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The first disentanglement of a multigerm f : (C2n, S)→ (C3n, 0) is shown to
be homotopically equivalent to a wedge of (n+1)-spheres and 2-spheres. For
corank-1 monogerms in the same dimensions, the second disentanglement
is shown to be homotopically equivalent to a wedge of n-spheres and circles.

Good real perturbations of such maps are investigated and it is shown
for multigerms in the case n = 1 with a good real perturbation that the real
and complex disentanglements are homotopically equivalent.

1. Introduction

For a finitely A-determined map-germ f : (Cn, S)→ (Cp, 0), where S is a finite set,
n < p, and (n, p) are in Mather’s nice dimensions, there exists a disentanglement:
the image of a stable perturbation of f . The images of any two stabilisations are
homeomorphic; see [Marar 1993]. The definition of a disentanglement is analo-
gous to that of the Milnor fibre in the n ≥ p and finitely K-determined case. For
monogerms, or when p ≤ n + 1, it has been shown that the disentanglement of
f is homotopically equivalent to a wedge of spheres. This is again analogous to
Milnor fibre theory, but in contrast, the spheres may be of different dimensions in
the case p > n+ 1. See [Houston 1997] and [Mond 1991b] for details.

In this paper we study the situation for maps f : (C2n, S)→ (C3n, 0). This is
a natural generalisation of the case of germs of maps from surfaces to 3-space,
which has been studied by Mond [1987; 1991a; 1991b; 1995] and by Marar and
Mond [1996]. The usual generalisation of this work has been to map germs from
(Cn, S) to (Cn+1, 0) since then the image of the map is still a hypersurface —
a useful fact that is certainly not true in the case under consideration here, as
the spaces are not, in general, even local complete intersections. Many of the
results in this paper are direct generalisations of the work of Mond cited above,
and, as well as being interesting in their own right, they also provide insight into
the topology of disentanglements of multigerms, their real perturbations, and into
higher disentanglements of monogerms in general.

The C2n to C3n case is tractable because the multiple point spaces (the closure
of k-tuples of points that have the same image) of the stabilisation are particularly
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simple. The stable perturbation has a nonsingular source, each component of which
is contractible, because this is true for all disentanglements defined as below, but
in the situation considered, in addition, the double point space of the map has
dimension n and the triple point space has dimension zero. One of the main tools
in the theory is an image computing spectral sequence introduced in [Goryunov
and Mond 1993], the E1 terms of which depend on the alternating homology
of the multiple point spaces. In our situation this means that E1

p,q is trivial for
p /∈ {0, 1, 2}, and furthermore, E1

2,q = 0 for q 6= 0 as the triple point space is
zero-dimensional. Thus, using the spectral sequence is a practical proposition.

Section 2 introduces definitions and notations. The first main result in Section 3
is that the disentanglement in the multigerm case is homotopically equivalent to
a wedge of (n + 1)-spheres and 2-spheres. This corresponds to what happens in
general for monogerms [Houston 1997, Proposition 4.24], and thus provides evi-
dence for multigerm disentanglements being homotopically equivalent to a wedge
of spheres. (The multigerm problem is still open because there is a certain class of
multigerms for which the methods employed in the monogerm case do not work.)

In a disentanglement we can look at the closure of the set of points with two or
more preimages; this is called the second disentanglement. One can generalise to
the k-th disentanglement: the closure of the set of points with k or more preimages.
For f a corank-1 monogerm and p = n+ 1 it was shown in [Houston 2002a] that
the k-th disentanglement is homotopically equivalent to a wedge of (n − k + 1)-
spheres; this followed [Goryunov and Mond 1993], where it was shown that such
a disentanglement has reduced rational cohomology only in dimension n− k + 1.
In the situation of maps from 2n-space to 3n-space we again have to restrict to
corank-1 monogerms to treat the second disentanglement. This is also homotopi-
cally equivalent to a wedge of spheres, this time of dimensions n and 1. The
topology of the higher disentanglements (k > 1) is difficult to calculate in general
and this is the first occasion on which we have a nontrivial result for p > n+ 1.

We do not formally treat the third disentanglement since this is just the set of
triple points.

If one restricts the disentanglement map to the real part of the source, one gets
a real perturbation. For maps f : (Cn, S)→ (Cn+1, 0) Mond [1996] defines a real
perturbation to be good if the rank of the n-th integer homology group of the image
of the real perturbation is equal to the rank of the n-th integer homology group of
the disentanglement. In Section 4 this notion is generalised and it is shown in the
case of f : (C2n, S)→ (C3n, 0) that if the inclusion of the real disentanglement
into the complex one produces an isomorphism on integer homology groups, then
the spaces are homotopically equivalent. This is applied in the n = 1 case to
show that if f has a good real perturbation, the real and complex disentanglements
are homotopically equivalent. For n = 1, this improves a result in [Marar and
Mond 1996] stating that the existence of a good real perturbation produces an
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isomorphism on the rational cohomology groups, and it is also proves a case of a
conjecture from [Cooper and Mond 1998].

In [Marar and Mond 1996] it is shown that each member in the Hk series of
singularities given by f (x, y) = (x, y3, xy+ y3k−1) has a good real perturbation.
Here, we generalise this series to the 2n-space to 3n-space situation and show that
not only do the maps have good real perturbations but the real and complex r -th
disentanglements for r = 1, 2, 3 are in fact homotopically equivalent as well.

2. Notation and definitions

Multiple point spaces. Let f : X→ Y be a proper continuous map.

Definition 2.1. The k-th multiple point space, Dk( f ), of the map f : X→ Y is the
set of points

Dk( f ) := closure
{
(x1, . . . , xk) ∈ X k

∣∣ f (x1)= · · · = f (xk), xi 6= x j for i 6= j
}
.

The group of permutations on k objects, denoted Sk , acts on Dk( f ) in the natural
way. For each k there exists a map εk : Dk( f )→ Dk−1( f ) given by restriction
of the natural projection map (x1, . . . , xk) 7→ (x1, . . . , xk−1). We also have a map
εk
: Dk( f )→ Y given by εk(x1, . . . , xk)= f (x1).
Define D2

1( f ) to be the image of ε2 in D1( f ). The double point space of ε2 is
homeomorphic, by an S3-equivariant map, to the triple point space of f . Further-
more, the k-th multiple point spaces, k ≥ 2, for the map D2

1( f ) to Y are the same
as for f . This is part of a general phenomenon; see [Goryunov and Mond 1993].

Definition 2.2. The set of points (x1, . . . , xk) ∈ Dk( f ) such that xi = x j for some
i 6= j is called the diagonal of Dk( f ).

If f : (Cn, S)→ (Cp, 0) is a corank-1 multigerm, the multiple point spaces of f
can be defined using adapted Vandermonde determinants [Marar and Mond 1989].
For finitely A-determined maps this definition coincides with the one given above
as long as dim Dk( f ) > 0 or f is stable. When dim Dk( f ) is expected to be 0 then
Dk( f ) can be empty while the Vandermonde definition gives a space lying in the
diagonal. It will be clear from context which definition is being used.

The Vandermonde definition leads to the following: If the map f is finitely
A-determined, the multiple point spaces are isolated complete intersection singu-
larities (of dimension nk − p(k − 1)) for all nk − p(k − 1) ≥ 0, and vice versa.
The multiple point spaces for the disentanglement map (see Section 2) are Milnor
fibres of these singularities. See [Marar and Mond 1989] for details.

We finish with a definition for multiple point spaces in the image of a map.

