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We study the symplectomorphism groups Gλ = Symp0(M, ωλ) of a closed
manifold M equipped with a one-parameter family of symplectic forms ωλ

with variable cohomology class. We show that the existence of nontrivial ele-
ments in π∗(A, A′), where (A, A′) is a suitable pair of spaces of almost com-
plex structures, implies the existence of nontrivial elements in π∗−i (Gλ), for
i = 1 or 2. Suitable parametric Gromov–Witten invariants detect nontrivial
elements in π∗(A, A′). By looking at certain resolutions of quotient singu-
larities we investigate the situation (M, ωλ)= (S2×S2×X, σF ⊕λσB ⊕ωarb),
with (X, ωarb) an arbitrary symplectic manifold. We find nontrivial ele-
ments in higher homotopy groups of GX

λ , for various values of λ. In partic-
ular we show that the fragile elements w` found by Abreu and McDuff in
π4`(Gpt

`+1) do not disappear when we consider them in S2 × S2 × X .

1. Introduction

Let (M2n, ω) be a 2n-dimensional compact symplectic manifold. The group of
symplectomorphisms Symp(M, ω) of M is a basic invariant that distinguishes
among different symplectic structures on M . It is an infinite-dimensional group
endowed with a natural C∞ topology.

Two natural questions arise in relation with Symp(M, ω):

(1) What can be said about the topological type of Symp(M, ω)?

(2) How does the topological type change as ω varies?

Research has been done in this direction by various authors [Abreu 1998; Lê
and Ono 2001; McDuff 2000; Seidel 1999; 1997] by using information on J -
holomorphic curves. We investigate these questions by defining relative parametric
GW invariants, which are sensitive to the topology of appropriate spaces of almost
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complex structures. The connection between the spaces of almost complex struc-
tures and the symplectomorphism groups is achieved by means of the following
fibration, introduced in [Kronheimer 1998] and used in [McDuff 2001]:

(1) Symp0(M, ω) - Diff0 M
ψ→(ψ−1)∗ω- S[ω],

where S[ω] is the space of symplectic forms that can be joined to ω through a path
of cohomologous symplectic forms, Diff0 M is the connected component of the
identity inside the group of diffeomorphism and Symp0(M, ω) = Symp(M, ω)∩
Diff0 M . Now consider the space A[ω] of almost complex structures that are tamed
by some symplectic form in S[ω]. By [McDuff 2001], A[ω] is homotopy equivalent
to S[ω]. This yields the homotopy fibration

(2) Symp0(M, ω) - Diff0 M - A[ω].

Our strategy will be to define suitable pairs (A,A′) of spaces of almost complex
structures, such that information on nontrivial homotopy groups in (A,A′) extends
to information on Symp0(M, ω). We develop relative family GW invariants that
detect such nontrivial elements in π∗(A,A′).

Outline of the methods. In Section 2 we define the invariants as follows: Consider
a smooth family of symplectic forms (ωλ)λ∈I , where the parameter λ varies in the
interval I in R in such a manner that the cohomology classes [ωλ] may also vary
along a line L inside H 2(M,R). For convenience we set Aλ := A[ωλ]. Consider
D ∈ H2(M,Z) and let Ac

λ,D ⊂ Aλ be the subspace of those almost complex struc-
tures J which do not admit J -holomorphic stable maps in the class D. Further
define AI =

⋃
λ∈I Aλ, and similarly let Ac

I,D be its subset consisting of
⋃
λ∈I Ac

λ,D .
By a similar argument as in [McDuff 2001], AI is homotopy equivalent with⋃
λ∈I S[ωλ] and hence is connected. We will assume that there is a special almost

complex structure ∗ = Jbasepoint that belongs to all the spaces Ac
λ,D . Consider

a family of almost complex structures (JB, ∂ JB, ∗) that represent an element in
π∗(AI ,Ac

I,D, ∗). We will define a homomorphism

(3) PGWM,(JB ,∂ JB)
D,0,k :

k⊕
i=1

Hai (M,Q)k → Q

by counting Jb-holomorphic stable maps in class D, for all b ∈ B. This is well
defined because the class D is never represented as a Jb-holomorphic stable map
if b ∈ ∂B.

Theorem 1.1. (i) The PGWM,(JB ,∂ JB)
D,0,k are symplectic deformation invariants and

depend only on the relative homotopy class of the triple (JB, ∂ JB, ∗).
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(ii) For a fixed choice of k, D and αi the map20,k,α1,...,αk : π∗(AI ,Ac
I,D, ∗)→ Q

given by

2k,α1,...,αk

(
[(JB, ∂ JB)]

)
= PGWM,(JB ,∂ JB)

D,0,k (α1, . . . , αk).

is a homomorphism.

The reason (i) holds is that the class D is never represented for a Jb with b ∈ ∂B.
In Section 3 we will exhibit some examples of nontrivial PGW. There we con-

sider the case where M = S2
× S2

× X for X an arbitrary symplectic mani-
fold and where ω = ωλ ⊕ ωarb with ωarb an arbitrary symplectic form on X and
ωλ = σF ⊕λσB , for σF , σB forms (of total area 1) on the fiber and base, and λ≥ 1.
The families (JB, ∂ JB) of almost complex structures are provided for S2

× S2 in
[Kronheimer 1998] and then further investigated in [Abreu and McDuff 2000]. One
has to look at a quotient singularity, C2/C2`, where C2` is the cyclic group of order
2` acting diagonally by scalars on C2. The deformation space for the canonical
resolution of this singularity provides a 4`− 2 family (JB`, ∂ JB`) ∈ (A[`,`+ε],A`)

for which suitable PGWs are nontrivial.
The link between these examples and the corresponding groups of symplecto-

morphisms will be explained in Section 4. It explain there the extent to which the
known homotopy properties (see [Abreu and McDuff 2000]) of Symp0(S

2
×S2, ωλ)

are reflected in the higher homotopy groups of

G X
λ := Symp0(S

2
× S2

× X, ωλ ⊕ωarb).

For every (M, ωλ) a general symplectic manifold, we set Gλ := Symp0(M, ωλ).
To be able to address the two questions posed at the beginning, one has to estab-

lish first a more precise language in which they make sense. One of the difficulties
is that in general there is no direct map Gλ → Gλ+ε . In the particular situation
M = S2

× S2
× pt, Abreu and McDuff [2000; McDuff 2001] find natural maps

Gpt
λ → Gpt

λ+ε , well defined up to homotopy, and prove:

Theorem 1.2 (Abreu and McDuff). (i) The homotopy type of Gpt
λ is constant on

all the intervals (`−1, `], with `≥ 2 a natural number. Moreover, as λ passes
an integer `≥ 2, the groups πi (G

pt
λ ), for i ≤ 4`− 5, do not change.

(ii) There is an element w` ∈ π4`−4(G
pt
λ )× Q when `− 1 < λ ≤ ` that vanishes

for λ > `.

To get around the fact that there is no map Gλ → Gλ+ε when dealing with a
general manifold M , we show that for any compact K ⊂ Gλ the inclusion 0× K ⊂
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Gλ extends to a map h that fits into the commutative diagram

(4)

[−ε, ε] × K h- G :=
⋃
(Gλ × λ)⊂ Diff0 M × R

[−ε, ε]

pr1

? incl - R

pr2

?

Moreover, for any two such maps h and h′ coinciding on 0×K , there is, for ε′ small
enough, a homotopy H : [0, 1] × [−ε′, ε′

] × K → G between h and h′ preserving
the fibers of the natural projections. Therefore, for any cycle ρ in Gλ, there are
extensions ρε in Gλ+ε that, for ε sufficiently small, are unique up to homotopy.
Hence they yield well defined elements in π∗(Gλ+ε).

It will therefore make sense to ask what will become of an element ρ ∈ π∗(Gλ)

inside π∗(Gλ+ε), for small ε. In this language an element θ`∈π∗(G`) is called frag-
ile if any extension θ`+ε is null-homotopic in π∗(G`+ε) for ε > 0. Also, we say that
a family η`+ε ∈π∗(G`+ε), 0<ε is new if there is no η`∈π∗(G`)whose extension is
η`+ε . We consider the space A`+ roughly given by A`+ :=

(⋂
0<ε<ε0

A`+ε

)
∪ A`;

for the precise definition see (7). We say that an element α ∈ π∗(A`+,A`) is
persistent if it has nonzero image under the map π∗(A`+,A`)→ π∗(A[`,`+ε],A`).

