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We study the set of integer solutions to the modular diophantine inequality
ax mod b ≤ x.

Introduction

Given x ∈ Q, we set dxe = min{z ∈ Z | z ≥ x} and bxc = max{z ∈ Z | z ≤ x},
as usual. Given integers m, n with n > 0, we set m mod n = m − nbm/nc and
m mod (−n) = m mod n. A modular diophantine inequality is an expression of
the form ax mod b ≤ x with a, b integers such that b 6= 0. Since ax mod b ≥ 0,
the set S of solutions to such an inequality is contained in the set N of nonnegative
integers. S is a numerical semigroup, that is, S is closed under addition, 0 ∈ S and
N \ S is finite. Not every numerical semigroup arises from a modular diophantine
inequality, and Section 2 presents a procedure for testing numerical semigroups
for this property. Theorem 12 is crucial for obtaining this algorithm, and thus
Section 1 is devoted to it. One of the main consequences of this theorem is that if
the inequalities ax mod b ≤ x and cx mod d ≤ x have the same solutions, then

b − (a, b) − (a−1, b) = d − (c, d) − (c−1, d),

where (x, y) denotes the greatest common divisor of the integers x and y.
A numerical semigroup S is said to be modular with modulus b and factor a if

S ={x ∈N |ax mod b≤ x}. The preceding remark ensures that b−(a, b)−(a−1, b)

is an invariant of S, which we call the weight of S and denote by w(S).
If S is a numerical semigroup, the largest integer not in S is called the Frobenius

number of S and is denoted by g(S). This integer has been widely studied; see for
instance [Brauer 1942; Brauer and Shockley 1962; Johnson 1960; Selmer 1977;
Sylvester 1884; Curtis 1990; Davison 1994; Djawadi and Hofmeister 1996]. In this
direction it is worth highlighting [Ramírez Alfonsín 2000; ≥2005], where a review
of this problem is given, with many references. In the literature one can also find a
large number of publications devoted to the study of one-dimensional analytically
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irreducible local domains via their value semigroups, which are numerical semi-
groups; see, for instance, [Apéry 1946; Barucci et al. 1997; Bertin and Carbonne
1977; Delorme 1976; Fröberg et al. 1987; Kunz 1970; Teissier 1973; Watanabe
1973]. As a consequence of this study, some interesting kinds of numerical semi-
groups arise, such as symmetric and pseudo-symmetric numerical semigroups. In
Section 1 we prove that a modular numerical semigroup S is symmetric if and only
if w(S) = g(S), and pseudo-symmetric if and only if g(S) = w(S) + 1. Sections
3 and 4 are devoted to modular numerical semigroups with modulus equal to their
weight plus two and three, respectively. We show that those of weight plus two
are obtained from a symmetric numerical semigroup by adjoining its Frobenius
number to it, and that those with weight plus three arise from a pseudo-symmetric
numerical semigroup by adding to it its Frobenius number and this number divided
by two.

In Section 5 we study those modular numerical semigroups S such that the
factor of S divides the modulus. For these numerical semigroups we can explicitly
give formulas for the multiplicity, the minimal generator set, the Apéry set and the
Frobenius number, so the case a |b is now well understood.

Section 6 addresses the problem of computing the Frobenius number in the
complementary case a -b, solving it when (a−1)(a − (b mod a)) < b. We have
not been able to solve the general case.

1. Modular numerical semigroups

Let a and b be integers such that b 6= 0. Since ax mod b = (a mod b)x mod b and
ax mod b = ax mod (−b), in order to study the solutions of ax mod b ≤ x , we
can assume that b is a positive integer and that 0 ≤ a < b.

Proposition 1. The set of integer solutions of a modular diophantine inequality is
a numerical semigroup.

Proof. Let a and b be two integers such that 0 ≤ a < b and let S = {x ∈ N |

ax mod b ≤ x}. Clearly 0 ∈ S, and if x is an integer greater than or equal to
b, then x ∈ S. Hence N \ S is finite. For x, y ∈ S, we have a(x + y) mod b ≤

ax mod b+ay mod b ≤ x + y, whence x + y ∈ S, so S is closed under addition. �

A numerical semigroup S arising as in the proposition is said to be modular.
The modular semigroup with modulus b factor a will be denoted by S(a, b); thus
S(a, b)={x ∈ N |ax mod b ≤ x}. When we write S(a, b) we will generally assume
tacitly that a and b are integers with 0 ≤ a < b.

Example 2. S(2, 3)= S(2, 4)={0, 2, 3, →}, where → means that all the elements
beyond 3 are in the set. Thus a and b don’t have to be unique.
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The goal of this section is to prove Theorem 12, which counts the natural
numbers absent from S(a, b). We prepare the ground with some simple results.

Lemma 3. Let a and b be integers such that 0 ≤ a < b. Then ax mod b ≤ x if and
only if (b + 1 − a)x mod b ≤ x .

Proof. If ax mod b ≤ x , there exist q, r ∈ N such that ax = qb +r with 0 ≤ r ≤ x .
Hence (b +1−a)x = (b +1)x −ax = bx −qb + x − r and (b +1−a)x mod b ≤

x − r ≤ x . The converse follows by interchanging a with b + 1 − a. �

Lemma 4. Let S be a modular numerical semigroup with modulus b ≥ 2. Then
there exists a positive integer a such that a ≤

1
2(b + 1) and S = S(a, b).

Proof. Write S = S(a, b) with 0 ≤ a < b. By Lemma 3, S = S(b + 1 − a, b), so
if a > 1

2(b + 1) we can replace a by b + 1 − a ≤
1
2(b + 1). Also if a = 0 we can

replace it by a = 1, since S = N for both these values of a. �

Lemma 5. Let a and b be integers such that 0 ≤ a < b and let x ∈ N. Then

a(b − x) mod b =

{
0 if ax mod b = 0,

b − (ax mod b) if ax mod b 6= 0,

and ax mod b > x implies that a(b − x) mod b < b − x . �

Corollary 6. If S = S(a, b) and x ∈ N \ S, then b − x ∈ S. �

Given a subset A of N, we denote by H(A) the complement N \ A, and by 〈A〉

the submonoid of N generated by A (the set of finite sums of elements of A).

Remark 7. If S = S(a, b) 6= N for positive a and b, then b−1 /∈ H(S), since
otherwise b − (b−1) = 1 would be an element of S. Moreover x ∈ S for all
integers x ≥ b. Therefore the Frobenius number g(S) is at most b − 2.