Definition 2.3. The k-th image multiple point space of f , denoted Mk( f ), is

Mk( f ) := closure
{

y ∈ Y
∣∣ # f −1(y)≥ k

}
.

This will be used in defining the k-th disentanglement.
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Alternating homology. Let sign : Sk → {1,−1} be the usual sign representation
of the symmetric group.

Definition 2.4. Let M be a module upon which Sk acts. Then

Malt
:=

{
m ∈ M

∣∣ h(m)= sign(h)m for all h ∈ H
}

is the alternating module of M with respect to Sk .

Definition 2.5. The group Sk acts cellularly on a cellular complex if (i) Sk takes
cells to cells and (ii) if a point of an open cell is fixed by an element of Sk , then
the whole cell is fixed by that element.

Definition 2.6. Suppose Y is a space upon which Sk acts cellularly and let C∗(Y )

denote the cellular chain complex of Y . The alternating homology of Y with respect
to Sk and the coefficient group G is

H alt
i (Y ;G) := Hi

(
(C∗(Y ))alt

⊗G
)
.

Define an operator AltZ : M→ M by

AltZ =
∑
h∈Sk

sign(h) h.

Once can take the homology generated by AltZ C∗(Y ) — we call it the alternated
homology of Y .

Theorem 2.7. Suppose Y is an Sk-invariant subset of X k and Sk acts on X k through
permutation of copies of X. Then

H alt
i (Y ;G)∼= Hi

(
(AltZ C∗(Y ))⊗G

)
for all i .

For a proof of this nontrivial theorem see [Houston 2000]. We can use the operator
AltZ to study alternating homology; this will be particularly useful for the zeroth
alternating homology groups.

Definition 2.8. Two complexes K and L on which Sk acts are Sk-homotopically
equivalent if there exist two equivariant maps α : K → L and β : L → K , such
that the compositions α ◦ β and β ◦ α are homotopic to the identities in the class
of Sk-equivariant maps.

Complexes that are Sk-homotopically equivalent have the same alternating homol-
ogy.

We have a similar condition relating, not to homotopy, but to homology.

Definition 2.9. Suppose G is a group. Then two topological spaces X and Y are
G-homology equivalent if there exists a continuous map f : X → Y such that
f∗ : Hi (X;G)→ Hi (Y ;G) is an isomorphism for all i . Such a map is called a
G-homology equivalence.
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Image computing spectral sequence. Now we state a general version of the image
computing spectral sequence introduced in [Goryunov and Mond 1993] and further
developed in [Goryunov 1995; Houston 2000].

Theorem 2.10. Suppose that f : X→Y is a proper and finite analytic map between
compact subanalytic spaces and that X̃ is a subanalytic subset of X. Then, for any
coefficient group G, there exists a spectral sequence

E1
p,q( f, f |X̃)= H alt

q
(
D p+1( f ), D p+1( f |X̃);G

)
H⇒ H∗

(
f (X), f (X̃);G

)
.

The differential is induced from the map εk : Dk( f )→ Dk−1( f ).

Generally in this paper we take X̃ =∅.
To produce this theorem one uses a geometric realisation of a semisimplicial

resolution of the image (which, for simplicity as in [Goryunov 1995], we call the
semisimplicial resolution). This is a space for which a point of the image is repre-
sented by a (k−1)-simplex if the point has k preimages. This construction will be
used to describe the homotopy type of the disentanglements.

The resolution can be constructed by two methods. For the general method see
[Houston 2000]; we only describe the case in which the image is embeddable in
RN for some N , as this will be true for all our images.

Let m be the maximal number of preimages of a point of f . Consider an em-
bedding of X into some RN so that any m distinct points of X do not lie in an
(m− 2)-dimensional affine plane. Let x1, . . . , xk ∈ X be the preimages of a point
y ∈ Y and consider in y×RN the closed (k−1)-dimensional simplex with vertices
(y, x1), . . . , (y, xk). The union W of all such simplices for all points of Y is the
semisimplicial resolution of Y .

The spectral sequence associated to the filtration of Y given by defining Yk to be
the union of simplices of dimension less than k, with Y1 = X , leads to the spectral
sequence of the theorem.

In the cases discussed in this paper the image of a map will be homotopically
equivalent to its semisimplicial resolution.

Disentanglements. Suppose that f : (Cn, S)→ (Cp, 0), with n < p, is a finitely
A-determined complex analytic map-germ. Then there exist

(i) a 1-parameter unfolding of f , F : (Cn
×C, S×{0})→ (Cp

×C, 0×0), such
that F(x, 0)= f (x),

(ii) a closed ball Bε in Cp centred at 0 and of radius ε,
(iii) and a closed disc Dδ in C centred at 0 and of radius δ,

such that for a proper representative of F ,

(a) the map ft := F
∣∣F−1(Bε × {t}) : F−1(Bε × {t})→ Bε × {t} is topologically

stable for all t ∈ Dδ −{0} (and is stable if (n, p) is in the nice dimensions);
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(b) the image of f0 is Whitney stratified so that every (2p− 1)-sphere Sε′ ⊂ Bε

of radius ε′ centred at 0 is stratified transverse to it for all 0 < ε′ ≤ ε;
(c) the map ft is topologically right-left equivalent to ft ′ for all t, t ′ ∈ Dδ −{0}.

Details can be found in [Marar 1993] and [Goryunov and Mond 1993].

Definition 2.11. The ball Bε is called a Milnor ball and ε is called a Milnor radius.
The disc Dδ is called a Milnor disc.

The next definition is important in the rest of the paper.

Definition 2.12. The set Mk( ft) for t 6= 0 is called the k-th disentanglement of f
and is denoted Disk( f ).

We shall mainly be interested in Dis1( f ) = M1( ft), the first disentanglement (or
more usually just the disentanglement), and Dis2( ft), the second disentanglement.
We shall call ft , for t 6=0, the disentanglement map. The image computing spectral
sequence of Theorem 2.10 exists for this map, and since (2n, 3n) are in the nice
dimensions the map is stable, not just topologically stable.

The disentanglement of f is essentially unique in that for any other unfold-
ing for which a disentanglement can be constructed the two disentanglements are
homeomorphic. Again see [Marar 1993; Goryunov and Mond 1993] for details.

3. Topology of the first disentanglement

Homology of the first disentanglement. For maps f : (C2n, S)→ (C3n, 0) we will
investigate the image computing spectral sequence for the disentanglement map
defined above and show that the first disentanglement has free abelian homology
in dimensions n+ 1 and 2.

Theorem 3.1. Suppose that f : (C2n, S)→ (C3n, 0), for n ≥ 1, is a finitely A-
determined multigerm and that ft is the disentanglement map. Let T ( ft) be the
number of triple points in the image of ft and let m be the number of elements of S.
Then the image computing spectral sequence E p,q for ft degenerates at E2. The
E1

p,q terms have the following form:

H alt
n (Dk( ft)) 0 Zµ1 0

H alt
n−1(Dk( ft)) 0 0 0

...
...

...
...

H alt
1 (Dk( ft)) 0 0 0

H alt
0 (Dk( ft)) Zm Z(m

2) ZT ( ft )

D1( ft) D2( ft) D3( ft)

q

6

p
-
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for some µ1. The E2
p,q groups have the form

0 Zµ1 0
0 0 0
...

...
...

0 0 0
Z 0 Zµ2

D1( ft) D2( ft) D3( ft)

q

6

p
-

where µ2 = T ( ft)−
1
2(m− 2)(m− 1). All other terms are zero.

