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We set up a noncommutative version of the Bernšteı̆n–Gel’fand–Gel’fand
(BGG) correspondence and apply it to periodic injective resolutions.

Introduction

The Bernšteı̆n–Gel’fand–Gel’fand (BGG) correspondence is surprising. Originally
established in [Bernšteı̆n et al. 1978, Theorem 2], it gives an equivalence of cate-
gories

gr(E) ' Db(coh Pe).

Let me explain this formula: On the left, E is the exterior algebra
∧

(Y1, . . . , Ye+1)

and gr(E) is the category of finitely generated graded E-left-modules modulo mor-
phisms which factor through injectives. On the right, Pe is e-dimensional projective
space, coh Pe is the category of coherent sheaves on Pe, and Db(coh Pe) is the
derived category of bounded complexes of such sheaves.

The surprising thing about the correspondence is that the geometric object on
the right-hand side is equivalent to the purely algebraic object on the left-hand side.
Put differently, if one did not know about the BGG correspondence, it would really
not be obvious that it is possible to recover Db(coh Pe) purely algebraically!

In this paper, I will generalize the BGG correspondence to noncommutative
projective geometry. Noncommutative projective geometry is well established;
one of the seminal papers is [Artin and Zhang 1994] but many have been published
since, showing how a range of projective geometry can be generalized in a noncom-
mutative way. This turns out also to be true of the BGG correspondence, which is
generalized in Theorem 3.1 below and now takes the form

Gr(A!) ' D(QGr A).

Here A is a suitable noncommutative graded algebra with Koszul dual algebra A! ,
and the category QGr(A) is a noncommutative analogue of the category QCoh(Pe)

of quasi-coherent sheaves on Pe.

MSC2000: 14A22, 16E05, 16W50.
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After proving this, I consider an application to periodic injective resolutions.
The background is a result by Eisenbud [2002, Theorem 2.2]: Let M be a finitely
generated graded module without injective direct summands over the exterior al-
gebra E , for which the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0. Then the minimal injective resolution I of M is periodic
with period one: All the modules I i and all the differentials ∂ i

I are the same, up
to isomorphism and degree shift. (In fact, Eisenbud worked with minimal free
resolutions, but using the Matlis duality functor Homk(−, k) on his result gives
the above.)

I will show that this phenomenon can be understood geometrically in a very
simple way: Using the BGG correspondence, the module M can be translated to
a geometric object on Pe. Since the Bass numbers of M are bounded, this object
turns out to have zero-dimensional support, so is stable under twisting, that is,
tensoring by OPe(1). Translating back, this means that M is its own first syzygy,
and periodicity of the minimal injective resolution follows.

Next, I consider the noncommutative case where a similar procedure yields re-
markably different results: Let A be a noncommutative graded algebra, and let M
be a finitely generated graded module over the Koszul dual A! , for which the Bass
numbers µi (M) are bounded for i ≥ 0. Then, choosing A and M suitably, it is
possible to make the minimal injective resolution of M periodic with any finite
period, or to make it aperiodic.

The reason is that when translating M through the noncommutative BGG cor-
respondence, one still obtains a geometric object with zero-dimensional support.
However, due to the noncommutative (hence nonlocal) nature of the situation, it
is no longer true that such an object is invariant under twisting. Rather, the object
can have an orbit of any finite length, or an infinite orbit. Translating back gives
the above results on periodicity of the minimal injective resolution.

The concrete example I will give of this behaviour is already known from [Smith
1996]. But the present geometric view through the BGG correspondence is new.

Here is a synopsis of the paper. Section 1 exhibits D(QGr A) as a full sub-
category of D(Gr A). Section 2 considers a version of Koszul duality. Section 3
combines these results into the noncommutative BGG correspondence, and shows
that under the correspondence, the simple module k over A! corresponds to the
“structure sheaf” O in D(QGr A).

Section 4 does a few computations that are put to use in Section 5, where the
BGG correspondence is applied to periodicity of minimal injective resolutions.

To avoid a lengthy section on nomenclature, hints on notation are given along the
way. The reader should rest assured that no new, let alone revolutionary, notation is
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introduced. The paper remains firmly on classical ground, and differs notationally
only in minor details from such papers as [Artin and Zhang 1994], [Jørgensen
1999], and [Smith 1996]. However, I do need the following blanket items, which
apply throughout.

Setup 0.1. k is a field, and A = k ⊕ A1 ⊕ A2 ⊕ · · · is a connected N-graded
noetherian k-algebra which is AS regular and Koszul (see [Jørgensen 1999, p. 206]
and [Beilinson et al. 1996, def. 1.2.1], or Remark 0.2). I assume gldim A = d ≥ 2.

Remark 0.2.

(i) For A to be AS regular means that gldim A = d is finite, and that the graded
A-bi-module k = A/A≥1 satisfies

ExtiA(k, A) ∼= ExtiAop(k, A) ∼=

{
0 for i 6= d,

k(`) for i = d

for some `. As usual, (−)(`) denotes `-th degree shift of graded modules, so
M(`)i = Mi+`.

(ii) For A to be Koszul means that the minimal free resolution L of the graded
A-left-module k = A/A≥1 is linear. That is, the i-th module L i has all its
generators in graded degree i , so has the form

∐
A(−i).

(iii) It is easy to see that since A is Koszul, the constant ` in (i) must be d.

