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LOCAL ZETA FUNCTION FOR NONDEGENERATE
HOMOGENEOUS MAPPINGS

W. A. ZUNIGA-GALINDO

We give an explicit description of the poles of the Igusa local zeta function
associated to a polynomial mapping g, in the case in which it is a nondegen-
erate homogeneous mapping of degree d. The proof uses a generalization of
the p-adic stationary phase formula and Néron p-desingularization.

1. Introduction

Let K be nonarchimedean local field, OK the valuation ring of K , PK the maximal
ideal of OK , and K = OK /PK the residue field of K . The cardinality of the residue
field of K is denoted by q; thus K = Fq . Denote the valuation of z ∈ K by v(z) ∈

Z∪{+∞}, and let |z|K =q−v(z) and ac z = zπ−v(z), where π is a fixed uniformizing
parameter for OK . For x = (x1, . . . , xl) ∈ K l , set ‖x‖K := max16i6l |xi |K .

Let gi (x) ∈ OK [x1, . . . , xn] be a nonconstant polynomial for i = 1, . . . , l, and
g(x) = (g1(x), . . . , gl(x)) : K n

→ K l a polynomial mapping with l 6 n. Let χi
be a character of O×

K , i.e., a homomorphism χi : O×

K → C× with finite image, for
i = 1, . . . , l. We formally put χi (0) = 0, i = 1, . . . , l, χ := (χ1, . . . , χl), and define

χ(ac g(x)) :=
∏l

i=1 χi (ac gi (x)).

The Igusa local zeta function associated to χ and g is then defined as

(1–1) Z(s, χ, g) :=

∫
On

K

χ(ac g(x)) ‖g(x)‖s
K |dx |, s ∈ C with Re s > 0,

where |dx | denotes the Haar measure on K n normalized so On
K has measure 1.

Local zeta functions of type (1–1) were introduced by Weil [1965] and their
basic properties for general g and l =1 were first studied by Igusa. Using resolution
of singularities Igusa proved that Z(s, χ, g) admits a meromorphic continuation to
the complex plane as a rational function of q−s [Igusa 1978; 2000, Theorem 8.2.1].
His proof was generalized by Meuser [1981, Theorem 1] to the case l > 1. Using
p-adic cell decomposition, Denef [1984] gave a completely different proof of the
rationality of Z(s, χtriv, g), with l > 1.
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We write Z(s, g) = Z(s, χtriv, g) when χ(z) = χtriv(z) = (1, . . . , 1). Let Nm(g)

be the number of solutions of

(1–2) gi (x) ≡ 0 mod Pm
K , i = 1, . . . , l, in (OK /Pm

K )n,

and set P(t, g) :=
∑

∞

m=0 Nm(g)(q−nt)m , with N0(g) = 1. By [Meuser 1981,
Theorem 2], the Poincaré series P(t, g) is related to Z(s, g) by the formula

P(t, g) =
1 − t Z(s, g)

1 − t
, t = q−s .

Thus the rationality of Z(s, g) implies that of P(t, g).
Igusa’s local zeta functions are related to the number of solutions of congru-

ences mod π m and exponential sums mod π m . Indeed, in the case l = 1, Igusa
showed that the largest pole of Z(s, g) controls the asymptotic behavior of number
of solutions of (1–2), and the largest pole of Z(s, χ, g) controls the asymptotic
behavior absolute value of

∑
x mod πm 9(λg(x)), where 9 is an standard additive

character. See [Denef 1991; Igusa 1978; 1974; 1975; 2000]. Motivated by this
work, Igusa asked [1978, p. 32] how one could extend his method and results to
the case of polynomial mappings. The theory of local zeta functions for the case
l > 1 is just starting, and only some partial results have been obtained; see [Denef
1984; 2000; Lichtin 2000; Meuser 1981; Zuniga-Galindo 2004].