Our main theorem is the following:

Theorem 1.3. Assume that we have a persistent element 0 6= β` ∈ πk(A`+,A`, ∗).
Then we can construct an element θ` ∈ πk−2(G`) such that either

(A) θ` ∈ πk−2(G`) is a nonzero fragile element, or

(B) θ` = 0 and there is ε`> 0 such that we can construct a family of new elements
0 6= η`+ε ∈ πk−1(G`+ε), where 0< ε < ε`.

Any fragile element is null-homotopic when viewed inside Diff0 M . Our meth-
ods do not allow us to decide in general whether or not the image of η`+ε in
πk−1 Diff0 M is zero.

We show that the hypothesis of the theorem is satisfied when M = S2
× S2

× X .
We consider D = A − `F . Since

(
σF ⊕ `σB ⊕ ωarb

)
(A − `F) = 0 we get A` ⊂

Ac
[`,`+ε], D . In this situation the (4`−2)-dimensional elements (B`, ∂B`) obtained

in Section 3 are detected as nontrivial in π4`−2(A`+,A`) and are persistent. In fact,
in general PGW invariants detect persistent elements. By varying the value of the
integer ` we obtain infinitely many values of λ for which higher-order homotopy
groups of G X

λ are nontrivial and we discuss in more detail the stability of the
elements w` provided by Theorem 1.2 inside G X

λ . We obtain:

Corollary 1.4. For any natural number ` ≥ 1, exactly one of the statements below
holds.
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(A) We can construct a nonzero fragile element wX
` ∈ π4`−4(G X

` ), which can be
identified with w` × id.

(B) There exists an ε` > 0 for which we can construct a family of new elements
0 6= ηX

`+ε ∈ π4`−3(G X
`+ε), 0< ε < ε`.

In particular this shows that the fragile elements obtained by Abreu and McDuff
for ` > 1 do not disappear when we consider them inside S2

× S2
× X . Either

0 6= w` × id ∈ π4`−4(G X
` ) as in (A) or, if w` × id = 0 then it yields the associated

new 4`− 3 dimensional elements 0 6= ηX
`+ε in π4`−3(G X

`+ε) for small ε > 0 — this
is case (B). For general X and for ` = 1 it is known by work of Lê and Ono that
(B) takes place, and moreover that 0 6= i∗(η`+ε) ∈ π1(Diff0(S2

× S2
× X)), where

i is the inclusion of a symplectomorphism group into the diffeomorphism group.
Also, for X = pt and ` > 1 we know by work of Abreu and McDuff that (A) takes
place.

We don’t know of any examples where case (B) takes place and i∗(η`+ε)= 0 ∈

π∗(Diff0 M).
Our method has been inspired by the work of P. Kronheimer, who uses para-

metric Seiberg–Witten invariants in dimension 4, as well as by [McDuff 2000].
Similar work has been done in this direction in [Lê and Ono 2001]; by looking
at related but slightly different parametric GW invariants, these authors get results
about πk

(
Symp0(S

2
× S2

× X, ω1 ⊕ωarb)
)

when k = 1, 3. In Section 3 we could
consider C2/C2`+1 instead and, by carrying out similar arguments, get the same
type of results for CP 2 # CP 2 × X .

2. Relative parametric GW invariants

General setting. Consider a compact manifold B with boundary and a smooth map
i : (B, ∂B)→ (AI ,Ac

I,D). Although the invariants can be defined in this generality,
for the applications we have in mind we will consider B to be an n-ball such that
i represents a relative homotopy class in π∗(AI ,Ac

I,D, ∗). We will often write
Jb := i(b) and JB = im i , and refer to im B in AI as JB . Consider also a smooth
family of symplectic forms ωB := (ωb)b∈B where ωb tames Jb. The ωb need not be
cohomologous, since the taming condition is an open condition. Our goal here is
to show how we can define parametric GW invariants relative to the boundary ∂ JB

of JB , invariants that count Jb-holomorphic maps for some b ∈ B. These will not
depend either on deformations of the family ωB or on the representative (JB, ∂ JB)

of a relative homotopy class in (AI ,Ac
I,D).

Consider the space M̃
∗

0,k(M, D, (JB, ∂ JB)) of tuples (b, f, x1, . . . , xk), where
f : S2

→ M is a simple1 Jb-holomorphic map in class D, for some b ∈ B, and the

1We say that f :6 → M is simple if it is not the composite of a holomorphic branched covering
map (6, j)→ (6′, j ′) of degree greater than 1 with a J-holomorphic map 6′

→ M .
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xi are pairwise distinct points on S2. We will consider

M∗

0,k(M, D, (JB, ∂ JB))= M̃
∗

0,k(M, D, (JB, ∂ JB))/G,

where G = PSL(2,C) acts on the moduli space by reparametrizations of the do-
main. Denote the elements of M∗

0,k(M, D, (JB, ∂ JB)) by [b, f, x1, . . . , xk].
In the best scenario, for a good choice of (JB, ∂ JB),

(P1) M̃
∗

0,k(M, D, (JB, ∂ JB)) is a manifold of dimension 2n+2c1(D)+2k+dim B,
and

(P2) M∗

0,k := M∗

0,k(M, D, (JB, ∂ JB)) is compact.

Then the image of the map

(5) ev : M∗

0,k(M, D, (JB, ∂ JB))→ Mk

with ev([b, f, x1, . . . , xk]) := ( f (x1), . . . , f (xk)) will provide a cycle ev∗(M
∗

0,k)

in Mk which, by intersection with homology classes of complementary dimension
in Mk , gives the parametric Gromov–Witten invariants.

Definition and properties of PGW. As the regularity discussion below will make
clear, condition (P1) can always be achieved by the Sard–Smale theorem. How-
ever, even in situations when (P1) holds, (P2) is seldom true; the compactifi-
cation M0,k(M, D, (JB, ∂ JB)) of M∗

0,k(M, D, (JB, ∂ JB)) contains both stable J -
holomorphic maps2 and nonsimple curves, which we sometimes call multiple cover
curves. These nonsimple curves could potentially produce strata of high dimension
in the compactification M0,k(M, D, (JB, ∂ JB)), and hence this space would not
necessarily carry a fundamental class.

In the situation B = pt, there are various procedures [Li and Tian 1998; Ruan
1999; Fukaya and Ono 1999] to build up a theory that would provide a virtual mod-
uli cycle, that is, an object carrying a fundamental class required for the definition
of the invariants.

Roughly speaking, locally one needs to consider here all the stable holomorphic
maps as well as small perturbations of them. There are then various procedures
to pass to a global object with the required properties. These go through without
essential changes if one considers parameter spaces with no boundary; see [Bryan
and Leung 2000; Ruan 1999].

In our situation we need to make sure that the boundary causes no problem. In
what follows denote by [ f, 6, x1, . . . , xk] the equivalence class of a stable map
( f, 6, x1, . . . , xk), where two maps are equivalent if they differ by an automor-
phism of the domain. The elements of M0,k(M, D, (JB, ∂ JB)) consist of such

2These are rational maps f : (6, x1, . . . , xk) → M with the most normal crossing singularities
and no infinitesimal automorphisms; see [Li and Tian 1998; Bryan and Leung 2000] for details.
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equivalence classes. The next result states that if we consider an appropriately
small open neighborhood of M0,k(M, D, (JB, ∂ JB)) consisting of almost holomor-
phic stable maps, its projection onto JB stays away from ∂ JB .

Lemma 2.1. For any compact set JB ∈ AI such that ∂ JB ⊂ Ac
I,D , there exist δ > 0

and ε(δ)> 0 for which there is no stable map ( f, 6, x1, . . . , xk) such that ∂̄J f = ν,
when d(J, ∂ JB) < δ and ν ∈ L p(30,1

⊗J f ∗T M) with |ν| ≤ ε(δ).

