C2(∂M), and the positive lower bound of H.

Our next theorem states that for any positive C2 function H , all such metrics
stay bounded with respect to the C2 norm and the total Leray–Schauder degree of
all the solutions of (PH,q ) is −1.

Theorem 1.2. Let (M, g) be a positive three-dimensional smooth compact Rie-
mannian manifold with umbilic boundary which is not conformally equivalent to
the standard three-dimensional ball. Then, for any 1< q ≤ 3 and positive function
H ∈ C2(∂M), there exists some constant C (depending only on M , g, ‖H‖C2 , the
positive lower bound of H , and q) such that

1
C

≤ u ≤ C and ‖u‖C2(M) ≤ C

for all solutions u of (PH,q ). The total degree of all solutions of (PH,q ) is −1.
Consequently, equation (PH,q ) with q = 3 has at least one solution.

The hypothesis that (M, g) is not conformally equivalent to the standard three-
dimensional ball is necessary since (PH ) may have no solution in this case due to
the Kazdan–Warner-type condition for manifolds with boundary and for the mean
curvature proved in [Escobar 1996]. On the ball sufficient conditions on H in
dimensions 3 and 4 are given in [Djadli et al. 2004; Escobar and Garcia 2004], and
perturbative results were obtained in [Chang et al. 1998].

Recently S. Brendle [2002a; 2002b] obtained on surfaces some results related to
ours. He used curvature flow methods, in the spirit of M. Struwe [2002] and X.-X.
Chen [2001]. The curvature flow method was introduced in [Hamilton 1988] and
used in [Chow 1991; Ye 1994; Bartz et al. 1994].

The remainder of the paper is organized as follows. In Section 2 we provide the
main local blow-up analysis giving first sharp pointwise estimates to a sequence
of solutions near isolated simple blow-up points, then we prove that an isolated
blow-up is in fact an isolated simple blow-up, ruling out the possibility of bubbles
on top of bubbles. In Section 3 we rule out the possibility of bubble accumulations
and establish Theorem 1.1. In Section 4 we study compactness of solutions of (PH )
and establish Theorem 1.2. In the Appendix we provide some standard descriptions
of singular behaviour of positive solutions to some linear boundary value elliptic
equations in punctured half balls and collect some useful results.
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2. Local blow-up analysis

We may assume without loss of generality that hg ≡ 0. Indeed, let ϕ1 be a positive
eigenfunction associated to the first eigenvalue λ1 of the problem{

Lgϕ = λ1ϕ in M̊,
Bgϕ = 0 on ∂M.

Setting g̃ = ϕ4
1 g and ũ = ϕ−1

1 u, where u is a solution of (PH,q ) (with q = 3), one
can easily check that Rg̃ > 0, h g̃ ≡ 0, and ũ satisfies

L g̃ũ = 0 in M̊,

∂ ũ
∂ν

= Hũ3 on ∂M.

For simplicity, we work with g̃, denoting it by g. Since ∂M is umbilic with respect
to g and h g̃ = 0, it follows that the second fundamental form vanishes at each point
of the boundary, that is, the boundary is a totally geodesic submanifold. Hence we
can take conformal normal coordinates around any point of the boundary [Escobar
1992b].

Recall the definitions of isolated and isolated simple blow-ups, first introduced
by R. Schoen [1991] and used extensively by Y.-Y. Li [1995; 1996].

Definition 2.1 (isolated blow-up point). Let (M, g) be a smooth compact n-
dimensional Riemannian manifold with boundary and take r̄ > 0, c̄ > 0, x̄ ∈ ∂M .
Let H ∈ C0(Br̄ (x̄)) be a positive function, where Br̄ (x̄) denotes the geodesic ball
in (M, g) of radius r̄ centered at x̄ . Suppose that, for certain sequences qi = 3−τi ,
τi → 0, Hi → H in C2(Br̄ (x̄)), the sequence {ui }i∈N solves

(2–1)


Lgui = 0, ui > 0 in Br̄ (x̄),

∂ui

∂ν
= Hi u

qi
i on ∂M ∩ Br̄ (x̄).

We say that x̄ is an isolated blow-up point of {ui }i if there exists a sequence of local
maximum points xi of ui such that xi → x̄ , ui (xi )→ ∞ and for some C1 > 0,

ui (x)≤ C1d(x, xi )
−1/(qi −1), for all x ∈ Br̄ (xi ) and all i.

To describe the behaviour of blowing-up solutions near an isolated blow-up
point, we define spherical averages of ui centered at xi as follows

ūi (r)=

∫
M∩∂Br (x̄)

ui =
1

Volg(M ∩ ∂Br (x̄))

∫
M∩∂Br (x̄)

ui .

Definition 2.2 (isolated simple blow-up point). Let xi → x̄ be an isolated blow-up
point of {ui }i as in Definition 2.1. We say that xi → x̄ is an isolated simple blow-up
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point of {ui }i if, for some positive constants r̃ ∈ (0, r̄) and C2 > 1, the function
w̄i (r) := r1/(qi −1)ūi (r) satisfies, for large i ,

w̄′

i (r) < 0 for r satisfying C2u1−qi
i (xi )≤ r ≤ r̃ .

Notation. For later use we introduce the following symbols:

R3
+

is the open upper half-space
{
(x1, x2, x3) ∈ R2

× R : x3 > 0
}
;

B+
r (x̄) is the open upper hemisphere

{
x = (x ′, x3) ∈ R3

+
: |x − x̄ |< r

}
;

B+
r (x̄) is the closure of B+

r (x̄);
01(B+

r (x̄)) is the closed equatorial disk ∂B+
r (x̄)∩ ∂R3

+
;

02(B+
r (x̄)) is the open upper hemisphere ∂Br (x̄)∩ R3

+
;

02(B+
r (x̄)) is the closure of 02(B+

r (x̄)).

When the center of a ball is 0 we omit it from the notation, so B+
r = B+

r (0), etc.

For any x̄ ∈ ∂M , by choosing a geodesic normal coordinate system centered at
x̄ , we can assume without loss of generality that

x̄ = 0, gi j (0)= δi j , B+

1 ⊂ M,{
(x ′, 0)= (x1, x2, 0) : |x ′

|< 1
}

⊂ ∂M, 0k
i j (0)= 0,

where 0k
i j is the Christoffel symbol.

