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For Galois covers of P1 of a given ramification type — essentially, a given
monodromy group G and branch locus, assumed to be defined over R —
we ask: How many covers are defined over R and how many are not? J.-P.
Serre showed that the number of all Galois covers with given ramification
type can be computed from the character table of G. We adapt Serre’s
method of calculation to the more refined situation of Galois covers defined
over R, for which there is a group-theoretic characterization due to P. Dèbes
and M. Fried. We obtain explicit answers to our problem. As an application,
we exhibit new families of covers not defined over their field of moduli, the
monodromy group of which can be chosen arbitrarily large. We also give
examples of Galois covers defined over the field Qtr of totally real algebraic
numbers with Q-rational branch locus.

Introduction

By Riemann’s Existence Theorem there is a bijective correspondence between
isomorphism classes of Galois covers f : X → P1

C
of the projective line with

Galois group G and branch points t1, . . . , tr ∈P1(C) and r -tuples (g1, . . . , gr )∈G
of generators of G satisfying the relation g1 · · · gr = 1. Fixing an r -tuple C =
(C1, . . . ,Cr ) of conjugacy classes of G, we say f is of type C if the corresponding
r -tuple (g1, . . . , gr ) ∈ G has the extra property that there exists a permutation σ
such that gi ∈ Cσ(i) for i = 1, . . . , r .

An important and well-known formula proved by Serre [1992, Chapter 7] com-
putes the number of r -tuples (g1, . . . , gr ) ∈ G with gi ∈ Ci for i = 1, . . . , r and
such that g1 · · · gr = 1. In many cases, this formula can be used to compute the
number of isomorphism classes of G-covers of P1 of type C, with branch points
t1, . . . , tr ∈ P1(C). This formula has proved to be particularly powerful in the
classical rigid situation and led, for instance, to the realization over Q of most
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of the sporadic groups (see [Malle and Matzat 1999, Chapter II] for a systematic
investigation of this method).

Here we consider the refined problem of counting the number of those G-covers
of P1 with fixed branch locus and for which the field of the real numbers R is a
field of definition. We also consider the related problem of how many G-covers
have their field of moduli contained in R. For these two questions P. Dèbes and
M. Fried [1994] showed that there is also a group theoretic characterization: the
r -tuples (g1, . . . , gr ) ∈ G should satisfy some additional conditions, involving the
involutions of G (see Section 1).

We generalize Serre’s formula and use Dèbes and Fried’s results to give a general
formula for the number of r -tuples (g1, . . . , gr ) ∈ G corresponding to G-covers
f : X→ P1 with given branch locus and which are defined over R. In the general
situation, this formula is more complicated than the one given by Serre. In order to
simplify it and make it effective, we consider two special cases separately, where
the branch locus consists either only of real points or only of pairs of complex
conjugate points. We then give several applications.

Thus, we deal with the existence of G-covers which are not defined over their
field of moduli. Some criteria are already known that guarantee that the field of
moduli is a field of definition, for instance when Z(G) is a direct summand of G
[Coombes and Harbater 1985, Proposition 2.8]. Most of these results rely on a
cohomological approach (see [Dèbes 1995], [Dèbes and Douai 1997] or [Wewers
2002], for instance); ours is different and leads to criteria — one of them being
an easy-to-check group-theoretic condition — for G-covers not to be defined over
their field of moduli. Applying these criteria, we exhibit infinite families of groups
for which one can always find such G-covers.

We also explain how to use our computations to descend from C to the field
Qtr of all totally real algebraic numbers. It is known, by [Dèbes and Fried 1994,
Theorem 5.7], that each finite group is the Galois group of a regular extension of
Qtr(X) but the proof does not show this can be done with a branch point divisor t
defined over Q. Our method — when it works — enables us to choose t this way.
We conclude by considering the case of the Mathieu group M11.

The paper is organized as follows. In Section 1 we introduce the main tools. In
Section 2 we state the results and make some remarks. Section 3 is devoted to the
proofs and Section 4 to examples and applications.

1. Preliminaries

Notations. For a finite group G, denote:

– the set of all inner automorphisms of G by Int(G).
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– the set of all elements of order ≤ 2 in G by Inv(G).

– the set of all the irreducible complex characters of G by Irr(G) and the trivial
character of G by χ1.

– for all g ∈ G the centralizer of g in G by CenG(g).

Recall that a G-cover with group G is a pair ( f, α), where f : X→P1 is a Galois
cover with group G and α : Aut( f )→ G is a group isomorphism. One can attach
certain invariants to each G-cover of P1

C
: the monodromy group G, the branch

point set t = {t1, . . . , tr } ⊂ P1(C) (which we sometimes view as a divisor (t1)+
· · ·+(tr ) on P1) and for each t ∈ t the associated inertia canonical conjugacy class
Ct . To summarize this, we will sometimes say the G-cover being considered has
ramification type [G,C, t]; see [Völklein 1996, Definition 2.12, p. 37]. Adopting
the topological point of view, recall what these invariants correspond to: given
t = {t1, . . . , tr }, introduce a topological bouquet γ of P1

C
\ t , that is, an r -tuple of

homotopy classes of loops γ1, . . . , γr based at some point t0 /∈ t such that

– γ1, . . . , γr generate the topological fundamental group π top
1 (P1(C)\ t, t0)with

the single relation γ1 · · · γr = 1,

– γi is a loop revolving once counterclockwise about ti , for i = 1, . . . , r .

Now, considering a G-cover f : X→P1
C

, the monodromy action defines a permu-
tation representation π top

1 (P1(C) \ t, t0)→ Per( f −1(t0)). The image group G of
this representation is the monodromy group (equivalently, the Galois group) of f
and the conjugacy class Cti of the image of γi in G is the inertia canonical class
corresponding to ti , i = 1, . . . , r .

For any integer r ≥ 3 let Ur
⊂ (P1

C
)r be the subset of (P1

C
)r consisting of

all r -tuples t ′ = (t1, . . . , tr ) ∈ (P1
C
)r such that ti 6= t j for 1 ≤ i 6= j ≤ r . Let

Ur = Ur/Sr be the quotient space of Ur by the natural action of the symmetric
group Sr , and let πr :Ur→Ur/Sr be the canonical projection. Given a finite group
G let ψr,G : Hr,G → Ur be the coarse moduli space (or the fine moduli space if
Z(G)= {1}) for the category of G-covers of P1

C
with group G and r branch points,

where ψr,G is the application which to a given isomorphism class of G-covers
associates its branch point set. For any r -tuple C = (C1, . . . ,Cr ) of nontrivial
conjugacy classes in G let Hr,G(C) be the corresponding Hurwitz space [Fried and
Völklein 1991], that is the union of irreducible components of Hr,G parametrizing
the isomorphism classes of G-covers with ramification type [G,C, t]. A point(
h, (t1, . . . , tr )

)
of the fiber product Hr,G(C)×Ur Ur then corresponds to a G-cover

given with an ordering of its branch points, which allows us to define a monodromy
application

M : Hr,G(C)×Ur Ur
−→ {C1, . . . ,Cr }

r ,

(h, (t1, . . . , tr )) 7−→ (Ct1, . . . ,Ctr ).
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This application, being continuous, is constant on each connected component of
Hr,G(C)×Ur Ur . So, M−1(C) is a union of connected components of Hr,G(C)×Ur

Ur ; we will denote this variety by H′r,G(C). We have a cartesian square

H′r,G(C)
5r- Hr,G(C)

Ur

ψ ′r,G
? πr - Ur

ψr,G
?

We will freely use the general theory of Hurwitz spaces (see [Fried and Völklein
1991] and [Völklein 1996], for instance), and only recall here the description of the
fibers of ψr,G and ψ ′r,G in terms of Nielsen classes Ni(C,G) and straight Nielsen
classes SN(C,G). Recall that

Ni(C,G)=
{
(g1, . . . , gr ) ∈ Gr

∣∣∣ G = 〈g1, . . . , gr 〉, g1 · · · gr = 1, and
∃σ ∈ Sr such that gi ∈ Cσ(i) for i = 1, . . . , r

}
and SN(C,G) is defined likewise but with the requirement that σ be the identity.
We use the notations ni(C,G) and sn(C,G) for the corresponding quotient sets
modulo the componentwise action of Int(G).

Given t ∈Ur , it is a classical result that (ψr,G)
−1(t) is in bijection with ni(C,G).

Furthermore, if we choose an ordering of the branch points t ′ = (t1, . . . , tr ) in t ,
sn(C,G) is in bijection with (ψ ′r,G)

−1(t ′). The correspondence is given by the
monodromy action. We will sometimes say abusively that a G-cover with branch
point set t ∈Ur (C) is in ni(C,G)when its isomorphism class has ramification type
[G,C, t] or that, if an ordering t ′ = (t1, . . . , tr ) ∈ Ur (C) is given, a G-cover is in
sn(C,G) when Ci is the inertia canonical class associated with ti for i = 1, . . . , r .

Convention. Since we are interested in G-covers defined over R, we will always
suppose the branch point divisor is real, that is, it consists of r = r1+ 2r2 branch
points, of which

– r1 real branch points t1, . . . , tr1 , assumed to be in the order t1 < · · ·< tr1 , and

– r2 complex conjugated pairs {zi , z̄i }⊂P1(C)\P1(R). We will generally write
zi = tr1+i and z̄i = tr+1−i for i = 1, . . . , r2. We may also, if needed, order
these pairs according to their real and imaginary parts.