Proof. We will prove this by assuming the opposite. Assume we have sequences
Ji , νi and fi such that d(Ji , ∂ JB)→ 0, |νi | = εi → 0 and each fi is a stable map in
class D with the property that ∂̄Ji fi = νi . Since JB is compact we find a convergent
subsequence Ji whose limit J∞ is in ∂ JB . But by the Gromov compactness theorem
there is a subsequence of fi converging to a J∞ stable holomorphic map in class
D. This contradicts the fact that J∞ ∈ ∂ JB ⊂ Ac

I,D . �

With this lemma one shows, as in [Li and Tian 1998], that every moduli space
M0,k(M, D, (JB, ∂ JB)) carries a virtual fundamental cycle

[M]
vir

:= [M0,k(M, D, (JB, ∂ JB))]
vir

of degree r = 2c1(D)+ 2k + 2n − 6 + dim B.
Moreover, if we take two homotopic maps i : (B, ∂B, ∗)→ (AI ,Ac

I,D, ∗) and
i ′

: (B ′, ∂B ′, ∗)→ (AI ,Ac
I,D, ∗) representing the same element in π∗ (A,Ac

D, ∗),
then the corresponding fundamental cycles given by [M0,k(M, D, (JB, ∂ JB))]

vir

and [M0,k(M, D, (JB ′, ∂ JB ′))]vir are oriented cobordant and hence the virtual fun-
damental class [M]

vir is independent of the choice of (JB, ∗) within the same class
in π∗(AI ,Ac

I,D, ∗). Note that [M]
vir is also invariant under symplectic deformation

of the family of taming symplectic forms (ωb)b∈B . We denote by FD(M, 0, k)
the space of all equivalences classes of stable maps [ f, 6, x1, . . . , xk] with total
homology D. To define relative parametric Gromov–Witten invariants we consider
evi : B × FD(M, 0, k)→ M given by

evi (b, [ f, 6, x1, . . . , xk])= f (xi ).

We then can define

PGWM,(JB ,∂ JB)
D,0,k :

k⊕
i=1

Hai (M,Q)k → Q

by
PGWM,(JB ,∂ JB)

D,0,k (α1, . . . , αk)= ev∗

1(α1)∧ · · · ∧ ev∗

k (αk)[M]
vir

which are zero unless

(6)
k∑

i=1

ai = 2c1(D)+ 2k + 2n − 6 + dim B.
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Changing the orientation of B just changes the sign of the invariant.

Theorem 2.2. (i) The invariants PGWM,(JB ,∂ JB)
D,0,k are symplectic deformation in-

variants and depend only on the relative homotopy class of (JB, ∂ JB).

(ii) For a fixed choice of k, D and αi the map20,k,α1,...,αk : π∗(AI ,Ac
I,D, ∗)→ Q

given by

2k,α1,...,αk ([(JB, ∂ JB)])= PGWM,(JB ,∂ JB)
D,0,k (α1, . . . , αk)

is a group homomorphism.3

Proof. Point (i) and the well definedness of 2 follow from the properties of PGW
listed above. To show that 2 is a homeomorphism, choose (B1, ∂B1, ∗), and
(B2, ∂B2, ∗) representing two maps from the standard n-ball with boundary to
(AI ,Ac

I,D, ∗), giving two elements β1 and β2 inside π∗(A,Ac
D∗). We choose

them in such a way that by their concatenation we represent the element β1 + β2

by a map j : (B, ∂B, ∗)→ (AI ,Ac
I,D, ∗) with j (B\∂B)= (B1\∂B1)∪(B2\∂B2),

so that j−1(AI \Ac
I,D) is included in the disjoint union of two open subdiscs in B.

Then the new virtual cycle corresponding to the classes β1 +β2 is a disjoint union
of the virtual neighborhoods corresponding to β1 and β2. But this implies that the
parametric invariants corresponding to the new class β1 + β2 are the sum of the
PGW corresponding to β1 and β2. Therefore 2 is a homomorpism. �

More on the relation between PGW and almost complex structures. We will now
see that PGW detects only certain kinds of relative homotopy classes of almost
complex structures. As before, we write Aλ = Aωλ . Set

(7) A`+ = {J | there is εJ > 0 such that J ∈ A`+ε for all 0< ε < εJ }

Then A` ⊂ A`+ by Lemma 4.1 below. Note that A`+ may not be connected, but
A` is and we will consider our basepoint ∗ = Jbasepoint ∈ A`.

Definition 2.3. Consider a nontrivial element β` ∈ π∗(A`+,A`). We say that β` is
persistent if its image under the natural morphism

i∗ : π∗(A`+,A`, ∗)→ π∗(A[`,`+ε],A`, ∗)

is nonzero for any arbitrary small ε.

Proposition 2.4. Assume there is an ` such that no J in A` admits J-holomorphic
stable maps in class D. Consider an element 0 6= β` ∈ π∗(A`+,A`, ∗) obtained by
counting nontrivial parametric Gromov–Witten invariants in class D. Then β` is a
persistent element.

Proof. The proof follows directly from Theorem 2.2. �

3Except in the case of π1(AI ,Ac
I,D, ∗), which is not a group.
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Computability of PGW. We will now get back to the two conditions we posed
at the beginning of the section, sufficient to imply that the image of the map (5)
is a cycle. Below we will provide sufficient hypotheses on the parameter space
(JB, ∂ JB, ∗) and on the class D such that (P1) and (P2) are satisfied, as well as
a criterion for how to check one of the hypothesis. It will follow for such a fam-
ily (JB, ∂ JB, ∗) the invariants PGW defined above are integer-valued and can be
obtained by intersecting the image of the cycle ev∗

(
M∗

0,k(M, D, (JB, ∂ JB))
)

with
the classes (P D(α1), . . . , P D(αk)) in H∗(M)k . Moreover, they can be obtained
by counting the number of Jb-holomorphic maps in class D with k marked points
which intersect generic cycles representing (P D(α1), . . . , P D(αk)) in f (zi ).

Parametric regularity. We now show that D-parametric regular families (JB, ∂ JB)

are ones for which (P1) is satisfied. We begin by explaining what D-parametric
regularity is and contrasting it with the usual D-regularity for J (see [McDuff and
Salamon 1994]). For this we need the following facts.

Let X = Map(6,M; D) be the space of somewhere injective4 smooth maps
f : 6 → M representing class D. This is an infinite-dimensional manifold with
T f X=C∞( f ∗T M). We will next consider the following generalized vector bundle
E → B × X, whose fiber at (b, f ) is the space Eb, f =�

0,1
Jb
( f ∗T M) of smooth Jb

antilinear forms with values in f ∗T M . In this vector bundle we consider a section
8 : B × X → E, given by

(8) 8(b, f )=
1
2
(d f + Jb ◦ d f ◦ j).

The zeros of 8 are precisely the Jb-holomorphic maps and thus the moduli space

M̃
∗

0,0(M, D, (JB, ∂ JB))=8−1(0),

is the intersection of im8 with the zero section of the bundle. Since we would
like M̃

∗

0,k(M, D, (JB, ∂ JB)) to be a manifold, we require that 8 be transversal to
the zero section. This means that the image of d8(b, f ) is complementary to
the tangent space Tb B ⊕ T f X of the zero section. But for any f which is Jb-
holomorphic, d8 is given by

d8(b, f ) : Tb B ⊕ C∞( f ∗T M) - Tb B ⊕ T f X ⊕ Eb, f .

If we now consider the projection onto the vertical space of the bundle,

proj2 : Tb B ⊕ T f X ⊕ Eb, f - Eb, f ,

4We say that a map f : σ → M is somewhere injective if d f (z) 6= 0 and f −1( f (z))= z for some
z ∈6. A simple J-holomorphic map is somewhere injective; see [McDuff and Salamon 1994].
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the transversality mentioned above translates into the fact that

(9) proj2 ◦d8(b, f ) : Tb B ⊕ C∞( f ∗T M) - �
0,1
Jb
(6, f ∗T M)

is onto. We introduce the notation D8(b, f )= proj2 ◦d8(b, f ).

Definition 2.5. We say that a Jb-holomorphic map f is JB-parametric regular if
D8(b, f ) is onto.

Observation. The linearized operator is well defined if there is no pair (b, f ) with
f a Jb-holomorphic and b ∈ ∂B. This is precisely the condition we imposed on
(JB, ∂ JB) to give a relative cycle in (AI ,Ac

I,D).

Definition 2.6. Consider (JB, ωB) as above. We say that (JB, ∂ JB) is a D-
parametric regular family of almost complex structures if any Jb-holomorphic map
in class D is parametric regular. We denote by Jpreg(D) the set of all D-parametric
regular families (JB, ∂ JB)⊂ (AI ,Ac

I,D).

