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BRADLEY N. CURREY

Lebesgue measure on the linear dual of the Lie algebra of an exponential
solvable Lie group is decomposed into semi-invariant orbital measures by
means of a detailed analysis of orbital parameters and a natural measure
on an explicit cross-section for generic coadjoint orbits. This decomposition
yields a precise and explicit description of the Plancherel measure.

Introduction

For an exponential solvable Lie group G, the classical Plancherel formula for
nonunimodular groups [Duflo and Moore 1976] is combined with the method of
coadjoint orbits to construct an orbital Plancherel formula [Duflo and Raïs 1976].
Given a choice of a semi-invariant positive Borel functionψ on the linear dual g∗ of
the Lie algebra g, measurable fields {πO,HO}O∈g∗/G of irreducible representations
and {Aψ,O}O∈g∗/G of positive self-adjoint, semi-invariant operators (transforming
by the square root of the modular function) in HO, and the Borel measure mψ on
g∗/G are constructed so that for the usual class of functions φ on G,

(0.1) φ(e)=
∫

g∗/G
Tr
(

A−1
ψ,O π(φ) A−1

ψ,O

)
dmψ(O).

holds. Though each of the measurable fields above depends upon the choice of
ψ , the object {A−2

ψ,O dmψ(O)}, which is interpreted as a measure on positive, semi-
invariant operator fields over Ĝ = g∗/G, is canonical, and is referred to as the
Plancherel measure.

In the nilpotent case, where one takesψ≡1 and Aψ,O≡ Id, the measure mψ =m
is described precisely by L. Pukánszky [1967]. Let {Z1, Z2, . . . , Zn} be a basis of
g where for each 1≤ j ≤ n, the R-span of Z1, . . . , Z j is an ideal in g. Let g have
Lebesgue measure d X obtained by its identification with Rn via this basis, let g∗

have the Lebesgue measure via its dual basis, and let G have the Haar measure
d(exp X) = d X . Given these initial choices, Pukánzsky gives an algorithm for
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computing the Plancherel measure. For each ` ∈ g∗, define the jump index set e(`)
by

e(`)= {1≤ j ≤ n | g j 6⊂ g j−1+ g(`)}

where g(`) is the stabilizer subalgebra for `. One has |e(`)| = dim(O`); among
those `whose orbits have maximal dimension 2d , where d is a nonnegative integer,
view the sets e(`) as increasing sequences and order them lexicographically. Let
e= {e1 < e2 < · · ·< e2d} be the minimal jump index sequence, and �= {` ∈ g∗ |

e(`)= e}. The set � is G-invariant and Zariski open in g∗. Also associated with e
are the skew-symmetric matrices

Me(`)=
[
`([Zea , Zeb ])

]
1≤a,b≤2d , ` ∈ g∗,

and the subspace V = {` ∈ g∗ | `(Zea )= 0 for 1≤ a ≤ 2d}. One has �= {` ∈ g∗ |

det(Me(`)) 6=0} and6=V ∩� is a topological cross-section for�/G. In fact (see
[Pukánszky 1967, Lemma 4]) there is an explicit rational map P : R2d

×�→ �

such that P(z, s`)= P(z, `) for each z ∈ R2d and s ∈ G, and that, for each ` ∈�,
P( · , `) is a polynomial bijection between R2d and the coadjoint orbit of `. The
cross-section6= P(0, �) and the restriction of P to R2d

×6 is a rational bijection
whose Jacobian is one. The basis of the Pukánszky algorithm for the Plancherel
formula is the elementary decomposition of Lebesgue measure on g∗ [Pukánszky
1967, p. 279]:

(0.2)
∫

g∗
h(`) d`=

∫
6

∫
R2d

h(P(z, λ)) dz dλ,

where dλ is Lebesgue measure on V (when V is identified with Rn−2d via the dual
basis {Z∗j | j /∈ e}), and h is a positive Borel function on g∗. The inner integral in
(0.2) is actually an integral over the coadjoint orbit Oλ of λ which is G-invariant,
and hence is a multiple of the canonical measure βλ on Oλ. Precise computation
of the Plancherel measure is simply a matter of computing this multiple r(λ) for
each λ and then plugging that into (0.2). The result is that r(λ) = (2π)−d