Proof. Since f is finitely A-determined, there exists a 1-parameter unfolding

F : (C2n
×C, S×{0})→ (C3n

×C, 0× 0)

such that F(x, 0) = f (x) and ft(x) = F(x, t) gives the disentanglement map
(which is stable). Through a choice of a good representative we get a map F :
U→ V such that the image of F is contractible and we get a fibration of the form
of [Houston 1997, Propositions 3.20 and 3.21], i.e., maps gk : Dk(F)→ Dδ, with
Dδ a sufficiently small Milnor disc, with fibres Dk( ft) over Dδ −{0}.

Since ft is stable, dimC Dk( ft)= 2nk− 3n(k− 1)= n(3− k), provided this is
nonnegative. By [Houston 1997, Corollary 3.2] the group H alt

i (Dk( ft);Z) is free
abelian for i = n(3− k), where k ≤ 3.

Theorems 3.13 and 3.30 of [Houston 1997] give H alt
i (Dk(F), Dk( ft);Z) = 0

for i ≤ n(3− k) = dimC Dk( ft). By [Houston 1997, Section 2.3 and Proposition
3.19], the set Dk(F) contracts equivariantly onto Dk(F)∩ (εk)−1(0) for all k, and
so the alternating homology of these multiple point spaces is the same as for the
map g : {m points} → {1 point}. Thus, by [Houston 1997, Example 2.5], we find

H alt
0 (D1(F);Z)= Zm,

H alt
0 (D2(F);Z)= Z(m

2),

H alt
0 (D3(F);Z)= Z(m

3).

Note that H alt
i (Dk( f );Z)= 0 for i 6= 0, n(3−k). From these facts we can calculate

that E1
p,q for ft has the stated form.

For E2 we need only compare the E1
∗,0 complexes for F and ft in the following

commutative diagram:

0 � H alt
0 (D1( ft);Z) � H alt

0 (D2( ft);Z) � H alt
0 (D3( ft);Z) � 0

0 � H alt
0 (D1(F);Z)

?
� H alt

0 (D2(F);Z)

?
� H alt

0 (D3(F);Z)

?
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The bottom row is exact except at the first position, where it has homology equal
to Z because the image of F is contractible and E1

p,q(F) = 0 for q > 0. The first
and second vertical arrows are isomorphisms and the third is surjective, so

E2
0,0( ft)= E2

0,0(F)= Z, E2
1,0( ft)= E2

1,0(F)= 0,

and E2
2,0( ft) is free abelian. Thus E2( ft) has the form of the theorem statement.

That µ2= T ( ft)−
1
2(m−2)(m−1) follows from a simple calculation involving

Euler characteristics applied to the complex

0← Zm
← Z(m

2)← H alt
0 (D3( ft);Z)∼= ZT ( ft )← 0,

which has homology Z, 0, Zµ2 . �

Corollary 3.2. Suppose that f : (C2n, S) → (C3n, 0), n ≥ 1, is a finitely A-
determined multigerm. The reduced integer homology of the first disentanglement
of f is free abelian in dimensions n+ 1 and 2 and zero in all other dimensions.

Proof. The spectral sequence for ft calculates the homology of Dis1( f ). Hence,
from the theorem, H0(Dis1( f );Z) ∼= E2

0,0
∼= Z. If n = 1, then H2(Dis1( f );Z) ∼=

Zµ1+µ2 , else H2(Dis1( f );Z)∼= E2
2,0
∼= Zµ2 and Hn+1(Dis1( f );Z)∼= E2

1,n
∼= Zµ2 .

�

Homotopy type of the first disentanglement. In this section we show that the first
disentanglement of a finitely A-determined multigerm f : (C2n, S)→ (C3n, 0) is
homotopically equivalent to a wedge of spheres of dimension n + 1 and 2. For
monogerms this was proved in [Houston 1997, Theorem 4.24]. The case n = 1
was effectively proved earlier in [Mond 1991b]; the statement there is made for
monogerms but the proof works equally well for the multigerm case.

Lemma 3.3. Suppose g : U → Y is a finite and proper surjective simplicial map
of compact spaces [May 1967], with U contractible, D3(g) a finite set of points or
curves with each component containing a point in the diagonal, and D4( f ) = ∅.
Suppose that for the image computing spectral sequence we have

E1
0,0
∼= Z, E1

1,n
∼= Zµ1, E1

2,0
∼= Zµ2

for n ≥ 1 and that all other terms at E1 are zero. Then Y is homotopically equiva-
lent to a wedge of µ1 (n+ 1)-spheres and µ2 2-spheres.

Proof. The proof uses some theorems from [Houston 1997] that were stated for
complex analytic maps, but can be adapted to work in the current context. Also,
the spectral sequence of such a map exists by [Houston 2000].

From the semisimplicial resolution of the image we have a filtration

Y0 =∅, U = Y1 ⊂ Y2 ⊂ Y3,
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such that Y3, the semisimplicial resolution of Y , is homotopically equivalent to Y ;
see Section 2. As H alt

0 (D2(g);Z)= 0 we get from [Houston 1997, Corollary 4.19]
that Y is simply connected.

If n= 1, then Y is a simply connected complex with free abelian integer homol-
ogy in dimension 2 (by Corollary 3.2) and hence is homotopically equivalent to a
wedge of 2-spheres. Thus assume n > 1.

From the construction of the image computing spectral sequence (see [Goryunov
1995] or [Houston 2000]), we know H alt

i−k+1(Dk(g);Z) ∼= Hi (Yk, Yk−1;Z). From
H alt

0 (D2(g);Z) = 0 we get π(Y2, Y1) = 0 by [Houston 1997, Proposition 4.22].
Since E1

1,i =H alt
i (D2(g);Z)∼=Hi+1(Y2, Y1;Z) we have Hn+1(Y2, Y1;Z)∼=Zµ1 and

all other relative groups are trivial. Thus by [Houston 1997, Lemma 4.23] and the
fact that Y1 =U is contractible we deduce that Y2 ' Y1∨ (

∨
µ1

Sn+1)'
∨

µ1
Sn+1.

Similarly H2(Y3, Y2)∼=Zµ2 and all other groups are trivial, Y2 is n-connected (so
1-connected since n >1), and π1(Y3, Y2)=0 since we are adding 2-cells to Y2 to get
Y3. Applying the same lemma again we find that Y 'Y3' (

∨
µ1

Sn+1)∨(
∨

µ2
S2).

�

We now state one of the main theorems of this paper. The proof uses a novel
trick that cannot immediately be applied to the general multigerm case but may
still be useful in other contexts.

Theorem 3.4. Suppose that f : (C2n, S)→ (C3n, 0), for n ≥ 1, is a finitely A-
determined complex analytic multigerm. Then the first disentanglement, Dis1( f ),
is homotopically equivalent to a wedge of spheres of dimension n + 1 and 2. The
number of 2-spheres arising from the triple point space of the disentanglement is
equal to µ2 in Theorem 3.1. (For n > 1 the 2-spheres can only arise from the triple
point set.)

Proof. In the following proof let f denote the disentanglement map ft , let Y be
the image of f and let U = U1 tU2 t · · · tUm be the source of f , where each
Ui is path-connected. Effectively by induction we will construct a map f̃ for
which the natural morphism E1

p,q( f )→ E1
p,q( f̃ ) is an isomorphism for all q > 0,

E2
p,q( f )→ E2

p,q( f̃ ) is an isomorphism for all p and q , and the image of f̃ has the
same homotopy type as Y . At each step the main difference is that the complex
E1

p,0 is simpler than for the preceding map. We continue until we produce a map
that satisfies the assumptions of Lemma 3.3.