To apply the implicit function theorem and the Sard–Smale theorem, we must
work on Banach manifolds and hence complete all spaces under suitable Sobolev
norms. For example, one should work on spaces consisting of almost complex
structures of class C l , on Xk,p, with kp > 2, the space of maps whose k-th deriva-
tives are of class L p. Also, we should work on

E
p
f = L p(30,1

⊗J f ∗T M)

rather that with�0,1
J (6, f ∗T M). There are standard arguments [McDuff and Sala-

mon 1994] to show that one can transfer the following arguments from spaces of C l

objects (which are Banach manifolds) to spaces of C∞ objects (which are Fréchet
manifolds). For simplicity we will drop the superscripts l, k, p unless specifying
them is relevant.

Theorem 2.7. If JB ∈ Jpreg(D), the moduli space M̃
∗

0,0(M, D, (JB, ∂ JB)) is a
smooth open manifold of dimension 2n + 2c1(D)+ dim B, with a natural orienta-
tion.

Moreover, if one considers M̃
∗

0,0(M, D, (JB, ∂ JB))× (S2)k and takes away all
the diagonals of the type M̃

∗

0,0(M, D, (JB, ∂ JB))× diagi, j , one obtains precisely
M̃

∗

0,k(M, D, (JB, ∂ JB)). This will therefore be a manifold of dimension 2n +

2c1(D)+ dim B + 2k.
Let M̃

∗

0,0(M, D,AI ) be the universal moduli space consisting of pairs ( f, J ),
where J ∈ AI and f is J -holomorphic. It will be relevant for the results we have
in mind to point out the following characterization of parametric regularity.
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Proposition 2.8. Consider the diagram

(10)

M̃
∗

0,0(M, D,AI )

(B, ∂B) i - (AI ,Ac
I,D)

5

?

Then JB ∈ Jpreg(A) if and only if i t5.

Proof. For simplicity we will write D f,b = D8(b, f )|C∞( f ∗(T M)). By (9), the
surjectivity of D8(b, f ) is then equivalent to the surjectivity of the linear operator

Dφ|Tb B : Tb B → coker Db, f .

We will set i(b) = J . The tangent space TJ AI to AI consists of all sections
Y of the bundle End(T M, J ) whose fiber at p ∈ M is the space of linear maps
Y : Tp M → Tp M such that Y J + JY = 0; we will consider the map

R : TJ AI →�
0,1
J

(
6, f ∗T M

)
given by R(Y )=

1
2 Y ◦ d f ◦ j . The map

d5 : T f,J M̃
∗

0,0(M, D,AI )→ TJ AI

is given by d5(ξ, Y ) = Y , where the pair (ξ, Y ) is in T f,J M̃
∗

0,0(M, D,AI ) if and
only if

(11) D f,b(ξ)+ R(Y )= 0.

From this one can see that im D f,b = R(im d5). Since Db, f is elliptic and ker R ⊂

im d5, it follows that coker d5 has finite dimension. If we consider the map
F : X × AI → E, given by F( f, J ) = ∂̄J ( f ) then (see [McDuff and Salamon
1994]) the linearization at a zero ( f, J ) with f simple is onto. That is

DF( f, J )(ξ, Y )= D f ξ + R(Y )

is onto. This implies that coker D f is covered by R. We can show that there is an
induced map

R̃ : coker d5→ coker Db, f

which is isomorphism. We have D8|Tb B(Y )= R ◦ di , so

i t5 ⇐⇒ di → coker d5 onto ⇐⇒ R̃ ◦ di → coker Db, f onto.

The proposition follows. �
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We call attention to a few key points. Parametric regularity is a generalization
of the usual regularity. Indeed, if we consider Jb = J to be constant for b in a
neighborhood around b0, the regularity of an almost complex structure J simply
says, following the diagram above, that d5 is surjective. If we now regard J within
an arbitrary family JB , this no longer needs to be the case. It will then suffice that
the cokernel of d5 is covered by the variation of J in the direction of B.

In fact, when we count rational maps, the criterion of parametric regularity de-
scribed below reduces the problem to the usual regularity in some suitable ambient
space.

More precisely, note that the regularity of a holomorphic map is a local statement
within B and it only concerns the almost complex structure data. Therefore, for
each b ∈ B̊, we can restrict our attention to a neighborhood of b, and without loss
of generality the following discussion can be made for smoothly trivial fibrations.
We say that a family (JB, ωB) descends from a fibration M → M̃ → B if there is
a diagram

(12)

M i - M̃

B

π

?

such that the almost complex structure J̃ on M̃ yields, by restriction to each fiber
M ×b, the almost complex structure Jb on M , and such that the closed two-form ω̃

on M̃ also gives, by restriction to each fiber, the symplectic form ωb, which tames
Jb. Here we have chosen a trivialization of the fibration such that M̃ = B × M
smoothly and π is just the projection on the first factor. In the following theorem
we consider the family of parameters B to be a subset of Cm and we denote by z
the parameter.

Theorem 2.9. Let (Jz, ωz)z∈B⊂Cm be a family on M descending from the symplec-
tic fibration (M̃, J̃ , ω̃). Suppose that f : 6 → M is a J0-holomorphic map and
consider the composite map

f̃ = i ◦ f, f̃ :6 → M × 0 ⊂ M̃,

which is J̃ -holomorphic. If f̃ is regular, f is (Jz)-parametric regular. If 6 = S2,
the reverse statement also holds.

For the proof of the Theorem see the Appendix.
There exists a large subset of parametric regular families of almost complex

structures inside (AI ,Ac
I,D). This is because one can employ the Sard–Smale the-

orem [Smale 1965] and show that any map i : (B, ∂B)→ (AI ,Ac
I,D) in Proposition

2.8 can be perturbed to an i ′ such that i ′ t5.
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Definition 2.10. We will say that (JB, ∂ JB) satisfies hypothesis H1 if it is a D-
parametric regular family of almost complex structures.

Compactness. Even in those situations when (P1) is easily achieved using Sard–
Smale, (P2) is seldom true. However, (P2) is true when k is either 0 or 1, and the
class D is Jb indecomposable for any b ∈ B. This means that no Jb-holomorphic
map in class D can decompose into a connected union of Jb-holomorphic spheres
C = C1

∪ C2
∪ · · · ∪ C N such that each C i represents the class Di and D =

D1 + · · · + DN . Then as a consequence of Gromov’s compactness theorem it
follows that M∗

0,k := M∗

0,k(M, D, (JB, ∂ JB)) is compact and hence in this situation
the image of ev : M∗

0,k(M, D, (JB, ∂ JB))→ Mk is a cycle.

Definition 2.11. We will say that the hypothesis H2 is satisfied by (JB, ∂ JB) and
D if the class D is Jb indecomposable for every b ∈ B.

Note that if D is Jb-indecomposable and k ≥ 2 then in order to compactify the
image of the evaluation map one only needs to add the limits of sequences of J -
holomorphic maps for which two distinct marked points converge to each other.
Hence ev(M∗

0,k) will have boundary of codimension 2 or more and hence it will
carry a fundamental class.

3. Resolutions of singularities and relative PGW

Quotient singularities. We now give an overview of work of Kronheimer [1998]
and Abreu and McDuff [2000] on how to construct special families of almost com-
plex structures arising from the study of the total spaces of deformations for some
quotient singularities. At the end of the section we will explain how these families
serve our purpose of counting nontrivial PGWs. The local picture is as follows
[Kronheimer 1998]:

We consider the particular type of Hirzebruch–Jung singularity Y0 = C2/C2`,
given by the diagonal action by scalars of C2` on C2, where C2` is the cyclic group
of order 2`. This admits a resolution σ0 : Ỹ 0 → Y0, where Ỹ 0 is the total space of
the line bundle of degree −2` over CP 1. The exceptional curve of the resolution,
we will call it E, is a curve of self-intersection −2` and is the zero section of
Ỹ 0. This resolution admits a (2`− 1)-complex-dimensional parameter family of
deformations Ỹt , t ∈ C2`−1. With the exception of the case ` = 2 the total space
Ỹ =

⋃
Ỹ t of the family of deformations is the total space of the vector bundle

O(−1)2`. More precisely, we consider the exact sequence of bundles

(13) O(−2`) - O(−1)2` r- O2`−1,

where r is given by evaluating at 2`− 1 generic sections of the dual, Ỹ ∗
= O(1)2`

of Ỹ . Since holomorphically O2`−1 is trivial, we can project it to its fiber C2`−1
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and hence obtain a submersion q̃ : O(−1)2` → C2`−1 with Ỹ t = q̃−1(t). Also it
can be seen that Ỹ is diffeomorphic with Ỹ 0 × C2`−1 and a choice of trivialization
provides a fiberwise diffeomorphism