We now characterize the case g(S) = b−2. If g(S) = b−2, Corollary 6 implies
that b − (b − 2) = 2 ∈ S. Hence b is odd and S = 〈2, b〉. In addition, since 2 ∈ S,
2a mod b ≤ 2 and this leads to 2a > b, whence a > 1

2 b. But Lemma 4 says we
can take a ≤

1
2(b +1), which then means a =

1
2(b +1). Hence S = S( 1

2(b +1), b).
Conversely, if S = S(1

2(b + 1), b) with b odd, it is easy to check that S = 〈2, b〉

and thus g(S) = b − 2.

Example 8. Suppose b ≥ 2 and S = S(2, b). Then S =
{
0,

⌊ 1
2(b+1)

⌋
, →

}
. For

clearly {b, →} ⊆ S. Now take 0 < x < b. Then x ∈ S if and only if 2x mod b ≤ x .
However, 2x mod b = 2x if and only if 2x < b, and thus in this case x 6∈ S. If
2x ≥ b, then 2x mod b = 2x − b ≤ x , whence x ∈ S.

Lemma 9. Let S = S(a, b) and let x be an integer such that 0 ≤ x ≤ b. Then x and
b − x are both in S if and only if ax mod b ∈ {0, x}.
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Proof. If ax mod b /∈ {0, x}, Lemma 5 gives a(b − x) mod b = b − (ax mod b). If
x ∈ S, the right-hand side exceeds b − x (since ax mod b < x). Thus b − x /∈ S.

Conversely, if ax mod b = 0, clearly x ∈ S and also b − x ∈ S by Lemma 5;
whereas if ax mod b = x 6= 0, again x ∈ S, and Lemma 5 gives a(b − x) mod b =

b − (ax mod b) = b − x , so b − x ∈ S. �

Lemma 10. Let a and b be positive integers and x an integer such that 0 ≤ x < b.

(1) ax mod b = 0 if and only if x is a multiple of b/(a, b).

(2) ax mod b = x if and only if x is a multiple of b/(b, a−1). �

Lemma 11. Let S = S(a, b) with 0 < a < b. Let α = (b, a−1) and β = (b, a), and
let x be an integer such that 0 ≤ x ≤ b. Then

{x, b−x} ⊂ S ⇐⇒ x ∈

{
0,

b
α

, 2
b
α

, . . . (α−1)
b
α

,
b
β

, 2
b
β

, . . . , (β−1)
b
β

, b
}

=: X.

The cardinality of X is α + β.

Proof. The equivalence is just Lemmas 9 and 10 put together. To show there is no
duplication in the elements of X as written, note that (α, β) = 1. If sb/α = tb/β

for some s, t ∈ N, then sβ = tα = kαβ for some k ∈ N. Hence s = kα and t = kβ. �

Theorem 12. Let S = S(a, b) for some integers 0 ≤ a < b. Then

# H(S) =
b + 1 − (a, b) − (a−1, b)

2
.

Here as usual # denotes cardinality.

Proof. Let α, β and X be as in Lemma 11. By Corollary 6 and Lemma 11, for
0 ≤ x ≤ b, at most one of x , b−x lies in H(S), and it’s exactly one unless x ∈ X .
Thus # H(S) =

1
2(b + 1 − # X) =

1
2(b + 1 − α − β). �

Example 13. If p is an odd prime, # H(S(a, p))=
1
2(p−1) for all a with 1<a < p.

As an immediate consequence of Theorem 12 we obtain:

Corollary 14. Suppose S(a, b) = S(c, d). Then

b − (a, b) − (a−1, b) = d − (c, d) − (c−1, d).

Example 15. The converse of Corollary 14 is false. For instance, 〈4, 5, 6〉 =

S(3, 12) 6= S(2, 10) = 〈5, 6, 7, 8, 9〉.

Recall that we have defined the weight of S = S(a, b) as w(S) := b − (a, b) −

(a−1, b); by Theorem 12, this number equals 2 # H(S)−1, and so is an invariant
of S. Note that w(N) = −1. If S 6= N, we can choose a, b with 2 ≤ a < b; hence
(a, b)+(a−1, b)≤

1
2 b+

1
3 b < b, so w(S)≥ 1. Thus, like the Frobenius number, the
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weight of a modular numerical semigroup is at least 1, except for the case S = N,
where w(S) = g(S) = −1.

Theorem 12 and the inequality # H(S) ≥
1
2(g(S) + 1), valid for any numerical

semigroup S (see [Fröberg et al. 1987], for instance), yield:

Corollary 16. If S is a modular numerical semigroup, then w(S) is odd and greater
than or equal to g(S). �

In view of this, modular numerical semigroups S with w(S)=g(S) and g(S) odd,
or with w(S) = g(S)+1 and g(S) even, have minimal possible weight with respect
to their Frobenius numbers. The next result characterizes this kind of numerical
semigroup, but before proving it we need to recall some concepts.

A numerical semigroup S is symmetric if x ∈ N \ S implies g(S) − x ∈ S. It is
straightforward to prove that a symmetric numerical semigroup has odd Frobenius
number. A numerical semigroup is pseudo-symmetric if g(S) is even and x ∈ N\ S
implies that either x = g(S)/2 or g(S) − x ∈ S. A numerical semigroup S is
symmetric if and only if # H(S) =

1
2(g(S)+1), and pseudo-symmetric if and only

if # H(S) =
1
2(g(S) + 2)); see [Fröberg et al. 1987], for instance.

A numerical semigroup is irreducible if it cannot be expressed as the intersection
of two numerical semigroups containing it properly. In [Rosales and Branco 2003]
it is shown that S is irreducible if and only if S is symmetric or pseudo-symmetric
(depending on the parity of g(S)).

Corollary 17. Let S be a modular numerical semigroup.

(1) S is symmetric if and only if w(S) = g(S).

(2) S is pseudo-symmetric if and only if w(S) = g(S) + 1.

Proof. S is symmetric if and only if # H(S) =
1
2(g(S) + 1). By Theorem 12,

# H(S) =
1
2(w(S) + 1), whence S is symmetric if and only if g(S) = w(S). The

proof of (2) is analogous. �

Example 18. If b is an odd integer, there exists a modular numerical semigroup S
with w(S) = b. It suffices to take S = S(2, b+2), since w(S(2, b+2)) = b + 2 −

(2, b + 2) − (1, b + 2) = b + 2−1−1 = b.

2. Determining whether a numerical semigroup is modular

In this section we give a procedure for deciding whether a given numerical semi-
group is a modular numerical semigroup, and if so to express it in the form S(a, b).

Lemma 19. Let S be a modular numerical semigroup with modulus b and S 6= N.
Then b ≤ 12 # H(S) − 6.

Proof. As we saw right after Example 15, if a ≥ 2 we have (a, b)+(a−1, b) ≤
5
6 b.