Suppose that (x1, x2, x3)∈ D3( f ) is a triple point such that ε3∗(AltZ(x1, x2, x3))

is nonzero in H alt
0 (D2( f );Z) and that each xi is in a distinct component of U .

Then create f̃ : Ũ → Ỹ , where Ũ is equal to U but with the three points x1, x2
and x3 in U connected by intervals to a new point x . The set Ỹ is Y with an interval
attached to the point y = f (x1)= f (x2)= f (x3). Then let f̃ be the same as f but
with the intervals xi to x all mapped in the obvious way to the interval beginning
at y.
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Since f is the restriction of f̃ to a subset of Ũ we have a morphism of spectral se-
quences E1

p,q( f )→ E1
p,q( f̃ ). The multiple point spaces D1( f̃ ), D2( f̃ ) and D3( f̃ )

are the same as those of f but with previously unconnected components attached
by intervals to x , (x, x) and (x, x, x) respectively. Thus E1

p,q( f )→ E1
p,q( f̃ ) is an

isomorphism for all q > 0.
Since Ỹ is Y with an interval attached by only one end, the two spaces are

homotopically equivalent and the inclusion Y ↪→ Ỹ is a Z-homology equivalence.
This then implies, since both sequences collapse at E2, that E2

p,q( f )→ E2
p,q( f̃ )

is an isomorphism for all p and q.
By doing this process repeatedly for triple points in distinct components of the

(new) source we can produce a surjective map f ′ :U ′→ Y ′ such that E1
p,q( f )→

E1
p,q( f ′) is an isomorphism for all q > 0, E2

p,q( f )→ E2
p,q( f ′) is an isomorphism

for all p and q and Y ′ is homotopically equivalent to Y .
We now wish to create a map that has E1

0,0 = Z and E1
1,0 = 0. Suppose that

(x1, x2) is a point such that AltZ(x1, x2) is nonzero, and thus is a generator of
H alt

0 (D2( f ′);Z).
In a similar way to the case of triple points one can construct a map f̃ by joining

the points x1 and x2 to a new point x . Again this map has the same properties as
f ′ at E2 and the image has the same homotopy type as Y ′. Carry out this process
for all generators of H alt

0 (D2( f̃ );Z). This produces a map f̃ : Ũ → Ỹ satisfying

E1
p,q( f̃ )=


Z for (p, q)= (0, 0),

free abelian for (p, q)= (1, n) and (2, 0),

0 otherwise.

The set Ũ is contractible as each original component of U was a contractible ball
and Ũ has all these components attached to a point.

The map has the form of Lemma 3.3 and so Y ' Ỹ is homotopically equivalent
to a wedge of spheres of dimensions n+ 1 and 2. �

4. Topology of the second disentanglement

In this section we investigate the topology of Dis2( f ), the second disentanglement,
in the case that f is a corank-1 monogerm. When n = 1 the rational cohomology
has been studied in [Houston 2002a] (admittedly, this is a rather simple situation,
as the second disentanglement is a curve for C2 to C3).

The second disentanglement will be shown to be homotopically equivalent to
the quotient space D2( ft)/S2 union a finite number of hexagons and so we first
look at the topology of D2( ft)/S2.

Theorem 4.1. Suppose f : (C2n, 0)→ (C3n, 0), n ≥ 1, is a finitely A-determined
map-germ and that ft denotes the disentanglement map. Then
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(i) Hi (D2( ft)/S2;Z)∼=

{
Hi (D2( ft);Z) for i 6= n,

Hn(D2( ft);Z)/α∗H alt
n (D2( ft);Z) for i = n,

where α∗ : H alt
n (D2( ft);Z)→ Hn(D2( ft);Z) is the natural map induced from

the identity map id : D2( ft)→ D2( ft).
(ii) If D2( ft) is connected, the natural map π1(D2( ft))→ π1(D2( ft)/S2) is sur-

jective.

Proof. The natural map g : D2( ft)→ D2( ft)/S2 has no triple points, so the projec-
tion ε2 : D2(g)→ D1(g)= D2( ft) is injective. As it is also proper and surjective,
it is a homeomorphism onto D1(g). It is also equivariant. Thus the natural map
H alt

i (D2(g);Z)→ H alt
i (D2( ft);Z) is an isomorphism for all i .

Now consider the image computing spectral sequence for g; we have

E1
0,i
∼= Hi (D2( ft);Z)

and, by [Houston 1997, Proposition 4.6],

E1
1,n
∼= H alt

n (D2( ft);Z)= Zµ

All other terms are zero. The only possible nontrivial differential is d : E1
1,n→ E1

0,n .
As this arises from the homeomorphism ε2 : D2(g)→ D1(g) we have

E2
0,n
∼= Hn(D2( ft);Z)/ε2∗H alt

n (D2( ft);Z).

The sequence collapses at E2 since only the terms E2
0,i are nontrivial. We then find

that
Hi (D2( ft)/S2;Z)∼= Hi (g(D2( ft));Z)∼= E2

0,i .

Thus we have proved (i).
Since D2( ft) = D2(g) is connected and H alt

0 (D2(g);Z) = 0, the natural map
π1(D2( ft)) = π1(D1(g)) → π1(g(D2( ft))) = π1(D2( ft)/S2) is surjective, by
[Houston 1997, Corollary 4.19]. �

Corollary 4.2. Suppose that f has corank 1. Then D2( ft)/S2 is homotopically
equivalent to a wedge of n-spheres, the number of which is equal to the rank of the
symmetric part of Hn(D2( ft);Z).

Proof. As f has corank 1, D2( ft) is the Milnor fibre of the n-dimensional isolated
complete intersection singularity D2( f ) (see [Marar and Mond 1989]), and so it
is homotopically equivalent to a wedge of µ n-spheres. Thus by part (i) of the
theorem we have

Hi (D2( ft)/S2;Z)∼=


Zµ/ε2∗H alt

0 (D2( ft);Z), for i = n,

Z, for i = 0,

0, otherwise.

As H alt
0 (D2( ft);Z) is the alternating part of Hn(D2( ft);Z) by [Goryunov 1995,

Theorem 2.1.2], we conclude that Hn(D2( ft)/S2;Z) must be isomorphic to the
symmetric part of Hn(D2( ft);Z).
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If n = 1, then D2( ft)/S2 is homotopically equivalent to a compact curve, and
since D2( ft) is connected this implies the homotopy result in this case.

So now assume that n > 1. Then D2( ft) is simply connected and hence by
part (ii) of the theorem D2( ft)/S2 is simply connected. But a simply connected
n-dimensional CW-complex with nonreduced integer homology free abelian in
dimension n is homotopically equivalent to a wedge of n-spheres. �

Remark 4.3. It would be interesting to find a map (with corank greater than one)
for which D2( ft) is not homotopically equivalent to a wedge of spheres. This could
possibly be used to show that its second disentanglement is not homotopically
equivalent to a wedge of spheres.

We now prove another of the main theorems of this paper. This one gives us
nontrivial examples of the behaviour of the second disentanglement when the target
dimension of the germ is greater than the source dimension plus 1.

Theorem 4.4. Suppose that f : (C2n, 0) → (C3n, 0), n ≥ 1, is a finitely A-
determined corank-1 map-germ. Then Dis2( f ) is homotopically equivalent to the
wedge of 1

2

(
µ(D2( f ))−µ(D2( f )|H)

)
n-spheres and 1

3(µ(D3( f ))+1)= 2T ( ft)

circles. Here H is the diagonal in D2( f ) and µ denotes Milnor number.