(14) θ : Ỹ ====
C∞

Ỹ 0 × C2`−1,

where Ỹ 0 is the total space of the bundle O(−2`). Now consider a 4`-dimensional
basis of sections in the dual Ỹ ∗. Here the space of holomorphic sections is given
by

⊕2`
i=1 H 0(C P1,O(1))=̃(C2)2`. Denote by Y the subspace of (C2)2` consisting

of 2`-tuples of vectors in C2 spanning either zero or a line. By evaluating all the
4` section we obtain a map

σ : Ỹ - Y ⊂ C4`

that contracts E to a point γ0 = σ(E). Moreover, γ0 is the only singular point of
Y and the morphism is one-to-one outside E . Define a map q : Y → C2`−1 by
evaluating at the original 2`− 1 generic sections. The diagram

(15)

Ỹ σ - Y

C2`−1

q̃
?

id- C2`−1

q
?

commutes. We can obtain a two-form τ on Y by pulling back a Kähler form from
C4`. Via σ ∗ this can be seen as a two-form on Ỹ that restricts to a Kähler form τt

on each fiber Ỹ t if t 6= 0 but degenerates along E when t = 0. If we further push
forward through θ , these forms can be seen as a family of forms on Ỹ 0.

As in [Abreu and McDuff 2000], we can choose an appropriate compactification
of the local picture as follows:

Let B4`−2 be the unit ball in C2`−1. We have a family (Y t , J `t , τt)t∈B4`−2 , where
each (Y t , J `t , τ

`
t ), t 6= 0 is a Kähler manifold diffeomorphic with S2

× S2, and,
(Y 0, J `0 ) is a complex manifold, also diffeomorphic with S2

×S2 and τ0 degenerates
along E which represents the homology class A − `F . We take A = [S2

base] and
F = [S2

fiber]. The total space of the family has the following properties:

• The space Y = ∪t∈B4`−2Y t is smoothly diffeomorphic to S2
× S2

× B4`−2.
Moreover Y is a complex manifold with a complex structure J̃ ` which restricts
to each fiber Y t to the complex structure J `t . Also, Y has a closed (1, 1) form
τ which is satisfies all the properties of a Kähler form outside the zero fiber
and restricts at each fiber to the forms τt .

• The restriction of τ to Y 0 degenerates along the curve E representing the class
A − `F .
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Since the forms τt are obtained by restricting the closed form τ to fibers, it is
clear that they are all in the same cohomology class. From (τ0)|E = 0 we have
[τ0](A − `F) = 0, and hence [τ `t ] = [ω`] for all t ∈ B4`−2, where, as in the
introduction, ω` = σF ⊕ `σB is a symplectic form on S2

× S2.
From (a) we see that there is a holomorphic projection π : Y → S2

× B4`−2.
This is because every Y t is a ruled surface therefore it fibers over S2. If we denote
by α the area form on S2 we can construct a two-form

τ λ = τ + (λ− `)π∗(α)

For λ > ` these forms are Kähler forms, and restricted to each Y t they yield sym-
plectic forms in the class [ωλ]. This proves that any J `t (including J `0 ) is tamed
by a form isotopic to ωλ, as long as λ > `. We now follow a similar procedure to
construct a family of symplectic forms ωt , for t ∈ B4`−2, such that each ωt tames
J `t . We next change the forms τt by perturbing with a a positive factor of π∗(α)

only around t =0 and smooth with a cutoff function. With this procedure we obtain
symplectic forms ωt with variable cohomology classes.

In conclusion, we have pairs

(S2
× S2, J `t , ωt)t∈B4`−2,

where ωt is a symplectic structure on S2
×S2 that tames J `t . Moreover [ωt ]t∈S4`−3 =

[ω`]. This gives a family of almost complex structures (which we denote B`, by
abuse of notation) such that (B`, ∂B`) ∈ (A[`,`+ε], A`) for any ε > 0. More im-
portantly, for cohomological reasons, only J `0 admits almost holomorphic stable
curves in the class A − `F .

We then obtain a family of almost complex structures on (S2
× S2

× X) by
taking (J `t × Jarb), and by abuse of notation, we call this family also B`. Thus we
have just produced on (S2

× S2
× X) pairs (B`, ∂B`)⊂ (A[`,`+ε], A`), with ε > 0,

representing an element β` in π∗(A[`,`+ε], A`). Moreover each B` is contained in
A`+ε for any small ε > 0.

From the choice of the J ’s we know that the only almost complex structure
admitting A − `F almost complex stable curves is J0 × Jarb.

The computation of PGW. Here we prove that (H1) and (H2) are satisfied for
the family (B`, ∂B`), and therefore the invariant is integer-valued and can be ob-
tained by counting holomorphic maps intersecting generic cycles of appropriate
dimension.

Claim 1. The family (B`, ∂B`) satisfies H1.

Proof. From the sequence (13) we see that the exceptional curve E , which is J̃ `-
holomorphic, has normal bundle O(−1)2`; therefore we can apply [McDuff and
Salamon 1994, Lemma 3.5.1, p. 38] for the integrable almost complex structure J̃ .
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If follows that E is J̃ `-regular inside Y . If we now consider Y × X and J̃ ` × Jarb,
the curve E lies entirely inside Y and therefore the normal bundle inside Y × X
is O(−1)2` × trivial, and therefore the curve is ( J̃ ` × Jarb)-regular. This splitting
and therefore regularity use the fact that the map E is of genus zero. Theorem 2.9
implies parametric regularity and therefore (H1) holds. �

Claim 2. The family (B`, ∂B`) satisfies H2.

Proof. This is proved by inspection. Only J `0 × Jarb admits (A − `F)-stable maps,
and the only maps in this class are copies of the embedded map E in any fiber
S2

× S2
× pt. Hence there are no decomposable Jb-holomorphic maps. �

Remark. For other almost complex structures J on S2
× S2

× X one could have
decomposable J -holomorphic maps in the class A−`F . For an example, consider
M = S2

× S2
× CP n and ω = ω1+ε ⊕ωarb. If H denotes the hyperplane class in

CP n , we can take ωarb such that ω(A−F−H)>0 and get a symplectic embedding
of S2 into M , in the class A − F − H . We can choose an ω-tamed almost complex
structure J̃ on M that fibers over the base S2

× S2 and such that the class H has
a J̃ -holomorphic representative. Then the class A − F is J̃ -decomposable, where
the decomposition is given by a C with C = C1 ∪ C2 with [C1] = A − F − H and
[C2] = H .

We conclude that the invariants

PGWS2
×S2

×X,(B`,∂B`)
A−`F,0,k :

k⊕
i=1

Hai (S2
× S2

× X,Q)k → Z

are integer-valued. We have two situations. First, if X = pt, the moduli space of
unparametrized curves has dimension 0, so we would count isolated curves. This
follows immediately from the equality c1(A−`F)=−4`+2 (adjunction formula),
so that

dim M∗

0,0(S
2
× S2, A − `F, (B`, ∂B`))= 2 × 2 + 2c1(A − `F)+ dim B` − 6

= 4 − 4`+ 4 + 4`− 2 − 6 = 0.

Moreover, the invariant PGWS2
×S2

×X,(B`,∂B`)
A−`F,0,0 ([pt]) equals 1 because it counts

E , the only Jb-map (where b ∈ B`) in the class A − `F .
In the situation dim X =2n>0, we will count maps with one marked point. Then

c1(A−`F) is the same, since the holomorphic maps in class A−`F will be copies
of the curve E and hence will have the image entirely in the fibers S2

× S2
× pt ⊂

S2
× S2

× X . We therefore have

dimM∗

0,1
(
S2

×S2
×X, A−`F,(B`,∂B`)

)
= 2×(2+n)+2c1(A−`F)+dim B`−6+2

= 2n+2.
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We consider a cycle in the homology class F lying in a fiber S2
× S2

×pt inside
S2

× S2
× X . It easily follows that the only Jb`-holomorphic map with one marked

point that intersects this cycle transversely is a copy of the map E inside the fiber
S2

× S2
× pt. We obtain

PGWS2
×S2

×X,(B`,∂B`)
A−`F,0,1 (P D([F]))= ±1,

where the sign depends on the orientation of the parameter space B`. Applying
Theorem 2.2 we conclude that the morphism 2 in both situations is nontrivial and
therefore there is a nonzero element

(16) β` ∈ π4`−2((A[`,`+ε], A`)) for all ε > 0

represented by the cycle (B`, ∂B`)⊂ (A`+ε,Ac
`+ε,D).