(iv) By [Beilinson et al. 1996, Cor. 2.3.3], the algebra A is quadratic, that is, it
has the form

A ∼= T(V )/(R)

where V is a finite-dimensional vector space, T(V ) the tensor algebra, and
(R) the two sided ideal generated by a space of relations R in V ⊗k V . Let
(−)′ denote Homk(−, k) and define R⊥ by the exact sequence

0 → R⊥
−→ V ′

⊗k V ′
−→ R′

→ 0.

Then the Koszul dual algebra of A is

A!
= T(V ′)/(R⊥);

see [Beilinson et al. 1996, Def. 2.8.1].

(v) By [Beilinson et al. 1996, Theorem 2.10.1] there is an isomorphism (A!)op ∼=

ExtA(k, k). Combining this with gldim A = d gives that A! is concentrated in
graded degrees 0, . . . , d .

(vi) The algebra A! is graded Frobenius by [Smith 1996, Proposition 5.10]. This
means that dimk A! is finite, and that there is an isomorphism of graded A! -
left-modules (A!)′ ∼= A!(m), where (A!)′ = Homk(A! , k) is the Matlis dual
module of A! .
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(vii) Since A! is concentrated in graded degrees 0, . . . , d , the constant m in (vi)
must be d . So there is an isomorphism of graded A! -left-modules (A!)′ ∼=

A!(d).

1. The categories Gr(A) and QGr(A)

Remark 1.1. Let me first recapitulate a few items from [Artin and Zhang 1994],
to which I refer for further details and proofs.

The category Gr(A) has as objects all Z-graded A-left-modules and as mor-
phisms all homomorphisms of A-left-modules which preserve graded degree.

A module M in Gr(A) is called torsion if each m in M is annihilated by A≥n

for some n. The torsion modules form a dense subcategory Tors(A) of Gr(A), and
the quotient category is

QGr(A) = Gr(A)/Tors(A).

This category behaves like the category of quasi-coherent sheaves on the space
Proj(A), although Proj(A) itself may not make sense. For instance, if A is com-
mutative, QGr(A) is in fact equivalent to the category of quasi-coherent sheaves on
Proj(A) by Serre’s theorem, as given in [Artin and Zhang 1994, Theorem, p. 229].

The degree shifting functor (−)(1) on Gr(A) induces a functor on QGr(A) which
I will also denote (−)(1).

The category Gr(A) has the full subcategory gr(A) consisting of finitely gen-
erated modules. Induced by this, QGr(A) has the full subcategory qgr(A) which
behaves like the category of coherent sheaves on Proj(A).

The projection functor Gr(A)
π

−→ QGr(A) has a right-adjoint functor

QGr(A)
ω

−→ Gr(A)

by [Artin and Zhang 1994, p. 234], so there is an adjoint pair

Gr(A)
π -�
ω

QGr(A).

As follows from [Artin and Zhang 1994, Proposition 7.1], these functors send injec-
tive objects to injective objects, and restrict to a pair of quasi-inverse equivalences

(1) Inj tf(A)
π -�
ω

QInj(A)

between the subcategory of torsion-free injective objects of Gr(A) and the sub-
category of all injective objects of QGr(A).



A NONCOMMUTATIVE BGG CORRESPONDENCE 361

Let me next turn to derived categories. The projection functor π is exact and so
extends to a triangulated functor

D(Gr A)
π

−→ D(QGr A)

between derived categories. Moreover, since A has finite global dimension, each
object of the category Gr(A) has a bounded resolution by injective objects. The
same therefore holds for QGr(A), as one sees using ω and π . So right-derived func-
tors can be defined on the unbounded derived categories D(Gr A) and D(QGr A)

by [Weibel 1994, Section 10.5].

In particular, D(QGr A)
Rω

−→ D(Gr A) exists, and it is not hard to see that

(2) D(Gr A)
π -�

Rω
D(QGr A)

is an adjoint pair of functors.

Definition 1.2. Let

k⊥
= {N ∈ D(Gr A) | RHomA(k, N ) = 0}.

Proposition 1.3. The functors in equation (2) restrict to a pair of quasi-inverse
equivalences of triangulated categories

(3) k⊥
π -�

Rω
D(QGr A).

Proof. First observe that diagram (1) extends to a pair of quasi-inverse equivalences

(4) K(Inj tf A)
π -�
ω

K(QInj A)

between the homotopy category of complexes of torsion free injective objects of
Gr(A), and the homotopy category of complexes of injective objects of QGr(A).

Next, the finite global dimension of A implies that K(Inj A), the homotopy cat-
egory of complexes of injective objects of Gr(A), is equivalent to D(Gr A). Under
the equivalence, the restriction of a functor F to K(Inj A) corresponds to the right
derived functor RF on D(Gr A). See [Weibel 1994, Section 10.5], for example. A
similar remark applies to K(QInj A) and D(QGr A). So forming

K(Inj A)
π -�
ω

K(QInj A)

gives a diagram which, up to equivalence, is just diagram (2).
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This shows that diagram (4) gives an equivalence between some subcategory
of D(Gr A) and the whole category D(QGr A). To finish the proof, I must show
that the subcategory in question is k⊥. That is, I must show that the subcategory
K(Inj tf A) of K(Inj A) corresponds to the subcategory k⊥ of D(Gr A). For this,
note that by the above, the functor HomA(k, −) on K(Inj A) corresponds to the
derived functor RHomA(k, −) on D(Gr A), so I must show that K(Inj tf A) is the
subcategory of K(Inj A) annihilated by HomA(k, −).