Let Hi → H in C2(01(B+

3 )) be a sequence of positive functions, qi a sequence
of numbers satisfying 2 ≤ qi ≤ 3 and qi → 3, and {vi }i ⊂ C2(B+

3 ) a sequence of
solutions to

(Pi )


−1gvi +

1
8 Rgvi = 0, vi > 0 in B+

3 ,

∂vi

∂ν
= Hiv

qi
i on 01(B+

3 ).

We now give some properties of isolated and isolated simple blow-ups. We will
use c to denote positive constants that may vary from formula to formula and may
depend only on M , g, and r̄ . A similar analysis of blow-ups was also carried out
in [Escobar and Garcia 2004], where (M, g) was the standard ball endowed with
euclidean metric. See also [Felli and Ould Ahmedou 2003].

The following lemma gives a Harnack Inequality, whose proof is contained
(apart from minor modifications) in [Felli and Ould Ahmedou 2003, Lemma 2.3]
and [Escobar and Garcia 2004].

Lemma 2.3. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

3 ) be an isolated blow-up of
{vi }i . Then, for any 0< r < r̄ ,

maxB+

2r (yi )\B+

r/2(yi )
vi ≤ C3 minB+

2r (yi )\B+

r/2(yi )
vi ,

where C3 is a positive constant independent of i and r.
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Lemma 2.4. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated blow-
up point. Then for any Ri → +∞ and εi → 0+ we have, after passing to a
subsequence,∥∥∥∥∥v−1

i (yi )vi
(
expyi

(v
1−qi
i (yi )x)

)
−

√
1

(1 + hi x3)2 + h2
i |x ′|2

∥∥∥∥∥
C1(B+

2Ri
)

(2–2)

+

∥∥∥∥∥v−1
i (yi )vi

(
expyi

(v
1−qi
i (yi )x)

)
−

√
1

(1 + hi x3)2 + h2
i |x ′|2

∥∥∥∥∥
H1(B+

2Ri
)

≤ εi

and

(2–3)
Ri

log vi (yi )
−→

i→+∞

0,

where x = (x ′, x3) ∈ B+

1 and hi = Hi (yi ).

Proof. Let gi = (gi )αβ(x) dxα dxβ = gαβ
(
v

1−qi
i (yi )x

)
dxα dxβ denote the scaled

metric. Set

ξi (x)= v−1
i (yi )vi

(
yi + v

1−qi
i (yi )x

)
for x ∈ B−Ti

v
qi −1
i (yi )

,

defined on the set

B−Ti

v
qi −1
i (yi )

:=
{
z ∈ R3

: |z|< vqi −1
i (yi ) and z3 >−Ti

}
,

where Ti = y3
i v

qi −1
i (yi ). Then the following conditions are satisfied:

(a) in B−Ti

v
qi −1
i (yi )

,

−1gi ξi +
1
8v

2(1−qi )

i (yi )Rgi

(
yi + v

1−qi
i (yi )x

)
ξi = 0 and ξi > 0;

(b) on ∂B−Ti

v
qi −1
i (yi )

∩ {z ∈ R3
: z3

= −Ti },

∂ξi

∂νgi

= Hi (yi + v
1−qi
i (yi )x)ξ

qi
i

(c) ξi (0)= 1,
(d) 0 is a local maximum point of ξi ;
(e) for some positive constant c̃,

(2–4) 0< ξi (x)≤ c̃|x |
−1/(qi −1).

Now we prove that ξi is locally bounded. Using Hopf’s boundary point lemma
and Lemma 2.3, we derive that for 0< r < 1

1 = ξi (0)≥ min01(B+
r )
ξi ≥ min02(B+

r )
ξi ≥ c max02(B+

r )
ξi ,

which implies that, for some c independent of r ,

max02(B+
r )
ξi ≤ c.
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From this we derive easily that ξi is locally bounded. Applying standard elliptic
estimates to {ξi }, we conclude, after passing to a subsequence, that ξi → ξ in
C2

loc(R
3
+
) and H 1

loc(R
3
+
) for some ξ satisfying
1ξ = 0, ξ > 0 in R3

−T ,

∂ξ

∂ν
=

(
lim

i
Hi (yi )

)
ξ 3 on ∂R3

−T ,

where R3
−T :=

{
x = (x ′, x3) ∈ R3

: x3 > −T
}

and T = limi Ti . By the Liouville
Theorem and (2–4) we have T <+∞. By a Liouville-type theorem from [Li and
Zhu 1995] and [Chipot et al. 1996] (see Theorem A.3 in the Appendix), we easily
deduce that T = 0 and

ξ(x ′, x3)=

(
1

(1 + limi Hi (yi )x3)2 + (limi Hi (yi ))2|x ′|2

)1/2

. �

Before stating our next result, we point out that it follows from Lemma A.5
of the Appendix that, for δ0 > 0 small enough, there exists a unique function
G( · , ȳ) ∈ C2

(
B+

δo
(ȳ) \ {ȳ}

)
satisfying

−1gG( · , ȳ)+ 1
8 RgG( · , ȳ)= 0 in B+

δo
(ȳ),

∂

∂ν
G( · , ȳ)= 0 on 01(B+

δo
(ȳ)) \ {ȳ},

limy→ȳ d(y, ȳ)G(y, ȳ)= 1.

Now we state our main estimate on isolated simple blow-up points.

Proposition 2.5. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up point, with (2–2) and (2–3) for all i . Then for some positive constant C
depending only on C1, r̃ , ‖Hi‖C2(01(B+

3 ))
, and infy∈01(B+

1 )
Hi (y) we have

(2–5) vi (y)≤ Cv−1
i (yi )d(y, yi )

−1, for d(y, yi )≤
r̃
2

where C1 and r̃ are given in Definitions 2.1 and 2.2. Furthermore, after passing to
some subsequence, for some positive constant b,

vi (yi )vi −→
i→+∞

b G( · , ȳ)+ E in C2
loc

(
B+

ρ̃
(ȳ) \ {ȳ}

)
,

where ρ̃ = min(δ0, r̃/2) and E ∈ C2(B+

ρ̃
(ȳ)) satisfies

−1g E +
1
8 Rg E = 0 in B+

ρ̃
,

∂E
∂ν

= 0 on 01(B+

ρ̃
).