The first result of this paper, Theorem 2.3, is a generalization of the p-adic
stationary phase formula to polynomial mappings. Igusa has used the p-adic
stationary phase formula to compute the local zeta functions of several classes
of prehomogeneous vectors spaces (see [Igusa 1994] and the references therein);
the author has used this formula and Néron p-desingularization [Artin 1969] in the
study and computation of local zeta functions associated to several classes of poly-
nomials [Zuniga-Galindo 2001; 2003a; 2003b]. Section 2 of this paper includes
applications of the generalized formula to the calculation of certain integrals are
included in.

Our second main result, Theorem 3.1, provides an explicit description of the
poles of Z(s, g, χ), with 1 6 l 6 n, in the case where g is a nondegenerate homo-
geneous mapping of degree d (Definition 3.1). The proof uses Theorem 2.3 and
Néron p-desingularization. Still in Section 3 we prove some consequences of this
description of the poles of Z(s, g, χ).

2. The p-adic Stationary Phase Formula for Mappings

In this section we give a generalization of the p-adic stationary phase formula
(abbreviated SPF), and compute some integrals that will be used in the next section.
The results about the SPF given here constitute a generalization of some results of
[Zuniga-Galindo 2001, Section 2] and [Zuniga-Galindo 2003b, Section 2].
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Some p-adic integrals. If ξ is an element of OK , we denote by ξ̄ its image un-
der the canonical homomorphism OK → OK /π PK = Fq , i.e., the reduction of ξ

modulo π . If g = (g1, . . . , gl) : K n
→ K l , where l 6 n, is a polynomial map-

ping with gi (x) ∈ OK [x1, . . . , xn] \ PK [x1, . . . , xn], i = 1, . . . , l, we denote by
ḡ := (ḡ1, . . . , ḡl) : Fn

q → Fl
q its reduction modulo π . We fix a lifting R of Fn

q in
On

K , and if ξ ∈ R satisfies ξ = ξ̄ mod π , we say that ξ is the lifting of ξ̄ .
Given ξ0 ∈ OK , we define the dilatation of gi (x) at ξ0 as

gi,ξ0(x) := π−ei,ξ0 gi (ξ0 + πx),

where ei,ξ0 is the minimum order of π in the coefficients of gi (ξ0 + πx).
If y = (y1, . . . , yM) ∈ K M and z = (z1, . . . , zN ) ∈ K N , we set

‖(y, z)‖K :=
∥∥(y1, . . . , yM , z1, . . . , zN )

∥∥
K .

Proposition 2.1. Let h(x) = (h1(x), . . . , hN (x)) and g(x) = (g1(x), . . . , gM(x))

be polynomial mappings with h j (x), gi (x) ∈ OK [x1 . . . , xn] for j = 1, . . . , N ,
i = 1, . . . , M , and N > 1, M > 1. Let
(2–1)

I (s, χ, h, g, c0) :=

∫
On

K

χ(ac h(x))
∥∥(c0, g(x))

∥∥s
K |dx | for s ∈ C with Re s > 0,

where χ = (χ1, . . . , χN ) and c0 a nonzero element of OK . Then I (s, χ, h, g, c0) is
a polynomial in q−s with complex coefficients.

Proof. We work by induction on α(I (s, χ, h, g, c0)) = α := max(v(c0), M). The
proof of the case α = 1 involves two subcases: (I) v(c0) = 0, M = 1, and (II)
v(c0) = 1, c0 = πu, u ∈ O×

K , M = 1. The first follows immediately; the second is
proved as follows:

I (s, χ, h, g, c0) =

∫
On

K

χ(ac h(x))
∥∥(πu, g(x))

∥∥s
K |dx |

=

∑
ξ∈R

q−n
∫

On
K

χ(ac h(ξ + πx))
∥∥(πu, g(ξ + πx))

∥∥s
K |dx |,

with

q−n
∫

On
K

χ(ac h(ξ + πx))
∥∥(πu, g(ξ + πx))

∥∥s
K |dx |

=

q−n−s
∫

On
K

χ(ac h(ξ + πx)) |dx | if ḡ(ξ̄ ) = 0,

q−n
∫

On
K

χ(ac h(ξ + πx)) |dx | if ḡ(ξ̄ ) 6= 0.