Two subsets of SN(C,G) will play an important role later. SNmod,R(C; r1, r2)

consists of those (g1, . . . , gr ) in SN(C,G) satisfying the condition that there exists
g0 ∈ G such that

(1–1)
g0(g1 · · · gi )g−1

0 = (g1 · · · gi )
−1 for i = 1, . . . , r1− 1,

g0gr1+i g−1
0 = g−1

r+1−i and g0gr+1−i g−1
0 = g−1

r1+i for i = 1, . . . , r2.
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SNR(C; r1, r2) consists of those (g1, . . . , gr ) in SNmod,R(C; r1, r2) for which g0

can be chosen from Inv(G).
As above we write snmod,R(C; r1, r2) and snR(C; r1, r2) for the corresponding

quotient sets modulo the action of Int(G). We have∣∣SNR(C; r1, r2)
∣∣= ∣∣snR(C; r1, r2)

∣∣ [G : Z(G)].
We will also need the sets 6mod,R(C; r1, r2) and 6R(C; r1, r2), which are de-

fined like SNmod,R(C; r1, r2) and SNR(C; r1, r2), but dropping the generating con-
dition G = 〈g1, . . . , gr 〉. It follows readily from the definitions that

∣∣snR(C; r1, r2)
∣∣= ∣∣SNR(C; r1, r2)

∣∣
[G : Z(G)]

≤

∣∣6R(C; r1, r2)
∣∣

[G : Z(G)]
,

so computing the cardinality of the “6-versions”, which is easier, gives an upper
bound for

∣∣SNmod,R(C; r1, r2)
∣∣ and

∣∣SNR(C; r1, r2)
∣∣. Moreover, in lots of situa-

tions SNmod,R(C; r1, r2)=6
mod,R(C; r1, r2) and SNR(C; r1, r2)=6

R(C; r1, r2);
see Remark 2.7.

One of the main results of [Dèbes and Fried 1994] is that, given t ′ ∈Ur ordered
according to the Convention above, there exists an identification (9 ′r,G)

−1(t ′) '
sn(C,G), as recalled above, such that snmod,R(C; r1, r2) is exactly the set of those
G-covers in sn(C,G) whose field of moduli is contained in R, and snR(C; r1, r2)

is the set of those G-covers in sn(C,G) that are defined over R.
A complete proof of this can be found in [Dèbes and Fried 1994]. We only recall

the main ideas. Let t ∈Ur (R) be a real branch point divisor ordered according to the
convention. The first step consists in describing the action of complex conjugation
c on the fundamental group π top

1 (P1(C) \ t, t0) of P1(C) \ t , which we denote by
π top. One can find 01, . . . , 0r ∈ π

top that generate π top with the single relation
01 · · ·0r = 1 and complex conjugation c acts on π top by Hurwitz’s formulas (see
[Malle and Matzat 1999], for instance):

(1–2)
c0i = 01 · · ·0i−10

−1
i (01 · · ·0i−1)

−1 for i = 1, . . . , r1,

c0r1+i = 0
−1
r+1−i for i = 1, . . . , r2.

We will denote by C the formal operator that maps each component 0i of an r -tuple
(01, . . . , 0r ) to the right-hand term of the formulas (1–2) (that is, c0i = 0

C
i for

i =1, . . . , r ). Let�/C(X) be the maximal algebraic extension of C(X) unramified
outside t; this is a Galois extension with group Gal(�/C(X)) =: π alg. And by
Riemann’s Existence Theorem we get an isomorphism π̂ top ' π alg, where π̂ top is
the profinite completion of π top [Serre 1992].

The second step is a necessary and sufficient condition for the “descent from
C to R”: Since the branch point divisor is real, �/R(X) is Galois with group
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Gal(�/R(X)) =: πR. Furthermore, since P1 has real points, the short exact se-
quence (1–3) below splits and πR ' π

alg o Z/2Z. Now, if K/C(X) is the function
field extension of an algebraic G-cover f : X → P1 and ψ : π alg

→ G is the
corresponding epimorphism, f can be defined over R (so f is in SNR(C; r1, r2))
if and only if there exists a map ψ̃ such that the diagram

(1–3)

1 - π alg - πR
- Z/2Z - 1

G

ψ
??��

.....
.....

.....
....

∃
ψ̃

commutes. For all ψ ∈ Hom(π alg,G), write gi = ψ(0i ) for i = 1, . . . , r . Then ψ
extends to ψ̃ ∈ Hom(π alg o Z/2Z,G) if and only if there exists g0 ∈ Inv(G) for
which g0gi g0= gC

i for i = 1, . . . , r ; see [Dèbes and Fried 1994, Lemma 3.3]. This
provides the condition in the definition of SNR(C; r1, r2).

Furthermore, if f : X→P1
C

corresponds to (g1, . . . , gr ) ∈ SN(C,G), then f c
:

X c
→P1

C
corresponds to (gC

1 , . . . , gC
r )∈SN(CC,G). So the set of all isomorphism

classes of G-covers with field of moduli contained in R and branch points t ′ in
sn(C,G) corresponds to snmod,R(C; r1, r2). The extra condition g2

0=1 that appears
in SNR(C; r1, r2) comes from Weil’s cocycle condition [Weil 1956].

Remark. If we fix t ∈Ur (R), the real points in the fiber (ψr,G)
−1(t) correspond to

G-covers whose field of moduli is contained in R. So, when working with moduli
spaces, it is no longer possible to distinguish between G-covers defined over R and
those that only have their field of moduli contained in R. Some information is lost.

2. Statements and remarks

Our main results are estimates of the cardinality of SNR(C; r1, r2). What we actu-
ally compute is not

∣∣SNR(C; r1, r2)
∣∣ but

∣∣6R(C; r1, r2)
∣∣, which is an upper bound

for
∣∣SNR(C; r1, r2)

∣∣. In the sequel, we will always assume 6R(C; r1, r2) 6=∅.

We distinguish three situations, depending on the configuration of branch points:

(R) r2 = 0 (real configuration).

(C) r1 = 0 (complex pairs configuration).

(R-C) r1, r2 ≥ 0 (general configuration).

Though (R) and (C) are just special cases of (R-C), they allow us to compute∣∣6R(C; r1, r2)
∣∣ more easily, and the formulas obtained are much simpler than in

the general case.

To make the formulas more legible, we will write:

– Zi for the order of the centralizer of any element in the conjugacy class Ci .
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– χ ∈ Irr(G)r for any r -tuple (χ1, . . . , χr ) ∈ Irr(G)r .

– u ∈ Inv(G)r for any r -tuple (u0, . . . , ur−1) ∈ Inv(G)r .

We also fix g1, . . . , gr ∈ G with gi ∈ Ci for i = 1, . . . , r .

Theorem 2.1 (Configuration (R): Real branch points). For all χ ∈ Irr(G)r set

Iχ =
∑

u∈Inv(G)r/∼G

χ1(u0u1)χ2(u1u2) · · ·χr (ur−1u0),

where Inv(G)r/∼G is the quotient set of the equivalence relation on Inv(G)r that
identifies two r-tuples u, u′ ∈ Inv(G)r if (u0, . . . , ur−1) = g.(u′0, . . . , u′r−1) for
some g ∈ G. Also set

nR(C; r, 0)=
1

Z1 · · · Zr

∑
χ∈Irr(G)r

χ1(g1) · · ·χr (gr ) Iχ .

Then ∣∣6R(C; r, 0)
∣∣= nR(C; r, 0).

Remark 2.2. This formula can be improved to give∣∣snR(C; r, 0)
∣∣= |Z(G)|
|G|Z1 · · · Zr

∑
χ∈Irr(G)r

χ1(g1) · · ·χr (gr ) I ∗χ ,

where I ∗χ is defined as Iχ with the only difference that the summation domain
is the subset of Inv(G)r/∼G consisting of those r -tuples of representatives u ∈
Inv(G)r/∼G such that G = 〈u0u1, . . . , ur−2ur−1〉. This condition does not depend
on the representative u since, if g · u ∈ Inv(G)r for some g ∈ G then gui gui+1 =

(gui )
−1gui+1 = ui ui+1 for i = 0, . . . , r − 2.

Theorem 2.3 (Configuration (C): Complex conjugate branch points). For χ ∈
Irr(G) and g0 ∈ G, denote by

αχ,g0

|CenG(g0)|

the number of occurrences of the trivial representation in the decomposition of
χ |CenG(g0) into a direct sum of irreducible linear representations; thus

αχ,g0=

∑
u∈CenG(g0)

χ(u)

(see [Serre 1978]). Also set

Aχ =
∑

g0∈Inv(G)/∼Z(G)

αχ,g0,
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where Inv(G)/∼Z(G) is defined like Inv(G)r/∼G in Theorem 2.1 and

nR(C; 0, s)=
|C1| · · · |Cs |

|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−1 Aχ .

Then ∣∣6R(C; 0, s)
∣∣≤ nR(C; 0, s),

with equality if 6R(C; 0, s)= SNR(C; 0, s).

Theorem 2.4 (Configuration (R-C): Real and complex conjugate branch points).
For r1, r2 > 0, set

nR
0 (C; r1, r2)=

∑
χ ,α,β,u

α(gr1)
∏r2

i=1 β(gr1+i )

β(1)r2−1

r1−1∏
i=1

(χi (gi )χi (ui−1ui ))

×

∑
x∈G

α(ur1−1x−1u0x)β(x),

where the first summation is taken over all χ ∈ Irr(G)r1−1, all α, β ∈ Irr(G) and all
u in the quotient of Inv(G)r1 by an equivalence relation ∼ to be defined in Section
3.3. Also set

nR(C; r1, r2)=
|Cr1+1| · · · |Cr1+r2 |

|G| Z1 · · · Zr1

nR
0 (C; r1, r2).