In fact, this is not quite true, but it is true and easy to see that the subcategory of
K(Inj A) annihilated by HomA(k, −) consists exactly of the complexes isomorphic
to complexes in K(Inj tf A), and this is enough. �

2. Koszul duality

Remark 2.1. Let me recapitulate the version of Koszul duality set up by Beilinson,
Ginzburg and Soergel, and elaborated on by Fløystad.

In [Beilinson et al. 1996, proof of Theorem 2.12.1] and [Fløystad 2003, Section
3.2] we find a construction for an adjoint pair of functors between categories of
complexes of graded modules,

(5) Ch(Gr A!)
F -

�
G

Ch(Gr A).

These functors are defined as follows: Given M in Ch(Gr A!), one constructs a
double complex

...
...

...

· · · - A(1) ⊗ M−1
1

6

- A(1) ⊗ M0
1

6

- A(1) ⊗ M1
1

6

- · · ·

· · · - A ⊗ M−1
0

6

- A ⊗ M0
0

6

- A ⊗ M1
0

6

- · · ·

· · · - A(−1) ⊗ M−1
−1

6

- A(−1) ⊗ M0
−1

6

- A(−1) ⊗ M1
−1

6

- · · ·

...

6

...

6

...

6



A NONCOMMUTATIVE BGG CORRESPONDENCE 363

with certain differentials, and the total complex Tot
∐

, defined using coproducts, is
F(M). In the diagram, superscripts indicate cohomological degree and subscripts
indicate graded degree. Also, ⊗ denotes tensor product over k.

And given N in Ch(Gr A), one constructs a double complex

...
...

...

· · · - Hom(A!(−1), N−1
1 )

6

- Hom(A!(−1), N 0
1 )

6

- Hom(A!(−1), N 1
1 )

6

- · · ·

· · · - Hom(A! , N−1
0 )

6

- Hom(A! , N 0
0 )

6

- Hom(A! , N 1
0 )

6

- · · ·

· · · - Hom(A!(1), N−1
−1 )

6

- Hom(A!(1), N 0
−1)

6

- Hom(A!(1), N 1
−1)

6

- · · ·

...

6

...

6

...

6

with certain differentials, and the total complex Tot
∏

, defined using products, is
G(N ). In the diagram, Hom denotes homomorphisms over k.

Now consider CoFree(A!), the full subcategory of Gr(A!) consisting of modules
which have the form

∏
j (A!)′(m j ), and Free(A), the full subcategory of Gr(A) con-

sisting of modules which have the form
∐

i A(ni ). On the corresponding homotopy
categories of complexes, the functors F and G induce functors which, abusively, I
will denote by the same letters,

(6) K(CoFree A!)
F -�
G

K(Free A).

According to [Fløystad 2003, Proposition 5.11], this is a pair of quasi-inverse
equivalences of triangulated categories.

Finite global dimension of A implies that D(Gr A) is equivalent to K(Free A) (see
[Weibel 1994, Section 10.5]), so the equivalences (6) can also be read as

(7) K(CoFree A!)
F -�
G

D(Gr A).

Remark 2.2. The name Koszul duality is potentially confusing: “duality” might
lead one to think of contravariant functors, while F and G are in fact covariant.

For the following lemma, note that I use 6i (−) for the i-th suspension, so if M
is a complex then (6i M)` = M i+`.



364 PETER JØRGENSEN

Lemma 2.3. The functors F and G in equation (7) satisfy the following.

(i) F(M(i)) ∼= 6i (FM)(−i).

(ii) G(N ( j)) ∼= 6 j (GN )(− j).

(iii) F((A!)′) is isomorphic to the A-left-module k.

Proof. (i) and (ii) can be seen by playing with the double complexes which define
F and G. (iii) follows from [Beilinson et al. 1996, Theorem 2.12.5(iii)]. �

Remark 2.4. The injective stable category over a ring is defined as the module
category modulo the ideal of morphisms which factor through an injective module.

The present paper uses the graded version of this, so the injective stable category
Gr(A!) is defined as Gr(A!) modulo the ideal of morphisms which factor through
an injective object of Gr(A!).

Since A! is graded Frobenius by Remark 0.2(vi), the category Gr(A!) is Frobe-
nius by the graded version of [Happel 1987, Section 9.2], and so the category
Gr(A!) is triangulated by [Happel 1987, Section 9.4]. For M in Gr(A!), the sus-
pension 6M is the first syzygy in an injective resolution of M . So 6M is the
cokernel of an injective pre-envelope, that is, an injective homomorphism M −→ I
in Gr(A!), where I is an injective object of Gr(A!). Any injective pre-envelope can
be used; changing the injective pre-envelope does not change the isomorphism
class of 6M in Gr(A!).

The degree shifting functor (−)(1) on Gr(A!) induces a functor on Gr(A!) which
I will also denote (−)(1).

Since Gr(A!) is Frobenius, the methods of [Keller 1994, Section 4.3] show that
the category Gr(A!) is equivalent to the full subcategory of exact complexes in
K(CoFree A!). Under the equivalence, a module M corresponds to a complete
cofree resolution C of M , that is, a complex C in K(CoFree A!) which is exact and
has its zeroth cycle module Z0(C) isomorphic to M .