4. Almost complex structures and symplectomorphism groups

Almost complex structures and symplectomorphisms; deformations along com-
pact subsets. We now give a quick overview of what can be said about the behavior
of spaces of almost complex structures and about the symplectomorphism groups
as the symplectic form varies along the line L .

If L happens to be a ray λω, λ > 0, then Gλ is independent of λ. Thus we may
as well assume L is not a ray.

If M = S2
× S2, much is known about the structure of Aλ; see [McDuff 2000].

For example, one can establish that there is a direct inclusion Aλ ⊂ Aλ′ , for λ<λ′.
Moreover, the homotopy type of the spaces Aλ changes only as λ strictly passes
an integer `.

None of this is known to hold when M is an arbitrary symplectic manifold.
Nevertheless, as a consequence of the fact that taming is an open condition, we are
able to establish the following lemma, which we use in the proof of Theorem 2.9.

Lemma 4.1. (a) Let K ′ to be an arbitrary compact subset of Aλ. There is an
εK ′ > 0 such that K ′ is contained in Aλ+ε , for |ε|< εK ′ .

(b) Consider K an arbitrary compact set in Gλ. For G as in (4), there is an εK >0
and a map h : [−εK , εK ] × K → G|L such that the diagram

(17)

[−εK , εK ] × K h - G|L

[−εK , εK ]

pr1

? incl - R

pr2

?

commutes.
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For any two such maps h and h′ coinciding on 0 × K , there exists, for ε′ small
enough, a homotopy H : [0, 1] × [−ε′, ε′

] × K → G|L between them that satisfies

(18)

[0, 1] × [−ε′, ε′
] × K H - G|L

[−ε′, ε′
]

pr1

?
incl - R

pr2

?

Proof. Part (i) is an immediate consequence of the openness of the taming condi-
tion.

For the proof of (ii), let’s first notice that, since the symplectic condition is an
open condition, there is a convex open neighborhood U of ωλ inside the space of
2-forms such that any closed ω′ in U is still symplectic.

Moreover since K is compact there is an ε(K ) > 0 such that, for any gk ∈ K ,

g∗

kωλ+ε ∈ U for all 0 ≤ ε < ε(K ).

This is true because we can produce such an ε for an open set around each element
g ∈ K and hence find a global ε(K ) by following a standard compactness argument.

We will construct the elements h(ε, k) as follows. For t ∈ [0, 1] the forms

ωt
k,λ+ε := tg∗

kωλ+ε + (1 − t)ωλ+ε

are symplectic, since both g∗

kωλ+ε and ωλ+ε are inside the convex set U . Moreover,
since K ⊂ Gλ ⊂ Diff0 M , any gk is smoothly isotopic to the identity and hence
[g∗

kωλ+ε] = [ωλ+ε]. Therefore the forms ωt
k,λ+ε are cohomologous as we vary t .

We now apply Moser’s argument for the one-parameter family of symplectic forms
ωt

k,λ+ε and obtain a family of diffeomorphisms ξk,λ+ε,t having the property that
ξ∗

k,λ+ε,tω
t
k,λ+ε = ωλ+ε . We next define h(ε, k) := gk ◦ ξk,λ+ε,1. Then h has the

required properties.
For an arbitrary h : [−ε, ε] × K satisfying (17) we take the homotopy

F : [0, 1] × [−ε, ε] × K → R × Diff0 M

given by F(t, ε, k) := (ε, h(tε, k)).
This gives a homotopy between h and h0 : [−ε, ε] × K → R × Diff0 M , where

h0(ε
′, k)= h(0, k). We similarly obtain a homotopy F ′ between h′ and h0, where

h′ also satisfies (17). By concatenating one homotopy with the opposite of the other
we obtain a homotopy between h and h′, which we call G : [0, 1]×[−ε1, ε1]×K →

R × Diff0 M . We set gs,ε,k := G(s, ε, k) and follow the same procedure as before:
we restrict to a short interval [−ε′, ε′

] such that, if we define

ωt
s,k,λ+ε := tg∗

s,ε,kωλ+ε + (1 − t)ωλ+ε,
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these maps are symplectic for all 0 ≤ |ε| < ε′ and t, s ∈ [0, 1]. This is possible
because ωt

s,k,λ = ωλ. Again, the diffeomorphisms gs,ε,k are smoothly isotopic to
the identity and, as above, we can apply Moser’s argument to the isotopic forms
ωt

s,k,λ+ε , to obtain diffeomorphisms ξs,k,λ+ε,t such that ξ∗

s,k,λ+ε,tω
t
s,k,λ+ε, = ωλ+ε .

If we define H(s, ε, k) := gs,ε,k ◦ξs,k,λ+ε,1, the map H has the required properties.
�

Definition 4.2. Let ρ : B → Gλ be a cycle in Gλ. An extension ρε of ρ is a smooth
family of cycles ρε : B → Gλ+ε defined for |ε| ≤ ε0 such that ρ0

= ρ and satisfying
(18). Using Lemma 4.1(i) we see that every cycle ρ has an extension.

Observation. Consider two extensions ρε1 , where 0 ≤ |ε| < ε1, and ρε2 , where
0 ≤ |ε| < ε2. By (18) there is an ε′ > 0 and a homotopy between ρε1 and ρε2
defined for all 0 ≤ ε ≤ ε′. Hence any extension provides well defined elements
in π∗(Gλ+ε) for small values of ε. Therefore each [ρ] ∈ π∗(Gλ) has an extension
[ρε] ∈ π∗(Gλ+ε) whose germ at ε = 0 is independent of the choices of ρ.

Definition 4.3. We say that a smooth family of elements [ρε] ∈ π∗(Gλ+ε), with
0< ε < ερ , is new if it is not the extension for ε > 0 of any element [ρ] ∈ π∗(Gλ).

In the next section we will use the same letter ρ to refer both to cycles as well
as to the homotopy class they represent.

Relation between almost complex structures and symplectomorphism groups;
proof of Theorem 1.3. We consider the long exact sequence of relative homotopy
groups of the pair (A`+,A`):

· · · - πk(A`+) - πk(A`+,A`) - πk−1(A`) - πk−1(A`+) - · · ·

Since by construction β` ∈ πk(A`+,A`) is nontrivial, one of the two following
cases can happen:

1. β` 7→ γ` 6= 0 ∈ πk−1(A`).

2. β` 7→ 0 ∈πk−1(A`). In this situation, there is a nonzero element α` ∈πk(A`+)

that maps to β`.

We analyze each case in turn:

Case 1. Consider the fibration (2), which yields G`
- Diff0 M - A`, and

then the long exact sequence in homotopy,

· · · - πk−1(G`) - πk−1(Diff0 M) -

- πk−1(A`) - πk−2(G`) - πk−2(Diff0 M) - · · ·

Again, there are two possibilities:
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(i) γ` → θ` 6= 0 ∈ πk−2(G`). In this situation, we have a nontrivial element
θ` ∈ πk−2(G`), such that θ` 7→ 0 ∈ πk−2(Diff0 M). Then we are in case (A) of
Theorem 1.3.

This element is fragile. For assume it isn’t; then θ` can be extended by θ`+ε ,
which yields nontrivial classes in πk−2(G`+ε). Then θ`+ε 7→ 0 ∈ πk−2(Diff0 M)
as well. Therefore θ`+ε appears as a boundary of an element γ`+ε ∈ πk−1(A`+ε),
which is homotopic to γ`. But by construction and Lemma 4.1, we know that γ`
is a contractible cycle inside A`+ε . This contradicts the existence of γ`+ε .

(ii) γ` 7→0∈πk−2(G`). Then γ` is in the image of the morphism πk−1(Diff0 M)→
πk−1(A`), so there is an element γ ′

` ∈ πk−1(Diff0 M) such that 0 6= γ ′

` 7→ γ`.
In this situation, we can choose a cycle S ⊂ A` representing γ` ∈πk−1(A`), and,

using Lemma 4.1, there is an εS > 0 such that S ⊂ A`+ε for any ε ∈ (0, εS). Now
we claim that

0 = [S] ∈ πk−1(A`+ε).

