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BOUNDING THE BENDING OF A HYPERBOLIC 3-MANIFOLD

MARTIN BRIDGEMAN AND RICHARD D. CANARY

We obtain bounds on the total bending of the boundary of the convex core
of a hyperbolic 3-manifold. These bounds will depend on the geometry of
the boundary of the convex hull of the limit set.

1. Introduction

The boundary of the convex core of a hyperbolic 3-manifold is a hyperbolic surface
in its intrinsic metric. This surface is totally geodesic except along a lamination,
called the bending lamination. The bending lamination inherits a transverse mea-
sure that keeps track of how much the surface is bent along the lamination. The
length (or mass) of the bending lamination, regarded as a measured lamination,
records the total bending of the boundary of the convex core. For example, if the
boundary of the convex core is bent by an angle of θ along a single simple closed
geodesic of length L , then the length of the bending lamination is Lθ .

Our main result is an upper bound on the mass of the bending lamination, which
depends on a lower bound for the injectivity radius of the boundary of the convex
hull of the limit set. An upper bound on the mass of the bending lamination is also
implicit in the techniques developed by Bonahon and Otal [2001, Lemma 12].

If N =H3/0 is an orientable hyperbolic 3-manifold and 0 is a nonabelian group
of orientation-preserving isometries of H3, the limit set L0 of 0 is the smallest
closed nonempty 0-invariant subset of ∂∞H3

= Ĉ. The convex core C(N ) of N
is CH(L0)/0, where CH(L0) is the convex hull of L0 in H3. Notice that ρ0 is a
lower bound for the injectivity radius of the boundary ∂CH(L0) of the convex hull
of the limit set if and only if 2ρ0 is a lower bound for the length of a compressible
curve on the boundary of the convex core (i.e., a closed curve in ∂C(N ) that is
null-homotopic in C(N ) but not in ∂C(N )).

Theorem 1. There exist constants S and T such that if N is an orientable hy-
perbolic 3-manifold with finitely generated, nonabelian fundamental group and
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bending lamination βN and ρ0 ∈ (0, 1] is a lower bound for the injectivity radius
of the boundary ∂CH(L0) of the convex hull of the limit set, then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣(S log 1
ρ0

+ T
)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of
the boundary of the convex core.

We also obtain a lower bound for the mass of the bending lamination in the
case that ∂C(N ) has a short compressible curve. This lower bound makes clear
that the dependence on the geometry of the convex hull of the limit set in our first
result cannot be removed and that the form of the estimate cannot be substantially
improved. Also, notice that if one passes to a degree-d cover of N , both the length
of the bending lamination and the Euler characteristic of the boundary of the convex
core get multiplied by d , while the convex hull of the limit set is the same, so any
upper bound must depend linearly on

∣∣χ(∂C(N ))
∣∣.

Theorem 2. Let N = H3/0 be an orientable hyperbolic 3-manifold with finitely
generated, nonabelian fundamental group. If ∂CH(L0) contains a closed geodesic
of length ρ ≤ 2 sinh−1 1, then

l∂C(N )(βN ) ≥ 4π log
4 sinh−1 1

ρ
.

If the boundary of the convex core is incompressible, Proposition 4.2 gives the
following stronger result:

Theorem 3. If N is an orientable hyperbolic 3-manifold with finitely generated,
nonabelian fundamental group and ∂C(N ) is incompressible in N , then

l∂C(N )(βN ) ≤
π3

sinh−1 1

∣∣χ(∂C(N ))
∣∣.

In related work, Epstein, Marden and Markovic (see, for example, [Epstein et al.
2004, Theorem 4.2] have studied the possible bending laminations of embedded
convex hyperbolic planes in H3.

Thurston [1979] (see also [Kourouniotis 1985; Johnson and Millson 1987; Ep-
stein and Marden 1987]) studied the operation of obtaining a quasifuchsian group
by bending a Fuchsian group along a simple closed geodesic, or more generally
along a measured lamination. Theorem 3 may be used to quantify the observation
that if this geodesic is “long,” one may only bend by a “small” angle.