Suppose that the result is valid for every integral of form (2–1) with 1 6 α 6 k,
k ∈ N. Let I (s, χ, h, g, c0) be an integral of form (2–1), with α = k + 1. Set

V :=
{
ξ ∈ On

K | ξ̄ ∈ ḡ−1(0)
}
,
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I = {1, . . . , M}, J ⊆ I , and

VJ :=
{
ξ ∈ On

K | v(gi (ξ)) = 0 ⇐⇒ i ∈ J
}
.

Denote by V , V J the images of V , VJ under the canonical homomorphism On
K →

(OK /π PK )n
= Fn

q . With this notation On
K can be partitioned as

On
K = V

⋃ ⋃
J⊆I
J 6=∅

VJ ,

and from this it follows that ∫
On

K

=

∫
V

+

∑
J⊆I
J 6=∅

∫
VJ

.

Therefore the proof of the case α = k + 1 is reduced to showing that

(2–2)
∫

V
χ(ac h(x))

∥∥(c0, g(x))
∥∥s

K |dx | ∈ C[q−s
],

and

(2–3)
∫

VJ

χ(ac h(x))
∥∥(c0, g(x))

∥∥s
K |dx | ∈ C[q−s

] for nonempty J ⊆ I.

To prove (2–2) we proceed as follows. By decomposing V into equivalence
classes modulo π we obtain

(2–4)∫
V

χ(ac h(x))
∥∥(c0, g(x))

∥∥s
K |dx |

=

∑
ξ∈V

q−n−γ s
∫

On
K

( N∏
i=1

χi (ac hi,ξ (x))

)∥∥(
π−γ c0, (π e j,ξ−γ gi,ξ (x))i∈I

)∥∥s
K |dx |,

where ξ is the lifting of ξ̄ and γ = min
(
e1,ξ , . . . , eM,ξ , v(c0)

)
. Since ḡi (ξ̄ ) = 0 for

i = 1, . . . , M , and v(c0) > 1, it follows that γ > 1. Equation (2–2) follows from
(2–4) by the induction hypothesis because each integral in the right side of (2–4)
has an α 6 k.

The proof of (2–3) is as follows. By decomposing VJ into equivalence classes
modulo π we get

(2–5)
∫

VJ

χ(ac h(x))
∥∥(c0, g(x))

∥∥s
K |dx |

=

∑
ξ∈VJ

q−n
∫

On
K

( N∏
i=1

χi (ac hi,ξ (x))

)∥∥(
c0, (π e j,ξ g j,ξ (x)) j∈I\J

)∥∥s
K |dx |.
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Since J 6= ∅, it follows that the cardinality of I \ J is less than M . Now (2–3)
follows from (2–5) by the induction hypothesis because each integral in the right-
hand side of (2–5) has an α 6 k. �

Given c = (c1, . . . , cl) a nonzero element of O l
K , we set

I (s) = I (s, χ, c) :=

∫
Ol

K

l∏
i=1

χ(ac xi )
∥∥(c1x1, . . . , cl xl)

∥∥s
K |dx |

for s ∈ C with Re s > 0.

Proposition 2.2. With the preceding notation,

I (s, χ, c) = {


0 if χ 6= χtriv,

L(q−s, χ)

(1 − q−l−s)
if χ = χtriv,

where L(q−s, χ) is a polynomial in q−s with complex coefficients.

Proof. If χ 6= χtriv there exists at least one index, say 1, such that χ1 6= χtriv. Let
u be an element of O×

K such that χ1(u) 6= 1. Since I (s, χ, c)(1−χ1(u)) = 0, it
follows that I (s, χ, c) = 0.

If χ = χtriv, we set I (s, χtriv, c) = I (s, c). For a nonempty subset J ⊆ I =

{1, 2, . . . , l}, we set

(2–6) WJ := {x ∈ O l
K | v(xi ) = 0 ⇐⇒ i ∈ J }

and

IJ (s, c) :=

∫
WJ

∥∥(c1x1, . . . , cl xl)
∥∥s

K |dx | for s ∈ C with Re s > 0.