Then ∣∣6R(C; r1, r2)
∣∣≤ nR(C; r1, r2).

Note that for r2 = 0 or r1 = 0 the formulas in this theorem reduce to those in
the preceding two theorems, so long as (for r1= 0) we replace u ∈ Inv(G)r1/∼ by
u0 ∈ Inv(G)/∼G and g1, ur1−1 by u0.

Remark 2.5. For a fixed t ∈Ur (R), the invariants of G and C on which the number
of real G-covers in SN(C,G) depends clearly appear in Theorems 2.1, 2.3 and 2.4.
Compared with Serre’s formula for the basic rigidity criterion, one can notice the
important part played by the involutions of G.

Remark 2.6. From a practical point of view, the terms depending on involutions
make formulas in configurations (R) and (R-C) complicated for direct computa-
tions. On the contrary, nR(C; 0, s) is easy to compute once the character table of
G and the centralizers of its involutions are known. When SNR(C; 0, s) is properly
contained in 6R(C; 0, s), the number nR(C; 0, s) only gives an upper bound for∣∣6R(C; 0, s)

∣∣, but we explain in the next remark how this difficulty can be handled.

Remark 2.7. One can proceed as in the classical rigidity context, generalizing the
method given in [Serre 1992] to evaluate

∣∣snR(C; r1, r2)
∣∣ from

∣∣6R(C; r1, r2)
∣∣:

(1) Evaluate
∣∣6R(C; r1, r2)

∣∣ by nR(C; r1, r2), using the character table of G.
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(2) Compute
∣∣6R(C; r1, r2)

∣∣− ∣∣SNR(C; r1, r2)
∣∣, by finding r -tuples

(g1, . . . , gr )= g ∈6R(C; r1, r2)

that do not generate G (to do this, try to find r -tuples the entries of which
are contained in a maximal subgroup of G). But we have to be careful: when
an r -tuple g ∈ 6R(C; r1, r2) \ SNR(C; r1, r2) has been found, the following
should be done.

– In situation (R): g has to be counted once as in the classical rigidity method.
– In situation (C): an extra difficulty arises from the computation of Aχ . One

has to compute CenG(〈g1, . . . , g2s〉) and notice that g corresponds to one
single class of Inv(G)/ ∼CenG(〈g1,...,g2s〉). If this class can be written as the
union of n classes of Inv(G)/∼Z(G), then g has to be counted n times.

– Situation (R-C) is dealt with like situation (C).

The best situation is obviously when 6R(C; r1, r2) = SNR(C; r1, r2). This oc-
curs, for instance, when each nontrivial conjugacy class of G appears at least
once in C or, more generally, when C is g-complete [Fried 1995], that is, when
G = 〈g1, . . . , gr 〉 for all choices gi ∈Ci , i = 1, . . . , r . Then Theorem 2.3 provides∣∣snR(C; r1, r2)

∣∣ directly. Moreover, if 6(C,G) = SN(C,G), one can also com-
pute

∣∣sn(C,G)
∣∣ with Serre’s formula [1992], and hence the proportion of G-covers

defined over R, namely ∣∣sn(C,G)
∣∣∣∣snR(C; r1, r2)
∣∣ .

Remark 2.8. As in the rigidity context,
∣∣sn(C,G)

∣∣ and
∣∣snR(C; r1, r2)

∣∣ provide
information about the field of moduli of the associated G-covers. For instance, the
condition

∣∣sn(C; r1, r2)
∣∣ = ∣∣snR(C; r1, r2)

∣∣ (under some technical assumptions)
leads to G-covers defined over Qtr; see Section 4.2.1 and Section 4.2.2 for appli-
cations of this. Similarly, when sn(C,G) contains a G-cover f defined over Qtr

and satisfying some other technical conditions,
∣∣snR(C; r1, r2)

∣∣ is an upper bound
for the degree of a field extension K/Q over which f is defined; see [Dèbes 1995,
Theorem 4.1].

Remark 2.9. As in Theorems 2.1, 2.3 and 2.4, one can give formulas for G-covers
with field of moduli contained in R. They can be proved just like the ones for G-
covers defined over R, using in the proof, instead of condition (1–1), the equivalent
condition that there exist g0 ∈ G such that g2

0 ∈ Z(G) and

(2–1)
(g0g1 · · · gi )

2
= g2

0 for i = 1, . . . , r1− 1,

g0gr1+i g−1
0 = g−1

r+1−i for i = 1, . . . , r2.
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We write Z(G)1/2={g ∈G | g2
∈ Z(G)}. We state the results for configurations

(R) and (C) only:

(R) Set Er,G = {u ∈ Gr
| ∃g0 ∈ Z(G)1/2; u2

i = g2
0 for i = 0, . . . , r − 1}/∼G and

I mod
χ =

∑
u∈Er,G

χ1(u0u−1
1 )χ2(u1u−1

2 ) · · ·χr (ur−1u−1
0 ) for any χ ∈ Irr(G)r ,

nmod,R(C; r, 0)=
1

Z1 · · · Zr

∑
χ∈Irr(G)r

χ1(g1) · · ·χr (gr ) I mod
χ .

Then
∣∣6mod,R(C; r, 0)

∣∣= nmod,R(C; r, 0).

(C) Set Amod
χ =

∑
g0∈Z(G)1/2/∼Z(G)

αχ,g0 for any χ ∈ Irr(G) and

nmod,R(C; 0, s)=
|C1| · · · |Cs |

|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−1 Amod
χ .

Then
∣∣6mod,R(C; 0, s)

∣∣≤ nmod,R(C; 0, s), with equality if 6mod,R(C; 0, s)=
SNmod,R(C; 0, s).

3. Proofs

We give the proofs of Theorems 2.1 and 2.3 in detail; for Theorem 2.4, we just
explain the main changes, in particular we give the description of 6R(C; r1, r2)

we use so as to explain the definition of ∼. For a detailed proof of Theorem 2.4,
see [Cadoret 2004].

Following Serre’s method, we will compute
∣∣6R(C; r1, r2)

∣∣ using the function

ε =
1
|G|

∑
χ∈Irr(G)

χ(1)χ,

which is 1 on 1G and 0 elsewhere.

Lemma 3.1. Given a finite group G, an irreducible character χ ∈ Irr(G) and
g1, . . . , gn, u, v ∈ G, we have∑

(γ1,...,γn)∈G

χ(ugγ1
1 · · · g

γn
n v)=

|G|n
∏n

i=1 χ(gi )

χ(1)n
χ(uv).

Proof. Let R : G→ GL(V ) be a linear irreducible representation of G with char-
acter χ . Then∑

γ∈G

R(ugγ1
1 · · · g

γn
n v)= R(u)

( ∑
γ1∈G

R(gγ1
1 ) · · ·

∑
γn∈G

R(gγn
n )

)
R(v).
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But, for any g, h ∈ G,∑
γ∈G

R(gγ )R(h)=
∑
γ∈G

R(gγ h)=
∑
γ∈G

R(hgh−1γ )

= R(h)
∑
γ∈G

R(gh−1γ )= R(h)
∑
γ∈G

R(gγ ).

So, according to Schur’s lemma (see [Serre 1978, Chapter 2, Proposition 4], for
instance):∑

γ∈G

R(gγ )= λ IdV with λ=
1

dim V
Tr
(∑
γ∈G

R(gγ )
)
=
|G|
χ(1)

χ(g).

Consequently, ∑
γ1∈G

R(gγ1
1 ) · · ·

∑
γn∈G

R(gγn
n )=

|G|n
∏n

i=1 χ(gi )

χ(1)n
IdV ,

so ∑
γ∈G

R(ugγ1
1 · · · g

γn
n v)=

|G|n
∏n

i=1 χ(gi )

χ(1)n
R(uv).

Taking traces yields the formula in the statement of the lemma. �

3.1. Real branch points. In the case of 6R(C; r, 0), the defining conditions that
g1 · · · gr = 1 and that there exist g0 ∈ Inv(G) satisfying (1–1) are equivalent to the
condition

g1 · · · gr = 1 and ∃g0 ∈ G such that (g0g1 · · · gi )
2
= 1 for i = 1, . . . , r−1,

which in turn is equivalent to

(3–1) g1 = u0u1, . . . , gr−1 = ur−2ur−1 and gr = ur−1u0

for some (u0, . . . , ur−1) ∈ Inv(G)r

(just take ui = g0 · · · gi for i = 0, . . . , r−1). In the rest of this subsection we will
use the r -cycle c= (0, . . . , r−1) ∈ Sr to shorten the formulas. For instance, (3–1)
can be rewritten as gi+1 = ui uc(i) for i = 0, . . . , r−1.