This paper is based on earlier work [Bridgeman 1998; Bridgeman and Canary
2003; Canary 2001], which explored the relationship between the boundary of the
convex core and the conformal boundary. In particular, we make central use of a
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result (repeated here as Lemma 3.1) that ensures the existence of a lower bound,
depending only on the injectivity radius of its basepoint, for the length of a geodesic
arc in ∂CH(L0) whose intersection with the bending lamination is at least 2π . We
will combine this estimate with a Crofton-like formula (Lemma 4.1) for the length
of the bending lamination to prove Theorem 1.

In Section 7, we will apply the results of [Bridgeman and Canary 2003] and
[Canary 2001] to obtain analogues of Theorems 1 and 2, which depend on the
geometry of the domain of discontinuity �(0) for the action of 0 on Ĉ.

2. Background

Let N = H3/0 be an orientable hyperbolic 3-manifold with nonabelian fundamen-
tal group. Then 0 acts properly discontinuously on the domain of discontinuity
�(0) = Ĉ − L0. The domain of discontinuity admits a canonical conformally
invariant hyperbolic metric p(z)|dz|, called the Poincaré metric. The quotient
surface ∂c N = �(0)/0, called the conformal boundary of N , is then naturally a
hyperbolic surface. The hyperbolic 3-manifold N is said to be analytically finite
if ∂c N has finite area in this metric. Ahlfors’ Finiteness Theorem [Ahlfors 1964]
asserts that N is analytically finite if 0 is finitely generated. All of our results hold
for analytically finite hyperbolic 3-manifolds.

If N is analytically finite then there is always a positive lower bound for the in-
jectivity radius on �(0). By Lemma 8.1 of [Bridgeman and Canary 2003], a lower
bound on the injectivity radius of �(0) implies a lower bound on the injectivity
radius of ∂CH(L0). In particular, if N is analytically finite then there is a positive
lower bound on the injectivity radius of ∂CH(L0). The boundary of the convex
hull of the limit set is a hyperbolic surface in its intrinsic metric and is totally
geodesic in the complement of a closed union β0 of disjoint geodesics, called the
bending lamination of CH(L0). The bending lamination βN of the convex core
C(N ) is simply the projection of β0 to ∂C(N ).

A measured lamination on a hyperbolic surface S consists of a closed subset λ

of S that is the disjoint union of simple geodesics, together with countably additive
invariant (with respect to projection along λ) measures on arcs transverse to λ. The
bending laminations β0 and βN come equipped with bending measures on arcs
transverse to the lamination, which record the total bending along the arc. These
bending measures give β0 and βN the structure of measured laminations. Real
multiples of simple closed geodesics are dense in the space ML(S) of all measured
laminations on a finite-area hyperbolic surface S. Moreover, the length of a simple
closed geodesic and the intersection number of two simple closed geodesics extend
naturally to continuous functions on ML(S) and ML(S)×ML(S) respectively. See
[Thurston 1979] or [Bonahon 2001] for fuller discussions of measured lamination
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spaces and [Thurston 1979] or [Epstein and Marden 1987] for a fuller discussion
of convex cores and bending laminations.

3. Local intersection number estimates

In [Bridgeman and Canary 2003] we obtained bounds on the intersection of a trans-
verse geodesic arc with the bending lamination. There we defined a function

F(x) =
x
2

+ sinh−1

(
sinh(x/2)√

1 − sinh2(x/2)

)

and its inverse G(x) = F−1(x). The function F is monotonically increasing and
has domain (0, 2 sinh−1 1). The function G(x) has domain (0, ∞), has asymptotic
behavior G(x) � x as x tends to 0, and G(x) approaches 2 sinh−1 1 as x tends to
∞. We define G∞ = 2 sinh−1 1 ≈ 1.76275.