By Theorem 12, # H(S) ≥
1
2(b + 1 −

5
6 b) and thus b ≤ 12 # H(S) − 6. �
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For a numerical semigroup S, the multiplicity of S, denoted by m(S), is the least
positive integer in S. Here is an immediate consequence of Lemma 11:

Lemma 20. For S = S(a, b),

b − m(S) ∈ S ⇐⇒ m(S) = min
{ b
(a, b)

,
b

(a−1, b)

}
.

Lemma 21. Let S be a modular numerical semigroup with modulus b. Then

b ≥ g(S) + m(S).

Proof. Since 1, 2, . . . , m(S)−1 are not in S, Corollary 6 ensures that b−m(S)+1,
. . . , b−1 are. But {b, m(S)} ⊂ S, so {b − m(S) + 1, →} ⊆ S. This implies that
g(S) ≤ b − m(S). �

Lemma 22. For S = S(a, b),

b = g(S) + m(S) ⇐⇒ m(S) 6= min
{ b
(a, b)

,
b

(a−1, b)

}
.

Proof. Follows from Lemmas 20 and 21. �

Now we have all the ingredients to give the algorithm announced at the start of
this section, to decide whether a numerical semigroup is of the form S(a, b), and if
so, produce such a pair (a, b) (or all such pairs with a ≤

1
2(b +1), if the algorithm

is not stopped after the first pair is found).

Algorithm 23. Given a numerical semigroup S distinct from N:

(1) Compute # H(S), g(S) and m(S).

(2) Set b = g(S) + m(S).

(3) For every a ∈ A :=


2 ≤ a ≤

1
2(b + 1),

a ∈ N b = 2 # H(S) + (a, b) + (a−1, b)−1,

m(S) < min{b/(a, b), b/(a−1, b)}


compute S(a, b); if S = S(a, b), return this answer and stop.

(4) Compute B =
{
b ∈ {k · m(S) | k ∈ N}

∣∣ 2 # H(S) + 1 ≤ b ≤ 12 # H(S) − 6
}
.

(5) For every b ∈ B

for every a ∈ Ab :=


2 ≤ a ≤

1
2(b + 1),

a ∈ N b = 2 # H(S) + (a, b) + (a−1, b)−1,

m(S) = min{b/(a, b), b/(a−1, b)}


compute S(a, b); if S = S(a, b), return this answer and stop.

(6) Return “S is not modular”.
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We briefly justify the correctness of Algorithm 23. In Steps (2) and (3) we check
whether S is a modular numerical semigroup with modulus g(S) + m(S), and the
correct working of these steps relies on Lemmas 4 and 22 and Theorem 12. If S is
not a modular numerical semigroup with modulus g(S) + m(S), Lemma 22 gives
m(S) = min{b/(a, b), b/(a−1, b)}. This implies that m(S) divides b. Theorem 12
states that b = 2 # H(S) + (a, b) + (a−1, b)−1, so b ≥ 2 # H(S) + 1; at the same
time b ≤ 12 # H(S) − 6 by Lemma 19. Therefore Steps (4) and (5) cover the case
b 6= g(S) + m(S).

Example 24. Let S = 〈3, 5〉. Then # H(S) = 4, g(S) = 7 and m(S) = 3. In Step
(2) we get b = 10. Step (3) yields A = {2, 3, 4}, then S(2, 10) = 〈5, 6, 7, 8, 9〉,
S(3, 10) = 〈4, 5, 7〉, and S(4, 10) = 〈3, 5〉 = S, so the algorithm returns S =

S(4, 10).

Example 25. Let S = 〈3, 8, 10〉. In this case # H(S) = 5, g(S) = 7 and m(S) = 3.
In Step (2) we obtain b = 10 and in Step (3), A = ∅. The only nonempty set Ab

with b ∈ B is A15 = {5}. Since S 6= S(5, 15) = 〈3, 7, 11〉, the algorithm returns No.

Example 26. Let S = 〈10, 11, 12〉. Then # H(S) = 25, g(S) = 49 and m(S) = 10.
In Step (2) we obtain b = 59 and A is empty. Computing B, we obtain

B = {60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180,

190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290}.

The only nonempty set Ab with b ∈ B is A60 = {6}. It turns out that S = S(6, 60).

Remark 27. If the input to Algorithm 23 is known to be symmetric, the procedure
can be improved, because if S = S(a, b) is symmetric then b must be equal to
g(S) + (a, b) + (a−1, b) (note that w(S) = g(S) by Corollary 17). A similar
argument applies to the pseudo-symmetric case.

Remark 28. The intersection
⋂n

i=1 S(ai , bi ) of n ≥ 1 modular numerical semi-
groups is a numerical semigroup; it need not be modular, as can be seen from
Example 25, since we can write 〈3, 8, 10〉 = 〈3, 4〉 ∩ 〈3, 5〉 = S(3, 8) ∩ S(4, 10).

Nor can every numerical semigroup be written as such an intersection: for
instance, 〈7, 8, 10, 13〉 is a symmetric, hence irreducible, numerical semigroup;
thus it cannot be an intersection of modular numerical semigroups other than by
being itself a modular numerical semigroup. Algorithm 23 says that it is not.

3. Modular numerical semigroups whose modulus is its weight plus two

We now study modular numerical semigroups S = S(a, b) whose modulus b equals
w(S)+2. Since b =w(S)+(a, b)+(a−1, b)≥w(S)+2, the condition b =w(S)+2
is equivalent to (a, b) = (a−1, b) = 1 (so b is odd), and it characterizes modular
numerical semigroups whose moduli are minimal with respect to their weights.
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Every numerical semigroup S is finitely generated (as an additive monoid). This
is easy to see — for instance, start with two relatively prime r, s ∈ S and then adjoin
all elements of S∩{0, 1, . . . , rs −1} as yet unaccounted for. Among all generating
sets one can of course choose one that is minimal, say M(S). A minute’s thought
shows that M(S) is characterized by containing exactly those nonzero elements of
S that cannot be expressed as a sum of two nonzero elements of S:

M(S) = (S \ {0}) \
(
(S \ {0}) + (S \ {0})

)
.

In particular, M(S) is unique. We set e(S) = # M(S) and call this number the
embedding dimension of S; the elements of M(S) are called minimal generators.

Proposition 29. Let S = S(a, b) with 2 ≤ a < b and (a, b) = (a−1, b) = 1. Then

(1) b = g(S) + m(S),

(2) # H(S) =
1
2(g(S) + m(S)−1),

(3) b is the largest minimal generator of S.

Proof. (1) We already know that b−1 ∈ S when 2 ≤ a < b. Hence m(S) 6= b. Using
Lemma 22, we get b = g(S) + m(S).