For, by hypothesis, S is the boundary of a cycle B` such that B` ⊂ A`+ε for all
small ε > 0. Therefore we have a k-dimensional ball inside A`+ε whose boundary
is S, which proves the claim. We therefore have πk−1(Diff0 M) 3 γ ′

` 7→ [S] = 0 ∈

πk−1(A`+ε) on the top row of the commutative diagram

· · · - πk−1(G`+ε) - πk−1(Diff0 M) - πk−1(A`+ε) - πk−2(G`+ε) -

· · · - πk−1(G`) - πk−1(Diff0 M)

wwwwww
- πk−1(A`)

i|k
6
..........

- πk−2(G`) -

while on the bottom row the same γ ′

` maps to γ` ∈ πk−1(A`+ε). By the exactness
of the first row, γ ′

` is in the image of the map πk−1 (G`+ε)→ πk−1(Diff0 M), and
therefore we are able to produce an element 0 6= η`+ε ∈πk−1(G`+ε) such that η`+ε
persists in the topology of the group of diffeomorphisms. Thus we are in case (B).

The elements we obtain here are new. This follows easily by assuming the
opposite. That is, if we consider that there is an element 0 6= η` ∈ πk−1(G`) whose
germ is given by η`+ε , then the image of η` in Diff0 M has to be γ ′

`. But this
contradicts the fact that γ ′

` 7→ γ` 6= 0.

Case 2. In this situation we have a nontrivial element α` ∈ πk(A`+). Then we
shall see that there is an ε such that for 0< δ < ε, α` has a representative C inside
A`+δ, with 0 6= [C] ∈πk(A`+δ). The proof of this follows from the construction of
α`. Namely, since β` 7→ 0 ∈ πk−1(A`), there exists a k-dimensional disk D inside
A` whose boundary is ∂B`; by Lemma 4.1(i), this can be viewed inside A`+δ for
small δ. We can now glue B` and D along their boundary ∂B`. In this manner we
get a cycle C ⊂ A`+δ representing the class α`. We can therefore consider again
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the sequence

· · · - πk(G`+δ) - πk(Diff0 M) -

- πk(A`+δ) - πk−1(G`+δ) - πk−1(Diff0 M) - · · ·

Next we claim that [C] doesn’t lift to a nontrivial element in πk(Diff0 M). In-
deed, there is a map

(19) πk(Diff0 M) - πk(Aλ)

for any λ, and as λ varies these maps vary homotopically in AI . If C did lift, the
map πk(Diff0 M)→ πk(A`) would produce a cycle [B] ∈ A`, which by means of
Lemma 4.1 could be viewed inside all A`+ε for small ε and which moreover would
be homotopic to C inside A[`,`+ε]. Therefore [C] would map to 0 ∈ πk(A`+,A`),
contradicting its definition.

Since [C] cannot be in the image of the map πk(Diff0 M) → πk(A`+δ), we
know that [C] must have nonzero image [C] 7→η`+δ 6=0 in πk−1(G`+δ). Moreover,
from the obvious properties of exact sequences again, η`+δ → 0 through the natural
inclusion map πk−1(G`+δ)→πk−1(Diff0 M). That these elements are new follows
again by assuming the opposite. If they formed the germ of an element η` in
πk−1(G`), then η` would also be null-homotopic inside Diff0 M , so it would come
from a class [C ′

] in πk(A`). Moreover, C ′ would be homotopic with C inside
A[`,`+δ], therefore also in (A[`,`+δ],A`), which is false given that C has to yield a
nontrivial element in πk(A[`,`+δ],A`). Thus we are in case (B) of the theorem.

With this, we have exhausted all the possible cases given by the nontrivial PGW,
and the proof of Theorem 1.3 is complete. �

Now to prove Corollary 1.4, consider the manifold (S2
× S2

× X, ωλ⊕ωarb). As
seen in (16), the cycles (B`, ∂B`) satisfy the definition (7), so by Proposition 2.4
they give persistent elements in π4`−2(A`+,A`). Therefore Theorem 1.3 applies
and the corollary holds.

Appendix: A proof of the criterion of parametric regularity, Theorem 2.9

Let T|
π−1(0)

M̃ be the tangent space along the preimage of 0 ∈ Cm . Denote by H the
subbundle of T|

π−1(0)
M̃ which is ω̃-orthogonal to the fiber {0}× M . We would like

H to coincide with the horizontal space of T M̃ with respect to the trivialization π
and to be J̃ -invariant. This can be arranged by deforming the form ω̃ so that near
the zero fiber {0} × M it is given by

ω̃ = ω0 +π∗(σbase),
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where σbase is a standard symplectic two-form on the holomorphic base B.Through-
out this deformation process J̃ is still ω̃-tamed.

Let g0 be a metric on M0 and ∇ the Levi-Civita connection on M associated with
it. Also let ∇

st be the standard Levi-Civita connection on Cm , and set ∇̃ =∇×∇
st ,

the product connection on M̃ ' Cm
× M . The regularity of f̃ : 6 → M̃ is by

definition equivalent to the surjectivity of D f̃ , the linearization of ∂̄:

D f̃ : C∞( f̃ ∗T M̃) -- �
0,1
J̃
(6, f̃ ∗T M̃).

Using the connection ∇̃ we will derive formulas for D f̃ and express them in
terms of the linearization D8.

Since M̃ ' Cm
× M and im f̃ ⊂ {0} × M , we have the relations

f̃ ∗(T M̃)= f̃ ∗
(
T M̃π−1(0)

)
= f̃ ∗(H ⊕ T M)= triv ⊕ f ∗(T M),

where by triv we denote the trivial m-dimensional complex bundle over 6. This
gives

(20) C∞( f̃ ∗T M̃)' C∞(triv)⊕ C∞( f ∗T M)

Since each fiber is J̃ -invariant and H is J̃ -invariant along π−1(0), we obtain

(21) �
0,1
J̃
(6, f̃ ∗T M̃)'�

0,1
J

(
6, f ∗T M

)
⊕�

0,1
J̃
(6, H).

From (20) and (21) we obtain

D f̃ : C∞(triv)⊕ C∞( f ∗T M) -- �
0,1
J

(
6, f ∗T M

)
⊕�

0,1
J̃
(6, H),

and by considering the appropriate restrictions we obtain the operators

D1,vert :C∞(triv)→�
0,1
J (6, f ∗T M),

D1,hor :C∞(triv)→�
0,1
J̃
(6,H),

D2,vert :C∞( f ∗T M)→�
0,1
J (6, f ∗T M),

D2,hor :C∞( f ∗T M)→�
0,1
J̃
(6,H).

We sometimes write Dk = (Dk,vert, Dk,hor), for k = 1, 2.
To compute the formulas for these operators we use a general method found in

[Aebischer et al. 1994]: Consider ξ ∈ C∞(6, f̃ ∗T M̃) and F̃ξ : [0, 1] ×6 → M̃
given by F̃ξ (t, x) = exp∇̃

f̃ (x)(tξ(x)), for ξ sufficiently small. Let s : 6 → T6 be
a section and let s̃ be its lift to T ([0, 1] ×6). Denote by ∂/∂t the vector field in
T ([0, 1] ×6) corresponding to the parameter in [0, 1]. Define f̃ t(x) := F̃ξ (t, x).
For any x ∈ 6, define the path γ̃ ξx : [0, 1] → M̃ given by γ̃ ξx (t) = F̃ξ (t, x), the
image under F̃ξ of [0, 1]× x in M̃ . By the definition of F̃ξ , γ̃

ξ
x is a geodesic path

in M̃ relative to the connection ∇̃. Denote by τ ξt,x : Tγx (t)M̃ → Tγx (0)M̃ the parallel
transport in M̃ along the curve γx := γ̃

ξ
x . To compute D f̃ (ξ)(s) in general, one
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needs to consider the expression 1
2τ
ξ
t,x

(
d f̃ t(s)+ J̃ d f̃ t( js)

)
and take its derivative

with respect to t at t = 0:

(22) D f̃ (ξ)(s)=
1
2
∂

∂t

(
τ
ξ
t,x(d f̃ t(s)+ J̃ d f̃ t( js))

)
|t=0

We define Const to be the subspace of C∞(triv) made out of constant sections.
For the proof of the theorem, we are particularly interested in computing D1,hor

and the restriction of D1,vert to Const.
To simplify the notation, we denote by x the coordinate on6 and write the points

in Cm
× M as (z1, . . . , zm, y), where z1 = w1 + iv1 and so on. For simplicity we

denote coordinate vector fields in Const by ∂wk := ∂/∂wk and so on. Since we are
going to work with an arbitrary choice of wk and vk we will refer to them simply
as ∂w, unless we need to be more specific.