Lemma 3.1 [Bridgeman and Canary 2003, Lemma 4.3]. Let N = H3/0 be an
analytically finite hyperbolic 3-manifold such that L0 is not contained in a round
circle. Let α : [0, 1) → ∂CH(L0) be a geodesic path (in the intrinsic metric on
∂CH(L0)) with length l(α). If either

(1) l(α) ≤ G(inj∂CH(L0)(α(0))), or

(2) α([0, 1)) is contained in a simply connected component of ∂CH(L0) and
l(α) ≤ G∞,

then

i(α, β0) ≤ 2π.

A geodesic arc α is either transverse to β0 or contained within β0, in which
case we define i(α, β0) = 0.

If α : [0, 1) → ∂C(N ) is a geodesic in the boundary of the convex core, consider
its lift α̃ : [0, 1) → ∂CH(L0). If we subdivide this lift into pieces to which Lemma
3.1 applies, as in the proof of [Bridgeman and Canary 2003, Proposition 5.1], we
obtain:

Corollary 3.2. Let N be an analytically finite hyperbolic 3-manifold. Let α :

[0, 1) → ∂C(N ) be a geodesic path with length l(α). If α is contained in an
incompressible component of ∂C(N ), let G = G∞. Otherwise, let ρα be a lower
bound on the injectivity radius of ∂CH(L0) at every point in α̃([0, 1)) and let
G = G(ρα). Then

i(α, βN ) ≤ 2π

⌈
l(α)

G

⌉
.
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Here dxe, as usual, denotes the least integer greater than or equal to x .
We have so far avoided, for simplicity of exposition, discussing the case that the

limit set is contained in a round circle. In this case, the convex core is a totally
geodesic surface with geodesic boundary. It is natural to consider the boundary of
the convex core to be the double of the convex core (where one considers the two
sheets of the convex core to have opposite normal vectors.) With this convention,
the boundary of the convex core is still a finite-area hyperbolic surface with bound-
ary if our manifold is analytically finite. One can easily see, just as in the proof of
[Bridgeman and Canary 2003, Proposition 5.1], that Corollary 3.2 remains valid
in this situation.

4. A length formula

In order to prove Theorem 1 we first represent the length of the bending lamination
as the integral of the intersection number over all geodesics of a fixed length. Our
formula is similar to the Crofton formula for the area of a region in the plane. See
also [Bonahon 1988, Proposition 14].

Let S be a hyperbolic surface. If v ∈ T 1(S) is a unit tangent vector, let ᾱ(v) :

(0, ∞) → S be the unit-speed geodesic ray originating at the basepoint of v and in
the direction of v. Let αL(v) = ᾱ|(0,L) be the open geodesic segment of length L
emanating from the basepoint of v in the direction v.

Lemma 4.1. Let β be a measured lamination on a hyperbolic surface S of finite
area. Then

lS(β) =
1

4L

∫
T 1(S)

i(αL(v), β) d�(v),

where d� is the volume form on T1(S).

Proof. We define a function FL on the space ML(S) of measured laminations by
setting

FL(β) =
1

4L

∫
T1(S)

i(αL(v), β) d�(v).

As FL and lS are both continuous on ML(S) and real multiples of closed geodesics
are dense in ML(S), it suffices to prove that FL(β) = lS(β) for real multiples of
closed geodesics. Since FL(kβ) = k FL(β) and lS(kβ) = klS(β) for all β ∈ ML(S)

and all k > 0, we may assume that β is a single closed geodesic with unit transverse
measure.

Let C be the hyperbolic cylinder covering S corresponding to β and let β̃ be the
lift of β to C . If v ∈ T 1(S), then i(αL(v), β) is precisely the number of lifts of
αL(v) to C that intersect β̃. Let

U =
{
v ∈ T 1(C) | αL(v) intersects β̃

}
.
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Lifting the integral to C we see that∫
T 1(S)

i(αL(v), β) d�(v) =

∫
U

d�(v).

The metric on C is given by

ds2
= dx2

+ cosh2 x dl2,

where x is the perpendicular distance to the core geodesic and l is a length coor-
dinate along the core geodesic; see [Buser 1992, Example 1.3.2]. The hyperbolic
area element is d A = cosh x dx dl.

Let

N = {c ∈ C | 0 < d(β̃, c) < L }.