(2) Immediate from Theorem 12.

(3) First we prove that b is a minimal generator of S. Assume to the contrary that
b = x + y with x, y ∈ S \ {0}. Then ax mod b ≤ x and ay mod b ≤ y, and thus
(ax mod b) + (ay mod b) ≤ x + y = b. Since a(x + y) mod b = ab mod b = 0,
we deduce that (ax mod b)+ (ay mod b) ∈ {0, b}. Thus either ax mod b = x and
ay mod b = y, or ax mod b = 0 and ay mod b = 0. These two cases contradict
the two halves of Lemma 10.

To see that b is the largest minimal generator, take x ∈ S with x >b. By applying
(1) we obtain x > g(S) + m(S), which implies that x − m(S) > g(S); this forces
x −m(S) ∈ S. Thus x = m(S)+(x −m(S)) cannot be a minimal generator of S. �

Proposition 29 allows us to relate the modular numerical semigroups in question
with unitary extensions of symmetric numerical semigroups or UESY-semigroups
in short. A numerical semigroup S is a UESY-semigroup if there exists a symmetric
numerical semigroup S′ such that S′

⊂ S and #(S \ S′) = 1. In [Rosales ≥ 2005b]
this condition is shown to be equivalent to the existence of a symmetric numerical
semigroup S′ such that S = S′

∪ {g(S′)}. The following result also appears there.

Proposition 30. Let S be a numerical semigroup, S 6= N. The following conditions
are equivalent:

(1) S is a UESY-semigroup.

(2) # H(S) =
1
2(g(S)+m(S)−1) and g(S)+m(S) is a minimal generator of S. �
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A pseudo-Frobenius number [Rosales and Branco 2002] of a numerical semi-
group S is an integer x /∈ S such that x +s ∈ S for all s ∈ S\{0}. The set of pseudo-
Frobenius numbers of S is denoted by Pg(S), and its cardinality, called the type of
S, is denoted by t(S). Clearly g(S) ∈ Pg(S). Moreover S is symmetric if and only
if Pg(S)={g(S)}, and S is pseudo-symmetric if and only if Pg(S)={g(S), 1

2 g(S)};
see [Barucci et al. 1997; Fröberg et al. 1987], for instance.

In [Rosales ≥ 2005b] it is proved that if S is a UESY-semigroup distinct from
N, then t(S) = e(S)−1. This, plus Propositions 29 and 30, gives:

Corollary 31. Let S = S(a, b) be such that 2 ≤ a < b and (a, b) = (a−1, b) = 1.
Then t(S)= e(S)−1 and there exists a symmetric numerical semigroup S′ such that
S = S′

∪ {g(S′)}. �

Theorem 32. Let S = S(a, b). Then b = w(S) + 2 if and only if S is a UESY-
semigroup and b is a minimal generator of S.

Proof. If b =w(S)+2=b−(a, b)−(a−1, b)+2, we deduce (a, b)= (a−1, b)=1.
Corollary 31 then says that S is a UESY-semigroup, and Proposition 29 that b is a
minimal generator of S.

Conversely, if b is a minimal generator of S it equals g(S) + m(S), by Lemma
21 and the fact, shown in the proof of Proposition 29, that a minimal generator of S
cannot exceed g(S)+m(S). If S is a UESY, then, # H(S) =

1
2(g(S)+m(S)−1) by

Proposition 30 and # H(S) =
1
2(w(S)+ 1) by Theorem 12. Thus b = w(S)+ 2. �

Corollary 33. Let S be a modular numerical semigroup with modulus b. Then
b = w(S)+2 if and only if S \ {b} is a symmetric numerical semigroup. Therefore,
if b is a prime integer, S \ {b} is a symmetric numerical semigroup.

Proof. If b=w(S)+2, Theorem 32 says b is a minimal generator of S, so S′
= S\{b}

is a numerical semigroup with g(S′) = b. By Corollary 6, S′ is symmetric.
Conversely, if S \ {b} is a symmetric numerical semigroup, then S is a UESY-

semigroup with b as a minimal generator. Now Theorem 32 gives b = w(S) + 2.
Finally, b prime implies (a, b) = (a−1, b) = 1, so w(S) = b − 2. �

Corollary 34. Let b ≥ 3 be an integer. Then b is prime if and only if b is the largest
minimal generator of S(a, b) for every a such that 2 ≤ a ≤

√
b.

Proof. If b is prime Proposition 29 applies; this proves one direction. Conversely,
suppose b is not a prime — say b = ac with integers a, c ≥ 2 and a ≤

√
b. For

S = S(a, b), we have ac mod b = 0 and thus c ∈ S. But then b = ac cannot be a
minimal generator of S. �

4. Modular numerical semigroups whose modulus is its weight plus three

We now study modular numerical semigroups S = S(a, b) such that b = w(S)+3;
this condition is equivalent to (a, b) + (a−1, b) = 3. There are two cases:
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• (a, b) = 1 and (a−1, b) = 2.

• (a, b) = 2 and (a−1, b) = 1.

In both situations b must be even and by Corollary 6 we deduce that 1
2 b ∈ S.

Let S be a numerical semigroup with minimal generating set {n1, . . . , n p}. We
say that x ∈ S has a unique expression if the equality x = a1n1 +· · ·+ apn p, with
a1, . . . , ap ∈ N, determines a1, . . . , ap uniquely.

Proposition 35. Let S = S(a, b) be such that 2 ≤ a < b and (a, b)+ (a−1, b) = 3.

(1) m(S) 6=
1
2 b ⇔ S 6= {0, 1

2 b, →}⇔b =g(S)+m(S)⇔# H(S)=
g(S)+m(S)−2

2
.

(2) 1
2 b is a minimal generator of S.

(3) b has a unique expression in S.

Proof. (1) Follows easily from Corollary 6, Lemma 22 and Theorem 12.

(2) Suppose x + y =
1
2 b with x, y ∈ S. Then ax mod b ≤ x and ay mod b ≤ y,

whence ax mod b+ay mod b ≤ x + y =
1
2 b. Thus 1

2ab mod b = a(x + y) mod b =

ax mod b + ay mod b. We must show that x = 0 or y = 0. We distinguish two
cases. If (a, b) = 2, then 1

2ab mod b = 0, so ax mod b = 0 and ay mod b = 0; then
Lemma 10 shows that both x and y are multiples of 1

2 b, which leads to the desired
conclusion. Similarly, if (a−1, b) = 2, then 1

2ab mod b =
1
2 b, so ax mod b = x

and ay mod b = y; Lemma 10 again shows that x and y are multiples of 1
2 b.