On the other hand, for each l > 1, O l
K admits the partition

(2–7) O l
K = (PK )l

⋃ ⋃
J⊆{1,...,l}

J 6=∅

WJ ,

where WJ is defined in (2–6). From this partition it follows that

I (s, c) =

∫
(PK )l

‖(c1x1, . . . , cl xl)‖
s
K |dx | +

∑
J⊆{1,...,l}

J 6=∅

IJ (s, c).

On the other hand, a direct calculation shows that∫
(PK )l

‖(c1x1, . . . , cl xl)‖
s
K |dx | = q−l−s I (s, c);

thus in order to prove the result it is sufficient to show that IJ (s, c) is a polynomial
in q−s for every J 6=∅. To do so we proceed as follows. By renaming the variables,
we may assume that J = {1, 2, . . . , f }, with f 6 l. Since∥∥(c1x1, . . . , cl xl)

∥∥
K =

∥∥(c0, c f +1x f +1, . . . , cl xl)
∥∥

K for any (x1, . . . , xl) ∈ WJ ,
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where c0 is an element of OK satisfying |c0|K = max16i6 f |ci |K , we obtain

IJ (s, c) = (1 − q−1) f
∫

Ol− f
K

∥∥(c0, c f +1x f +1, . . . , cl xl)
∥∥s

K |dx |.

Now the result follows by applying Proposition 2.1 to IJ (s, c). �

The p-adic stationary phase formula. For A ⊆ On
K , denote by Z A(s, χ, F) the

integral
∫

A χ(ac F(x)) ‖F(x)‖s
K |dx |. Let L be an arbitrary field and consider a

polynomial mapping g : Ln
→ L l , where l 6 n. Let

Jg(z) :=

( ∂gi

∂x j

)
16i6l
16 j6n

(z)

be the Jacobian matrix of g at z ∈ Ln , and Cg(L) the L-critical set of g:

Cg(L) =
{
z ∈ Ln

| rankLJg(z) 6 l − 1
}
.

Finally, put Singg(L) := Cg(L) ∩ g−1(0).
The next result is a generalization of the p-adic stationary phase formula (see

[Igusa 2000, Theorem 10.2.1], for example) to the current setting.

Theorem 2.3. Let fi (x) ∈ OK [x1, . . . , xn] \ PK [x1, . . . , xn] be a nonconstant
polynomial for i = 1, . . . , l, with l 6 n, and set F∗(x) = ( f1(x), . . . , fl(x)). Let
ci , i = 1, . . . , l, be nonzero elements of OK such that at least one ci belongs to
O×

K , and set F(x) = (c1 f1(x), . . . , cl fl(x)). Let E be a nonempty subset of Fn
q ,

S = SingF∗(Fq)∩ E , and E , S the preimages of E and S under On
K → (OK /PK )n .

Then

Z E(s, χ, F) = L0(q−s, χ, F) +
L1(q−s, χ, F)

(1 − q−l−s)
+ ZS(s, χ, F),

where L0(q−s, χ, F) and L1(q−s, χ, F) are polynomials in q−s with complex co-
efficients and degrees independent of χ . Moreover L1(q−s, χ) = 0 if χ 6= χtriv.

Proof. Since E \ S and S form a partition of E ,

Z E(s, χ, F) = Z E\S(s, χ, F) + ZS(s, χ, F).

Thus it is sufficient to show that

Z E\S(s, χ, F) = L0(q−s, χ, F) +
L1(q−s, χ, F)

(1 − q−l−s)
.

By decomposing E \ S into equivalence classes modulo π , we check that

Z E\S(s, χ, F) =

∑
ξ̄∈E\S

q−n
∫

On
K

χ(ac F(ξ + πx))
∥∥F(ξ + πx)

∥∥s
K |dx |.
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We first consider the contribution of the points ξ ∈ E \ S satisfying F∗(ξ̄ ) 6= 0.
This condition is equivalent to the existence of a nonempty subset T = Tξ of I =

{1, . . . , l} such that

(2–8) f̄i (ξ̄ ) 6= 0 ⇐⇒ i ∈ T .