If v ∈ U , the basepoint p of v is in N . If p ∈ N , let Up denote the cone of tangent
vectors in U ∩ T 1

p (C). Let wp denote the unit vector tangent to the geodesic ray
through p perpendicular to β̃. Then Up consists of all vectors in T 1

p (C) making an
angle of at most θ(p) with wp, where

θ(p) = cos−1 tanh x
tanh L

.

Therefore, ∫
U

d�(v) =

∫
N

2 cos−1 tanh x
tanh L

d A.

Integrating over the core of the annulus we obtain∫
N

2 cos−1 tanh x
tanh L

d A = 2lS(β)

∫ L

−L
cosh x cos−1 tanh x

tanh L
dx

= 4lS(β)

∫ L

0
cosh x cos−1 tanh x

tanh L
dx .

Therefore,

FL(β) =
lS(β)

L

∫ L

0
cosh x cos−1 tanh x

tanh L
dx .

Substituting u =
tanh x
tanh L

we obtain

FL(β) =
lS(β) tanh L

L

∫ 1

0

cos−1 u

(1 − u2 tanh2 L)3/2
du.

We may then integrate by parts and evaluate the result to check that FL(β) has the
claimed form. �
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We now prove a version of Theorem 1 that is a direct application of Corollary 3.2
and Lemma 4.1. Recall that G(x)� x as x tends to 0. If ρ0 ≥ 1, this estimate is bet-
ter than the one provided by Theorem 1, but it is much weaker as ρ0 approaches 0,
since the upper bound provided by Proposition 4.2 is O

(
|χ(∂C(N ))|/ρ0

)
, while

the estimate provided by Theorem 1 is O
(
|χ(∂C(N ))| log(ρ−1

0 )
)
. Notice that The-

orem 3 is case (2) of Proposition 4.2.

Proposition 4.2. Let N = H3/0 be an analytically finite hyperbolic 3-manifold
with bending lamination βN .

(1) If ρ0 > 0 is a lower bound for the injectivity radius of ∂CH(L0), then

l∂C(N )(βN ) ≤
2π3

G(ρ0)

∣∣χ(∂C(N ))
∣∣.

(2) If ∂C(N ) is incompressible in N , then

l∂C(N )(βN ) ≤
π3

sinh−1 1

∣∣χ(∂C(N ))
∣∣.

Proof. If ∂C(N ) is incompressible, we let G = G∞ = 2 sinh−1 1. If not, we let
G = G(ρ0). Corollary 3.2 implies that, for all v ∈ T 1(∂C(N )),

i(αL(v), βN ) ≤ 2π

⌈
L
G

⌉
≤ 2π

( L
G

+ 1
)
.

Therefore, by Lemma 4.1,

l∂C(N )(βN ) ≤
π

2L

∫
T 1(∂C(N ))

( L
G

+ 1
)

d� ≤ vol T 1(∂C(N ))
( π

2G
+

π

2L

)
.

The volume of the unit tangent bundle T 1(∂C(N )) is 4π2
∣∣χ(∂C(N ))

∣∣. Thus,
by letting L tend to infinity, we see that

l∂C(N )(βN ) ≤ 4π2 ∣∣χ(∂C(N ))
∣∣ ( π

2G

)
=

2π3

G

∣∣χ(∂C(N ))
∣∣.

�

5. Proof of Theorem 1

To obtain the sharper bound on the length of the bending lamination given by
Theorem 1, we must decompose ∂C(N ) using the Collar Lemma. We will use
the following explicit version of the Collar Lemma, which combines [Buser 1992,
Theorem 4.4.6] and [Yamada 1982, Lemma 7] (which guarantees that curves of
length at most 2 sinh−1 1 are simple).
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Collar Lemma. Let S be a finite-area hyperbolic surface of genus g with n punc-
tures. Let {ν1, . . . , νk} be the collection of all primitive closed geodesics on S of
length at most 2 sinh−1 1. Then:

(1) k ≤ 3g − 3 + n.

(2) {ν1, . . . , νk} is a disjoint collection of simple closed geodesics.