Now fix g1, . . . , gr ∈G with gi ∈Ci for i = 1, . . . , r , and consider the set Eg of
those r -tuples γ = (γ1, . . . , γr )∈Gr for which there is an r -tuple (u0, . . . , ur−1)∈

Inv(G)r such that gγi+1
i+1 = ui uc(i) for i = 0, . . . , r−1. The correspondence γ →

(gγ1
1 , . . . , gγr

r ) provides a surjective map Eg→6R(C; r, 0). Two r -tuples γ , γ ′ ∈

Gr have the same image if and only if γ−1
i γ ′i ∈ CenG(gi ) for i = 1, . . . , r . Thus∣∣6R(C; r, 0)
∣∣= |Eg|

Z1 · · · Zr
,
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which reduces the problem to computing |Eg|.
To do so, we check for each (γ1, . . . , γr )∈Gr and each r -tuple (u0, . . . , ur−1)∈

Inv(G)r , whether gγi+1
i+1 = ui uc(i) for i = 0, . . . , r−1, that is, whether

r−1∏
i=0

ε
(
ui g

γi+1
i+1 uc(i)

)
= 1.

However, we must take into account that for a given γ ∈ Gr , distinct r -tuples
u, u′ ∈ Inv(G)r can satisfy gγi+1

i+1 = ui uc(i) for i = 0, . . . , r−1; this is equivalent to
the condition u0u′0 = u1u′1 = · · · = ur−1u′r−1, which can also be written

G · (u0, . . . , ur−1)= G · (u′0, . . . , u′r−1),

where G acts on Gr by left translation. This defines the equivalence relation ∼G

on Inv(G)r that appears in the statement of Theorem 2.1.
Putting these remarks together we get

|Eg| =
∑
γ∈Gr

u∈Inv(G)r/∼G

r−1∏
i=0

ε(ui g
γi+1
i+1 uc(i))=

∑
u∈Inv(G)r/∼G

(∑
γ∈G

r−1∏
i=0

ε(ui g
γi+1
i+1 uc(i))

)

=

∑
u∈Inv(G)r/∼G

( r−1∏
i=0

∑
γ∈G

ε(ui g
γ
i+1uc(i))

)
.

Using the formula ε = |G|−1∑
χ∈Irr(G) χ(1)χ and Lemma 3.1 we obtain, for

i = 0, . . . , r−1 and u ∈ Inv(G)r ,∑
γ∈G

ε(ui g
γ
i+1uc(i))=

1
|G|

∑
χ∈Irr(G)

χ(1)
∑
γ∈G

χ(ui g
γ
i+1uc(i))

=

∑
χ∈Irr(G)

χ(gi+1)χ(ui uc(i)).

Substituting this back into the previous formula leads to the announced result. Note
that the generating condition G = 〈u0u1, . . . , ur−2ur−1〉 can be taken into account
to get SNR(C; r, 0): the only change then is that, in the sums above, the r -tuples u
run over the subset of Inv(G)r/∼G of those r -tuples u of representatives satisfying
this extra generating condition. This yields the formula in Remark 2.2. �

3.2. Complex conjugate branch points. This time the conditions g1 · · · gr =1 and
(1–1) (for some g0 ∈ Inv(G)) are equivalent to

g1 · · · g2s = 1 and ∃g0 ∈ G such that g0gi g0g2s+1−i = 1 for i = 1, . . . , s,
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which in turn is equivalent to

(3–2) there exists g0 ∈ Inv(G) such that g0gi g0g2s+1−i = 1 for i = 1, . . . , s

and [g1 · · · gs, g0] = 1

(where [ , ] denotes the commutator, [u, v] := uvu−1v−1 for u, v ∈ G).
As above, fix g1, . . . , g2s ∈ G with gi ∈ Ci for i = 1, . . . , 2s and consider the

set Eg of 2s-tuples γ = (γ1, . . . , γ2s) ∈ Gr such that g0gγi
i g0gγ2s+1−i

2s+1−i = 1 for i =
1, . . . , s and [gγ1

1 · · · g
γs
s , g0] = 1 for some g0 ∈ Inv(G). Again, the correspondence

γ → (gγ1
1 , . . . , gγ2s

2s ) provides a surjective map Eg → 6R(C; 0, s), and two 2s-
tuples γ , γ ′ ∈ Gr have the same image if and only if γ−1

i γ ′i ∈ CenG(gi ) for i =
1, . . . , 2s. Consequently, ∣∣6R(C; 0, s)

∣∣= |Eg|

Z1 · · · Z2s
,

which reduces the problem to computing |Eg|.
To do so, we check for each (γ1, . . . , γ2s) ∈ G2s and each g0 ∈ Inv(G) whether

g0 gγi
i g0 gγ2s+1−i

2s+1−i = 1 for i = 1, . . . , 2s and [gγ1
1 · · · g

γs
s , g0] = 1; in other words,

whether

ε
(
[gγ1

1 · · · g
γs
s , g0]

) s∏
i=1

ε(g0gγi
i g0gγ2s+1−i

2s+1−i )= 1.

As in Section 3.1, note that for a given γ ∈ Gr , distinct involutions g0, g′0 ∈
Inv(G) can satisfy condition (3–2). This is equivalent to the condition g0g′0 ∈
CenG

(
gγ1

1 , . . . , gγs
s
)

or CenG
(
gγ1

1 , . . . , gγs
s
)
.g0=CenG

(
gγ1

1 , . . . , gγs
s
)
.g′0. And since

Z(G) < CenG
(
gγ1

1 , . . . , gγs
s
)
, the preceding equivalent conditions are implied by

Z(G) · g0 = Z(G) · g′0 (see Remark 3.2), where CenG
(
gγ1

1 , . . . , gγs
s
)

and Z(G) act
on G by left translation. Here again this gives the equivalence relation ∼Z(G) on
Inv(G) appearing in the statement of Theorem 2.3.

Putting these remarks together we get

|Eg| ≤
∑

γ∈G2s

g0∈Inv(G)/∼Z(G)

ε
(
[gγ1

1 · · · g
γs
s , g0]

) s∏
i=1

ε(g0gγi
i g0gγ2s+1−i

2s+1−i )

≤

∑
(γ1,...,γs)∈G

g0∈Inv(G)/∼Z(G)

ε
(
[gγ1

1 · · · g
γs
s , g0]

) ∑
(γs+1,...,γ2s)∈G

s∏
i=1

ε(g0gγi
i g0gγ2s+1−i

2s+1−i )

≤

∑
(γ1,...,γs)∈G

g0∈Inv(G)/∼Z(G)

ε
(
[gγ1

1 · · · g
γs
s , g0]

) s∏
i=1

∑
γ∈G

ε(g0gγi
i g0gγ2s+1−i ).



66 ANNA CADORET

As before, Lemma 3.1 combined with the formula defining ε gives

s∏
i=1

∑
γ∈G

ε(g0gγi
i g0gγ2s+1−i )=

s∏
i=1

∑
χ∈Irr(G)

χ(g0gγi
i g0)χ(g2s+1−i )

=

s∏
i=1

∑
χ∈Irr(G)

χ(gi )χ(g2s+1−i ).

Hence we now have

|Eg| ≤

( ∑
(γ1,...,γs)∈G

g0∈Inv(G)/∼Z(G)

ε
(
[gγ1

1 · · · g
γs
s , g0]

))( s∏
i=1

∑
χ∈Irr(G)

χ(gi )χ(g2s+1−i )

)
.

By definition, [u, v] = 1 if and only if u ∈ CenG(v). Thus∑
(γ1,...,γs)∈G

ε
(
[gγ1

1 · · · g
γs
s , g0]

)
=

∑
u∈CenG(g0)

∑
(γ1,...,γs)∈G

ε(gγ1
1 · · · g

γs
s u)

=

∑
u∈CenG(g0)

1
|G|

∑
χ∈Irr(G)

χ(1)
∑

(γ1,...,γs)∈G

χ(gγ1
1 · · · g

γs
s u).

So, using Lemma 3.1 again,∑
(γ1,...,γs)∈G

ε([gγ1
1 · · · g

γs
s , g0])= |G|s−1

∑
u∈CenG(g0)

∑
χ∈Irr(G)

∏s
i=1 χ(gi )

χ(1)s−1 χ(u)

= |G|s−1
∑

χ∈Irr(G)

∏s
i=1 χ(gi )

χ(1)s−1

∑
u∈CenG(g0)

χ(u).

We recognize here αχ,g0 =
∑

u∈CenG(g0)

χ(u). Finally, we get

|Eg| ≤ |G|s−1
( s∏

i=1

∑
χ∈Irr(G)

χ(gi )χ(g2s+1−i )

)( ∑
χ∈Irr(G)

∏s
i=1 χ(gi )

χ(1)s−1 Aχ

)
.

To end the proof, just recall that we have assumed
∣∣6R(C; 0, s)

∣∣ 6=∅; this implies
in particular that Ci = C−1

2s+i−1 for i = 1, . . . , s, so Zi = Z2s+1−i and

χ(gi )χ(g2s+1−i )= |χ(gi )|
2,

whence ∑
χ∈Irr(G)

χ(gi )χ(g2s+1−i )=
∑

χ∈Irr(G)

|χ(gi )|
2
= Zi

for i = 1, . . . , s, which leads to the announced result.
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Remark 3.2. We only get an upper bound for
∣∣6R(C; 0, s)

∣∣ because of the inclu-
sions Z(G) < CenG

(
gγ1

1 , . . . , gγr
r
)
, which may be proper. But if 6R(C; 0, s) =

SNR(C; 0, s), these inclusions become equalities and∣∣6R(C; 0, s)
∣∣= ∣∣SNR(C; 0, s)

∣∣.
3.3. Real and complex conjugate branch points. The method consists in rewrit-
ing the defining conditions g1 · · · gr = 1 and (1–1) as in the last two sections, but
replacing g1 · · · gr1 = 1 and gr1+1 · · · gr1+2r2 = 1 by the weaker condition

g1 · · · gr1 gr1+1 · · · gr1+2r2 = 1.