Under the equivalence between Gr(A!) and the full subcategory of exact com-
plexes in K(CoFree A!), the suspension 6 on Gr(A!) corresponds to the ordinary
suspension 6 on K(CoFree A!), given by moving complexes one step to the left and
switching signs of differentials. Also, the functor (−)(1) on Gr(A!) corresponds to
the functor (−)(1) on K(CoFree A!) induced by degree shifting of A! -left-modules.

Proposition 2.5. The functors in (7) induce a pair of quasi-inverse equivalences of
triangulated categories

Gr(A!)
-� k⊥.

Proof. Remark 2.4 identifies Gr(A!) with the full subcategory of exact complexes
in K(CoFree A!), and Definition 1.2 defines k⊥ as a full subcategory of D(Gr A).
To prove the proposition, I must show that these subcategories are mapped to each
other by the functors F and G of equation (7).
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However, let N be in D(Gr A). Then the j-th graded component of the i-th
cohomology module of the complex GN is

hi (GN ) j

(a)
∼= HomK(Gr A! )(A! , 6i (GN )( j))
(b)
∼= HomK(CoFree A! )((A!)′(−d), 6i (GN )( j))
∼= HomK(CoFree A! )(6

−i (A!)′(−d − j), GN )

= (∗),

where (a) is classical and (b) holds because of A! ∼= (A!)′(−d); see Remark 0.2(vii).
Adjointness between F and G gives (c) in

(∗)
(c)
∼= HomD(Gr A)(F(6−i (A!)′(−d − j)), N )

(d)
∼= HomD(Gr A)(6

−i−d− j F((A!)′)(d + j), N )

∼= HomD(Gr A)(F((A!)′), 6i+d+ j N (−d − j))
(e)
∼= HomD(Gr A)(k, 6i+ j+d N (− j − d))

∼= hi+ j+d RHomA(k, N )− j−d ,

and (d) and (e) are by Lemma 2.3, parts (i) and (iii).
But now it is clear that GN is exact if and only if N is in k⊥, as desired. �

3. The BGG correspondence

Composing the equivalences of categories from Propositions 1.3 and 2.5 gives the
following main theorem of the paper.

Theorem 3.1 (The BGG correspondence). There are quasi-inverse equivalences
of triangulated categories

Gr(A!)
ϕ -�
γ

D(QGr A).

Example 3.2. If A is the polynomial algebra k[X1, . . . , Xd ] then it is classical that
A satisfies the conditions of Setup 0.1, and the definition of A! in Remark 0.2(iv)
makes it easy to see that A! is the exterior algebra E =

∧
(Y1, . . . , Yd). Also,

QGr(A) is equivalent to the category QCoh(Pd−1) of quasi-coherent sheaves on
(d − 1)-dimensional projective space by Serre’s theorem, [Artin and Zhang 1994,
Theorem, p. 229]. So Theorem 3.1 gives an equivalence of categories

Gr(E) ' D(QCoh Pd−1).
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This is the classical BGG correspondence, originally established in [Bernšteı̆n et al.
1978, Theorem 2], with the slight improvement of dealing with the stable category
of all modules and the unbounded derived category of quasi-coherent sheaves rather
than the finite subcategories in [Bernšteı̆n et al. 1978, Theorem 2].

Remark 3.3. The quasi-inverse equivalences ϕ and γ from Theorem 3.1 are con-
structed by composing some other functors. Untangling the construction gives the
following concrete descriptions.

To get ϕ(M), take a complete cofree resolution C of M . Then ϕ(M) = πF(C),
where F is one of the functors from equation (7) and π is one of the functors from
equation (2).

To get γ (M), consider G(Rω(M)), where Rω is one of the functors from equa-
tion (2) and G is one of the functors from equation (7). This is an object of
K(CoFree A!) and in fact, it is even in the full subcategory of exact complexes
of K(CoFree A!). Now γ (M) = Z0G(Rω(M)), where Z0 takes the zeroth cycle
module.

The next lemma follows immediately from Lemma 2.3, parts (i) and (ii).

Lemma 3.4. The functors ϕ and γ satisfy the following.

(i) ϕ(M(i)) ∼= 6i (ϕM)(−i).

(ii) γ (M( j)) ∼= 6 j (γ M)(− j).

For the following lemma, let L be the minimal free resolution of the graded A! -
left-module k. Each L i is finitely generated free and hence cofree because Remark
0.2(vii) implies A! ∼= (A!)′(−d). So L is a complex in K(CoFree A!), and I can
apply the functor F from equation (7) and get a complex F(L) in D(Gr A).

Lemma 3.5. The cohomology of F(L) is torsion.

Proof. The version of F from equation (5) respects small colimits because it is con-
structed using tensor products and small coproducts. In the category of complexes
Ch(Gr A!), the object L is the colimit of the objects

L〈 j〉 = · · · −→ 0 −→ L− j
−→ · · · −→ L0

−→ 0 −→ · · · ,

so

(8) F(L) ∼= F(colim L〈 j〉) ∼= colim F(L〈 j〉).

Now, A! is Koszul by [Beilinson et al. 1996, Proposition 2.9.1], and L is the
minimal free resolution of k over A! , and so

(9) L−i ∼=

∐
A!(−i).