(3) There exists a disjoint collection {B1, . . . , Bk} of metric collar neighborhoods
of {ν1, . . . , νk} such that each Bi is isometric to the quotient of

[−w(νi ), w(νi )] × [0, lS(νi )]

by the identification map (t, 0) 7→ (t, lS(νi )) , where lS(νi ) is the length of νi ,

w(νi ) = sinh−1 1

sinh
( 1

2 lS(νi )
) ,

and the product has the metric

ds2
= dx2

+ cosh2x dl2.

(4) If x ∈ Bi , then sinh injS(x) = sinh
(1

2 lS(νi )
)

cosh d(x, νi ).

(5) If there is a curve through x ∈ S homotopic to νi of length at most 2 sinh−1 1,
then x ∈ Bi .

We now restate Theorem 1 for analytically finite hyperbolic 3-manifolds.

Theorem 1. There exist constants S and T such that if N =H3/0 is an analytically
finite hyperbolic 3-manifold with bending lamination βN and ρ0 ∈ (0, 1] is a lower
bound for the injectivity radius of the boundary ∂CH(L0) of the convex hull of the
limit set, then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣(S log 1
ρ0

+ T
)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of
the boundary of the convex core.

Proof. As the proof is rather technical, we begin with a brief outline. We first
decompose ∂C(N ) into the set X of collars of short compressible geodesics and
its complement Y . We choose ε = sinh−1 1 and L = G(ε). By Lemma 4.1

l∂C(N )(βN ) =
1

4L

∫
T 1(S)

i(αL(v), βN ) d�(v)

=
1

4L

(∫
T 1(X)

i(αL(v), βN ) d�(v) +

∫
T 1(Y )

i(αL(v), βN ) d�(v)

)
.
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Lemma 3.1 implies that i(αL(v), βN ) ≤ 2π for v ∈ T 1(Y ), so, just as in the proof
of Proposition 4.2, ∫

T 1(Y )

i(αG(ε)(v), βN ) d� ≤ 2π vol T 1(Y ).

To handle the integral over T 1(X), we use Corollary 3.2, which implies that

i(αL(v), βN ) ≤ 2π

⌈
L

G(r(v))

⌉
,

where r(v) is a lower bound on the injectivity radius of ∂C(N ) at any point on
αL(v). If B is a component of X with core geodesic ν and v ∈ T 1(B), we observe
that

r(v) ≥ sinh−1
(

1
eG(ε)

sinh
lS(ν)

2
cosh d(v)

)
where d(v) is the distance from the basepoint of v to ν. Combining the resulting
bounds and integrating, we obtain an upper bound on the integral of i(αL(v), βN )

over T 1(B) in terms of the length of ν. Summing the resulting bounds over T 1(Y )

and all components of T 1(X) gives our result.

Let {ν1, . . . , νk} be the primitive closed geodesics of length at most 2 sinh−1 1
on ∂C(N ). Let {B1, . . . , Bk} be the collar neighborhoods of {ν1, . . . , νk} provided
by the Collar Lemma.

Let π : ∂CH(L0) → ∂C(N ) be the covering map from the boundary of the
convex hull to the boundary of the convex core. Set ε = sinh−1 1 and

Ṽ =
{

x ∈ ∂CH(L0)
∣∣ inj∂CH(L0)(x) ≤ ε

}
.

If x ∈ Ṽ , then x lies on a homotopically nontrivial curve nx of length at most 2ε.
Since there is a lower bound on the injectivity radius of ∂CH(L0), nx is homotopic
to a closed geodesic ν̃x of length at most 2ε. Then ν̃x projects to (a multiple of)
one of the curves {ν1, . . . , νk}, so π(x) lies in some collar neighborhood Bi and x
lies in a lift of Bi to ∂CH(L0). Let X denote the union of all collar neighborhoods
Bi containing some component of π(Ṽ ). Let Y = ∂C(N )− X . We may renumber
{B1, . . . , Bk} so that X =

⋃m
i=1 Bi for some m ≤ k. Notice that inj∂CH(L0)(y) > ε

for y ∈ π−1(Y ).
We choose L = G(ε) in the formula for l∂C(N )(βN ) in Lemma 4.1. We split the

integral into two integrals using the decomposition, so that

l∂C(N )(βN ) =
1

4G(ε)

(∫
T 1(X)

i(αG(ε)(v), βN ) d� +

∫
T 1(Y )

i(αG(ε)(v), βN ) d�

)
.