From (2–8) it follows that∥∥(c1 f1(ξ + πx), . . . , cl fl(ξ + πx))
∥∥

K =
∥∥(c0, (ci fi (ξ + πx))i∈I\T )

∥∥
K

for any x ∈ On
K , where c0 is an element of OK satisfying |c0|K = maxi∈T |ci |K .

Thus the contribution of an ξ ∈ E\S satisfying (2–8) is

q−n
∫

On
K

l∏
i=1

χi (ac ci fi (ξ + πx))
∥∥(c0, (ci fi (ξ + πx))i∈I\T )

∥∥s
K |dx |.

By Proposition 2.1 the preceding integral is a polynomial L ξ̄ (q
−s, χ). By adding

all these polynomials we obtain

L0(q−s, χ, F) =

∑
ξ̄∈E\S

F∗(ξ̄ ) 6=0

L ξ̄ (q
−s, χ, F).

Now we consider the contribution of points ξ ∈ E \S satisfying F∗(ξ̄ ) = 0. This
condition implies that the Jacobian matrix of F∗ at ξ̄ has rank l.

Set

yi = φi (x) =


fi (ξ + πx) − fi (ξ)

π
for i = 1, . . . , l,

xi for i = l + 1, . . . , n.
By the nonarchimedean implicit function theorem y = φ(x) := (φ1(x), . . . , φn(x))

gives a measure-preserving mapping from On
K to On

K . By performing a change of
variables from the xi to the yi one can check that

q−n
∫

On
K

χ(ac F(ξ + πx))
∥∥F(ξ + πx)

∥∥s
K |dx |

= q−n−s
∫

Ol
K

l∏
i=1

χ(ac ci yi )
∥∥(ci yi )16i6l

∥∥s
K |dy|.

By Proposition 2.2, the integral in this equation is a rational function of the form

Rξ̄ (q
−s)

(1 − q−l−s)
,

and the polynomial Rξ̄ (q
−s) vanishes if χ 6= χtriv. By adding all these polynomials

we get
L1(q−s, χ) =

∑
ξ̄∈E\S

F∗(ξ̄ )=0

Rξ̄ (q
−s, χ). �
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Néron p-desingularization. We now use techniques of Néron p-desingularization
(see [Artin 1969, Sect. 4], for example) together with the SPF to compute certain p-
adic integrals. The results presented here are generalizations of results in [Zuniga-
Galindo 2001, Section 2] and [Zuniga-Galindo 2003b, Section 2].

Let gi (x) ∈ OK [x1, . . . , xn]\ PK [x1, . . . , xn] be a nonconstant polynomial for
i = 1, . . . , l and let g(x)= (g1(x), . . . , gl(x)) : K n

→ K l be a polynomial mapping
with l 6 n. We denote by S(g) the subset of R mapped bijectively to the set
Singḡ(Fq) by the canonical homomorphism On

K → (OK /PK )n . For simplicity we
say that S(g) is the lifting of Singḡ(Fq).

Given ξ0 ∈ S(g), we define the dilatation of gi (x) at ξ0 as

(2–9) gi,ξ0(x) := π−ei,ξ0 gi (ξ0 + πx),

where ei,ξ0 is the minimum order of π in the coefficients of gi (ξ0 + πx). We say
that S(gi,ξ0), the lifting of Singḡi,ξ0

(Fq), is the first generation of descendants of ξ0.
Given a sequence of points (ξk)k∈N in On

K with ξ0 ∈ S(g), we define inductively
ei,ξ0,...,ξk , gi,ξ0,...,ξk (x), and S(gi,ξ0,...,ξk ) by setting

(2–10) gi,ξ0,...,ξk (x) := π−ei ,ξ0,...,ξk gi,ξ0,...,ξk−1(ξk + πx) for k > 1,

where ξk lies in S(gi,ξ0,...,ξk−1) and ei,ξ0,...,ξk is the minimum order of π in the co-
efficients of gi,ξ0,...,ξk−1(ξk +πx). The (k+1)-st generation of descendants of ξ0 is
by definition the set

S(gi,ξ0,...,ξk ) =

⋃
ξk∈S( fξ0,...,ξk−1 )

S(gi,ξ0,...,ξk−1,ξk ).