This implies that L−i is concentrated in graded degrees i, . . . , d + i because A!

is concentrated in graded degrees 0, . . . , d by Remark 0.2(v). So the construction
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in Remark 2.1 says that F(L〈 j〉) is Tot
∐

of a double complex whose nonzero part
can be sketched as

(10)

A(d + j) ⊗ L− j
d+ j

A(d + j − 1) ⊗ L− j
d+ j−1

6

- · · ·

...

6

- · · · - · · · - A(d) ⊗ L0
d

A( j) ⊗ L− j
j

6

- · · · - · · · -
...

6

· · · - A(1) ⊗ L0
1

6

A ⊗ L0
0.

6

Also, combining equation (9) with A! ∼= (A!)′(−d), which holds by Remark
0.2(vii), gives L−i ∼=

∐
(A!)′(−d − i). So, up to degree shift and suspension, the

(−i)-th column of (10) is just a coproduct of copies of the column obtained from
(A!)′. This column has nonzero part

A ⊗ (A!)′0

...

6

A(−d) ⊗ (A!)′
−d ,

6

and is a free resolution of the A-left-module k, as follows from [Beilinson et al.
1996, Theorem 2.12.5(iii)]. So the columns of (10) have cohomology only at the
top ends, and the cohomology in the (−i)-th column is

∐
k(d + i).

Now consider the first spectral sequence of the double complex (10) (see [Weibel
1994, Section 5.6]). The previous part of the proof shows that the E2-term of the
spectral sequence is nonzero only at the top ends of the columns of (10), where

E0d
2

∼=

∐
k(d), . . . , E− j,d+ j

2
∼=

∐
k(d + j).
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Since the double complex is bounded in all directions, the spectral sequence con-
verges towards the cohomology of Tot

∐
. Consequently, Tot

∐
of the double com-

plex has cohomology only in cohomological degree d, and this cohomology sits in
graded degrees −d, . . . ,−d − j .

But this Tot
∐

is F(L〈 j〉). So (8) now shows that F(L) has cohomology only in
cohomological degree d , and that this cohomology can be nonzero only in graded
degrees −d, −d − 1, . . . . In particular, the cohomology of F(L) is torsion. �

Now consider the graded A! -left-module k viewed as an object of Gr(A!), and
consider O, the “structure sheaf” in QGr(A) defined by O = π(A). Then O can also
be viewed as a complex in D(QGr A) concentrated in cohomological degree zero,
and the following result holds.

Theorem 3.6. The functor ϕ satisfies ϕ(k) ∼= O.

Proof. To get ϕ(k), I must take πF(C), where C is a complete cofree resolution of
the A! -left-module k, while F and π are the functors from equations (7) and (2);
see Remark 3.3.

For this, consider first the functors F and G from (7). Let X in K(CoFree A!)

be a cofree resolution of k. From [Beilinson et al. 1996, Theorem 2.12.5(iii)]
there follows F(X) ∼= A. Hence GF(X) ∼= G(A), and as F and G are quasi-inverse
equivalences of categories, this implies X ∼= G(A). But k is quasi-isomorphic to
X , so this shows that k is quasi-isomorphic to G(A). However, it is clear from the
construction of G in Remark 2.1 that G(A) is a complex of cofree modules placed
in nonnegative cohomological degrees. All in all, G(A) must be a cofree resolution
of k, so there is a canonical morphism k −→ G(A).

Now let L be a minimal free resolution of k as in Lemma 3.5, so there is a
canonical morphism L −→ k. Composing the morphisms L −→ k and k −→ G(A)

gives a morphism L −→ G(A) whose mapping cone C is easily seen to be a
complete cofree resolution of k.

The distinguished triangle L −→ G(A) −→ C −→ in K(CoFree A!) gives a
distinguished triangle

πF(L) −→ πFG(A) −→ πF(C) −→

in D(QGr A). Let me compute the three complexes here: The cohomology of
F(L) is torsion by Lemma 3.5, so πF(L) ∼= 0. And F and G are quasi-inverse
equivalences, so FG(A) is isomorphic to A, so πFG(A) ∼= π(A) = O.

Finally, πF(C) is ϕ(k) as mentioned above. So the distinguished triangle reads

0 −→ O −→ ϕ(k) −→ ,

proving ϕ(k) ∼= O. �
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4. Computations

This section contains computations, some involving the BGG correspondence,
which will be used on periodic injective resolutions in Section 5.

The following lemma is just a graded version of [Benson 1998, Cor. 2.5.4(ii)].

Lemma 4.1. Let M be in Gr(A!). There are canonical isomorphisms

HomGr(A! )(k, 6i M) −→ Exti
Gr(A! )

(k, M)

for i ≥ 1.

Lemma 4.2. Let M be in Gr(A!) and consider M = ϕ(M) in D(QGr A). Then

Exti
Gr(A! )

(k, M(−i + j)) ∼= Ext j
QGr(A)(O, M(i − j))

for i ≥ 1 and each j .

Proof. This is a simple computation,

Exti
Gr(A! )

(k, M(−i + j))
(a)
∼= HomGr(A! )(k, 6i M(−i + j))

(b)
∼= HomD(QGr A)(ϕk, ϕ(6i M(−i + j)))
(c)
∼= HomD(QGr A)(O, 6 j M(i − j))

= Ext j
QGr(A)(O, M(i − j)),

where (a) is by Lemma 4.1 and (b) is by the BGG correspondence, Theorem 3.1,
while (c) is by Theorem 3.6 and Lemma 3.4(i). �

For the following lemma, observe that the finitely generated graded modules
form a full subcategory gr(A!) of Gr(A!), and that the complexes which have
bounded cohomology consisting of objects from the category qgr(A) form a full
subcategory Df(QGr A) of D(QGr A).