Lemma 4.4. Let the notation be as above.

(i) D2,hor = 0.

(ii) D2,vert = D f .

(iii) D1,hor(ξ) = ∂̄Cm (ξ) for all ξ ∈ C∞(triv), where ∂̄Cm is the delbar operator in
Cm .

(iv) (D1,vert)(∂z)(s)=
1
2(∂/∂z)(J (z))|z=0(d f ( js)) for ∂z a coordinate vector field

in Const ⊂ C∞(triv).

Proof. Since f̃ = f ◦ i ⊂ {0} × M we can naturally view any ξ ∈ C∞( f ∗T M) as
an element in C∞( f̃ ∗T M̃) with values in the vertical direction tangent to {0}× M .
We have

F̃ξ (t, x)= exp∇̃

f̃ (x)(tξ)= exp∇

f (x)(tξ),

with im F̃ ⊂ {0} × M . This implies that the d f̃ t(s) are also vertical vector fields
supported in {0} × M and, since J̃ keeps T ({0} × M) invariant, we have as well
that the J̃ d f̃ t( js) are vertical vector fields in {0} × M . Similarly, F̃∗

ξ (∂/∂t) is a
vertical section in T M̃ supported in {0}×M and parallel transport along f̃ (x) with
respect to ∇̃ is the same as parallel transport with respect to ∇.

A direct application of (22) is that

(D f̃ ξ)(s)=
1
2
∂

∂t

(
τ
ξ
t,x d f̃ t(s)+ τ

ξ
t,x J̃ d ft( js)

)
|t=0

= (D f ξ)(s),

which proves (i). Relation (ii) follows immediately from the formula above, taking
into account that D f̃ ξ = D2,vert(ξ) and that im D f̃ |C∞ f ∗T M ⊂ �

0,1
J (6, f ∗T M).

For the proofs of (iii) and (iv) we now consider ξ ∈ C∞(triv). We can assume
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ξ = φ(x)∂w, where φ : 6 → Cm . In this situation, F̃ξ (t, x) = exp∇̃

f̃ (x)(t∂w) =

(φ(x)t, 0, . . . , 0, f (x)). Thus the paths γx are straight lines in Cn
× f (x) ⊂ M̃

and parallel transport τt,x : T(t, f (x))M̃ → T0, f (x))M̃ along γx is the identity. We are
also going to consider the coordinates x ∈ 6 of the type x = x1 + i x2, and do our
computations for s = ∂x1 .

If J̃ (t) is the almost complex structure at γ̃ ξx (t), then J̃ (t) has the form(
At 0
Bt Jt

)
with respect to the product structure Cm

× M . Moreover along π−1(0) we have

J̃ (0)=

(
JCm 0
0 Jt

)
.

Therefore (∂/∂t) J̃ (t) preserves the fibers, as does J̃ (t). Moreover, along {0}× M ,
J̃ (0) preserves the splitting into T M and H . As we have seen, parallel transport
along γ̃ ξx (t) is the identity.

Considering local coordinates x = x1 + i x2 on 6 and taking s = ∂x1 , we have

D1,hor(φ∂w)(∂x1)=
1
2 projH

∂

∂t

(
τ
ξ
t,x d f̃ t(∂x1)+

1
2τ
ξ
t,x J̃ d f̃ t( j∂x1)

)
|t=0

=
1
2 projH

∂

∂t

(
d f̃ t(∂x1)+

1
2 J̃ d f̃ t(∂x2)

)
|t=0

=
1
2
∂

∂t

(
∂x1(φ(x))t, 0, . . . , 0

)
|t=0

+
1
2 projH

∂

∂t
( J̃t)|t=0d f (∂x2)

+
1
2 projH J̃0

∂

∂t

(
∂x2(φ(x))t, 0, . . . , 0, d f (x)

)
|t=0,

where, as mentioned before, φ : 6 → Cm . But the middle term on the right-hand
side vanishes because d f (∂x2) is a vertical vector and ∂/∂t J̃ preserves fibers, so
(∂/∂t)( J̃t)|t=0d f (∂x2) is also a vertical vector. Then

(23) D1,hor(φ∂w)(∂x1)=
1
2∂x1φ(x)+

1
2 JCm (∂x2)φ(x)

For the last expression we have to use that along π−1(0), J̃0 preserves the hor-
izontal space H , so projH ◦ J̃0 = J̃Cm ◦ projH . Therefore, the conclusion follows
that D1,hor = ∂̄Cm .

To prove point (iv) of the theorem we now need to consider ξ = ∂w ∈ Const.
Under this assumption we have τ ∂wt,x d f̃ t = d f0. Thus

∂

∂t
τ
∂w
t,x d f̃ t(s)= 0.
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As before, s is a just a section in T6. Then

D1,vert(∂w)(s)=
1
2 projV

∂

∂t

(
τ ∂wt,x d f̃ t(s)+ 1

2τ
∂w
t,x J̃ d f̃ t( js)

)
|t=0

=
1
2 projV

∂

∂t

(
τ ∂wt,x d f̃ t(s)

)
|t=0

+
1
2 projV

∂

∂t

(
τ ∂wt,x J̃ (τ ∂wt,x )

−1)
|t=0

· d f ( js)

+
1
2 projV J̃0

( ∂
∂t
τ ∂wt,x d f̃ t( js)

)
|t=0

=
1
2 projV (∇̃∂w J̃ )d f ( js),

where we denote by projV the projection onto the fibers. Recall that (∂/∂t) J̃ takes
vertical vector fields into vertical vector fields. Therefore

1
2 projV ∇̃∂w J̃ d f ( js)=

1
2
∂ J (z)
∂w

(d f ( js)),

precisely because d f ( js) is a vertical vector field and the covariant derivative along
horizontal vector fields was chosen to be the standard connection in Cm . Applying
the same reasoning to i∂v, we see that

(D1,vert)(∂z)(s)=
1
2
∂

∂z
(J (z))|z=0(d f ( js)).

It is worth pointing out that (∂/∂z)(J (z))|z=0 = dψ∗

0 (∂/∂z). �

Proof of Theorem 2.9. Direct implication: Using Lemma 4.4(v) we get the com-
mutativity of the diagram

(24)

T0Cm dψ - TJ AI

Const

i

? D1,vert- �
0,1
J (6, f ∗T M),

R
?

where i : T0Cn
→ Const ⊂ C∞(triv) is the natural identification map and ψ is the

morphism from the parameter space to the space of almost complex structures. R
is, as mentioned before, given by R(Y )=

1
2 Y ◦ d f ◦ j .

Since D f̃ is surjective by hypothesis, this means that D1 ⊕ D2 is surjective. We
therefore conclude, by Lemma 4.4(i,ii), that

(25) D1 = (D1,vert, D1,hor) : C∞(triv) - coker D f ⊕�
0,1
J̃
(6, H)

is surjective. Since the kernel of the ∂̄Cm operator on Cm consists precisely of
constant sections, Lemma 4.4(iii) implies that D−1

1,hor(0) =Const. Therefore the
operator (D1,vert)|Const : Const → coker D f is surjective. But this will imply that

(D1,vert)|Const ◦ i : T0Cm
→ coker D f

is surjective.
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As we saw in the proof of Proposition 2.8, R induces an isomorphism

R̃ : ˜coker d5 - coker D2,

and moreover the diagram (24) will be still commutative if we restrict dψ and
D1,vert to coker d5 and coker D2 respectively. Therefore dψ : T0Cn

→ coker d5
is surjective. By Proposition 2.8, this yields parametric regularity.

For the inverse implication, notice that D1,hor will cover the space �0,1
J̃
(6, H)

when 6 = S2, because D1,hor = ∂̄Cm in this case. By hypothesis, dψ : T0Cn
→

coker d5 is surjective and the preceding observation implies that

D1 = (D1,vert, D1,hor) : C∞(triv) - coker D f ⊕�
0,1
J̃
(6, H)

is also surjective. Therefore D f̃ is a surjective operator. �
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