Proof. As stated in Section 2 the images of maps are homotopically equivalent to
their semisimplicial resolutions.

Outside the triple points the map g : D2
1( ft)→ M2( ft) = Dis2( f ) is the same

as the map D2( ft)→ D2( ft)/S2, because all the map g is doing is identifying
(x1, x2) with (x2, x1) for all (x1, x2) ∈ D2( ft).

Now, D2
1( ft) is homotopically equivalent to D2( ft) with intervals connecting

(x1, x2) to (x1, x3), (x2, x1) to (x2, x3) and (x3, x1) to (x3, x2) for every triple point
(x1, x2, x3). This is because ε2 : D2( ft)→ D2

1( ft) is surjective and its double point
space is homeomorphic to D3( ft). Thus, the semisimplicial resolution of D2

1( ft)

is just D2( ft) with points arising from triples connected with an interval as just
explained. One can now connect every point (a, b) to (b, a) in this semisimplicial
resolution of D2

1( ft). For each triple point one can attach a hexagon along the
edges

(x1, x2)→ (x2, x1)→ (x2, x3)→ (x3, x2)→ (x3, x1)→ (x1, x3)→ (x1, x2).

Call this new space W ; it is homeomorphic to the semisimplicial resolution of
D2( ft)/S2 union some hexagons, one for each triple. If one contracts the edges
(x1, x2) to (x1, x3), (x2, x1) to (x2, x3) and (x3, x1) to (x3, x2) in each hexagon,
one gets the semisimplicial resolution of M2( ft)= Dis2( f ). In summary,

resolution of D2( ft)/S2 ∪ {hexagons} 'W ' resolution of Dis2( f )' Dis2( f ).

Through contracting the intervals connecting (x1, x2) to (x2, x1) for all (x1, x2) ∈

D2( ft) in the semisimplicial resolution of D2( ft)/S2 we produce D2( ft)/S2. Then
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any hexagon attached to the resolution of D2( ft)/S2 will have the edges (x1, x2)

to (x2, x1), etc., contracted. Thus we will have a space homotopically equivalent
to D2( f )/S2 with triangles attached at the vertices (x1, x2)= (x2, x1), (x1, x3)=

(x3, x1) and (x3, x2)= (x2, x3) for every triple point (x1, x2, x3).
By Corollary 4.2 D2( ft)/S2 is homotopically equivalent to a wedge of n-spheres,

their number, µ say, being the rank of the symmetric part of Hn(D2( ft);Z).
If n > 1, then D2( ft)/S2 is simply connected and so adding the edges of a

triangle gives a wedge of three circles. Adding the interior of the triangle causes
one of the edges to be contracted onto the other two edges. Hence the wedge is now
of two circles. This can be done for every triple point, so that we get D2( ft)/S2
wedged with 2T ( ft) circles.

If n = 1, then D2( ft)/S2 is homotopically equivalent to a wedge of circles.
Adding 3T ( ft) 1-cells (the edges of triangles) and T ( ft) 2-cells (the triangles)
will alter the Euler characteristic by 2T ( ft). Contracting one edge of the triangle
onto the other two will give a wedge of spheres.

Hence Dis2( f ) is homotopically equivalent to µ n-spheres and 2T ( ft) circles.
That µ equals 1

2

(
µ(D2( f ))−µ(D2( f )|H)

)
follows from the fact that the rank of

the alternating part of Hn(D2( ft);Z) is equal to 1
2

(
µ(D2( f ))+µ(D2( f )|H)

)
(see

[Houston and Kirk 1999] for example) and that the sum of the ranks of the alternat-
ing and symmetric parts is µ(D2( f )). The number of triple points is 1

6(#D3( ft)),
which is equal to 1

6(µ(D3( f ))+ 1). �

Remark 4.5. The image computing spectral sequence for the restriction

ft
∣∣D2

1( ft) : D2
1( ft)→ Dis2( f )

is interesting because it exhibits a nontrivial second differential. For simplicity
consider the case n > 1. The differential d2 : E2

2,0
∼= ZT ( ft )→ E2

0,1
∼= Z3T ( ft ) must

be nonzero, or else all of E2
0,1 survives to infinity and thus Dis2( f ) has its first

homology group isomorphic to Z3T ( ft ) and not Z2T ( ft ). A similar situation arises
in the case of maps where f : (Cn, 0)→ (Cn+1, 0); see [Houston 2002a].

It would be interesting to get a proof of this fact about differentials from some
other principle rather than working backwards as we have just done since this would
be useful in the study of higher-order disentanglements of maps f : (Cn, 0) →

(Cp, 0) with n < p.

5. Good real perturbations

General theorems. In this section we assume that f is the complexification of a
finitely A-determined real multigerm f ′ : (R2n, S)→ (R3n, 0), where n ≥ 1.

We will denote the disentanglement map by fC. The restriction of this map to
the real part of the source will be denoted fR and will be called a real perturbation.
To ease notation, we will use Disk( fC) for the k-th complex disentanglement of f ,
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and Disk( fR) for a k-th real disentanglement. We wish to compare the topology of
real and complex disentanglements.

In [Marar and Mond 1996] and [Mond 1996], when n = 1, a real perturba-
tion is called good if the vanishing homology of the complex map can be seen
in the vanishing homology of the real map; that is, if rank H2(Dis1( fR);Z) =

rank H2(Dis1( fC);Z). For general n the image of the complex map has homology
in dimensions n+ 1 and 2 and so the following would seem a reasonable general-
isation.

Definition 5.1. A real perturbation fR is called good if

(i) rank Hn+1(Dis1( fR);Z)= rank Hn+1(Dis1( fC);Z), and
(ii) rank H2(Dis1( fR);Z)= rank H2(Dis1( fC);Z).

Of course, when n = 1 the two conditions in the definition are the same.
One of the aims of an investigation of this type is to show that if fR is a good real

perturbation, the real and complex disentanglements are homotopically equivalent.
This is done for the case n = 1 in Theorem 5.5, but in general we use the weaker
assumption that there is a Z-homology equivalence between the real and complex
disentanglements; see Theorem 5.4.

Lemma 5.2. Suppose D2( fR)∩ (Vi × V j ) 6= ∅ for all i and j with i 6= j , where
V1, . . . , V|S| are the |S| source components of fR. Then the natural homomorphism
H alt

0 (D2( fR);Z)→ H alt
0 (D2( fC);Z) is surjective. Furthermore, generators of the

two groups can be chosen so that generators of H alt
0 (D2( fR);Z) map either to zero

or to generators of H alt
0 (D2( fC);Z).

Proof. By [Houston 1997, Lemma 2.6] the orbit (under the action of S2) of a path-
connected component of an S2-invariant subset X in the double point space of a
map will either naturally correspond to a copy of Z or Z2 in H alt

0 (X;Z) or will not
contribute anything to it. Thus we can choose natural generators for groups such
as H alt

0 (D2( fR);Z) and H alt
0 (D2( fC);Z).

The map fC is in effect a map from U1 t · · · t Um to C3n , where m is the
number of elements of S and each Ui is path-connected, which we assume to
contain Vi . The group H alt

0 (D2( fC);Z) is isomorphic to the direct sum of the
groups H alt

0

(
D2( fC)∩ ((Ui ×U j )∪ (U j ×Ui ));Z

)
for 1 ≤ i ≤ j ≤ |S|. A similar

statement is true for H alt
0 (D2( fR);Z).