Lemma 4.3. The subcategories gr(A!) and Df(QGr A) map to each other under
the BGG correspondence

Gr(A!)
ϕ -

�
γ

D(QGr A).

Proof. It is not hard to check that gr(A!) consists of the objects of Gr(A!) which
are finitely built from objects of the form k(i).

Similarly, Df(QGr A) consists of the objects of D(QGr A) which are finitely built
from objects of the form O( j).
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But under the BGG correspondence, k(i) corresponds to 6i O(−i) by Theorem
3.6 and Lemma 3.4(i), so the present lemma follows. �

Lemma 4.4. Let M be in Df(QGr A). Then for i � 0 I have

Ext j
QGr(A)(O, M(i − j)) ∼= HomQGr(A)(O, h j (M)(i − j))

for each j , where h j (M) is the j-th cohomology of M.

Proof. The algebra A has global dimension d by assumption, so qgr(A) has coho-
mological dimension at most d−1 by [Artin and Zhang 1994, Proposition 7.10(3)],
so Ext≥d

QGr(A)(O, N) = 0 holds for each N in qgr(A).
Moreover, A is even AS regular by assumption, so qgr(A) satisfies Serre van-

ishing by [Artin and Zhang 1994, Theorems 8.1(1) and 7.4]. That is, given N in
qgr(A) and given p with 1 ≤ p ≤ d − 1, I have Extp

QGr(A)(O, N(r)) = 0 for r � 0.
So given N, I can kill all the Extp

QGr(A)(O, N(r)) with p ≥ 1 by choosing r large
enough. That is, given N in qgr(A), I have

(11) r � 0 ⇒ Extp
QGr(A)(O, N(r)) = 0 for p ≥ 1.

There is a convergent spectral sequence

E pq
2 = Extp

QGr(A)(O, hq(M)(i − j)) ⇒ Extp+q
QGr(A)(O, M(i − j))

by [Weibel 1994, 5.7.9] (convergence because the cohomology h(M) is bounded).
By assumption on M, the finitely many nonzero hq(M)’s are in qgr(A). So equation
(11) implies that for i − j � 0, the term E pq

2 is concentrated on the line p = 0. So
the spectral sequence collapses and gives

(12) HomQGr(A)(O, hq(M)(i − j)) ∼= ExtqQGr(A)(O, M(i − j))

for i − j � 0 and each q .
Now observe that the isomorphism (12) also holds for q � 0, simply because

both sides are then zero. For the left-hand side, this is true because h(M) is
bounded. For the right-hand side, use that h(M) is bounded and that qgr(A) has
cohomological dimension at most d − 1.

So setting q equal to j , the isomorphism (12) holds for j � 0, and for other
values of j I can force i − j � 0 by picking i � 0, and then the isomorphism also
holds. That is,

HomQGr(A)(O, h j (M)(i − j)) ∼= Ext j
QGr(A)(O, M(i − j))

for i � 0 and each j , proving the lemma. �
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5. Periodic injective resolutions

This section shows how the BGG correspondence can be used to understand the
periodicity of certain injective resolutions over exterior algebras as a geometric
phenomenon.

I also show an analogous noncommutative example with much more compli-
cated behaviour, due to the more intricate nature of noncommutative geometry.

The commutative case. Denote by E the exterior algebra
∧

(Y1, . . . , Yd) over k,
and recall that gr(E) is the category of finitely generated graded E-left-modules.
The following result appears in [Eisenbud 2002, Theorem 2.2].

Theorem 5.1 (Eisenbud). Let M in gr(E) be without injective direct summands,
and suppose that the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0.
Then the minimal injective resolution I of M is periodic with period one in the

following sense: Up to isomorphism, I i is I 0(i) and ∂ i
I is ∂0

I (i).

In other words, up to isomorphism and degree shift, all the I i and all the ∂ i
I

are the same. (In fact, Eisenbud worked with minimal free resolutions, but using
Matlis duality on his result gives Theorem 5.1.)

This phenomenon can be understood geometrically in a very simple way, using
the BGG correspondence: The module M can be translated to a geometric object
on Pd−1, and since the Bass numbers of M are bounded, this object turns out to
have zero-dimensional support. Therefore the object is stable under twisting, that
is, tensoring by OPd−1(1), and translating back, this gives that M is its own first
syzygy, and periodicity of the minimal injective resolution follows.

In more detail, let A be the polynomial algebra k[X1, . . . , Xd ] so I am in the sit-
uation of Example 3.2. In particular, A! is the exterior algebra E =

∧
(Y1, . . . , Yd),

and QGr(A) is equivalent to QCoh(Pd−1), with the subcategory qgr(A) correspond-
ing to the subcategory coh(Pd−1) of coherent sheaves. Let M be in gr(E), and
suppose that the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0.
The BGG correspondence associates to M the object

M = ϕ(M) ∈ D(QCoh Pd−1).