Proposition 2.5 will be established through a series of lemmas.
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Lemma 2.6. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up. Assume Ri → +∞ and 0< εi < e−Ri are sequences for which (2–2) and
(2–3) hold. Then, for any 0< δ < 1

100 , there exists ρ1 ∈ (0, r̃) independent of i (but
depending on δ) such that

vi (yi )≤ C4v
−λi
i (yi )d(y, yi )

−1+δ for all ri ≤ d(y, yi )≤ ρ1,(2–6)

∇gvi (yi )≤ C4v
−λi
i (yi )d(y, yi )

−2+δ for all ri ≤ d(y, yi )≤ ρ1,(2–7)

∇
2
gvi (yi )≤ C4v

−λi
i (yi )d(y, yi )

−3+δ for all ri ≤ d(y, yi )≤ ρ1,(2–8)

where ri = Riv
1−qi
i (yi ), λi = (1− δ)(qi −1)−1, and C4 is some positive constant

independent of i .

Proof. We assume for simplicity that g is the flat metric. The general case can be
derived essentially in the same way. Let ri = Riv

1−qi
i (yi ). Lemma 2.4 implies that

(2–9) vi (y)≤ cvi (yi )R−1
i for d(y, yi )= ri .

We then derive from Lemma 2.3, (2–9), and the definition of an isolated simple
blow-up that, for ri ≤ d(y, yi )≤ r̃ , we have

(2–10) v
qi −1
i (y)≤ cR−1+o(1)

i d(y, yi )
−1.

Set Ti = y3
i v

qi −1
i (yi ). From the proof of Lemma 2.4 we know that limi Ti = 0. It

is not restrictive to take yi = (0, 0, y3
i ). Thus we have d(0, y3

i )= o(ri ). So

B+

1 (0) \ B+

2ri
(0)⊂

{3
2ri ≤ d(y, yi )≤

3
2

}
.

We now apply the maximum principle stated in Theorem A.1; to this aim we set

ϕi (y)= Mi
(
|y|

−δ
− ε|y|

δ−1 y3)
+ Av−λi

i (yi )
(
|y|

−1+δ
− ε|y|

−2+δ y3)
with Mi and A to be chosen later, and let 8i be the boundary operator defined by

8i (v)=
∂v

∂ν
− Hiv

qi −1
i (yi )v.

A direct computation yields

1ϕi (y)= Mi |y|
−δ

(
−δ(1 − δ)+ O(ε)

)
+|y|

−(3−δ)Av−λi
i (yi )

(
−δ(1 − δ)+ O(ε)

)
.

Thus one can choose ε = O(δ) such that 1ϕi ≤ 0.
Another straightforward computation taking into account (2–10) shows that for

δ > 0 there exists ρ1(δ) > 0 such that

8iϕi > 0 on 01(B+

ρ1
).

Setting

�= Di = B+

ρ1
\ B+

2ri
(0),

6 = 01(Di ) := ∂Di ∩ ∂R3
+
,

h = Hiv
qi −1
i ,

0 = 02(Di ) := ∂Di ∩ R3
+
,

v = ϕi − vi ,

V ≡ 0,

ψ = vi ,
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and choosing A = O(δ) such that ϕi ≥ 0 on 02(Di ) and Mi = max01(B+
ρ1 )
vi , we

deduce from Theorem A.1 that

(2–11) vi (x)≤ ϕi (x).

By the Harnack inequality and the assumption that the blow-up is isolated simple,
we derive that

(2–12) Mi ≤ cv−λi
i (yi ).

Now (2–6) follows from (2–11) and (2–12).
To derive (2–7) from (2–6), we argue as follows. For ri ≤ |ỹ| ≤ ρ1/2, we

consider

wi (z)= |ỹ|
1−δv

λi
i (yi )vi (|ỹ|z) for 1

2 ≤ |z| ≤ 2, z3
≥ 0.

It follows from (Pi ) that wi satisfies

(2–13)


−1wi = 0 in

{ 1
2 < |z|< 2 : z3 > 0

}
,

∂wi

∂ν
= Hi (|ỹ|z)|ỹ|

−λiv
λi (1−qi )

i (yi )w
qi
i on

{ 1
2 < |z|< 2 : z3

= 0
}
.

In view of (2–6), we have wi (z) ≤ c for any z such that 1
2 ≤ |z| ≤ 2 and z3

≥ 0.
We then derive from (2–13) and gradient elliptic estimates that∣∣∇wi (z)

∣∣ ≤ c for z ∈ 02(B+

1 ),

which implies that ∣∣∇vi (ỹ)
∣∣ ≤ c |ỹ|

−2+δv
−λi
i (yi ).

This establishes (2–7). Estimate (2–8) can be derived in a similar way. We omit
the details. �

Later on we will fix δ close to 0, hence fix ρ1. Our aim is to obtain (2–6) with
δ=0 for ri ≤d(y, yi )≤ρ1, which together with Lemma 2.4 yields Proposition 2.5.

Now we state a Pohozaev-type identity, which is basically contained in [Li and
Zhu 1997]. In the following, we will be working in some geodesic normal coor-
dinate x = (x1, x2, x3) with gi j (0)= δi j and 0k

i j (0)= 0. We use also the notation
∇ = (∂1, ∂2, ∂3), dx = dx1

∧ dx2
∧ dx3 and ds to denote the surface area element

with respect to the flat metric.

Lemma 2.7. For H ∈ C2(01(B+

1 )) and a ∈ C2(01(B+

1 )), let u ∈ C2(B+

1 ) satisfy,
for q > 0, 

−1gu +
1
8 Rgu = 0, u > 0 in B+

1 ,

∂u
∂ν

= Huq on 01(B+

1 ).
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Then, for any r such that 0< r ≤ 1,

1
q + 1

∫
01(B+

r )

(x ′
· ∇x ′ H)uq+1 ds +

(
2

q + 1
−

1
2

) ∫
01(B+

r )

Huq+1 ds

−
1

16

∫
B+

r

(x · ∇ Rg)u2 dx −
1
8

∫
B+

r

Rg u2 dx −
r
16

∫
02(B+

r )

Rg u2 ds

−
r

q + 1

∫
∂01(B+

r )

Huq+1 ds

=

∫
02(B+

r )

B(r, x, u,∇u) ds + A(g, u),

where

(2–14) B(r, x, u,∇u)=
1
2 u
∂u
∂ν

+
1
2r

(∂u
∂ν

)2
−

1
2 r |∇T u|

2

(∇T u being the component of ∇u tangent to 02(B+
r )) and

(2–15)

A(g, u)=

∫
B+

r

(xk∂ku)(gi j − δi j )∂i j u dx −

∫
B+

r

(x l∂lu)(gi j −0k
i j∂ku) dx

+
1
2

∫
B+

r

u(gi j
− δi j )∂i j u dx −

1
2

∫
B+

r

u gi j0k
i j∂ku dx

−

∫
01(B+

r )

x i ∂u
∂xi

(gi j
− δi j )

∂u
∂xi

ν j −
n − 2

2

∫
01(B+

r )

(gi j
− δi j )

∂u
∂xi

ν j u.