From the proof of Theorem 3.1 we know that H alt
0 (D2( fC);Z) ∼= Zm(m−1)/2.

Using the calculation of [Houston 1997, Example 2.5], we can also show that this
group is a direct sum of all

H alt
0

(
D2( fC)∩ ((Ui ×U j )∪ (U j ×Ui ));Z

)
∼= Z

for each distinct Ui and U j with i < j . (The homology group is isomorphic to
Z because, using the notation of Theorem 3.1, H alt

0 (D2( fC);Z) is isomorphic to
H0(D2(F);Z) via the map induced by the natural inclusion of D2( fC) into D2(F).
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The homology of the latter space is a direct sum of groups arising from connected
components of D2(F) that do not intersect the diagonal, and each summand is a
copy of Z.)

This direct-sum decomposition implies D2( fC)∩ (Ui ×U j ) is path-connected.
The groups H alt

0

(
D2( fC) ∩ (Ui × Ui );Z

)
are all trivial, so every component of

D2( fC)∩ (Ui ×Ui ) must intersect the diagonal.
Since D2( fR)∩ (Vi × V j ) 6=∅ for i 6= j , we have

H alt
0 (D2( fR)∩ ((Vi × V j )∪ (V j × Vi ));Z)∼= Zµ,

for some µ ≥ 1, where each copy of Z corresponds to some path-connected com-
ponent of D2( fR) ∩ (Vi × V j ). The natural homomorphism to the alternating
homology of the corresponding complex space is a surjection and so the natural
homomorphism in the statement of the lemma is also a surjection.

Suppose that (x1, x2)∈ D2( fR) is contained in some path-connected component
X such that AltZ(x1, x2) 6= 0 is a generator of H alt

0 (D2( fR);Z).
If x1 and x2 are in the same Ui then H alt

0

(
D2( fR) ∩ Orbit(X);Z

)
is Z2 or

Z, depending on whether Orbit(X) is connected or disconnected; see [Houston
1997, Lemma 2.6]. In both these situations this generator maps to zero, because
H alt

0

(
D2( fC)∩ (Ui ×Ui );Z

)
is zero.

If x1 and x2 are in distinct Ui and U j then (x1, x2) ∈ D2( fC) ∩ (Ui ×U j ) is
connected to all points of D2( fC)∩(Ui×U j ) and hence AltZ(x1, x2) is a generator
of H alt

0

(
D2( fC)∩ ((Ui ×U j )∪ (U j ×Ui ));Z

)
. �

The following proposition is based on [Marar and Mond 1996, Lemma 2.4],
which assumed that n = 1 and that fR was a good real perturbation. The isomor-
phism assumption in the proposition holds for good real perturbations in the n = 1
case, by methods similar to those used in [Marar and Mond 1996, Theorem 2.3]; a
natural question would be, does it also hold for good real perturbations with n > 1?

Proposition 5.3. Suppose that f is finitely A-determined and that the natural map
H alt

n (D2( fR);Z)→ H alt
n (D2( fC);Z) is an isomorphism. Then

D2( fR)∩ (Vi × V j ) 6=∅ for i 6= j.

Proof. We apply an argument similar to the proof of [Marar and Mond 1996,
Lemma 2.4]. Suppose that D2( fR)∩(Vi×V j )=∅ for some i 6= j . Then the images
of Vi and V j under fR are disjoint in the perturbation and hence the corresponding
spaces in the image of f restricted to the real parts of its source are not transverse.
This nontransverse contact implies that D2( fC) ∩ (Ui × U j ) is the Milnor fibre
of an isolated complete intersection singularity and thus has a nontrivial middle
homology group. But, obviously,

H alt
n

(
D2( fC)∩ ((Ui ×U j )× (U j ×Ui ));Z

)
∼= Hn

(
D2( fC)∩ (Ui ×U j );Z

)
6= 0,
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and so the isomorphism assumed in the statement restricts to give

H alt
n

(
D2( fR)∩ ((Vi × V j )× (V j × Vi ));Z

)
6= 0,

which contradicts D2( fR)∩ (Vi × V j )=∅. �

The next theorem allows us to convert Z-homology equivalences into homotopy
equivalences.

Theorem 5.4. Suppose that f : (C2n, S) → (C3n, 0) is a finitely A-determined
multigerm. If the natural inclusion Dis1( fR) ↪→ Dis1( fC) is a Z-homology equiv-
alence, then it is a homotopy equivalence and all the triple points of fC are real.

Proof. Consider the pair of maps fR and fC. We have an image computing spectral
sequence,

E1
p,q( fC, fR)= H alt

q
(
D p+1( fC), D p+1( fR);Z

)
H⇒ H∗

(
Dis1( fC), Dis1( fR);Z

)
.

The only possible nonzero groups in E1 are E1
1,q for 0 ≤ q ≤ n = dimC D2( fC),

and E1
2,0 = Zµ, (since D3( fC) and D3( fR) are finite), where µ is the number of

complex triple points that are not also real.
The only possible nontrivial differential for E∗ is E1

2,0→ E1
1,0, so E∞p,q = E1

p,q

for q > 0, or q = 0 and p 6= 1, 2. Also, E∞p,q = E2
p,q for q = 0.

Because Dis1( fR) ↪→ Dis1( fC) is a Z-homology equivalence, E∞p,q = 0 for all
p and q . So, in particular, E1

1,0
∼= E1

2,0, and E1
1,n = 0. This latter means that

H alt
n (D2( fR);Z)→ H alt

n (D2( fC);Z)

is an isomorphism. By Proposition 5.3 this means that D2( fR)∩(Vi×V j ) 6=∅ for
all i 6= j , which in turn, by Lemma Lemma 5.2, implies that H alt

0 (D2( fR);Z)→

H alt
0 (D2( fC);Z) is surjective, that is,

0= H alt
0

(
D2( fC), D2( fR);Z

)
= E1

1,0
∼= E1

2,0
∼= Zµ.

Hence all entries of E1
p,q( fC, fR) are zero, and all complex triple points are real.

This implies that the spectral sequence morphism E1
p,q( fR)→ E1

p,q( fC) is an
isomorphism. In particular the complex E1

∗,0( fR) has the same form as E1
∗,0( fC)

and it is this form, via [Houston 1997, Proposition 4.21], that implies that the image
of fC is simply connected; i.e., the image of fR is simply connected as well. (The
β condition in that proposition is that the map should be complex analytic but the
proof works just as well for real analytic maps.)

Thus Dis1( fR)→ Dis1( fC) is a Z-homology equivalence between two simply
connected CW-complexes and therefore is a homotopy equivalence by a theorem
of Whitehead [1978, pp. 182 and 220]. �

The next theorem proves [Cooper and Mond 1998, Conjecture 4.1] in the n = 1
(surfaces to 3-space) situation.
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Theorem 5.5. Suppose f : (C2, S)→ (C3, 0) is a finitely A-determined multigerm
such that rank H2(Dis1( fR);Z) = rank H2(Dis1( fC);Z). Then the inclusion of
Dis1( fR) into Dis1( fC) is a homotopy equivalence.