We first estimate the portion of the integral with domain T 1(Y ). If v has base-
point in Y and α̃G(ε)(v) is a lift of αG(ε)(v) to ∂CH(L0), then α̃G(ε)(v) originates
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at a point ỹ such that inj∂CH(L0)(ỹ) > ε and has length G(ε) < G(inj∂CH(L0)(ỹ)).
Therefore, Lemma 3.1 implies that i (̃αG(ε)(v), β0) ≤ 2π and hence that

i(αG(ε)(v), βN ) ≤ 2π.

Therefore

(1)
∫

T 1(Y )

i(αG(ε)(v), βN ) d� ≤

∫
T 1(Y )

2πd� ≤ 2π vol T 1(Y ).

We now estimate the portion of the integral with domain T 1(X). If X is empty,
we are done. Otherwise, let Bi be a component of X . Let v ∈ T1(Bi ) and di (v) be
the distance from νi to the basepoint bv of v.

We now derive a lower bound for the injectivity radius along the geodesic
αG(ε)(v) as a function of di (v). One can readily check that if S is a hyperbolic
surface, w, z ∈ S and δ = dS(z, w), then sinh injS(w) ≥ e−δ sinh injS(z). (This
follows, for example, from [Beardon 1983, Theorem 7.35.1].) Since, by the Collar
Lemma,

sinh injS(bv) = sinh
lS(νi )

2
cosh di (v),

we see that if x is any point on αG(ε)(v), then

sinh inj∂C(N )(x) ≥
1

eG(ε)
sinh

lS(νi )

2
cosh di (v).

We define Ri : [0, w(νi )] → R by

Ri (t) = sinh−1
(

1
eG(ε)

sinh
lS(νi )

2
cosh t

)
.

The injectivity radius at any point of αG(ε)(v) is bounded from below by Ri (di (v)),
so if α̃G(ε)(v) is a lift of αG(ε)(v) to ∂CH(L0), the injectivity radius of ∂CH(L0)

at every point of α̃G(ε)(v) is also bounded from below by Ri (di (v)). Thus, by
Corollary 3.2,

i(αG(ε)(v), βN ) ≤ 2π

⌈
G(ε)

G(Ri (di (v)))

⌉
.

So

(2)
∫

T 1(Bi )

i(αG(ε)(v), βN ) d� ≤

∫
T 1(Bi )

2π

⌈
G(ε)

G(Ri (di (v)))

⌉
d�

≤ 2πG(ε)

∫
T 1(Bi )

1
G(Ri (di (v)))

d� + 2π vol T 1(Bi ).

Since the integral depends only on di (v),∫
T 1(Bi )

1
G(Ri (di (v)))

d� ≤ 2π

∫ lS(νi )

0

∫ ω(νi )

−ω(νi )

1
G(Ri (|x |))

cosh x dx dl,



BOUNDING THE BENDING OF A HYPERBOLIC 3-MANIFOLD 309

where x and l are the coordinates on Bi provided by the Collar Lemma.
As Ri (|x |) < ε on Bi , we need only consider G on the domain [0, ε]. Since

t/G(t) tends to 1 as t tends to 0 and is continuous on (0, ε], there exists a constant
K1 > 0 such that t/G(t) ≤ K1 for all t ∈ (0, ε]. Therefore∫

T 1(Bi )

1
G(Ri (di (v)))

d� ≤ 2π

∫ lS(νi )

0

∫ ω(νi )

−ω(νi )

K1 cosh x
Ri (|x |)

dx dl.