Regarding the term A(g, ui ), where ui is a solution of (Pi ), we have the follow-
ing estimate, whose proof is a direct consequence of Lemmas 2.4 and 2.6.

Lemma 2.8. Let {vi }i satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up point. Assume that Ri → +∞ and 0< εi < e−Ri are sequences for which
(2–2) and (2–3) hold. Then, for 0< r < ρ1, we have

|A(g, vi )| ≤ C5rv−2λi
i (yi ),

where C5 is some constant independent of i and r.

Using Lemmas 2.4, 2.6, 2.7 and 2.8, together with standard elliptic estimates,
we derive the following estimate about the rate of blow-up of the solutions of (Pi ).

Lemma 2.9. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up point. Assume that Ri → +∞ and 0< εi < e−Ri are sequences for which
(2–2) and (2–3) hold. Then

τi = O
(
v

−2λi
i (yi )

)
.

Consequently vτi
i (yi )→ 1 as i → ∞.
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Lemma 2.10. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up point. Then, for 0< r < r̃/2, we have

lim sup
i→+∞

maxy∈02(B+
r (yi ))

vi (yi )vi (y)≤ C(r).

Proof. By Lemma 2.3, it is enough to establish the lemma for r > 0 small enough.
Without loss of generality we may take r̄ = 1. Pick any yr ∈ 02(B+

r ) and set

ξi (y)= v−1
i (yr )vi (y).

Then ξi satisfies 
−1gξi +

1
8 Rgξi = 0 in B+

1/2(ȳ),

∂ξi

∂ν
= Hiv

qi −1
i (yr )ξ

qi
i on 01(B+

1/2(ȳ)).

It follows from Lemma 2.3 that for any compact set K ⊂ B+

1/2(ȳ)\{ȳ} there exists
some constant c(K ) such that

c(K )−1
≤ ξi ≤ c(K ) on K .

We also know from (2–6) that vi (yr )→ 0 as i → +∞. Then by standard elliptic
theory, we have, after passing to a subsequence, that ξi → ξ in C2

loc(B
+

1/2(ȳ)\{ȳ}),
where ξ satisfies 

−1gξ +
1
8 Rgξ = 0 in B+

1/2(ȳ),

∂ξ

∂ν
= 0 on 01(B+

1/2) \ {ȳ}.

From the assumption that yi → ȳ is an isolated simple blow-up point of {vi }i , we
know that the function r1/2ξ̄ (r) is nonincreasing in the interval (0, r̃) and so we
deduce that ξ is singular at ȳ. So it follows from Corollary A.8 that for r small
enough there exists some positive constant m > 0 independent of i such that for i
large we have

−
1
8

∫
B+

r

Rgξi =

∫
B+

r

−1gξi = −

∫
01(B+

r )

∂ξi

∂ν
−

∫
02(B+

r )

∂ξi

∂ν
> m −

∫
01(B+

r )

∂ξi

∂ν
,

which implies that

(2–16) −
1
8

∫
B+

r

Rgξi +

∫
01(B+

r )

∂ξi

∂ν
> m.

On the other hand,

(2–17)
∫
01(B+

r )

∂ξi

∂ν
=

∫
01(B+

r )

Hiv
qi −1
i (yr )ξ

qi
i ≤ v−1

i (yr )

∫
01(B+

r )

Hiv
qi
i .

Using Lemmas 2.4 and 2.6, we derive that

(2–18)
∫
01(B+

r )

Hiv
qi
i ≤ cv−1

i (yi ).
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Hence our lemma follows from (2–16), (2–17), and (2–18). �

Proof of Proposition 2.5. We first establish (2–5) arguing by contradiction. Sup-
pose the contrary; then, possibly passing to a subsequence still denoted by vi , there
exists a sequence {ỹi }i such that d(ỹi , yi )≤ r̃/2 and

(2–19) vi (ỹi )vi (yi )d(ỹi , yi ) −→
i→+∞

+∞.

Set r̃i = d(ỹi , yi ). From Lemma 2.4 it is clear that r̃i ≥ ri = Riv
1−qi
i (yi ). Set

ṽi (x)= r̃1/(qi −1)
i vi (yi + r̃i x) in B−Ti

2 , Ti = r̃−1
i y3

i .

Clearly ṽi satisfies
−1gi ṽi +

1
8 R̃gi ṽi = 0, vi > 0 in B−Ti

2 ,

∂ṽi

∂ν
= H̃i (x)ṽi

qi (x) on ∂B−Ti
2 ∩ {x3

= −Ti },

where

(gi )αβ = gαβ(r̃i x) dxαdxβ,

R̃gi (x)= r̃2
i Rgi (yi + r̃i x),

H̃i (x)= Hi (yi + r̃i x).

Lemma 2.10 yields maxx∈02(B+

1/2)
ṽi (0)ṽi (x)≤ c for some positive constant c, so

vi (ỹi )vi (yi )d(yi , yi )≤ c.

This contradicts (2–19). Therefore (2–5) is established. Now take

wi (x)= vi (yi )vi (x).

From (Pi ) it is clear that wi satisfies
−1gwi +

1
8 Rgwi = 0, in B+

3

∂wi

∂ν
= Hi (x)v

1−qi
i (yi )w

qi
i on 01(B+

3 ).

Estimate (2–5) implies that wi (x) ≤ c d(x, yi )
−1. Since yi → ȳ, wi is locally

bounded in any compact set not containing ȳ. Then, up to a subsequence, wi →w

in C2
loc

(
Bρ̃(ȳ) \ {ȳ}

)
for some w > 0 satisfying
−1gw+

1
8 Rgw = 0 in B+

ρ̃
(ȳ),

∂w

∂ν
= 0 on 01(B+

ρ̃
) \ {ȳ}.