|Pe(λ)|

where Pe(λ) is the Pfaffian of Me(λ). Equivalently, the measure dm on g∗/G is
given on 6 by (2π)−d

|Pe(λ)| dλ, and the formula

(0.3) φ(e)=
1

(2π)n+d

∫
6

Tr(πλ(φ)) |Pe(λ)| dλ,

a simple version of (0.1), is obtained by combining the above with the Kirillov
character formula and ordinary Fourier inversion. All this depends of course upon
the choice of “Jordan–Hölder basis” made at the outset, but only upon this choice.
Independent of this choice one sees that the Plancherel measure, as a measure on
the orbit space, belongs to the family of rational measures on g∗/G.
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Suppose now that G is exponential solvable. It is perhaps not surprising that
the methods of Pukánszky can be extended to obtain a cross-section for generic
coadjoint orbits. However, the execution of this method, and the orbit picture that
emerges from it, are more complex. The jump sets e(`) are defined as before
only now the basis {Z j } is a basis of the complexified Lie algebra s = gc, for
which span{Z1, Z2, . . . , Z j } = s j is an ideal in s, and if s j 6= s j then s j+1 =

s j+1 and Z j+1 = Z j . As shown in [Currey 1992; Currey and Penney 1989], the
notion of generic orbits must be refined in order to complete the construction of
an explicit topological cross-section for the generic orbits. Among other things
this involves selecting an index subset ϕ of e, which, roughly speaking, identifies
directions in g∗ in which G acts “exponentially”. Nevertheless, there is an explicit,
G-invariant Zariski open subset �⊂�e, and for ` ∈�, a precise generalization of
the Pukánszky map P(z, `) described above. One still has P(z, s`) = P(z, `) for
s ∈G, but now some of the variables z1, z2, . . . , z2d may be complex variables, and
P is not necessarily rational but real analytic. Simultaneously there is an orbital
cross-section 6 obtained by fixing the variables za in an appropriate way. Despite
the highly nonalgebraic nature of the coadjoint action here, it is shown that the
cross-section 6 is in fact a real algebraic submanifold of g∗.

For each `∈�, there is a real analytic submanifold T (`) of Cm (depending only
on the orbit of `) such that P( · , `) is an analytic bijection between T (`) and the
coadjoint orbit of `. The result is that � has in a very explicit way the structure of
a bundle over its orbital cross-section:⋃

λ∈6

T (λ)
P
−→

⋃
λ∈6

Oλ =�
P∗
−→6,

where P∗(`)= P(z∗(`), `) for a particular (G-invariant) choice z∗(`) ∈ T (`). The
fiber of the bundle � is a cone W ⊂R2d that is naturally homeomorphic with each
T (`), and local trivializations are given over Zariski-open subsets E of 6.

Given that these constructions are a natural generalization of the Pukánszky
parametrization, the question now becomes: what is the appropriate generalization
of (0.2) in the exponential case? There are at least two obvious complications:

(1) The description of � given by the Pukánszky map is not as a simple product,
but rather as a bundle over the cross-section 6; and

(2) 6 is not necessarily (a Zariski open subset of) a subspace V .

In [Currey 1992] it is shown that 6 is a smooth, real algebraic submanifold of g∗,
determined by explicit polynomials. Letting St , for each 1≤ t ≤ n− 2d , stand for
any of R,C,S0

= {−1,+1}, or S1, in this paper we show that there is a product

S = S1× S2× · · ·× Sn−2d
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such that each Zariski-open subset E of 6 over which � can be trivialized is
naturally identified with a dense open subset of S. These identifications differ with
the sets E , but only slightly; in particular, if A is a Borel subset of two trivializing
subsets E1 and E2, then A is identified via E1 and E2 with sets in S of equal
Lebesgue measure. Thus6 carries a natural “Lebesgue” measure, which we denote
by dλ. We then use the bundle structure of � to decompose Lebesgue measure d`
on g∗. We show that for each λ ∈ 6 there is a semi-invariant measure ωλ on the
coadjoint orbit Oλ through λ, with multiplier 1, such that

(0.4)
∫

g∗
h(`) d`=

∫
6

∫
Oλ

h(`) dωλ(`) dλ

for any positive Borel function h. If ψ is any positive semi-invariant function on
g∗ with multiplier 1−1, then dωλ is given by

dωλ = rψ(λ) ψ−1dβλ,

where βλ is the canonical measure on Oλ, and where rψ(λ) is defined by

rψ(λ)=
|Pe(λ)ψ(λ)|

(2π)d
∏

j∈ϕ |1+ iα j |
.