So, in the general situation the defining conditions are equivalent to the existence
of g0 ∈ Inv(G) such that g1 · · · gr = 1, (g0g1 · · · gi )

2
= 1 for i = 1, . . . , r1−1, and

g0gr1+i g0gr+1−i = 1 for i = 1, . . . , r2; this in turn is equivalent to

(3–3) there exists (u0, . . . , ur1−1) ∈ Inv(G)r1 such that
u0ur1−1gr1[gr1+1 · · · gr1+r2, u0] = 1,
gi+1 = ui ui+1 for i = 0, . . . , r1−2,
u0 gr1+i u0 gr+1−i = 1 for i = 1, . . . , r2.

We still fix g1, . . . , gr ∈G with gi ∈Ci for i = 1, . . . , r and consider the set Eg,r1,r2

of those r -tuples γ = (γ1, . . . , γ2s)∈Gr such that (gγ1
1 , . . . , gγr

r ) satisfies condition
(3–3). As above, ∣∣6R(C; 0, s)

∣∣= |Eg,r1,r2 |

Z1 · · · Z2s
,

which once again reduces the problem to computing |Eg,r1,r2 |. Then, for each
γ = (γ1, . . . , γr ) ∈ Gr , to decide whether γ ∈ Eg,r1,r2 , we check for every u =
(u0, . . . , ur1−1) ∈ Inv(G)r1 whether

r1−1∏
i=0

ε(ui g
γi+1
i+1 ui+1)

r2∏
i=1

ε(u0g
γr1+i

r1+i u0gγr+1−i
r+1−i ) ε

(
u0ur1−1g

γr1
r1 [g

γr1+1

r1+1 · · · g
γr1+r2
r1+r2

, u0]
)
= 1.

Now, the introduction of ∼ derives from the usual remarks about counting exactly
once each element γ ∈ Eg,r1,r2 . Specifically, for all (γ1, . . . , γr1−1) ∈ Gr1−1 and
u, u′ ∈ Inv(G)r1 , the condition

ui g
γi+1
i+1 ui+1 = 1= u′i g

γi+1
i+1 u′i+1, i = 0, . . . , r1− 1

is equivalent to u0u′0 = u1u′1 = · · · = ur1−1u′r1−1, which can also be written
G.(u0, . . . , ur1−1) = G.(u′0, . . . , u′r1−1), where G acts on Gr1 by left translation.
Likewise, for all (γr1+1, . . . , γr ) ∈ G2r2 and u0, u′0 ∈ Inv(G), the condition

u0g
γr1+i

r1+i u0 = (g
γr+1−i
r+1−i )

−1
= u′0g

γr1+i

r1+i u′0, i = 1, . . . , r2
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is equivalent to
u0u′0 ∈ CenG

(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
,

that is, CenG
(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
· u0 = CenG

(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
· u′0, which is

implied by
N · u0 = N · u′0,

where N = CenG
(
Cr1+1, . . . ,Cr1+r2

)
is the centralizer of the subgroup generated

by the conjugacy classes of gr1+1, . . . , gr1+r2 and both CenG
(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
and N act on G by left translation.

Hence, for γ = (γ1, . . . , γr1−1) ∈ Gr1−1, let ∼γ be the relation defined on
Inv(G)r1 as follows: for all u, u′ ∈ Inv(G)r1 ,

u ∼γ u′⇐⇒ CenG
(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
· u0 = CenG

(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
· u′0

and G · (u0, . . . , ur1−1)= G · (u′0, . . . , u′r1−1),

and write ∼ for the relation one gets by replacing CenG
(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
with

CenG(N ) in the definition above. These relations are equivalence relations on
Inv(G)r1 and we obtain formula nR(C; r1, r2) in Theorem 2.4 by summing on the
equivalence classes Inv(G)r1/∼.

Remark 3.3. When N =CenG
(
g
γr1+1

r1+1 , . . . , g
γr1+r2
r1+r2

)
for all γ = (γ1, . . . , γr1−1)∈G,

the inequality in Theorem 2.4 becomes an equality.

4. Applications

Except in Section 4.2.2, we will always assume we are in the complex pair con-
figuration (C). We keep the notations from Section 2, particularly concerning Aχ ,
Amod
χ , and αχ,g0 . In addition, say C is Cg-complete symmetric if

(1) 6(C,G)= SN(C,G) and

(2) C = (C1, . . . ,Cs,C−1
s , . . . ,C−1

1 ) (and so 6R(C; 0, s) 6=∅).

If (1) is replaced by

(1)R 6R(C; 0, s)= SNR(C; 0, s),

we say that C is Rg-complete symmetric. In the following computations we will
always make the hypothesis C is Cg-complete symmetric. Clearly g-completeness
implies (1), which implies (1)R. Under condition (1) one can use Serre’s formula
directly to compute

∣∣SN(C,G)
∣∣, and under condition (1)R one can use the formula

for nR(C; 0, s) to compute
∣∣SNR(C; 0, s)

∣∣.
In the examples, we describe the 2s-tuples C satisfying (2) using the notation

C =
[
A(a1)

1 , . . . , A(an)
n
]

to indicate that the 2s-tuple C consists of

– s first entries, where Ai occurs ai times for i = n, . . . , n, (so s= a1+· · ·+an),
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– s last entries which are the inverses of the first s ones, in reverse order.

When C is Cg-complete symmetric, Serre’s formula becomes

∣∣sn(C,G)
∣∣= |Z(G)|( |C1| · · · |Cs |

|G|

)2 ∑
χ∈Irr(G)

(
|χ(g1)| · · ·χ(gs)|

χ(1)s−1

)2

.

Hence

∣∣sn(C,G)
∣∣∣∣snR(C; 0, s)
∣∣ = |C1| · · · |Cs |

∑
χ∈Irr(G)

(
|χ(g1)| · · · |χ(gs)|

χ(1)s−1

)2

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−1 Aχ

.

Remark. Note that Z(G) =
⋂
χ∈Irr(G) Zχ , where Zχ =

{
g ∈ G

∣∣ |χ(g)| = χ(1)},
for χ ∈ Irr (G), so, if C is g-complete symmetric,

∣∣6(C,G)
∣∣ remains unchanged

when adding central classes, whereas
∣∣6mod,R(C; 0, s)

∣∣ and
∣∣6mod,R(C; 0, s)

∣∣ do
not. So adding central classes in C can change the proportion∣∣sn(C,G)

∣∣∣∣snR(C; 0, s)
∣∣

of G-covers defined over R (and with field of moduli contained in R as well).

4.1. G-covers that are not defined over their field of moduli. First we deal with
the quaternion group H8, for which we exhibit G-covers not defined over their field
of moduli. Then we generalize to obtain in particular a simple group-theoretic
criterion for a finite group to be the Galois group of some G-cover not defined over
its field of moduli. Lots of infinite families of groups satisfy this criterion.

4.1.1. The quaternion group H8. In the quaternion group H8 we have four non-
trivial conjugacy classes: A = {−1}, Ai = {±i}, A j = {± j}, Ak = {±k}. Take

C =
[
A(x), A(a)i , A(b)j , A(c)k

]
(so s = x + a+ b+ c.)

To compute nR(C; 0, s), note that Inv(H8)/ ∼Z(H8)= {1}. Thus Aχ = αχ,1 = 8 if
χ = χ1 and Aχ = 0 otherwise, which leads to

nR(C; 0, s)= 2a+b+c,
∣∣snR(C; 0, s)

∣∣= 2a+b+c−2,
∣∣sn(C,H8)

∣∣= 22(a+b+c)−3,∣∣sn(C,H8)
∣∣∣∣snR(C; 0, s)
∣∣ = 2a+b+c−1,∣∣sn(C,H8)

∣∣− ∣∣snR(C; 0, s)
∣∣= 2a+b+c−2(2a+b+c−1

− 1).
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If a = b = 1 and x = c = 0, so that r = 2s = 4, we get
∣∣sn(C,H8)

∣∣ = 2 and∣∣snR(C; 0, 2)
∣∣= 1.1 This gives rise to a new example of a G-cover with group H8

not defined over its field of moduli (recall that such an example was already given
by K. Coombes and D. Harbater [1985, p. 831], but with three rational branch
points (1, 2, 3) and canonical inertia invariant C = ({±i}, {± j}, {±k}).) We give
a precise argument in Section 4.1.2, but the general idea is that, given the branch
points (z1, z2, z̄2, z̄1) ∈Ur with z1, z2 not real, the fiber (ψ ′4,H8

)−1((z1, z2, z̄2, z̄1))

consists of two points P ′1, P ′2 corresponding to two G-covers f1, f2, one of which,
say f1, is defined over R and the other one, f2, is not. If P1 = 54(P ′1) and P2 =

54(P ′2) are the corresponding points on H4,H8(C) then, Pc
1 = P1 forces Pc

2 = P2

so P2 is a real point; thus f2 has its field of moduli contained in R.
We can also use formula nmod,R(C; 0, s), which is more precise. For this, note

that Z(H8)
1/2/∼Z(H8)=H8/∼Z(H8)= {1, i, j, k}, so Amod

χ = αχ,1+αχ,i +αχ, j +

αχ,1 = 20 if χ = χ1 and Amod
χ = 4 otherwise, which leads to

nmod R(C; 0, s)= 2a+b+c−1
× (5+ (−1)b+c

+ (−1)a+c
+ (−1)a+b),∣∣snmod,R(C; 0, s)

∣∣= 2a+b+c−3
× (5+ (−1)b+c

+ (−1)a+c
+ (−1)a+b).