From Proposition A.7, we have

w = b G( · , ȳ)+ E in B+

ρ̃
\ {0},
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where b ≥ 0, E is a regular function satisfying
−1g E +

1
8 Rg E = 0 in B+

ρ̃
,

∂E
∂ν

= 0 on 01(B+

ρ̃
),

and G ∈ C2(B+

ρ̃
\ {ȳ}) satisfies

−LgG( · , ȳ)= 0 in B+

ρ̃
,

∂Ga

∂ν
= 0 on 01(B+

ρ̃
) \ {ȳ},

and limy→ȳ d(y, ȳ)G(y, ȳ) is a constant. Moreover w is singular at ȳ. Indeed,
from the definition of an isolated simple blow-up we know that r1/2w̄(r) is a
nonincreasing function in the interval (0, r̃), which implies that w is singular at
the origin and hence b > 0. The proof of Proposition 2.5 is thereby complete. �

Using Proposition 2.5, one can strengthen the results of Lemmas 2.6 and 2.8
using just (2–5) instead of (2–6), thus obtaining the following corollary.

Corollary 2.11. Let {vi }i satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated
simple blow-up point. Assume that Ri → +∞ and 0<εi < e−Ri are sequences for
which (2–2) and (2–3) hold. Then there exists ρ1 ∈ (0, r̃) such that

(2–20)
∣∣∇gvi (y)

∣∣ ≤ C4v
−1
i (yi )d(y, yi )

−2 for all ri ≤ d(y, yi )≤ ρ1

and

(2–21)
∣∣∇2

gvi (y)
∣∣ ≤ C4v

−1
i (yi )d(y, yi )

−3 for all ri ≤ d(y, yi )≤ ρ1,

where ri = Riv
1−qi
i (yi ) and C4 is some positive constant independent of i . More-

over ∣∣A(g, vi )
∣∣ ≤ C5rv−2

i (yi ),

for some positive constant C5 independent of i .

We prove an upper bound estimate for ∇g Hi (yi ).

Lemma 2.12. Let vi satisfy (Pi ) and let yi → ȳ ∈ 01(B+

1 ) be an isolated simple
blow-up point. Then

∇g Hi (yi )= O(v−2
i (yi )).

Proof. Let x = (x1, x2, x3) be geodesic normal coordinates centered at yi and let
η be a smooth cut-off function such that 0 ≤ η ≤ 1 and

η(x)=

{
1 if x ∈ B+

1/4,

0 if x 6∈ B+

1/2.
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Multiply (Pi ) by η(∂vi/∂x1) and integrate by parts over B+

1 , thus obtaining

(2–22) 0 =

∫
B+

1

∇gvi ·∇

(
η
∂vi

∂x1

)
dV +

1
8

∫
B+

1

Rgviη
∂vi

∂x1
−

∫
01(B+

1/2)

∂vi

∂ν
η
∂vi

∂x1
dσ.

From (Pi ), (2–5), and (2–2) we have

(2–23)∫
01(B+

1/2)

∂vi

∂ν
η
∂vi

∂x1
d σ+

1
8

∫
B+

1

Rgviη
∂vi

∂x1

=

∫
01(B+

1/2)

Hiv
qi
i η
∂vi

∂x1
dσ+O(v−2

i (yi ))

=−
1

qi +1
∂Hi

∂x1
(yi )

∫
01(B+

1/2)

ηv
qi +1
i dσ+O

( ∫
01(B+

1/2)

|x ′
|v

qi +1
i

)
+O(v−2

i (yi ))

= −
1

qi +1
∂Hi

∂x1
(yi )

∫
01(B+

1/2)

ηv
qi +1
i dσ+O(v−2

i (yi )).

On the other hand, from (2–20) it follows that

(2–24)
∫
01(B+

1 )

∇gvi · ∇g

(
η
∂vi

∂x1

)
dσ

=

∫
B+

1

(∇gvi · ∇gη)
∂vi

∂x1
dV +

∫
B+

1

∇gvi · η∇g

( ∂vi

∂x1

)
dV

= −
1
2

∫
B+

1/2\B+

1/4

∂η

∂x1
|∇gvi |

2 dV + O(v−2
i (yi ))= O(v−2

i (yi )).

Putting together (2–22), (2–23), and (2–24), we find
∂Hi

∂x1
(yi )= O(v−2

i (yi )).

Repeating the same argument for the derivatives with respect to x2 and x3, we come
to the required estimate. �

Corollary 2.13. Under the assumptions of Lemma 2.12,∫
01(B+

r )

x ′
· ∇x ′ Hiv

qi +1
i dσ = O(v−4

i (yi )).

Proof. We have∫
01(B+

r )

x ′
· ∇x ′ Hiv

qi +1
i dσ

=

∫
01(B+

r )

∇x ′ Hi (yi ) · (x ′
− yi )v

qi +1
i dσ + O

( ∫
01(B+

r )

|x ′
|
2v

qi +1
i dσ

)
.

From Proposition 2.5 and Lemma 2.4,
∫
01(B+

r )
(x ′

−yi )v
qi +1
i dσ = O(v−2

i (yi )). The
conclusion follows from Lemma 2.12, Corollary 2.11, and (2–2). �
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Proposition 2.14. Let vi satisfy (Pi ), yi → ȳ be an isolated simple blow-up point
with, for some ρ̃ > 0,

vi (yi )vi −→
i→+∞

h in C2
loc

(
B+

ρ̃
(ȳ) \ {ȳ}

)
.

Assume, for some β > 0, that in some geodesic normal coordinate system x =

(x1, x2, x3) we have

h(x)=
β

|x |
+ A + o(1) as |x | → 0.

Then A ≤ 0.

Proof. For r > 0 small, the Pohozaev-type identity of Lemma 2.7 yields

(2–25)
1

qi + 1

∫
01(B+

r )

(x ′
· ∇x ′ Hi )v

qi +1
i ds +

( 2
qi + 1

−
1
2

) ∫
01(B+

r )

Hiv
qi +1
i ds

−
1
16

∫
B+

r

(x · ∇ Rg)v
2
i dx −

1
8

∫
B+

r

Rg v
2
i dx −

r
16

∫
02(B+

r )

Rg v
2
i ds

−
r

qi + 1

∫
∂01(B+

r )

Hiv
qi +1
i

=

∫
02(B+

r )

B(r, x, vi ,∇vi ) ds + A(g, vi ),

where B and A(g, vi ) are defined in (2–14) and (2–15) respectively. Multiply
(2–25) by v2

i (yi ) and let i → ∞. Using Corollary 2.11, Lemma 2.4, and Corollary
2.13, one has
(2–26)

lim
r→0+

∫
02(B+

r )

B(r, x, h,∇h)= lim
r→0+

lim sup
i→∞

v2
i (yi )

∫
02(B+

r )

B(r, x, vi ,∇vi )≥ 0.