In fact, Lemma 4.3 even says that only finitely many of the cohomologies h`(M)

are nonzero, and that each h`(M) is coherent.
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For i ≥ 1 I have

µi (M) = dimk ExtiE(k, M)(13)
(a)
=

∑
j

dimk ExtiGr(E)(k, M(−i + j))

(b)
=

∑
j

dimk Ext j
QCoh(Pd−1)

(OPd−1, M(i − j))

= (∗),

where in (a), I am being clever by using the degree shift −i + j instead of simply
j , and where (b) is by Lemma 4.2. And for i � 0 I have

(14) (∗) =

∑
j

dimk HomQCoh(Pd−1)(OPd−1, h j (M)(i − j))

by Lemma 4.4.
It follows that if µi (M) is bounded for i ≥ 0, then for each j ,

dimk HomQCoh(Pd−1)(OPd−1, h j (M)(i − j))

is bounded for i ≥ 0. Hence for each j ,

(15) dimk HomQCoh(Pd−1)(OPd−1, h j (M)(`))

is bounded for ` � 0. However, this is now a geometric statement: For ` � 0, the
polynomial growth rate of the numbers in equation (15) equals the dimension of
the support of h j (M) on Pd−1, as follows from [Hartshorne 1977, Theorem I.7.5].
So it follows that each of the finitely many nonzero h j (M) has zero-dimensional
support; in other words, the support is a finite collection of points.

Now suppose that the ground field k is infinite. Then it is possible to pick a
hyperplane H in Pd−1 which is disjoint from the support of each h j (M). To H
corresponds an injection OPd−1(1) ↪→ OPd−1 which is an isomorphism away from
H . Tensoring over OPd−1 with M gives a morphism

M ⊗ OPd−1(1)
µ

−→ M ⊗ OPd−1,

and h j (µ) is h j (M) ⊗ OPd−1(1) −→ h j (M) ⊗ OPd−1 . However, this is an isomor-
phism for each j because OPd−1(1) ↪→ OPd−1 is an isomorphism away from H and
hence an isomorphism on the support of each h j (M). So µ is an isomorphism in
D(QCoh Pd−1), proving

M(1) ∼= M.
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Under the BGG correspondence this gives γ (M(1)) ∼= γ (M), and using γ (M) =

γ ϕ(M) ∼= M and Lemma 3.4(ii) this can be rearranged as

(16) 6M ∼= M(1)

in Gr(E).
In Gr(E), the suspension 6M is computed as the first syzygy of M in an injective

resolution; see Remark 2.4. So equation (16) shows that in Gr(E), this first syzygy
is just M itself, with a degree shift of one. It is possible to improve this with a
few remarks: First, if M is without injective direct summands, then it is not hard
to show that the isomorphism (16) lifts to hold in Gr(E), if 6M is obtained as the
first syzygy in a minimal injective resolution of M . Secondly, the assumption that
k is infinite can be dropped using [Grothendieck 1965, Proposition 2.5.8].

Iterating equation (16) now shows that in the minimal injective resolution I of
M , the syzygy 6i M is simply M(i). Hence the module I i must be I 0(i), and the
differential ∂ i

I must be ∂0
I (i). So I have recovered Theorem 5.1.

The noncommutative case. In the above argument, the minimal injective resolu-
tion is periodic with period one because points in Pd−1 are invariant under twisting.
It is known that this invariance breaks down when one passes to noncommutative
analogues of Pd−1.

Here the twist can move points, and it is possible to have orbits of length n,
for any finite n, and orbits of infinite length. So it is natural to expect that suitable
noncommutative analogues of the above argument might give examples of algebras
A! , analogous to E , and modules M where µi (M) is bounded for i ≥ 0, and yet
where the minimal injective resolution of M is periodic with period n, or aperiodic.
Indeed, this turns out to hold.

Note that the following example of this behaviour is already known from [Smith
1996]. But the present geometric view through the BGG correspondence is new.

Setup 5.2. Assume that the ground field k is algebraically closed. Let C be an
elliptic curve over k with a line bundle L of degree d , and an automorphism τ

given by translation by a point of C . Let A be the Sklyanin algebra associated to
these data in [Smith 1996, Sec. 8].

Remark 5.3. Note that A satisfies the standing assumptions from Setup 0.1. In
fact, A is a noncommutative analogue of the polynomial algebra on d variables
k[X1, . . . , Xd ], and hence the Koszul dual A! is a noncommutative analogue of
the exterior algebra

∧
(Y1, . . . , Yd).

Remark 5.4. The construction of A in [Smith 1996, Sec. 8] is so that the curve
C sits inside P(A′

1). So each point p on C is also a point in P(A′

1), that is, a one
dimensional subspace of A′

1. This subspace has an annihilator p⊥ in A1, and the
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graded A-left-module P〈p〉 = A/Ap⊥ is a so-called point module. That is, it is
cyclic, and each graded piece in nonnegative degrees is one dimensional.

Let me now use the functor π from Remark 1.1 to write

M〈p〉 = π(P〈p〉).

This is an object of qgr(A), and I view it as a complex concentrated in cohomo-
logical degree zero. This complex is an object of D(QGr A), so finally the BGG
correspondence gives the object

M〈p〉 = γ (M〈p〉)

in Gr(A!). In fact, M〈p〉 viewed as an object of D(QGr A) is in the subcategory
Df(QGr A), so Lemma 4.3 says that M〈p〉 is even in gr(A!).

Observe that M〈p〉 is only well-defined up to isomorphism in Gr(A!), so when
looking at M〈p〉 as a graded A! -left-module, I can drop any injective direct sum-
mands, and so assume that M〈p〉 is without injective direct summands.