(3) We prove that if x, y ∈ S\{0} are such that x+y =b, then x = y =
1
2 b. Arguing as

in the proof of Proposition 29(3), we see that either (ax mod b, ay mod y)= (x, y)

or ax mod b = ay mod y = 0. Lemma 10 implies that x and y are both multiples
of 1

2 b, and since x 6= 0 6= y, we conclude that x = y =
1
2 b. �

Paralleling what we did in Section 3 for the case b = w(S) + 2, we can use
Proposition 35 to relate modular numerical semigroups such that b = w(S) + 3
with a previous studied class of numerical semigroups. A numerical semigroup S is
called a PESPY-semigroup if there exists a pseudo-symmetric numerical semigroup
S′ such that S = S′

∪
{ 1

2 g(S′), g(S′)
}

(the two additional elements are the pseudo-
Frobenius numbers of S′; see [Barucci et al. 1997; Fröberg et al. 1987]).

Numerical semigroups of the form {0, x, →} with x a positive integer are called
intervals. The following result appears in [Rosales ≥ 2005a].

Proposition 36. Let S be a numerical semigroup that is not an interval. The
following conditions are equivalent:

(1) S is a PEPSY-semigroup.

(2) # H(S) =
1
2(g(S) + m(S) − 2), 1

2(g(S) + m(S)) is a minimal generator of S
and g(S) + m(S) is an element of unique expression of S. �
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The next result is an immediate consequence of Propositions 35 and 36.

Corollary 37. Let S = S(a, b) be such that 2 ≤ a < b, (a, b) + (a−1, b) = 3 and
S is not an interval. Then S is a PEPSY-semigroup.

In [Rosales ≥ 2005a] it is proved that if S is a PEPSY-semigroup that is not an
interval, then t(S) = e(S)−1. Thus:

Corollary 38. Let S = S(a, b) be such that 2 ≤ a < b, (a, b) + (a−1, b) = 3 and
S is not an interval. Then t(S) = e(S)−1.

Remark 39. Among numerical semigroups, interval semigroups have maximal
embedding dimension relative to multiplicity: e(S) = m(S). For any numerical
semigroup with maximal embedding dimension, t(S) = m(S)−1 = e(S)−1 (see
[Barucci et al. 1997], for instance). Hence the assumption “S is not an interval”
can be dropped from Corollary 38.

Theorem 40. Assume that S = S(a, b) is not an interval. Then b = w(S) + 3 if
and only if S is a PEPSY-semigroup, 1

2 b is a minimal generator of S and b has a
unique expression in S.

Proof. Necessity follows from Corollary 37 and Proposition 35. Sufficiency:
Lemma 21 says that b ≥ g(S)+m(S). If b > g(S)+m(S), then m(S)+(b−m(S))

and 1
2 b +

1
2 b are distinct expressions for b in S (m(S) 6=

1
2 b since otherwise S

is an interval, by Corollary 6). Therefore b = g(S) + m(S). By Proposition
36, we know that # H(S) =

1
2(g(S) + m(S) − 2) and Theorem 12 ensures that

# H(S) =
1
2(w(S) + 1), whence b = g(S) + m(S) = w(S) + 3. �

Corollary 41. Let S be a modular numerical semigroup with modulus b. Then
b = w(S)+3 if and only if S\

{ 1
2 b, b

}
is a pseudo-symmetric numerical semigroup.

Therefore, if b = 2p and a < p for some positive prime p, then S \
{ 1

2 b, b
}

is a
pseudo-symmetric numerical semigroup.

Proof. Suppose b = w(S)+3. By Theorem 40, 1
2 b is a minimal generator of S and

b has a unique expression in S. This implies that S′
= S \

{1
2 b, b

}
is a numerical

semigroup, and clearly g(S′) = b. Using Corollary 6 we can easily deduce that S′

is pseudo-symmetric.
Conversely, if S\

{1
2 b, b

}
is a pseudo-symmetric numerical semigroup, then S is

a PEPSY-semigroup by definition, 1
2 b is a minimal generator of S and b =

1
2 b+

1
2 b

is the unique expression of b in S. Thus b = w(S) + 3 by Theorem 40. �

5. When the factor divides the modulus

We next focus on numerical semigroups of the form S = S(a, ab), where we may
as well assume a, b > 1. First a general definition: given a numerical semigroup
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S and n ∈ S \ {0}, the Apéry set of n in S [Apéry 1946] is

Ap(S, n) = {s ∈ S | s − n 6∈ S}.

This set always has n elements w(0) = 0, w(1), . . . , w(n−1), where w(i) is the
least element congruent to i modulo n. Note also that x ∈ Z is an element of S if
and only if x ≥ w(x mod n). Consequently

(∗) g(S) = max(Ap(S, n)) − n.

The following result is a consequence of [Rosales 1996, Lemma 3.3] and gives
a characterization of Apéry sets which will be useful later.

Lemma 42. Let m > 0 be an integer and let X = {0 = w(0), w(1), . . . , w(m−1)}

be a subset of N such that i < w(i) ≡ i mod m for all i ∈ {1, . . . , m−1}. Let S be
the submonoid of N generated by X ∪ {m}. Then S is a numerical semigroup with
multiplicity m. Moreover, Ap(S, m) = X if and only if for all i, j ∈ {1, . . . , m−1}

there exist k ∈ {0, . . . , m−1} and t ∈ N such that w(i)+w( j) = w(k)+ tm. �

Getting back to S = S(a, ab), with a, b > 1, we will give a description of the
particular Apéry set Ap(S, m(S)) in terms of a, b, and this will lead to an explicit
formula for the Frobenius number of S. We also show how the minimal generating
set for such numerical semigroups can be computed from a and b as well as the
corresponding sets of pseudo-Frobenius numbers.

Lemma 43. m(S(a, ab)) = b.

Proof. Let S = S(a, ab) and let x ∈ {1, . . . , b−1}. Then ax < ab and thus ax mod
ab = ax > x , whence x 6∈ S. Clearly b ∈ S and consequently m(S) = b. �

Theorem 44. Ap(S(a, ab), b) = {0, k1b + 1, k2b + 2, . . . , kb−1b + b−1}, where
ki = d(a−1)i/be for all i ∈ {1, . . . , b−1}.