On the other hand, a direct calculation yields

(2–27) lim
r→0+

∫
02(B+

r )

B(r, x, h,∇h)= −c A

for some c > 0. The conclusion follows from (2–26) and (2–27). �

Now we can prove that an isolated blow-up point is in fact an isolated simple
blow-up point.

Proposition 2.15. Let vi satisfy (Pi ) and yi → ȳ be an isolated blow-up point.
Then ȳ must be an isolated simple blow-up point.

Proof. The proof is much the same as that of [Felli and Ould Ahmedou 2003,
Prop. 2.11]. For the reader’s convenience, we include it here. From Lemma 2.4, it
follows that

(2–28) w̄i
′(r) < 0 for every C2v

1−qi
i (yi )≤ r ≤ ri .
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Suppose that the blow-up is not simple; then there exist sequences r̃i → 0+ and
c̃i → +∞ such that c̃iv

1−qi
i (yi )≤ r̃i and, after passing to a subsequence,

(2–29) w̄′

i (r̃i )≥ 0.

From (2–28) and (2–29) it is clear that r̃i ≥ ri and w̄i has at least one critical point
in the interval [ri , r̃i ]. Let µi be the smallest critical point of w̄i in this interval.
We have

r̃i ≥ µi ≥ ri and lim
i→∞

µi = 0.

Let gi = (gi )αβ dxαdxβ = gαβ(µi x) dxαdxβ be the scaled metric and set

ξi (x)= µ
1/(qi −1)
i vi (yi +µi x).

Then ξi satisfies
−1gi ξi +

1
8 Rgi ξi = 0 in B−Ti

1/µi
,

∂ξi

∂ν
= H̃i (x)ξqi ξ

qi
i on ∂B−Ti

1/µi
∩ {x3

= −Ti };

limi→∞ ξi (0) = ∞ and 0 is a local maximum point of ξi ; also r1/(qi −1)ξ̄i (r) has
negative derivative in c ξi (0)1−qi < r < 1 and

(2–30)
d
dr

(
r1/(qi −1)ξ̄i (r)

)
|r=1 = 0,

where Ti = µ−1
i y3

i , ãi (x) = µi ai (yi +µi x), and H̃i (x) = Hi (yi +µi x). Arguing
as in the proof of Lemma 2.4, we can easily prove that Ti → 0. Since 0 is an
isolated simple blow-up point, by Proposition 2.5 and Lemma 2.3, we have, for
some β > 0,

(2–31) ξi (0)ξi −→
i→+∞

h = β |x |
−1

+ E in C2
loc(R

3
+

\ {0}),

with E satisfying 
−1E = 0, in R3

+
,

∂E
∂ν

= 0, on ∂R3
+
.

By the maximum principle we have E ≥0. Reflecting E to be defined on all R3 and
thus using Liouville’s Theorem, we deduce that E is a constant. Using (2–30) and
(2–31), we deduce that E ≡ b. Therefore h(x) = b(Ga(x, ȳ)+ 1), contradicting
Proposition 2.14. �
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3. Ruling out bubble accumulations

Now we can proceed as in [Felli and Ould Ahmedou 2003] to obtain the following
results, which rule out possible accumulations of bubbles, thus implying that only
isolated blow-up points may occur for blowing-up sequences of solutions.

Proposition 3.1. Let (M, g) be a smooth compact three-dimensional Riemannian
manifold with umbilic boundary. For any R ≥ 1 and 0< ε < 1, there exist positive
constants δ0, c0, and c1 depending only on M , g, ‖H‖C2(∂M), infy∈∂M H(y), R,
and ε, such that for all u in ⋃

3−δ0≤q≤3

MH,q

with maxM u ≥ c0 there exists S = {p1, . . . , pN } ⊂ ∂M with N ≥ 1 satisfying the
following conditions:

(i) each pi is a local maximum point of u in M and

B r̄i (pi )∩ B r̄ j (p j )= ∅, for i 6= j,

where r̄i = Ru1−q(pi ) and B r̄i (pi ) denotes the geodesic ball in (M, g) of
radius r̄i and centered at pi ;

(ii)

∥∥∥∥∥u−1(pi )u
(
exppi

(yu1−q(pi ))
)
−

√
1

(1 + hx3)2 + h2|x ′|2

∥∥∥∥∥
C2(B M

2R(0))

< ε,

where

B M
2R(0)=

{
y ∈ Tpi M : |y| ≤ 2R, u1−q(pi )y ∈ exp−1

pi
(Bδ(pi ))

}
,

y = (y′, yn) ∈ Rn , and h > 0;
(iii) d1/(q−1)(p j , pi )u(p j ) ≥ c0, for j > i , while d(p,S)1/(q−1)u(p) ≤ c1, for all

p ∈ M , where d( · , · ) denotes the distance function in metric g.

Proposition 3.2. Let (M, g) be a smooth compact three-dimensional Riemannian
manifold with umbilic boundary. For suitably large R and small ε > 0, there exist
δ1 and d depending only on M , g, ‖a‖C2(∂M), ‖H‖C2(∂M), infy∈∂M H(y), R, and
ε, such that for all u in

⋃
3−δ1≤q≤3 Ma,H,q with maxM u ≥ c0, we have

min{d(pi , p j ) : i 6= j, 1 ≤ i, j ≤ N } ≥ d

where c0, p1, . . . , pN are given by Proposition 3.1.

The previous two propositions imply that any blow-up point is in fact an isolated
blow-up point. Thanks to Proposition 2.15, any blow-up point is in fact an isolated
simple blow-up point.

Proof of Theorem 1.1. Arguing by contradiction, suppose that there exist sequences
qi → q ∈ (1, 3], ui ∈ MHi ,qi such that ‖ui‖H1(M) → +∞ as i → ∞, which, in view
of standard elliptic estimates, implies that maxM ui → +∞.
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From [Hu 1994] (see also [Li and Zhang 2003]), we know that q = 3. By
Proposition 3.2, for some small ε > 0, large R > 0, and some N ≥ 1 there exist
y(1)i , . . . , y(N )i ∈ ∂M such that conditions (i)–(iii) Proposition 3.1 hold. The points
{y(1)i }i , . . . , {y(N )i }i are isolated blow-up points and hence, by Proposition 2.15,
isolated simple blow-up points. From (2–2) and Proposition 2.5, the sequence{
‖ui‖H1(M)

}
i is bounded, which gives a contradiction. �

4. Compactness of the solutions

Before proving Theorem 1.2, we state the following result about the compactness
of solutions of (PH,q ) when q stays strictly below the critical exponent. The proof
is basically the same as that of [Felli and Ould Ahmedou 2003, Theorem 3.1].