Taking a = b= 1 and x = c= 0 gives
∣∣snmod,R(C; 0, 2)

∣∣= 2, as expected. But we
get more, since

1mod(C; 0, s) :=
∣∣snmod,R(C; 0, s)

∣∣− ∣∣snR(C; 0, s)
∣∣

= 2a+b+c−3(3+ (−1)b+c
+ (−1)a+c

+ (−1)a+b) > 0,

so there are exactly 1mod(C; 0, s) G-covers in snR(C; 0, s) that are not defined
over R but have field of moduli contained in R.

4.1.2. General criteria. With the usual notations, write

1mod(C; r1, r2)=
∣∣snmod,R(C; r1, r2)

∣∣− ∣∣snR(C; r1, r2)
∣∣.

When C is Rg-complete symmetric and (r1, r2)= (r, 0) or (0, s), we have

1mod(C; r1, r2)= nmod R(C; r1, r2)− nR(C; r1, r2).

Thus we obtain the following simple criterion:

Proposition 4.1.3. Let G be a finite group. For any Rg-complete r-tuple C =
(C1, . . . ,Cr ) of nontrivial conjugacy classes in G and for any r-tuple

t ′ = (t1, . . . , tr ) ∈Ur (R)

1Explicit representatives: sni(C,H8)= {(i, j,− j,−i),(i, j, j,i)}, snR(C;0,2)= {(i, j,− j,−i)}.
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with t1< · · ·< tr , of all the isomorphism classes of G-covers in the straight Nielsen
class sn(C,G) with ordered branch point set t ′, exactly

1mod(C; r, 0)=
|Z(G)|

|G|Z1 · · · Zr

∑
χ∈Irr(G)r

χ1(g1) · · ·χr (gr )(I mod
χ − Iχ )

have field of moduli contained in R but are not defined over R.
Similarly, for any Rg-complete symmetric r-tuple C= (C1, . . . ,Cr ) of nontrivial

conjugacy classes in G and for any r-tuple t ′ = (z1, . . . , zs, z̄s, . . . , z̄1) ∈ Ur (C)

with zi not real, i = 1, . . . , s, of all the isomorphism classes of G-covers in the
straight Nielsen class sn(C,G) with ordered branch point set t ′, exactly

1mod(C; 0, s)=
|C1| · · · |Cs |

[G : Z(G)]|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gs)

χ(1)s−1 (Amod
χ − Aχ )

have field of moduli contained in R but are not defined over R.

This proposition shows in particular that, once a Rg-complete symmetric canon-
ical inertia invariant C and a branch point configuration — (R) or (C) — are given,
the number of G-covers in sn(C,G) with field of moduli contained in R but not
defined over R can be computed explicitly and is independent of the branch points.

Corollary 4.1.4. Given a finite group G, there are G-covers with group G and
branch point configuration (C) with field of moduli contained in R but not defined
over R if and only if Z(G) has an element which is a square in G but not in Z(G).

Proof. We compute Amod
χ − Aχ =

∑
g0
αχ,g0 for any χ ∈ Irr(G), where g0 ranges

over a system of representatives of the set Z(G)1/2/∼Z(G)\Inv(G)/∼Z(G). For this,
just note that for all g0 ∈ Z(G)1/2 there exists z ∈ Z(G) such that (zg0)

2
= 1 (that

is, Z(G)g0 ∈ Inv(G)/∼Z(G)) if and only if g2
0 is a square in Z(G). Consequently,

setting
EG =

{
g0 ∈ Z(G)1/2 | g2

0 /∈ {z
2
}z∈Z(G)

}
,

we get

Amod
χ − Aχ =

∑
g0∈EG/∼Z(G)

αχ,g0 .

Also, it follows from their definition that the αχ,g0 are nonnegative integers, and
for χ = χ1 they also are nonzero (αχ1,g0 = |Ceng0(G)|), so the Amod

χ − Aχ are
nonnegative integers. Now, suppose there is a Rg-complete symmetric 2s-tuple C
of nontrivial conjugacy classes of G such that 1mod(C; 0, s) > 0. Then there is
χ ∈ Irr(G) such that Amod

χ − Aχ > 0, which obviously implies EG 6=∅.
Conversely, let C1, . . . ,Cs be a listing of all the nontrivial conjugacy classes in

G and set C = (C1,C−1
1 , . . . ,Cs,C−1

s ,Cs,C−1
s , . . . ,C1,C−1

1 ). This 2s-tuple is
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Cg-complete symmetric. Thus one gets

1mod(C; 0, s)=

(
|C1| · · · |Cs |

)2

[G : Z(G)] |G|

∑
χ∈Irr(G)

|χ(g1)|
2
· · · |χ(gs)|

2

χ(1)2s−1 (Amod
χ −Aχ )

=

(
|C1| · · · |Cs |

)2

[G : Z(G)] |G|

( ∑
χ∈Irr(G)
deg(χ)=1

(Amod
χ −Aχ )

+

∑
χ∈Irr(G)
deg(χ)>1

|χ(g1)|
2
· · · |χ(gs)|

2

χ(1)2s−1 (Amod
χ −Aχ )

)
,

and, since EG 6=∅, Amod
χ1
− Aχ1 =

∑
g0∈EG/∼Z(G)

|Ceng0(G)|> 0. �

Remarks. (a) Corollary 4.1.4 can be proved directly, only using the definitions
of snmod,R(C; 0, s) and snR(C; 0, s); see [Cadoret 2004]. This alternate proof
uses the same 4s-tuple C, which appears naturally in the proof above, to con-
struct a G-cover in snmod,R(C; 0, s) \ snR(C; 0, s).

(b) Lots of groups satisfy the condition of Corollary 4.1.4, and therefore are
groups of G-covers not defined over their field of moduli. For instance:

– Gln(pm) with n ≥ 2, m ≥ 1, p ≥ 3 prime,
– D2n with n ≥ 4 such that 4 |n,
– O2(pm, qh) with m ≥ 1, p ≥ 3 prime and qh the hyperbolic form on F2

pm ,
– any group G such that Inv(G) ⊂ Z(G) and [G : Z(G)] is even; for in-

stance, Sl2(pm) with m ≥ 1, p ≥ 3 irreducible, T4n with n ≥ 2, etc.

To my knowledge, the only example of families of G-covers not defined over their
field of moduli and in which the group G can be taken arbitrarily large was given
by S. Wewers [2002]. The group is Sl2(p) for p 6≡ ±1 modulo 8 an odd prime, the
canonical inertia invariant is (4A, p A, pB) and the branch points are (t1, t2, t3),
where t1 ∈Q and {t2, t3} is Q-rational.

Computing 1mod(C; r1, r2) can be difficult. The following proposition gives a
weaker but more practical criterion for the existence of G-covers not defined over
their field of moduli. We give here the statement and proof for situation (C) but it
can immediately be generalized to situations (R) and (R-C).

Proposition 4.1.5. Suppose given a finite group G and a symmetric 2s-tuple C of
nontrivial conjugacy classes in G. If

∣∣sn(C,G)
∣∣− ∣∣snR(C; 0, s)

∣∣ is odd then for
any 2s-tuple of branch points t ′= (z1, . . . , zs, z̄s, . . . , z̄1)∈U2s(C) with zi not real
for i = 1, . . . , s, there is in sn(C,G) at least one isomorphism class of G-covers
with field of moduli contained in R but not defined over R.



COUNTING REAL GALOIS COVERS OF THE PROJECTIVE LINE 73

Proof. Write m =
∣∣snR(C; 0, s)

∣∣ and n =
∣∣sn(C,G)

∣∣. Let P ′1, . . . , P ′m be the
points in (ψ ′2s,G)

−1(t ′) corresponding to the G-covers that are defined over R,
and P ′m+1, . . . , P ′n the points corresponding to the G-covers that are not. Set
Pi =52s(P ′i ) for i = 1, . . . , n, and also E = {P1, . . . , Pm}, F = {Pm+1, . . . , Pn}.
So, with t = π2s(t ′) we have E ∪ F ⊂ (ψ2s,G)

−1(t). Then observe that E ∪ F =
52s((ψ

′

2s,G)
−1(t ′)) is left invariant by complex conjugation c. Indeed (ψ ′2s,G)

−1(t ′)
is the set of all G-covers f for which Ci is the inertia canonical class associated
with zi and C−1

i is the inertia canonical class associated with z̄i = z2s+1−i for
i = 1, . . . , s, whereas (ψ ′2s,G)

−1(t ′)c is the set of all G-covers f c for which, by
Fried’s branch cycle argument, C−1

i is the inertia canonical class associated with
z̄i = z2s+1−i and (C−1

i )−1
=Ci is the inertia canonical class associated with z̄i = zi

for i = 1, . . . , s. Now, since P1, . . . , Pm are real points on (ψ2s,G)
−1(t), we have

Ec
= E , which forces Fc

= F . Hence, |F | being odd, F has at least one point P
invariant under c. This point P is real, which means it corresponds to an isomor-
phism class of G-covers with field of moduli contained in R but, by the definition
of F , not defined over R. �

4.1.6. Dicyclic groups T4n of order 4n. We turn to an application of the preceding
proposition. The quaternion group H8 is the first term of the family of dicyclic
groups (T4n)n≥2. The group T4n has the presentation

T4n = 〈a, b | a2n
= 1, an

= b2, b−1ab = a−1
〉,

and contains n+ 2 nontrivial conjugacy classes:

– n classes A1, . . . , An with Ai = {ai , a−i
} for i = 1, . . . , n (and An = {an

});

– B1 = {a2 j b}0≤ j≤n−1 and B2 = {a2 j+1b}0≤ j≤n−1.