Proof. Let S′ be the semigroup generated by {b, k1b+1, . . . , kb−1b+b−1}. Since
ki ≥ 1 for all i ∈ {1, . . . , b−1} we have m(S′) = b. Clearly k1 ≤ · · · ≤ kb−1 and
ki + k j ≥ ki+ j for all i, j ∈ {1, . . . , b−1} with 2 ≤ i + j ≤ b−1. Using Lemma
42, we deduce that Ap(S′, b) = {0, k1b + 1, . . . , kb−1b + b−1}. Recall that x ∈ Z

belongs to S′ if and only if x ≥ kx mod bb + x mod b, since this latter number is
the element in Ap(S′, b) that is congruent to x modulo b. So, for x an integer
we have x ∈ S′

⇐⇒ bx/bc ≥ kx mod b ⇐⇒ bx/bc ≥ d(a−1)(x mod b)/be ⇐⇒

bx/bc ≥ (a−1)(x mod b)/b ⇐⇒ bx/bcb ≥ (a−1)(x mod b) ⇐⇒ x −(x mod b) ≥

(a−1)(x mod b)⇐⇒ a(x mod b)≤ x ⇐⇒ ax mod ab ≤ x . Thus S′
= S(a, ab). �

Using this result and equality (∗) with n = m(S), we obtain:

Corollary 45. g(S(a, ab)) =
⌈
(b−1)(a−1)/b

⌉
b − 1.
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Particularizing the formula given in Theorem 12 for the case at hand, we get

# H(S(a, ab)) =
a(b−1) − (a−1, b) + 1

2
.

Minimal generators. We next turn our attention to the minimal generating set
{n0 < n1 < · · · < n p} of S(a, ab). We know that n0 = b, by Lemma 43; our
goal is to describe the remaining minimal generators.

Lemma 46. Let x and y be positive integers. Then dx/be + dy/be = d(x + y)/be

if and only if x ≡ 0 mod b or y ≡ 0 mod b or (x mod b) + (y mod b) > b. �

Remark 47. If S is any numerical semigroup and m ∈ S\{0}, then S is generated by
X = (Ap(S, m)\{0})∪{m}= {m, w(1), . . . , w(m−1)}, and the minimal generating
set of S is X \ (X + X). Now, in the case of S = S(a, ab), Theorem 44 says
that Ap(S, b) = {0, k1b + 1, . . . , akb−1b + b−1}, with ki = d(a−1)i/be for all
i ∈{1, . . . , b−1}. Thus kt b+t is a minimal generator of S if and only if kt 6=ki+kt−i

for all i ∈ {1, . . . , t−1}.

Lemma 48. Let S = S(a, ab) with a, b > 1, set ki = d(a−1)i/be for all i ∈

{1, . . . , b−1} and take t ∈ {1, . . . , b−1}.

(i) If t < b/(a−1, b), then kt b + t is a minimal generator of S if and only if
(a−1)i mod b < (a−1)t mod b for all i ∈ {1, . . . , t−1}.

(ii) If t > b/(a−1, b), then kt b + t is not a minimal generator of S.

(iii) If t = b/(a−1, b), then kt b + t is a minimal generator of S.

Proof. Using Lemma 46 and Remark 47, we see that kt b+ t is a minimal generator
of S if and only if (a−1)i 6≡ 0 mod b and (a−1)i mod b+(a−1)(t − i) mod b ≤ b
for all i ∈ {1, . . . , t−1}. Observe that

(†)
b

(a−1, b)
=

lcm(a−1, b)

a−1
= min{i | (a−1)i mod b = 0}.

(i) From the foregoing we deduce that if t < b/(a−1, b), then kt b+t is a minimal
generator of S if and only if (a−1)i mod b + (a−1)(t−i) mod b ≤ b for all i ∈

{1, . . . , t−1}. If (a−1)i mod b+(a−1)(t −i) mod b = b, then (a−1)t mod b = 0,
which is impossible in view of (†), since t < b/(a−1, b). Hence kt b + t is a
minimal generator of S if and only if for all i ∈ {1, . . . , t−1} one has (a−1)i mod
b + (a−1)(t − i) mod b < b, which is equivalent to (a−1)i mod b + (a−1)(t −

i) mod b = (a−1)t mod b. Since (a−1)(t −i) mod b 6= 0, we conclude that kt b+t
is a minimal generator of S if and only if (a−1)i mod b < (a−1)t mod b for all
i ∈ {1, . . . , t−1}.

(ii) Let i = b/(a−1, b). Then (a−1)i ≡ 0 mod b and in view of Lemma 46 we get
ki + kt−i = kt , which implies that kt b + b is not a minimal generator of S.
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(iii) In this setting (a−1)t mod b=0 and (a−1)i mod b 6=0 for all i ∈{1, . . . , t−1}.
Hence for every i ∈{1, . . . , t−1} one gets (a−1)i mod b+(a−1)(t−i) mod b =b,
and by Lemma 46 we deduce that kt 6= ki +kt−i for any i ∈{1, . . . , t−1}. Therefore
kt b + t is a minimal generator of S. �

Lemma 48 yields an explicit description of the minimal generating set of S:

Theorem 49. Let S = S(a, ab) with a, b > 1, and set ki = d(a−1)i/be for i ∈

{1, . . . , b−1}.

(1) If (b, a−1) = 1, the minimal generating set of S is {b, kt1b+t1, . . . , ktr b+tr },
where {t1, . . . , tr } =

{
t ∈ {1, . . . , b−1}

∣∣ (a−1)i mod b < (a−1)t mod b for
all i ∈ {1, . . . , t−1}

}
.

(2) If (b, a−1) 6= 1, let tr+1 = b/(b, a−1). Then the minimal generating set
of S is {b, kt1b + t1, . . . , ktr b + tr , ktr+1b + tr+1}, where

{
t1, . . . , tr } = {t ∈

{1, . . . , tr+1−1}
∣∣ (a−1)i mod b<(a−1)t mod b for all i ∈{1, . . . , t−1}

}
. �

Example 50. Let S = S(5, 35). Applying Theorem 49(1) with a = 5 and b = 7, we
see that {t1, . . . , tr } = {1, 3, 5} (observe that 1 is always in {t1, . . . , tr }), and that S
is minimally generated by {7, 8, 17, 26}.

Example 51. Let S = S(5, 30). Applying Theorem 49(2) with a = 5 and b = 6, we
see that tr+1 = 3, {t1, . . . , tr } = {1}, and S is minimally generated by {6, 7, 15}.

Corollary 52. Let S = S(a, ab) with a, b > 1. Set ki = d(a−1)i/be for i ∈

{1, . . . , b−1}, and

t =

{
min {x ∈ N | (a−1)x ≡ b−1 mod b} if (b, a−1) = 1,

b/(b, a−1) if (b, a−1) 6= 1.

Then kt b + t is the greatest minimal generator of S. �

Corollary 53. Let a ≥ 3 and let b be a positive integer. Then e(S(a, ab)) ≥

bb/(a−1)c + 1.