Theorem 4.1. Let (M, g) be a smooth compact three-dimensional Riemannian
manifold with umbilic boundary. Then for any δ1 > 0 there exists a constant C > 0
depending only on M , g, δ1, ‖H‖C2(∂M), and the positive lower bound of H on ∂M
such that for all u ∈

⋃
1+δ1≤q≤3−δ1

MH,q we have

‖u‖C2(M) ≤ C and
1
C

≤ u(x)≤ C for all x ∈ M.

Proof of Theorem 1.2. Due to elliptic estimates and Lemma 2.3, we have to prove
just the L∞ bound, i.e., u ≤ C . Suppose the contrary; then there exists a sequence
qi → q ∈ (1, 3] with

ui ∈ MH,qi and maxM ui → +∞,

where c̄ is some positive constant independent of i . From Theorem 4.1, q must be 3.
It follows from Propositions 2.15 and 3.2 that, after passing to a subsequence, {ui }i
has N (with 1 ≤ N <∞) isolated simple blow-up points denoted by y(1), . . . , y(N ).
Let y(`)i denote the local maximum points as in Definition 2.1. It follows from
Proposition 2.5 that

ui (y
(1)
i )ui −→

i→+∞

h(y)=
N∑

j=1

b j G(y, y( j))+ E(y) in C2
loc

(
M \{y(1), . . . , y(N )}

)
,

where b j > 0 and E ∈ C2(M) satisfies

(4–1)


−Lg E = 0 in M,

∂E
∂ν

= 0 on ∂M.

Since the manifold is of positive type, E ≡ 0. Therefore,

ui (y
(1)
i )ui −→

i→+∞

h(y)=

N∑
j=1

b j Ga(y, y( j)) in C2
loc

(
M \ {y(1), . . . , y(N )}

)
.
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Let x = (x1, x2, x3) be a geodesic normal coordinate system centered at y(1)i . From
Lemma A.5, the Positive Mass Theorem, and the assumption that the manifold is
not conformally equivalent to the standard ball, we derive that there exists a positive
constant A such that

h(x)= h(expy(1)i
(x))= c|x |

−1
+ Ai + O(|x |

−α) for |x | close to 0

and Ai ≥ A> 0. This contradicts the result of Proposition 2.14. The compactness
part of Theorem 1.2 is proved. Once we have compactness, we can proceed as in
[Felli and Ould Ahmedou 2003, Section 4] to prove that the total degree of the
solutions is −1. �

Appendix

Here we recall some needed results and describe the singular behaviour of positive
solutions to certain boundary value elliptic equations in punctured half-balls.

For n ≥ 3, let B+
r :

{
x = (x ′, xn) ∈ Rn

= Rn−1
× R : |x | < r and xn > 0

}
and

set 01(B+
r ) := ∂B+

r ∩∂Rn
+

, 02(B+
r ) := ∂B+

r ∩Rn
+

. Consider a smooth Riemannian
metric g = gi j dx i dx j in B+

1 , and a ∈ C1(01(B+

1 )).
We first recall a maximum principle; for the proof see [Han and Li 1999].

Theorem A.1. Let� be a bounded domain in Rn and let ∂�=0∪6, V ∈ L∞(�),
and h ∈ L∞(6) be such that there exists ψ ∈ C2(�) ∩ C1(�) positive in � and
satisfying 

1gψ + Vψ ≤ 0 in �,

∂ψ

∂ν
≥ hψ on 6.

If v ∈ C2(�)∩ C1(�) satisfies
1gv+ V v ≤ 0 in �,

∂v

∂ν
≥ hv on 6,

v ≥ 0, on 0,

then v ≥ 0 in �.

Next we state a maximum principle that holds for the operator T defined by

T u = v if and only if


Lgu = 0 in M̊,

∂u
∂ν

= v on ∂M.

Proposition A.2 [Escobar 1996]. Let (M, g) be a Riemannian manifold with
boundary of positive type. Then, for any u ∈ C2(M̊)∩ C1(M) satisfying Lgu ≥ 0
in M̊ and ∂u/∂ν ≤ 0 on ∂M , we have u ≤ 0 in M.
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Proof. Let u+(x)= max{0, u(x)}. Then

0 ≤

∫
M
(Lgu)u+ dV −

∫
∂M

∂u
∂ν

u+ dσ = −

∫
M

∣∣∇gu+
∣∣2 dV −

1
8

∫
M

R2
g|u

+
|
2 dV .

Since M is of positive type
∫

|∇gu|
2

+
1
8

∫
Rgu2 is an equivalent norm, hence

u+
≡ 0. �

We now recall a Louville-type theorem, from [Li and Zhu 1995]. See also
[Escobar 1990; Chipot et al. 1996].

Theorem A.3. If v is a solution of
−1v = 0 in Rn

+
,

∂v

∂xn = cvn/(n−2) on ∂Rn
+
,

and c is a negative constant, then either v ≡ 0 or v is of the form

v(x ′, xn)=

(
ε

(xn
0 + xn)2 + |x ′ − x ′

0|
2

)n−2
2

for x ′
∈ Rn−1, xn

∈ R,

where xn
0 = −(n − 2)ε/c, for some ε > 0, and x ′

0 ∈ Rn−1.

Lemma A.4. Suppose that u ∈ C2(B+

1 \ {0}) is a solution of

(A–1)


−Lgu = 0, on B+

1 ,

∂u
∂ν

= 0, on 01(B+

1 \ {0}),

and u(x)= o
(
|x |

2−n
)

as |x | → 0. Then u ∈ C2,α(B+

1/2) for any 0< α < 1.