Integrating over the core curve and making use of the symmetry about the core
geodesic, we see that

(3)
∫

T 1(Bi )

1
G(Ri (di (v)))

d� ≤ 4π K1lS(νi )

∫ w(νi )

0

cosh x
Ri (x)

dx .

Since sinh x/x is increasing on (0, ∞), sinh x/x ≤ K2 = sinh ε/ε for all x ∈

(0, ε]. Thus, for all x ∈ (0, w(νi )),

1
Ri (x)

≤
K2

sinh Ri (x)
.

Therefore,

(4)
∫ w(νi )

0

cosh x
Ri (x)

dx ≤

∫ w(νi )

0

K2eG(ε)

sinh(l(νi )/2)
dx ≤

w(νi )K2eG(ε)

sinh(l(νi )/2)
.

Combining inequalities (3) and (4) we see that∫
T 1(Bi )

1
G(Ri (di (v)))

d� ≤
4π K1l(νi )w(νi )K2eG(ε)

sinh(l(νi )/2)
.

Since sinh x ≥ x , we get∫
T 1(Bi )

1
G(Ri (di (v)))

d� ≤ 8π K1K2eG(ε)w(νi ).

Applying the equality sinh−1 x = log(x +
√

x2 + 1), we see that

w(νi ) = sinh−1 1
sinh(l(νi )/2)

= log
1 + cosh(l(νi )/2)

sinh(l(νi )/2)
.

Thus

w(νi ) ≤ log
(

1 + cosh
l(νi )

2

)
+ log

1
sinh(l(νi )/2)

≤ log(1 + cosh ε) + log
2

l(νi )
.
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This yields

(5)
∫

T 1(Bi )

1
G(Ri (di (v)))

d� ≤ S0 log
2

l(νi )
+ T0,

where S0 = 8π K1K2eG(ε) and T0 = S0 log(1 + cosh ε).
Since X =

⋃m
i=1 Bi , we can combine inequalities (2) and (5) to obtain∫

T 1(X)

i(αG(ε)(v), βN ) d� =

m∑
i=1

∫
T 1(Bi )

i(αG(ε)(v), βN ) d�

≤

m∑
i=1

2πG(ε)
(

S0 log
2

l(νi )
+ T0

)
+ 2π vol T 1(Bi ).

Since m is bounded above by the number of disjoint geodesics in ∂C(N ),

m ≤
3
2

∣∣χ(∂C(N ))
∣∣.

Moreover, as ρ0 is a lower bound for the injectivity radius of ∂CH(L0), we have
ρ0 ≤ l(νi )/2 for all i . Therefore,

(6)
∫

T 1(X)

i(αG(ε)(v), βN ) d�

≤ 3πG(ε)
∣∣χ(∂C(N ))

∣∣ (S0 log
1
ρ0

+ T0

)
+ 2π vol T 1(X).

Combining estimates (1) and (6) for the integral over T 1(X) and T 1(Y ), we get∫
T 1(∂C(N ))

i(αG(ε)(v), βN ) d�

=

∫
T 1(X)

i(αG(ε)(v), βN ) d� +

∫
T 1(Y )

i(αG(ε)(v), βN ) d�

≤ 3πG(ε)
∣∣χ(∂C(N ))

∣∣ (S0 log
1
ρ0

+ T0

)
+ 2π vol T 1(X) + 2π vol T 1(Y )

≤ 3πG(ε)
∣∣χ(∂C(N ))

∣∣ (S0 log
1
ρ0

+ T0

)
+ 2π vol T 1(∂C(N )).

Recalling that

l∂C(N )(βN ) =
1

4G(ε)

∫
T 1(∂C(N ))

i(αG(ε)(v), βN ) d�

and that vol T 1(∂C(N )) = 4π2
∣∣χ(∂C(N ))

∣∣, we see that this implies that

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣ (S log
1
ρ0

+ T
)
,
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where

S =
3π S0

4
and T =

3πT0

4
+

2π3

G(ε)
. �

Remark. One can evaluate the constants used in the proof to check that ε =

sinh−1 1 ≈ 0.8814, G(ε)= F−1(ε)≈ 0.8387, K1 = ε/G(ε)≈ 1.0509 (since t/G(t)
is increasing), and K2 = sinh ε/ε ≈ 1.1346. Therefore, S ≤ 164 and T ≤ 218.