Take
C =

[
A(αn)

n , A(α1)
1 , . . . , A(αn−1)

n−1 , B(β1)
1 , B(β2)

2

]
and write α = α1 + · · · + αn , so s = α + β1 + β2. Then Inv(T4n)/ ∼Z(T4n)= {1};
consequently Aχ =αχ,1= 4n if χ =χ1 and Aχ = 0 otherwise. Using the character
tables of these groups, which can be found in [James and Liebeck 1993, p. 385],
and taking into account that we need β1+β2≥ 1 for C to be g-complete, we obtain

nmod,R(C; 0, s)= 2αnβ1+β2,
∣∣snR(C; 0, s)

∣∣= 2α−1nβ1+β2−1,∣∣sn(C, T4n)
∣∣= 22α−1n2(β1+β2)−2,

∣∣sn(C, T4n)
∣∣∣∣snR(C; 0, s)
∣∣ = 2αnβ1+β2−1,∣∣sn(C, T4n)

∣∣− ∣∣snR(C; 0, s)
∣∣= 2α−1nβ1+β2−1(2αnβ1+β2−1

− 1).

Suppose α1 = 1, β1 ≥ 1, β2 ≥ 0, and α1 = · · · = αn = 0. Then C is g-complete
symmetric and

∣∣sn(C, T4n)
∣∣ − ∣∣snR(C, T4n)

∣∣ = nβ1+β2−1(2nβ1+β2−1
− 1) is odd
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when n is (and, if β1 + β2 = 1, it is always odd). So, for each n ≥ 2, for each
t = {z1, z̄1, . . . , zs, z̄s} ∈ Ur (R) with zi not real for i = 1, . . . , s, there is at least
one isomorphism class of G-cover fn with ramification type [T4n,C, t] that is not
defined over R but has its field of moduli contained in R.

4.2. Descent from C to Qtr. We give here a combinatorial method to determine if
a finite group G admits G-covers defined over Qtr with a prescribed ramification
type [G,C, t]. For this, we look for r -tuples C of nontrivial conjugacy classes in
G such that

∣∣snR(C; r1, r2)
∣∣ = ∣∣sn(C,G)

∣∣. If there is such a C and if t ∈ Ur (R),
the image on Hr,G(C) of the fiber (ψ ′r,G)

−1(t ′)∩H′r,G(C) above an ordering t ′ of
t (conforming to the Convention on page 56) consists of real points; we denote it
by

E0
r,G,t(C) :=5r

(
(ψ ′r,G)

−1(t ′)∩H′r,G(C)
)
⊂ (ψr,G)

−1(t).

Now write

Er,G,t(C) :=
⋃
m≥1

(|G|,m)=1

E0
r,G,t(C

m).

If
∣∣snR(Cm

; r1, r2)
∣∣ = ∣∣sn(Cm,G)

∣∣ for any m ≥ 1 such that (|G|,m) = 1, then
Er,G,t(C) consists of real points. But, if we also assume t ∈Ur (Q), Fried’s branch
cycle argument asserts that Gal(Q/Q) stabilizes Er,G,t(C). So any point in this set
is Qtr-rational.

Here we will only deal with dihedral groups D2n with n odd, in configurations
(R) and (C). We show for instance that for any odd integer n≥ 3 and for any r ≥ 3,
D2n is the Galois group of a regular extension of Qtr(X) with exactly r rational
branch points (compare [Dèbes and Fried 1994, Conjecture 5.2], for instance). In
configuration (C), we can only assert that this occurs with 4 branch points.

4.2.1. Configuration (C). Recall that D2n has the presentation

D2n = 〈u, v | un
= v2
= 1, vuv = v−1

〉

and has 1
2(n+1) nontrivial conjugacy classes:

– 1
2(n−1) classes A1, . . . , A(n−1)/2 with Ai = {ui , u−i

} for i = 1, . . . , 1
2(n−1),

and

– B = {vui
}0≤i≤n−1.

Now, take

C =
[
A(a1)

1 , . . . , A(a(n−1)/2)

(n−1)/2 , B(b)
]
(so s = a1+ · · ·+ a(n−1)/2+ b),
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and write a = a1+ · · ·+ a(n−1)/2. Here Inv(D2n)/∼Z(D2n)= {1, {vui
}0≤i≤n−1}, so

αχ,1 =

{
2n if χ = χ1,

0 otherwise,
αχ,v =

{
0 if χ = χ2,

2 otherwise,

where χ2 is the irreducible character of D2n defined by χ2(uk)= 1 for k= 1, . . . , n
and χ2(v)=−1. So we get Aχ1 = 4n, Aχ2 = 0 and Aχ = 2n if χ 6= χ1, χ2, which,
noticing that for C to be g-complete symmetric we need b ≥ 1, leads to

nR(C; 0, s)= 2a+1nb,
∣∣snR(C; 0, s)

∣∣= 2anb−1,∣∣sn(C, D2n)
∣∣= 22a−1n2b−2,

∣∣sn(C, D2n)
∣∣∣∣snR(C; 0, s)
∣∣ = 2a−1nb−1.

For instance, if a1 = b = 1 and a2 = · · · = an−1/2 = 0, we get∣∣sn(Cm, D2n)
∣∣= 2=

∣∣snR(Cm
; 0, s)

∣∣
for all m ≥ 1 such that (2n,m)= 1. As a result, if we choose a 2s-tuple of branch
points t = (z1, . . . , zs, z̄s, . . . , z̄1) ∈ Ur (C) whose associated divisor is rational,
the discussion above shows that any point in E4,D2n,t(C) is a Qtr-point and, since
Z(D2n) = 〈1〉, we conclude all the G-covers in sn(C, D2n) are defined over Qtr.
Notice that C = (C1,Cv,Cv,C1) is not rational, so all the G-covers in sn(C, D2n)

are defined over Qtr but none of them is over Q.

Remark. Generalizing the situation above, one gets the following descent cri-
terion: For any finite group G, for any r-tuple C = (C1, . . . ,Cr ) of nontrivial
conjugacy classes in G, for any t0

∈ Ur whose associated branch point divisor is
rational, the conditions

(1) Z(G)= 1 and

(2)
∣∣sn(Cn,G)

∣∣= ∣∣snR(Cn
; r1, r2)

∣∣ for any n ≥ 1 such that (|G|, n)= 1

imply that all the G-covers in sn(C,G) are defined over Qtr.
Condition (2) can even be replaced by one that is easier to check when C is not

g-complete:

(2)′
∣∣6(Cn,G)

∣∣ = ∣∣6R(Cn
; r1, r2)

∣∣ and snR(Cn
; r1, r2) 6= ∅ for any n ≥ 1 such

that (|G|, n)= 1.

4.2.2. Configuration (R). The example we give here corresponds to situation (R).
For any r ≥ 3 we exhibit G-covers with group D2n defined over Qtr (but not over
Q) and with r rational branch points. The example illustrates the difficulties one
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can encounter when trying to compute nR(C; r, 0) directly. We will use the com-
mutative diagram

Inv(G)r
θ- Gr−1

Inv(G)r/∼G

π
??⊂

θ

-

where π is the canonical surjection and θ is the map given by the correspondence
(u0, . . . , ur−1)→ (u0u1, u1u2, . . . , ur−2ur−1). Rewrite nR(C; r, 0) as

nR(C; r, 0)=
1

Z1 · · · Zr

∑
χ1,...,χr∈Irr(G)

(u0,...,ur−1)∈Inv(G)r/∼G

∏
1≤i≤r

(χi (gi )χi (ui−1uc(i−1)))

=
1

Z1 · · · Zr

∑
(u0,...,ur−1)∈Inv(G)r/∼G

∏
1≤i≤r

( ∑
χ∈Irr(G)

χ(gi )χ(ui−1uc(i−1))

)
,

where c denotes the r -cycle (0, 1, . . . , r−1), as in Section 3.1. Also recall the
general form of Serre’s formula:

∣∣6(C,G)
∣∣= |C1| · · · |Cr |

|G|

∑
χ∈Irr(G)

∏
1≤i≤r χ(gi )

χ(1)r−2 .

When G = D2n we have χ = χ for any irreducible character χ ∈ Irr(D2n), so∑
χ∈Irr(G)

χ(gi )χ(ui−1uc(i−1))=
∑

χ∈Irr(G)

χ(gi )χ(ui−1uc(i−1))

is equal to Zi if gi and ui−1uc(i−1) are conjugate and is equal to 0 otherwise, for
i = 1, . . . , r . Consequently, the only tuples u = (u0, . . . , ur−1) ∈ Inv(G)/∼G we
will need in our computation are

(
θ−1(gγ1

1 , . . . , gγr−1
r−1 )

)
γ1,...,γr−1∈G , when they exist.

So,

nR(C; r, 0)=
1
Zr

∑
u∈θ−1(C1×···×Cr−1)

∑
χ∈Irr(G)

χ(gr )χ(ur−1u0).