These definitions extend to polynomial mappings as follows. Given a sequence
of points (ξk)k∈N in On

K , with ξ0 ∈ S(g), we define inductively gξ0,...,ξk (x) and
S(gξ0,...,ξk ) by setting

(2–11) gξ0,...,ξk (x) :=
(
g1,ξ0,...,ξk (x), . . . , gl,ξ0,...,ξk (x)

)
for k > 0,

where ξk ∈ S(gξ0,...,ξk−1) and gi,ξ0,...,ξk (x) is the dilatation of gi,ξ0,...,ξk−1(x) at ξk .
The set

S(gi,ξ0,...,ξk ) :=

⋃
ξk∈S(gξ0,...,ξk−1 )

S(gξ1,...,ξk−1,ξk )

is called the (k+1)-th generation of descendants of ξ0.

Remark 2.1. With the hypothesis of Theorem 2.3, we have

S =

⋃
ξ̄∈S(F∗)∩E

(ξ + π On
K ),

and then

ZS(s,χ,F)=
∑

ξ̄∈S(F∗)∩E

q−n−αξ

∫
On

K

l∏
i=1

χi (ac fi,ξ (x))
∥∥(

π ei,ξ−αξ fi,ξ (x)
)

16i6l

∥∥s
K |dx |,
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where αξ := mini {ei,ξ }. Therefore the stationary phase formula can be rewritten as

Z E(s,χ, F) = L0(q−s,χ, F) +
L1(q−s,χ, F)

(1 − q−l−s)

+

∑
ξ̄∈S(F∗)∩E

q−n−αξ

∫
On

K

l∏
i=1

χi (ac fi,ξ (x))
∥∥(π ei,ξ−αξ fi,ξ (x))16i6l

∥∥s
K |dx |.

Let gi ∈ OK [x1, . . . , xn] \ PK [x1, . . . , xn], for i = 1, . . . , l 6 n, be nonconstant
polynomials. Set g(x) =

(
g1(x), . . . , gl(x)

)
: K n

→ K l , and let ξ be a point of On
K

such that ξ /∈ Singg(K ). Define

L(g, ξ) = min
M

{v(M(ξ))},

where M runs over the minors of the Jacobian matrix Jg(ξ) of g at ξ .

Proposition 2.4. With the notation just defined:

(1) If ξ ∈ On
K and ξ ∈ ḡ−1(0), then

L(g, ξ) = 0 ⇐⇒ ξ /∈ Singḡ(Fq).

(2) If A ⊆ On
K is an open and compact subset such that A ∩ Singg(K ) = ∅, there

exists a constant c(g, A) ∈ N such that

sup
ξ∈A

L(g, ξ) 6 c(g, A).

Proof. Part (1) follows from the Jacobian criterion. Part (2) is proved by contradic-
tion. If L(g, ξ) is not bounded on A, there exists a sequence (ξi )i∈N of points of
A such that L(g, ξi ) → ∞ when i → ∞. Since A is compact the sequence (ξi )i∈N

has a limit point ξ∗ in A. Thus, since Singg(K ) is closed, ξ∗ lies in A ∩ Cg(K );
that is, A ∩ Singg(K ) 6= ∅, contradicting A ∩ Singg(K ) = ∅. �

The index L(g, ξ) appears naturally associated to SPF, as already noted in
[Zuniga-Galindo 2001]. It plays a central role in the construction of the Néron
p-desingularization of the special fiber of smooth schemes over Spec (OK ); see,
for example, [Artin 1969, Section 4].

Lemma 2.5. Let gi ∈ OK [x1, . . . , xn] \ PK [x1, . . . , xn], for i = 1, . . . , l 6 n, be
nonconstant polynomials. Set g(x) =

(
g1(x), . . . , gl(x)

)
: K n

→ K l . Let A ⊆ On
K

be an open and compact subset such that A ∩ Singg(K ) = ∅. Take ξ0 ∈ A.