Proof. We reflect across 01(B+

1 ) to extend u as a solution of −Lgu = 0 on B1 \{0},
then use [Gilbarg and Serrin 1955/56] to conclude that 0 is a removable singularity.
The result follows from standard elliptic regularity. �

Lemma A.5. There exists some constant δ0 > 0 depending only on n, ‖gi j‖C2(B+

1 )

and ‖H‖L∞(B+

1 )
such that for all 0< δ < δ0 there exists some function G satisfying

(A–2)


−LgG = 0, in B+

δ ,

∂G
∂ν

= 0, on 01(B+

δ ) \ {0},

lim|x |→0 |x |
−1G(x)= 1

such that, for some constant A and some α ∈ (0, 1),

G(x)= |x |
−1

+ A + O(|x |
α) for all x ∈ B+

δ .

Proof. Reflecting across 01(B+

δ ), the lemma is reduced to [Li and Zhu 1997,
Proposition B.1]. �
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Reflecting again across 01(B+

1 ), we derive from [Li and Zhu 1999, Lemma 9.3]
the following result:

Lemma A.6. Assume that u ∈ C2(B+

1 \ {0}) satisfies
−Lgu = 0 in B+

1 ,

∂u
∂ν

= 0 on 01(B+

1 ) \ {0}.

Then
α = lim sup

r→0+

maxx∈02(B+
r )

u(x)|x |
n−2 <+∞.

Proposition A.7. Suppose that u ∈ C2(B+

1 \ {0}) satisfies

(A–3)


−Lgu = 0 in B+

1 ,

∂u
∂ν

= 0 on 01(B+

1 ) \ {0}.

Then there exists some constant b ≥ 0 such that

u(x)= b G(x)+ E(x) in B+

1/2 \ {0},

where G is defined in Lemma A.5, and E ∈ C2(B+

1 ) satisfies

(A–4)


−Lg E = 0 in B+

1/2,

∂E
∂ν

= 0 on 01(B+

1/2).

Proof. Set

(A–5) b = b(u)= sup
{
λ≥ 0 : λG ≤ u in B+

δ0
\ {0}

}
.

By the previous lemma we know that 0 ≤ b ≤ α <+∞. Two cases may occur.

Case 1: b = 0. We claim that for all ε > 0 there exists rε ∈ (0, δ0) such that

minx∈02(B+
r )

{
u(x)− εG(x)

}
≤ 0 for any 0< r < rε.

For suppose otherwise. Then there exist ε0 > 0 and a sequence r j → 0+ such that

min|x |=r j

{
u(x)− ε0G(x)

}
> 0 and u(x)− ε0G(x) > 0 on 02(B+

δ0
).

We prove that ε0 ≤ b, contradicting the assumptions. To do this note that
−1g(u − ε0G)+ 1

8 Rg(u − ε0G)= 0 in B+

δ0
,

∂

∂ν
(u − ε0G)= 0 on 01(B+

δ0
) \ {0},

and apply Theorem A.1 with

v = u − ε0G, 6 = 01(B+

δ0
) \01(B+

r j
), 0 = 02(B+

r j
)∪02(B+

δ0
);
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this yields u − ε0G ≥ 0 in the annulus B+

δ0
\ B+

r j
for any j , and consequently in

B+

δ0
\ {0}. Therefore ε0 ≤ b and we have our contradiction.

Hence, for any ε > 0 and 0< r < rε there exists xε ∈ 02(B+
r ) such that

u(xε)≤ εG(xε).

By the Harnack inequality of Lemma 2.3 we have that

max|x |=r u(x)≤ c u(xε)≤ c εG(xε).

Since G(x)∼ |x |
2−n for |x | small, we conclude that

u(x)= o
(
|x |

2−n) for |x | ∼ 0.

Therefore from Lemma A.4 we obtain that u is regular. Setting E(x) = u(x), the
conclusion in this case follows.

Case 2. b > 0.
We consider v(x) = u(x)− b G(x) in B+

δ0
\ {0}. By definition of b, it is clear

that v ≥ 0 in B+

δ0
\ {0}. Moreover v satisfies

−1gv+
1
8

Rgv = 0, in B+

δ0
,

∂v

∂ν
= 0, on 01(B+

δ0
) \ {0},

so that from the maximum principle we know that either v≡ 0 or v > 0 in B+

δ0
\{0}.

If v ≡ 0, take E ≡ 0 and we are done. Otherwise v > 0 and satisfies the same
equation as u. Set

b̃ = b(v)= sup
{
λ≥ 0 : λG ≤ v in B+

δ0
\ {0}

}
.

If λ≥ 0 and λG ≤ v in B+

δ0
\{0}, then λG ≤ u −b G with b> 0, i.e. (λ+b)G ≤ u.

By the definition of b, this implies that λ+ b ≤ b, so λ = 0. Therefore b̃ = 0.
Arguing as in Case 1, we can prove that v(x)= o

(
|x |

2−n
)

for |x | ∼ 0. Lemma A.4
ensures that v is regular, so that choosing E(x)= v(x) we are done.

The proof of Proposition A.7 is thereby complete. �

Corollary A.8. Let u be a solution of (A–3) which is singular at 0. Then

lim
r→0+

∫
02(B+

r )

∂u
∂ν

dσ = b lim
r→0+

∫
02(B+

r )

∂G
∂ν

dσ = −
n − 2

2
b |Sn−1

|,

where Sn−1 denotes the standard n-dimensional sphere and b > 0 is given by
Proposition A.7.

Proof. From the previous proposition, we know that

u(x)= b G(x)+ E(x) in B+

1/2(0) \ {0}, with b ≥ 0.
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Since u is singular at 0, b must be strictly positive. From (A–4), we have

0 = −

∫
B+

r

1g E dV −

∫
02(B+

r )

∂E
∂ν

dσ +
1
8

∫
B+

r

Rg E .

Hence, since E is regular, we obtain∫
02(B+

r )

∂E
∂ν

dσ =
1
8

∫
B+

r

Rg(x)E(x) dσ −→
r→0+

0

and so

lim
r→0+

∫
02(B+

r )

∂u
∂ν

dσ = lim
r→0+

b
∫
02(B+

r )

∂G
∂ν

dσ.

From Lemma A.5 we know that G is of the form

G(x)= |x |
−1

+ R(x),

where R is regular. Since∫
02(B+

r )

∂

∂ν
|x |

−1 dσ = −
1
2

|Sn−1
|

and ∫
02(B+

r )

∂R

∂ν
dσ −→

r→+0+

0,

we conclude that

lim
r→0+

∫
02(B+

r )

∂u
∂ν

dσ = −
1
2 b |Sn−1

|

and the corollary follows. �
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