Proof. First, by [Mond 1996, Theorem 1.1], the natural map H2(Dis1( fR);Z)→

H2(Dis1( fC);Z) is an isomorphism. Second, a consequence of [Marar and Mond
1996, Theorem 2.3] is that H i (Dis1( fR);Q) → H i (Dis1( fC);Q) is an isomor-
phism for all i . Using these facts and the homotopy equivalence of Dis1( fC) to a
wedge of 2-spheres we can deduce that the only possible obstruction to an isomor-
phism on integer homology is if H1(Dis1( fR);Z) has nontrivial torsion. There are
two ways that torsion could appear in the spectral sequence for a stable map with
no quadruple points and having a set of simply connected surfaces as its source:
through an appearance in the E1 page or the E2 page of the spectral sequence. We
show that neither can occur in our situation.

If D2( fR) contains a circle C upon which the natural S2 action is the antipodal
action, H alt

0 (D2( fR);Z) contains the subgroup H alt
0 (C;Z)∼=Z2, by [Houston 1997,

Lemma 2.6], and vice versa. If this torsion group survives in E2( fR), it appears as
a summand in H1(Dis1( fR);Z).

Thus, suppose such a circle C exists in D2( fR). Then C projects to a curve
C ′ in the source of fR, the nodes of which correspond to triple points of fR. By
performing homotopies on fR we can remove any other points arising from the
double point space that lie within the compact region enclosed by C ′. That is, we
push them to outside the enclosed region.

There will exist a node such that on one side of it the curve forms a loop with no
other nodes on it. That is, the loop will be equivalent to the interval [0, 1] mapped
so that the points

{ 1
4

}
and

{ 3
4

}
form the node. Call this space α (after its shape).

To one side of the plane containing the node the surface will look like the product
of an interval I with α. By a smooth homotopy one can contract the loop

{ 1
2

}
×α;

this will modify I × α to a space with two cross caps. The plane containing the
node can then be pushed through the nearest cross cap thus removing the node.
See Figure 1.

This can be done for all nodes, so that the projection of C for the new map gives
a circle C ′ in the source with no nodes and no points of the double point space
touching it or contained within its interior.

Once this is done the disc in the source with C ′ as boundary is mapped into R3

with C ′ mapping two-to-one. The image of this disc is in effect a copy of RP2

embedded in R3. Such a situation is impossible to achieve and hence there are no
loops like C in D2( fR).

Since H1(Dis1( fR);Z)∼= E2
1,0( fR) the next possible way to get torsion is if the

group
E2

1,0
∼= Ker(d : E1

1,0→ E1
0,0)/Im(d : E1

2,0→ E1
1,0)

contains some.
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Figure 1. Removing nodes on C ′.

The differential d : E1
2,0→ E1

1,0 is induced from ε3∗; see Theorem 2.10. Suppose
that (a, b, c) is a triple point then it is easy to calculate that

ε3∗(AltZ(a, b, c))= AltZ(a, b)+AltZ(b, c)+AltZ(c, a).

So, if for example (a, b), (b, c) and (c, a) are all contained in the same component
of an ordinary loop in D2( fR), then ε3∗(AltZ(a, b, c))= 3 AltZ(a, b), which could
lead to torsion.

The double point space D2( fR) contains components homeomorphic to the
following forms: intervals with a point in the diagonal, circles that intersect the
diagonal in two points and pairs of loops such that the pair is invariant under S2.

The first two situations do not contribute anything to H alt
0 (D2( fR);Z) as for

these any point (x1, x2) is homologous to one in the diagonal, (x, x) say, and so
AltZ(x1, x2)≡ AltZ(x, x)= 0.

Thus, only pairs of loops could cause difficulties. Let C be such a loop and
(x1, x2) be a point of C . The generator AltZ(x1, x2) of H alt

0 (D2( fR)∩Orbit(C))∼=Z

is also a generator of some Z in H alt
0 (D2( fC);Z); see Lemma 5.2.

We have the natural commutative diagram

E1
0,1( fR) ∼= Zµ � ZT ∼= E1

2,0( fR)

E1
0,1( fC) ∼= Zm(m−1)/2

?
� ZT

?
∼= E1

2,0( fC).
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The first vertical arrow is surjective and takes generators of H alt
0 (D2( fR);Z) to

generators of H alt
0 (D2( fC);Z), as just described. The second is an isomorphism,

since by [Marar and Mond 1996, Corollary 2.5] all triple points are real. Thus, if
(a, b, c) is a triple point in D3( fR) so that ε3∗AltZ(a, b, c) ≡ r AltZ(x1, x2) with
r > 1 in the top row, a similar situation takes place in the bottom row leading to
torsion in E2

1,0( fC)∼= H1(Dis1( fC);Z). This is a contradiction.
Thus H1(Dis1( fR);Z)= 0 and so there is an isomorphism Hi (Dis1( fR);Z)→

Hi (Dis1( fC);Z) for all i . By Theorem 5.4 this leads to a homotopy equivalence.
�

Compare the following theorem with [Houston 2002b, Theorem 3.6], where the
homotopy conclusion is true when the image of the map is a hypersurface.

Theorem 5.6. Suppose that f : (C2n, 0)→ (C3n, 0), n ≥ 1, is a corank-1 finitely
A-determined map-germ. If the natural map Dk( fR)→ Dk( fC) is an Sk-homotopy
equivalence for all k ≥ 2, then the inclusion Disr ( fC)→ Disr ( fC) is a homotopy
equivalence for all r ≥ 1.

Proof. The natural maps H alt
i (Dk( fR);Z)→ H alt

i (Dk( fC);Z) are isomorphisms
for all k ≥ 1 and thus the spectral sequence morphism E1

p,q( fR)→ E1
p,q( fC) is

an isomorphism for all p and q. This gives a Z-homology equivalence between
Dis1( fR) and Dis1( fC) and so by Theorem 5.4 the map is a homotopy equivalence.

The second disentanglements are the images of

fR

∣∣D2
1( fR) : D2

1( fR)→ M2( fR) and fC

∣∣D2
1( fC) : D2

1( fC)→ M2( fC).

The maps Hi (D2
1( fR);Z)→ Hi (D2

1( fC);Z) are isomorphisms as the spectral se-
quences for gR : D2( fR)→ D2

1( fR) and gC : D2( fC)→ D2
1( fC) are isomorphic

(their multiple points spaces are Sk-homotopy equivalent). These then provide
the isomorphisms between the spectral sequences for fR

∣∣D2
1( fR) and fC

∣∣D2
1( fC).

Thus M2( fR)= Dis2( fR) and M2( fC)= Dis2( fC) are Z-homology equivalent.
One can prove similarly that the spectral sequences for calculating D2( fR)/S2

and D2( fC)/S2 are isomorphic. If n = 1, both D2( fR)/S2 and D2( fC)/S2 are
homotopically equivalent to connected 1-dimensional CW-complexes, and since
they are Z-homology equivalent they must be homotopy equivalent. If n > 1, then
D2( fR)' D2( fC)'

∨
Sn (because D2( fC) is the Milnor fibre of an isolated com-

plete intersection singularity), and is thus simply connected; since H alt
0 (D2( fR);Z)

vanishes we deduce that D2( fR)/S2 is simply connected. This is essentially done
the same way as the proof of Theorem 4.1. Thus D2( fR)/S2 and D2( fC)/S2
are simply connected and Z-homology equivalent CW-complexes, and therefore
homotopically equivalent by Whitehead’s theorem.

Now, just as Dis2( fC) is homotopically equivalent to D2( fC)/S2 union some
hexagons, so is Dis2( fR) also homotopically equivalent to D2( fR)/S2 union some
hexagons. See the proof of Theorem 4.4. In fact, Dis2( fC) is homotopically equiv-
alent to D2( fC)/S2 wedged with 2T ( fC) circles; each hexagon contracts to give
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these loops. Similarly for Dis2( fR). The homotopy equivalence from D2( fR)/S2
to D2( fC)/S2 can then be extended to one from Dis2( fR) to Dis2( fC).