6. A lower bound on the length of the bending lamination

If the boundary of the convex core contains a short compressible curve we obtain a
lower bound on the length of the bending lamination, having the same asymptotic
form as the upper bound obtained in Theorem 1. Notice that if N is Fuchsian, the
bending lamination has length zero, so no general lower bound is possible.

Theorem 2. Let N = H3/0 be an analytically finite hyperbolic 3-manifold. If
∂CH(L0) contains a closed geodesic of length ρ ≤ 2 sinh−1 1, then

l∂C(N )(βN ) ≥ 4π log
4 sinh−1 1

ρ
.

Proof. Let α̃ be the closed geodesic of length ρ on ∂CH(L0) and let ε = sinh−1 1.
Let α be the projection of α̃ to ∂C(N ). It follows from the Collar Lemma that
α is a multiple of a simple closed geodesic ν. Let B be the collar of ν provided
by the Collar Lemma. The collar B has width w ≥ sinh−1(1/ sinh(ρ/2)). Since
sinh−1 x = log(x +

√
x2 + 1),

w ≥ log
1 + cosh(ρ/2)

sinh(ρ/2)
≥ log

2
sinh(ρ/2)

.

Since sinh x/x is an increasing function on (0, ∞),

sinh
ρ

2
≤

sinh ε

ε

ρ

2
=

ρ

2ε
,

so
w ≥ log

4ε

ρ
.

Any leaf of βN ∩ B that intersects α intersects it exactly once and runs from
one boundary component of B to the other and has length at least 2w. By [Lecuire
2002, Proposition 4] we have i(α, βN ) > 2π (see also [Bonahon and Otal 2001,
Proposition 7] for the case when βN is finite-leaved). Thus, the total (measured)
length of βN ∩ B is at least 2π(2w) = 4πw. Therefore

l∂C(N )(βN ) ≥ 4π log
4ε

ρ
,

as claimed. �
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7. Bounds depending on the geometry of �(0)

We observed in [Bridgeman and Canary 2003] that a lower bound on the injectivity
radius of the boundary of the convex hull implies a lower bound on the injectivity
radius of the domain of discontinuity, while in [Canary 2001] we saw that a short
geodesic in the domain of discontinuity implies the existence of an even shorter
geodesic in the boundary of the convex hull. Therefore, we can give versions of
Theorems 1 and 2 where the constants depend on the geometry of the domain of
discontinuity.

If N = H3/0 is an analytically finite hyperbolic 3-manifold, then [Bridgeman
and Canary 2003, Lemma 8.1] implies that

1
2 e−me−π2/(2r0)

is a lower bound for the injectivity radius of ∂CH(L0), where m = cosh−1 e2 and
r0 is a lower bound for the injectivity radius of the domain of discontinuity �(0)

of 0. Therefore, we obtain the following version of Theorem 1, where S′
=

1
2π2S

and T ′
= S log 2 + Sm + T .

Theorem 1′. There exist constants S′ and T ′ such that if N is an analytically finite
hyperbolic 3-manifold with bending lamination βN and r0 is a lower bound for the
injectivity radius of the domain of discontinuity �(0), then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣( S′

r0
+ T ′

)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of
the boundary of the convex core.

Theorem 5.1 of [Canary 2001] implies that if �(0) contains a closed geodesic
of length r ≤ 1, then ∂CH(L0) contains a closed geodesic of length at most

4πe0.502 π

eπ2/(
√

er)
≤ .153 r.

Thus, we obtain the following version of Theorem 2, where P = 4π3/
√

e and
Q = 4π log

(
4πe0.502 π/ sinh−1 1

)
.

Theorem 2′. There exist positive constants P and Q such that if N = H3/0 is
an analytically finite hyperbolic 3-manifold, �(0) contains a closed geodesic of
length r ≤ 1, then

l∂C(N )(βN ) ≥
P
r

− Q.
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