(1) Suppose that ξk , for some k > 0, satisfies

(2–12) ξk ∈

{
S(g) if k = 0,

S(gξ0,...,ξk−1) if k > 1,

where ξ1, . . . , ξk−1 are descendants of ξ0, and that ξk has at least one descen-
dant in S(gξ0,...,ξk ). Then

L(gξ0,...,ξk , 0) 6 L(g, ξ0 + ξ1π + · · · + ξkπ
k) − (k + 1).
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(2) For any ξ0 ∈ A ∩ S(g), if k > c(g, A) + 1, then S(gi,ξ0,...,ξk ) = ∅.

Proof. (1) For each j = 0, 1, . . . , k, we take ξ j+1 ∈ S(gi,ξ0,...,ξ j ), ei,ξ0,...,ξ j as in
(2–9), (2–10), and define

Ei,k :=

k∑
j=0

ei,ξ0,...,ξ j .

Thus Ei,k > k + 1 for every i . With the above notation one checks that

gi (ξ0 + ξ1π + · · · + ξkπ
k
+ π k+1x) = π Ei,k gi,ξ1,...,ξk−1,ξk (x).

It follows that

L(g, ξ0 + ξ1π + · · · + ξkπ
k) >

l∑
i=1

(Ei,k − k − 1) + L(gξ0,...,ξk−1,ξk , 0).

Since (Ei,k − k − 1) > 0 for every i , this inequality implies

L(g, ξ0 + ξ1π + · · · + ξkπ
k) > E1,k − k − 1 + L(gξ0,...,ξk−1,ξk , 0).

The result follows from this inequality by showing that E1,k > 2(k + 1). This
last assertion follows from

e1,ξ0,...,ξ j > 2 for j = 0, 1, . . . , k,

which we prove as follows. Let ξ j ∈ On
K , for j = 0, 1, . . . , k, represent a point

satisfying the conditions of part (1) of the lemma. We write

gi,ξ1,...,ξ j−1(ξ j + πx) = gi,ξ1,...,ξ j−1(ξ j ) + π

n∑
j=1

∂gi,ξ1,...,ξ j−1

∂x j
(ξ j )x j

+ π2 (terms of degree > 2)

for i = 1, . . . , l. From (2–12) it follows that

v(gi,ξ1,...,ξ j−1(ξ j )) > 1,

and there follows also the existence of a minor M(ξ j ) of the Jacobian matrix of
gi,ξ1,...,ξ j−1 at ξ j such that

L(gξ0,...,ξ j−1, ξ j ) = v(M(ξ j )) > 1.

Without loss of generality we may suppose that

M(ξ j ) = det
( ∂gi

∂x j

)
16i6l
16 j6l

(ξ j ).

Thus the rank of M(ξ̄ j ) over Fq is less than l. By taking an invertible linear trans-
formation � : On

K → On
K , with entries in OK , we may assume that, say,

∂g1,ξ1,...,ξ j−1

∂x j
(ξ j ) = πa1, j for all j .
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Therefore

(2–13) g1,ξ1,...,ξ j−1(ξ j +πx) = πa1,0 +π2
∑

j

a1, j x j +π2 (terms of degree > 2).

At the same time, the lemma’s condition that ξk has at least one descendant in
S(gξ0,...,ξk ) implies that the congruence

g1,ξ1,...,ξ j−1(ξ j + πx) ≡ 0 mod π2

has a solution in R. This fact and (2–13) imply that a1,0 ≡ 0 mod π ; therefore

g1,ξ1,...,ξ j−1(ξ j + πx) = π
e1,ξ0,...,ξ j g1,ξ1,...,ξ j (x),

with e1,ξ0,...,ξ j > 2 for j = 0, 1, . . . , k.

Part (2) of the lemma follows immediately from Part (1). �

Lemma 2.6. Let E ⊆ On
K be the preimage under the canonical homomorphism

On
K −→ (OK /π OK )n of a subset E ⊆Fn

q . Let g(x)=
(
g1(x), . . . , gl(x)

)
: K n

→ K l

be a polynomial mapping such that gi (x) ∈ OK [x1, . . . , xn] \ PK [x1, . . . , xn] for
i = 1, . . . , l, l 6 n, and suppose Singg(K ) ∩ E = ∅. Then

Z E(s, χ, g) =
L(q−s, χ, g)

1 − q−l−s ,

where L(q−s, χ, g) is a polynomial in q−s with complex coefficients.