Let me start by pointing out the following property of the modules M〈p〉.

Proposition 5.5. The Bass numbers µi (M〈p〉) are bounded for i ≥ 0.

Proof. By a computation like the one in equations (13) and (14), it follows that for
i � 0 I have

µi (M〈p〉) =

∑
j

dimk HomQGr(A)(O, h j (M〈p〉)(i − j)) = (∗).

However, the complex M〈p〉 is just the object M〈p〉 placed in cohomological de-
gree zero, so

(∗) = dimk HomQGr(A)(O, M〈p〉(i)) = (∗∗),

and since M〈p〉 is π(P〈p〉) and i is large, this is

(∗∗) = dimk P〈p〉i = 1

by [Artin and Zhang 1994, Theorem 8.1(1) and Proposition 3.13(2)], because the
algebra A is AS regular. �

Now some computations with the M〈p〉’s.

Lemma 5.6. The module M〈p〉 determines p.

Proof. It is certainly true that M〈p〉 determines M〈p〉 ∼= ϕ(M〈p〉). In turn, M〈p〉

determines the tail P〈p〉≥n for n � 0, because when viewing M〈p〉 as an object of
qgr(A), I have

(17) P〈p〉≥n ∼= ωπ(P〈p〉)≥n = ω(M〈p〉)≥n
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for n � 0 by [Artin and Zhang 1994, Theorem 8.1(1) and Proposition 3.13(2)].
But P〈p〉≥n determines p by [Smith 1996, Sec. 8]. �

Lemma 5.7. Recall d and τ from Setup 5.2. The modules M〈p〉 satisfy

6(M〈p〉) ∼= M〈τ 2−d p〉(1)

in Gr(A!).

Proof. In [Smith 1996, Example 9.5] is proved

P〈p〉≥1(1) ∼= P〈τ 2−d p〉,

and applying π shows
M〈p〉(1) ∼= M〈τ 2−d p〉

because π only sees the tail of a module. Applying γ and Lemma 3.4(ii), this can
be rearranged to the lemma’s isomorphism

6(M〈p〉) ∼= M〈τ 2−d p〉(1).

�

Lemma 5.8. If 6i (M〈p〉) ∼= M〈q〉( j) holds in Gr(A!) for some points p and q on
C , then i = j .

Proof. The lemma’s isomorphism implies ϕ(6i (M〈p〉)) ∼= ϕ(M〈q〉( j)), and using
Lemma 3.4(i) and ϕ(M〈p〉) = M〈p〉, this becomes 6i (M〈p〉) ∼= 6 j (M〈q〉)(− j).
Since the cohomologies of M〈p〉 and M〈q〉 are concentrated in cohomological de-
gree zero, this is only possible with i = j . �

Finally, these lemmas can be used as follows. If there is to be periodicity in the
sense

(18) 6i (M〈p〉) ∼= M〈p〉( j)

in Gr(A!) for some i and j , then i = j by Lemma 5.8. Moreover, 6i (M〈p〉) ∼=

M〈τ (2−d)i p〉(i) holds by Lemma 5.7. Substituting into equation (18) gives

M〈τ (2−d)i p〉(i) ∼= M〈p〉(i),

hence M〈τ (2−d)i p〉∼= M〈p〉, and as M〈p〉 determines p by Lemma 5.6, this implies

τ (2−d)i (p) = p.

Conversely, τ (2−d)i (p) = p gives

6i (M〈p〉) ∼= M〈τ (2−d)i p〉(i) ∼= M〈p〉(i)

in Gr(A!) by Lemma 5.7.
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Summing up, if d , τ and p are so that τ (2−d)i (p) 6= p for i = 1, . . . , n − 1 but
τ (2−d)n(p) = p, then in Gr(A!) the suspension 6i (M〈p〉) is not a degree shift of
M〈p〉 for i = 1, . . . , n − 1, but 6n(M〈p〉) is M〈p〉(n).

And if d, τ and p are so that τ (2−d)i (p) 6= p for i ≥ 1, then in Gr(A!) the
suspension 6i (M〈p〉) is not a degree shift of M〈p〉 for i ≥ 1.

Using that M〈p〉 contains no injective direct summands, this easily lifts to give
the same result in Gr(A!) for syzygies in minimal injective resolutions. So I get
the following example which shows the promised contrast to Theorem 5.1 with
respect to periodicity of minimal injective resolutions.

Example 5.9. (1) Let d , τ and p be so that τ (2−d)i (p) 6= p for i = 1, . . . , n − 1
but τ (2−d)n(p) = p.

Then the minimal injective resolution I of M〈p〉 is periodic with period n,
in the sense that in the resolution, the i-th syzygy 6i (M〈p〉) is not isomorphic
to a degree shift of M〈p〉 for i = 1, . . . , n −1, but the n-th syzygy 6n(M〈p〉)

is isomorphic to M〈p〉(n).
Hence up to isomorphism, I n is I 0(n) and ∂n

I is ∂0
I (n), while the same is

not true with any smaller value of n.

(2) Let d, τ and p be so that τ (2−d)i (p) 6= p for i ≥ 1.
Then the minimal injective resolution I of M〈p〉 is aperiodic, in the sense

that in the resolution, no syzygy 6i (M〈p〉) is a degree shift of M〈p〉 for i ≥ 1.
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