With the notations of Section 4.2.1, we now apply these remarks to the specific
r -tuple

C = (B, Ai1, . . . , Ait , B) (so r = t + 2),

where we choose 1 ≤ i1, . . . , it ≤
1
2(n−1), so that C is g-complete. A represen-

tative of θ−1(vuk, uε1i1, . . . , uεt it ) is (1, vuk, vuk+ε1i1, . . . , vuk+ε1i1+···+εt it ), with
k = 0, . . . , n− 1 and ε1, . . . , εt ∈ {±1}. Since ur−1u0 = vuk+ε1i1+···+εt it ∈ B, we
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obtain

nR(C; r, 0)=
1

22nt

∑
ε1,...,εt∈{±1}

n−1∑
k=0

2× nt
× 2= 2t n.

Hence
∣∣snR(Cm

; r, 0)
∣∣ = 2t−1 for all m ≥ 1 such that (2n,m) = 1, and at the

same time, by Serre’s formula,
∣∣sn(C, D2n)

∣∣ = 2t−1. So if we fix a r -tuple of
rational branch points t = (t1, . . . , tr ) ∈Ur (Q), using the same argument as above
we conclude that all the G-covers in sn(C, D2n) are defined over Qtr. Moreover
choosing for instance i1=· · ·= it =1, we can assert those G-covers are not defined
over Q.

Remark. The computation we made above can be generalized to any tuple

C =
(
B, Ai1,1, . . . , Ai1,u1

, B, B, Ai2,1, . . . , Ai2,u2
, B, B, . . . , B, Ait,1, . . . , Ait,ut

, B
)

with r = 2t + u1 + · · · + ut ; we obtain
∣∣snR(C; r, 0)

∣∣ = 2u1+···+ut−1nt−1 and∣∣sn(C, D2n)
∣∣= 2u1+···+ut−1n2t−2, so∣∣sn(C, D2n)

∣∣∣∣snR(C; r, 0)
∣∣ = nt−1,

which only depends on t .

4.2.3. Qtr-realizations of D2a∞ with a ≥ 3 odd. The results obtained in Sections
4.2.1 and 4.2.2 do not depend on n ≥ 3 odd, which yields regular realizations of
the profinite groups

D2a∞ := lim proj
n→+∞

D2an ' Za ×s Z/2Z,

for a ≥ 3 odd, over Qtr(X). Indeed, for any a ≥ 3 odd and any n ≥ 1, write

– A1,a,n, . . . , Aan−1/2,a,n with Ai = {ui , u−i
}, i = 1, . . . , 1

2(a
n
−1),

– Ba,n = {vui
}0≤i≤an−1,

for the 1
2(a

n
+1) nontrivial conjugacy classes of D2an . Also set

Ca,n = (A1,a,n, Ba,n, Ba,n, A1,a,n).

This gives rise to a tower of Hurwitz spaces

· · · - H′4,D2an+1
(Ca,n+1)

ψ ′4,D
2an+1- H′4,D2an (Ca,n)

ψ ′4,D2an- · · ·

· · ·

ψ ′4,D
2a2- H′4,D2a

(Ca,1).

Fix t ′ = (z1, z̄1, z2, z̄2) ∈U4(C) with zi ∈P1(C)\P1(R) and {zi , z̄i } ∈U2(Q), for
i = 1, 2, and consider the projective system of finite sets of Qtr-points (see Section
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4.2.1)

· · · - 54(H
′

4,D2an+1
(Ca,n+1)t ′)

ψ4,D
2an+1- 54(H

′

4,D2an (Ca,n)t ′)
ψ4,D2an- · · ·

· · ·

ψ4,D
2a2- 54(H

′

4,D2a1
(Ca,1)t ′).

Then lim projn→+∞54
(
H′4,D2an (Ca,n)t ′

)
is nonempty, and any element of this pro-

jective limit corresponds to a regular Galois realization of D2a∞ over Qtr(X) (see
[Cadoret 2004, § 5.3.1]) with branch points t ′ and inertia canonical invariant

(A1,a,∞, Ba,∞, Ba,∞, A1,a,∞),

where Ba,∞ = {vui
}i≥0 and Ai,a,∞ = {ui , u−i

} for i ≥ 1.
Likewise, using the results of Section 4.2.2, one gets regular Galois realizations

of D2a∞ over Qtr(X) with rational branch points t ′= (t1, . . . , tt+2)∈Ut+2(Q) and
inertia canonical invariant (Ba,∞, Ai1,a,∞, . . . , Ait ,a,∞, Ba,∞), where i1, . . . , it ≥1
such that, for instance, (i j , a)= 1 for j = 1, . . . , t .

4.3. The Mathieu group M11. Our formulas are manageable even for more com-
plicated groups, particularly in the branch point configuration (C). Our last example
concerns the Mathieu group M11.

According to the Atlas [Conway et al. 1985], |M11| = 11.5.32.24 and M11 has
10 conjugacy classes: 1A, 2A, 3A, 4A, 5A, 6A, 8A, B∗, 11A, B∗∗. The difficulty
here is to compute CenM11(2A). We apply Theorem 2.3 to the specific 4-tuple
(8A,B*,11A,B**) to do this. We will use that

∣∣CenM11(2A)
∣∣ = 3.24 and that any

2-Sylow S2 of CenM11(2A) is semidihedral of order 16, in symbols

S2 = 〈x, a | x2
= 1= a8, xax = a3

〉 = SD16

(see [Robinson 1982, Ex. 7.4.4, p. 205]) to prove the following lemma, needed to
carry out computations of nR(C; 0, s).

Lemma. CenM11(2A) contains 1 element of order 1, 13 elements of order 2, 8
elements of order 3, 6 elements of order 4, 8 elements of order 6, and 12 elements
of order 8 (6 in each conjugacy class).

First, note that SD16 contains:

– 4 elements of order 8: a, a3, a5, a7;

– 6 elements of order 4: a2, a6, xa, xa3, xa5, xa7;

– 5 elements of order 2: a4, xa2, xa4, xa6, x ;

– 1 element of order 1.

Moreover, Z(SD16) = 〈a4
〉 and SD16 has 3 kinds of subgroups of index 2:

Z/8Z= 〈a〉, D8 = 〈a2, x〉, H8 = 〈a2, xa〉.
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We are now able to describe CenM11(2A)more precisely. According to the Atlas,
there is an unsplit short exact sequence

1 - Z/2Z - CenM11(2A) θ- S4 - 1.

So, since the center of S4 is trivial, we get the inclusions 〈2A〉⊂ Z(CenM11(2A))⊂
Z/2Z, which obviously are equalities. Consequently, for all σ ∈ S4:

– If σ has order 1 or 3 then θ−1(σ ) contains an element of same order and an
element of twice this order.

– If σ has order 2 then θ−1(σ ) contains either two elements of order 2 or two
elements of order 4 or two elements of order 6. Let n denote the number of
elements of order 6 we obtain this way (0≤ n ≤ 6).

– If σ has order 4 then θ−1(σ ) contains either two elements of order 4 or two
elements of order 8.

In particular, we have exactly 8 elements of order 3 and 8+ n elements of order
6 in CenM11(2A). All the other ones have order 1, 2, 4 or 8, so are contained in
the 2-Sylow subgroups of CenM11(2A). Write n p for the number of p-Sylows in
CenM11(2A). From the above we deduce n3= 4. Furthermore, since n2 |3 and n2 is
odd we have n2=1, 3. But if n2=1,

∣∣CenM11(2A)
∣∣=32+n, a contradiction; hence

n2 = 3. Still according to the Atlas, CenM11(2A) contains a normal subgroup V of
order 8, and as the 2-Sylows of CenM11(2A) are conjugate, we get S ∩ T = V for
all S, T ∈S2(CenM11(2A)). Consequently, computing the order of CenM11(2A) we
now get

∣∣CenM11(2A)
∣∣= 48+n, which leads to n= 0. There are three possibilities

for V :

V = Z/8Z and CenM11(2A) has 1 element of order 1, 13 of order 2, 8 of order 3,
14 of order 4, 8 of order 6, 4 of order 8 (2 in each conjugacy class).

V = D8 and we have in CenM11(2A): 1 element of order 1, 5 of order 2, 8 of
order 3, 14 of order 4, 8 of order 6, 12 of order 8 (6 in each conjugacy class).

V = H8 and we have in CenM11(2A): 1 element of order 1, 13 of order 2, 8 of
order 3, 6 of order 4, 8 of order 6, 12 of order 8 (6 in each conjugacy class).

Here are the computations corresponding to these three possibilities:

Aχ1 Aχ2 Aχ3 Aχ4 Aχ5 Aχ6 Aχ7 Aχ8 Aχ9 Aχ10

V = Z/8Z 15840 10560 0 0 7920 0 0 15840 2640 5280
V = D8 15840 7920 2640 2640 2640 0 0 10560 5280 7920
V = H8 15840 7920 0 0 7920 0 0 15840 0 7920
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Finally, since the maximal subgroups of M11 have order 720, 660, 144, 120,
48 and none of these orders can be divided by both 8 and 11, we conclude that
(8A, B*, 11A, B**) is g-complete symmetric. Now, the first two configurations
give

∣∣snR(C; 0, 2)
∣∣= 538

3 and
∣∣snR(C; 0, 2)

∣∣= 536
3 , respectively, whereas the third

one gives
∣∣snR(C; 0, 2)

∣∣ = 180. So V = H8, which gives a description of the
centralizer of the involution class in M11. For this 4-uple Serre’s formula gives∣∣sn(C,M11)

∣∣= 8752.
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