Proof. We define inductively Ik as follows:

I1 = S(g) ∩ E,

Ik =
{
(ξ1, . . . , ξk) | (ξ1, . . . , ξk−1) ∈ Ik−1 and ξk ∈ S( fξ1,...,ξk−1)

}
for k > 2.

We set E(ξ1, . . . , ξk) := αξ1 + αξ1,ξ2 + · · · + αξ1,ξ2,...,ξk . If m = c(g, E) + 1, then
Im+1 = ∅, because part (2) of Lemma 2.5 implies that S( fξ1,ξ2,...,ξm ) = ∅ for every
(ξ1, ξ2, . . . , ξm) ∈ Im . The result follows by applying the stationary phase formula
m + 1-times:

Z E(s,χ,g) = L0(E, ḡ,χ)+
L1(E, ḡ,χ)

(1 − q−l−s)

+

m∑
k=1

q−kn
( ∑

(ξ1,...,ξk)∈Ik

L0(ḡξ1,...,ξk ,On
K ,χ)q−E(ξ1,...,ξk)s

)

+
1

(1−q−l−s)

m∑
k=1

q−kn
( ∑

(ξ1,...,ξk)∈Ik

L1(ḡξ1,...,ξk ,On
K ,χ)q−E(ξ1,...,ξk)s

)
.

�
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3. Local zeta functions of homogeneous nondegenerate mappings

In this section we state and prove the second main result of this paper (Theorem
3.1) and some of its consequences.

Definition 3.1. A polynomial mapping g(x) =
(
g1(x), . . . , gl(x)

)
: K n

→ K l is
called a nondegenerate homogeneous mapping of degree d if:

(1) gi (x) ∈ OK [x1, . . . , xn] is a nonconstant homogeneous polynomial of degree
d , for i = 1, . . . , l;

(2) l 6 n;
(3) Singg(K )

⋂
(K ×)n

= ∅.

Theorem 3.1. Let g(x) = (g1(x), . . . , gl(x)) : K n
→ K l be a nondegenerate

homogeneous mapping of degree d. Then

Z(s, χ, g) =
L(q−s, χ, g)

(1 − q−n−ds)(1 − q−l−s)
,

where L(q−s, χ, g) is a polynomial in q−s with complex coefficients.

Proof. By partitioning On
K as (PK )n

∪ W , with

W :=
{
ξ ∈ On

K | v(ξi ) = 0, for some i
}
,

we check that
Z(s, χ, g) = Z(PK )n (s, χ, g) + ZW (s, χ, g)

= q−n−ds Z(s, χ, g) + ZW (s, χ, g).

The result follows by applying Lemma 2.6 to ZW (s, χ, g). �

Corollary 3.2. For i = 1, . . . , l, let gi (x) ∈ OK [x1, . . . , xn] be a nonconstant
homogeneous polynomial of degree d , and assume g(x) =

(
g1(x), . . . , gl(x)

)
:

K n
→ K l is a nondegenerate homogeneous mapping of degree d. If

Nm(g) = Card
(
{ξ ∈ (OK /Pm

K )n
| gi (ξ) ≡ 0 mod πm , i = 1, . . . , l}

)
,

then
lim sup

m→∞

(
Nm(g1, . . . , gl)

)1/m
6 qn−min(l,n/d).

In particular Nm(g1, . . . , gl) 6 qm(n−min(l,n/d)) for m big enough.

Proof. The result follows by estimating the radius of convergence

r =
1

lim supm→∞

(
Nm(g)q−n

)1/m

of the Poincaré series P(t, g) =
∑

∞

m=0 Nm(g)(q−nt). Since

P(t, g) =
1 − t Z(s, g)

1 − t
,



LOCAL ZETA FUNCTION FOR NONDEGENERATE HOMOGENEOUS MAPPINGS 199

with t = q−s (see [Meuser 1981, Theorem 2]), Theorem 3.1 implies that

r > q(n−min(l,n/d)).

The statement in the corollary is a simple reformulation of this equation. �
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