That Dis3( fR) and Dis3( fC) are homotopically equivalent follows from D3( fR)

and D3( fC) being S3-homotopically equivalent and from M3( fC) = D3( fC)/S3,
and so on. �

A series with excellent real perturbations.

Definition 5.7. As in [Houston 2002b] we call a real perturbation excellent if the
natural map

Hi (Disr ( fR);Z)→ Hi (Disr ( fC);Z)

is an isomorphism for all i and r .

In [Marar and Mond 1996] it is shown that every member of the Hk series given
by f (x, y)= (x, y3, xy+ y3k−1), k ≥ 1, has a good real perturbation.

This series can be generalised to a series for every value of n. We define H n
k to

be the map f : (C2n, 0)→ (C3n, 0) given by

(x1, . . . , x2n−1, y) 7→

(
x1, . . . , x2n−1, y3

+ y
n−1∑
j=1

x2
n+ j−1, x2n−1 y+ y3k−1,

x1 y+ xn y2, . . . , xi y+ xi+n−1 y2, . . . , xn−1 y+ x2n−2 y2
)

.

By taking n=1 we get the Hk series. We will show that the general series has more
than a good real perturbation, in fact the corresponding r -th disentanglements are
homotopy equivalent for all r .

It can be shown that the Ae-codimension of H 1
k is equal to k. This means that

the Ae-codimension is equal to the number of spheres in the first disentanglement;
see [Marar and Mond 1996] or Proposition 5.9.

It is natural to compare Ae-codimension and the number of spheres, since in
the case of isolated singularities of complete intersections it is well known that the
number of spheres in the Milnor fibre is greater than or equal to the Ke-codimension
of the map, with equality if the map is quasihomogeneous. Correspondingly, the
number of spheres in the disentanglement for a map from (Cm, 0) to (Cq , 0) with
m ≥ q and in the nice dimensions, is greater than or equal to its Ae-codimension,
with equality if the map is quasihomogeneous; see [Damon and Mond 1991]. For
maps with q =m+ 1, in the nice dimensions, the comparison is conjectured to be
true; see [Mond 1991b], where the m = 2 case is proved.

Now, for q > m + 1, the comparison does not necessarily hold; the number
of spheres in the disentanglement may be less than the Ae-codimension, even for
quasihomogeneous maps. See [Houston 1997, Example 4.26]. For n > 1, the
series H n

k also exhibits this inequality. For example, calculations with the computer
package Transversal [Kirk 2000], show that the Ae-codimension of H 2

2 is 3, yet,
by Proposition 5.9, the number of spheres is 2. This is made more intriguing by
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the fact that the Ae-codimension of H 2
1 is 1, and the number of spheres is also 1.

That is, the result holds for H 2
1 , but not for the next map in the series. It would, of

course, be interesting to find some underlying reason for this.

Theorem 5.8. The map f : (C2n, 0)→ (C3n, 0) is finitely A-determined.

Proof. Since the map has corank 1, if we show that D2( f ) and D3( f ), as defined
by the adapted Vandermonde method of [Marar and Mond 1989], are isolated com-
plete intersection singularities and D4( f ) is empty, it follows by Theorem 2.14 of
the same reference that f is finitely determined.

If we let f (x, y) = (x, f1(x, y), . . . , fn+1(x, y)), then D2( f ) is generated in
C2n−1

×C2 by
f j (x, y1)− f j (x, y2)

y1− y2
, for j = 1, . . . , n+ 1.

Thus it is generated by y2
1 + y1 y2+ y2

2 +
∑n−1

j=1 x2
n+ j−1, x2n−1+ O(3k − 2), (i.e.,

terms of degree of 3k− 2 and above), and xi + xi+n−1(y1+ y2) for 1≤ i ≤ n− 1,
and it is equivalent to a quadratic isolated hypersurface singularity.

The set D3( f ) is generated by∣∣∣∣∣∣
1 y1 f j (x, y1)

1 y2 f j (x, y2)

1 y3 f j (x, y3)

∣∣∣∣∣∣∣∣∣∣∣∣
1 y1 y2

1
1 y2 y2

2
1 y3 y2

3

∣∣∣∣∣∣
and

∣∣∣∣∣∣
1 f j (x, y1) y2

1
1 f j (x, y2) y2

2
1 f j (x, y3) y2

3

∣∣∣∣∣∣∣∣∣∣∣∣
1 y1 y2

1
1 y2 y2

2
1 y3 y2

3

∣∣∣∣∣∣
for j = 1, . . . , n+1. These give the same generators as in the n= 1 case plus all xi
for i = 1, . . . , 2n− 2. Thus the D3( f ) singularity is equivalent to the singularity
arising in the n= 1 case and hence is an isolated complete intersection singularity.

The set D4( f ) is empty because the y3 term is present in f1. �

Proposition 5.9. Let f be as above.

(i) Dis1( f ) is homotopically equivalent to the wedge of an (n + 1)-sphere and
k−1 2-spheres.

(ii) Dis2( f ) is homotopically equivalent to a wedge of 2(k− 1) circles.

Proof. For part (i) we know from Theorem 3.4 that Dis1( f ) is homotopically
equivalent to a wedge of (n + 1)-spheres and 2-spheres. The number of (n + 1)-
spheres is rank H alt

n (D2( ft);Z), and as D2( f ) is given by an S2-invariant quadratic
singularity this rank must be 1. By Theorem 3.1 the number of 2-spheres equals
T ( ft), the number of triple points in the image of ft . By the proof of Theorem 5.8
D3( f ) is equivalent to the multiple point space in the case n = 1, and by [Marar
and Mond 1996] the degree of this is 6(k−1), so the number of triple points of ft
is equal to k− 1, as each triple point gives rise to an S3-orbit of 6 points.
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To prove part (ii) we use Theorem 4.4 to show that Dis2( f ) is homotopically
equivalent to a wedge of n-spheres and 2T ( ft) circles. The number of n-spheres
is the rank of the symmetric part of Hn(D2( ft);Z) and hence is zero. �

Proposition 5.10. The perturbation of f given by(
x1, . . . , x2n−1, y3

+ y
n−1∑
j=1

x2
n+ j−1− t y, x2n−1 y+ y2

k−1∏
i=1

(y3
− t y− ci ),

x1 y+ xn y2, . . . , xi y+ xi+n−1 y2, . . . , xn−1 y+ x2n−2 y2
)

,

where t > 0 and ci are real numbers with |ci | <
2
3 t3/2 and ci 6= c j for i 6= j , is

a good real perturbation. The natural map Disr ( fR) ↪→ Disr ( fC) is a homotopy
equivalence for all r ≥ 1.

Proof. The first statement obviously follows from the second.
To prove the second statement we note that by [Marar and Mond 1996, Section 3]

in the case n=1 the map D3( fR)→D3( fC) is a homeomorphism respecting the S3
action. Since D3( fC) is K-equivalent by an S3-equivariant diffeomorphism to the
triple point space singularity in the n=1 case we have an S3-homotopy equivalence
between the real and complex multiple points spaces of the disentanglement map
in the general case. The map D2( fR)→ D2( fC) is an S2-equivariant homotopy
equivalence; this follows from the description of D2( f ). Thus the proposition is
proved by Theorem 5.6. �
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