Proof. The integer b is always a minimal generator of S(a, ab). Also, if (a−1)t ≤b,
then by Lemma 48, kt b + t is a minimal generator of S. �

Pseudo-Frobenius numbers. For any numerical semigroup S, we define an order
≤S on S as follows: a ≤S b if b−a ∈ S. Given a subset A of S, denote by Max≤S A
the set of maximal elements of A with respect to ≤S . The following result appears
in [Rosales and Branco 2002].

Lemma 54. Let S be any numerical semigroup with multiplicity m. If

Max≤S (Ap(S, m)) = {wi1, . . . , wit },

the pseudo-Frobenius numbers of S (page 387) are precisely wi1 −m, . . . , wit −m.
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Note that if w, w′
∈ Ap(S, m) and w − w′

∈ S, this forces w − w′ to be in
Ap(S, m) as well. Hence

Max≤S (Ap(S, m))

=
{
w ∈ Ap(S, m) | w + w′

6∈ Ap(S, m) for all 0 6= w′
∈ Ap(S, m)

}
.

Let S = S(a, ab) with a, b > 1. Our aim is to compute the set Max≤S (Ap(S, b))

and thus, in view of Lemma 54, the pseudo-Frobenius set Pg(S).

Remark 55. By Theorem 44, ki b+ i 6∈ Max≤S (Ap(S, b)) if and only if there exists
j ∈ {1, . . . , b−1} such that i + j ≤ b−1 and ki + k j = ki+ j . Minimal generators
are ≤S-minimal elements of Ap(S, b), which is why the condition just stated is
similar (dual) to the one presented on the previous page for minimal generators.

Theorem 56. Let a and b be two integers greater than one, and let S = S(a, ab).
Let ki = d(a−1)i/be for i ∈ {1, . . . , b−1}. Then ki b + i ∈ Max≤S (Ap(S, b)) if and
only if one of the following conditions hold:

(i) (a−1)i ≡ 0 mod b and i = b−1,

(ii) (a−1)i 6≡ 0 mod b and for all t ∈ {i + 1, . . . , b−1}, either (a−1)i mod b <

(a−1)t mod b or (a−1)t mod b = 0.

Proof. Assume that (a−1)i ≡ 0 mod b and i < b−1. Then by Lemma 46, we
deduce that ki + k1 = ki+1 and thus ki b + i 6∈ Max≤S (Ap(S, b)). If (a−1)i 6≡

0 mod b, then by Lemma 46 we have ki bi + i ∈ Max≤S (Ap(S, b)) if and only if
for all t ∈ {i + 1, . . . , b−1} we have (a−1)(t − i) 6≡ 0 mod b and (a−1)i mod
b + (a−1)(t − i) mod b ≤ b. If (a−1)i mod b + (a−1)(t − i) mod b < b, then
(a−1)i mod b + (a−1)(t − i) mod b = (a−1)t mod b and thus (a−1)i mod b <

(a−1)t mod b. If (a−1)i mod b+(a−1)(t−i) mod b=b, then (a−1)t mod b=0.
To prove the converse, assume ki b + i 6∈ Max≤S (Ap(S, b)). Then there exists

t ∈ {1+ i, . . . , b−1} such that ki + kt−i = kt . By using Lemma 46, we deduce that
(a−1)i ≡0 mod b or (a−1)(t−i)≡0 mod b or (a−1)i mod b+(a−1)(t−i) mod
b > b. If (a−1)i ≡ 0 mod b, then i must be equal to b−1, but this is impossible
since t ∈ {i + 1, . . . , b−1}. If (a−1)(t − i) ≡ 0 mod b, then (a−1)i mod b =

(a−1)t mod b, which is also impossible by hypothesis. Finally if (a−1)i mod b+

(a−1)(t − i) mod b > b, then (a−1)t mod b = (a−1)i mod b+(a−1)(t − i) mod
b − b < (a−1)i mod b, leading again to a contradiction. �

Example 57. Let S = S(5, 30). Applying Theorem 56 we get Max≤S (Ap(S, 6)) =

{29}, which by Lemma 54 means that Pg(S) = {23}. Thus S(5, 30) is symmetric.

Proposition 58. Let S = S(a, ab) with a, b > 1.

(1) S is symmetric if and only if (a−1, b) + (a−1) mod b = b.

(2) S is pseudo-symmetric if and only if (a−1, b) + (a−1) mod b = b + 1.
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Proof. (1) Combining Corollaries 45 and 17(1), we see that S is symmetric if
and only if

⌈
(b−1)(a−1)/b

⌉
b−1 = ab−a − (a−1, b). The left-hand side can be

written as
(
a−1−b(a−1)/bc

)
b−1= (a−1)b−b(a−1)/bcb−1=ab−b−(a−1−

(a−1) mod b)−1. Thus S is symmetric if and only if (a−1) mod b+(a−1, b)=b.

(2) As above, but this time using Corollary 17(2). �

Corollary 59. Let k be a positive integer and let b be a multiple of k. Then
S(b − k + 1 + bn, (b − k + 1 + bn)b) is symmetric for all n ∈ N. �

The pseudo-symmetric case is completely different:

Corollary 60. S(a, ab) is not pseudo-symmetric for any choice of a, b > 1.

Proof. Set q = b(a−1)/bc and choose u, v ∈ Z such that (a−1, b) = u(a−1)+vb.
If S(a, ab) is pseudo-symmetric, we have (a−1, b)+(a−1) mod b = b+1, hence
u(a−1) + vb + (a−1) − qb = b + 1, or yet (u + 1)(a−1) + (v − q−1)b = 1. But
this implies (a−1, b) = 1 and hence 1+(a−1) mod b = b+1, an impossibility. �

Some families. We now present some families of numerical semigroups of the
form S(a, ab) with a, b > 1 such that (a−1, b) = 1. For these families we can
compute the minimal generating set and pseudo-Frobenius numbers explicitly. As
a consequence of Theorems 49 and 56 one gets:

Proposition 61. Let S = S(a, ab) with a, b > 1 and (a−1, b) = 1. Set ki =

d(a−1)i/be for i ∈ {1, . . . , b−1} and take t ∈ {1, . . . , b−1}.

(1) kt b+t is a minimal generator of S if and only if (a−1)i mod b <(a−1)t mod
b for all i ∈ {1, . . . , t−1}.

(2) kt b + t ∈ Max≤S (Ap(S, b)) if and only if (a−1)t mod b < (a−1)i mod b for
all i ∈ {t + 1, . . . , b−1}.

Let Sn be the symmetric group in n elements {1, . . . , n}, and for k relatively
prime to n + 1, define the permutation σk,n+1 ∈ Sn by σ(i) = ki mod (n + 1) for
i = 1, . . . , n. Such a permutation is called modular. Next, given any permutation
σ ∈ Sn , set

E(σ ) = {t ∈ {1, . . . , n} | σ(i) < σ(t) for all i ∈ {1, . . . , t−1}},

T(σ ) = {t ∈ {1, . . . , n} | σ(t) < σ(i) for all i ∈ {t+1, . . . , n}}.

With this notation we can rewrite Proposition 61 as follows.

Corollary 62. Let S = S(a, ab) with a, b > 1 and (a−1, b) = 1. Then

e(S) = # E(σa−1,b) + 1 and t(S) = # T(σa−1,b).

The minimal generating set of S is {b} ∪
{
d(a−1)i/beb + i

∣∣ i ∈ E(σa−1,b)
}
, and

Max≤S (Ap(S, b)) =
{
d(a−1)i/beb + i

∣∣ i ∈ T(σa−1,b)
}
.
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Example 63. Let S = S(6, 42). Apply Corollary 62 with a = 6 and b = 7. Clearly
σ5,7 = (154623), E(σ5,7)={1, 4} and T(σ5,7)={3, 6}. Hence e(S)=3 and t(S)=2.
The set {7, d(5×1)/7e7+1, d(5×4)/7e7+4} = {7, 8, 25} is a minimal generating
set of S and Max≤S (Ap(S, 7)) = {d(5 × 3)/7e7 + 3, d(5 × 6)/7e7 + 6} = {24, 41}.

Corollary 64. Let S = S((b−1) + bn, ((b−1) + bn)b) with n ∈ N and b ≥ 5 odd.
Then S is minimally generated by

{
b, (n + 1)b + 1,

( b−1
2 + n b+1

2

)
b +

b+1
2

}
, and

Max≤S (Ap(S, b)) =
{( b−1

2 + n b−1
2

)
b +

b−1
2 , ((b − 2) + n(b−1))b + b−1

}
.

Proof. Since (b − 2 + bn, b) = (b − 2, b) = 1, we can apply Corollary 62. By
inspection we see that E(σb−2,b)={1, (b+1)/2} and T(σb−2,b)={(b−1)/2, b−1}.
We can conclude the proof using Corollary 62, taking into account that⌈

((b − 2) + bn)1
b

⌉
=n+1,

⌈
((b − 2) + bn)(b ± 1)/2

b

⌉
=

b−1
2

+n
b ± 1

2
, and

⌈
((b − 2) + bn)(b−1)

b

⌉
= (b − 2) + n(b−1). �

Corollary 65. Let b be an integer greater than or equal to two and let n ∈ N.
Then S = S((n + 1)b, (n + 1)b2) is minimally generated by {b, (n + 1)b + 1} and
Max≤S (Ap(S, b)) = {(n + 1)(b−1)b + b−1}.

Proof. Use Corollary 62 and the fact that σ(n+1)b−1,b = σb−1,b swaps i and b−i . �

Corollary 66. Let S = S(2 + nb, (2 + nb)b) with n ∈ N and b ≥ 2. Then S is
minimally generated by

X = {b, (n + 1)b + 1, (2n + 1)b + 2, . . . , ((b−1)n + 1)b + b−1}

and Max≤S (Ap(S, b)) = X \ {b}.

Proof. Use Corollary 62 and the fact that σ1+nb,b = σ1,b is the identity. �

Corollary 67. Let S = S(3 + nb, (3 + nb)b) with and n ∈ N b ≥ 3 odd. Then S
is minimally generated by

{
b, (n + 1)b + 1, (2n + 1)b + 2, . . . ,

( b−1
2 n + 1

)
+

b−1
2

}
and

Max≤S (Ap(S, b)) =
{(b+1

2 n + 2
)

b +
b+1

2 , . . . , ((b−1)n + 2)b + b−1
}
.

Proof. By considering σ2+bn,b = σ2,b we see that E(σ2,b) =
{
1, . . . , 1

2(b−1)
}

and
T(σ2,b) =

{ 1
2(b+1), . . . , b−1

}
. Using Corollary 62, the proof follows easily from⌈

(2 + bn)i
b

⌉
b =

{
(ni + 1)b + i if i ≤

1
2(b−1),

(ni + 2)b + i if i ≥
1
2(b+1).

�
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6. The Frobenius number in other special cases

In Section 5 we studied S(a, b) with a |b. We now give some partial results for the
Frobenius number in the complementary case, a -b. We are able to find the number
when (a−1)(a − (b mod a)) < b. We use without further comment the fact that,
for q a rational number and x a positive integer, x < dqe implies x < q .

Lemma 68. Let S = S(a, b) with 0 < a < b and b mod a 6= 0. Then

g(S(a, b)) ≤ b − db/ae.

Proof. Let x be a positive integer. If x < db/ae, then x < b/a and thus ax mod b =

ax > x . Hence x 6∈ S and in view of Corollary 6, this leads to b − x ∈ S. As y ∈ S
for all y ≥ b, we conclude that g(S) ≤ b − db/ae. �

Lemma 69. Let a and b be positive integers such that a < b and b mod a 6= 0.
Then adb/ae mod b = a − (b mod a). �

Proposition 70. Let a and b be positive integers such that a < b and b mod a 6= 0.
Then g(S(a, b)) = b − db/ae if and only if (a−1)(a − (b mod a)) < b.

Proof. Let S = S(a, b). From Lemma 68 we deduce that g(S) = b − db/ae if and
only if b−db/ae 6∈ S, or in other words, a(b−db/ae) mod b > b−db/ae. This by
Lemma 69 is equivalent to ((b mod a)−a) mod b > b−db/ae, and this condition
holds if and only if b + (b mod a)−a > b −bb/ac−1. Hence g(S) = b −db/ae if
and only if bb/ac + 1 + (b mod a) > a, or equivalently (b − (b mod a))/a + 1 +

(b mod a) > a, and this holds if and only if b > (a−1)(a − (b mod a)). �

Corollary 71. Let a and b be positive integers such that a < b,b mod a 6= 0 and
(a−1)(a − (b mod a)) < b. Then m(S(a, b)) = db/ae.

Proof. Let S = S(a, b). By Proposition 70, we know that g(S) = b −db/ae. Thus
b−db/ae 6∈ S and thus by Corollary 6, db/ae = b− (b−db/ae) ∈ S. Besides, if x
is a positive integer such that x < db/ae, then x < b/a, whence ax mod b = ax > x
and thus x 6∈ S. Therefore m(S) = db/ae. �

Though we have given an explicit formula for g(S(a, b)) for several cases, we
have not been able to find such a formula for arbitrary positive integers a and b.
We propose this as an open question.

Problem 1. Find a formula for g(S(a, b)) with a and b positive integers.
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