Here ϕ is the index subset of e referred to above (which is empty in the nilpotent
case), and 1+ iα j = γ j/<(γ j ), where γ j is the j-th root of the coadjoint action.

Just as in the nilpotent case, this yields a description of the Plancherel measure
in precise terms. Take (πλ,Hλ) to be the irreducible representation induced from
the Vergne polarization at λ ∈ 6 (corresponding to the Jordan–Hölder sequence
already chosen). Since the Vergne polarization is contained in the kernel of 1,
the operator Dλ defined by Dλ f (a) = 1(a) f (a) for f ∈ Hλ defines a positive
self-adjoint semi-invariant operator of weight 1−1. Using this and the character
formula for exponential solvable Lie groups, one has

{A−2
ψ,Odmψ(O)}O∈g∗/G = {Kλ dλ}λ∈6,

where

Kλ =
|Pe(λ)|

(2π)n+d
∏

j∈ϕ |1+ iα j |
Dλ.

The Pukánszky version of the Plancherel formula becomes

φ(e)=
∫
6

Tr
(
K 1/2
λ πλ(φ) K 1/2

λ

)
dλ

=
1

(2π)n+d
∏

j∈ϕ |1+ iα j |

∫
6

Tr
(
D1/2
λ πλ(φ) D1/2

λ

)
|Pe(λ)| dλ.
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In Section 1 of this paper we review the relevant results of [Currey 1992], and
then proceed with an expansion of these results to obtain more detailed information
about the bundle structure in general, and the cross-section 6 in the generic case.
In Section 2 this information is used to define Lebesgue measure on 6 and then to
deduce the decomposition (0.4) and the description of the Plancherel measure.

1. The Collective Orbit Structure

1.1. Preliminaries. Let g be a solvable Lie algebra over R with s=gc its complex-
ification, and choose a basis {Z1, Z2, . . . , Zn} for s with the following properties.

(i) For each 1≤ j ≤ n, the space s j = C-span{Z1, Z2, . . . , Z j } is an ideal in s.

(ii) If s j 6= s j then s j+1 = s j+1 and Z j+1 = Z j . Moreover, in this case, there is
A ∈ g such that [A, Z j ] = (1+ iα)Z j mod s j−1, where α is a nonzero real
number.

(iii) If s j = s j and s j−1 = s j−1, then Z j ∈ g.

As in [Currey 1992], it will be convenient to make the following notation: I =
{1≤ i ≤ n | s j = s j }, and for each 1≤ j ≤ n set

j ′ =max ({0, 1, . . . , j − 1} ∩ I ) and j ′′ =min ({ j, j + 1, . . . , n} ∩ I ) .

Thus for each j , s j ′=s j−1∩s j−1 and s j ′′=s j+s j . For Z ∈s, denote the real part of
Z by<Z , and the imaginary part of Z by =Z . (We also use these symbols to denote
real and imaginary parts of a complex number.) Define a basis for g as follows: let
X j = Z j if Z j ∈ g, and if s j 6= s j then set X j =<Z j and X j+1 ==Z j . Using the
ordered basis {X j } to identify g with Rn , let d X denote Lebesgue measure on g.
Let d` be Lebesgue measure on g∗ obtained via the ordered dual basis {X∗j }. We
regard g∗ as a real subspace of the complex vector space s∗, and for convenience
we denote `(Z) = 〈`, Z〉 by `Z , for Z ∈ s and ` ∈ g∗. We identify an element
` ∈ g∗ with the n-tuple (`1, `2, . . . , `n), where ` j = `Z j .

For each ` ∈ g∗ let s(`) = {Z ∈ s | `[Z ,W ] = 0, for all Z ∈ s}, and let p(`)

be the complex Vergne polarization associated with the sequence {s j } chosen. For
any ` ∈ g∗ and any subset t of s, we use the usual notation

t` = {Z ∈ s | `[Z , X ] = 0 for all X ∈ t}.

Let G be the unique connected, simply connected Lie group with Lie algebra
g; we assume in this paper that G is exponential, meaning that the exponential
map exp : g→ G is a bijection. Let da be the left Haar measure on G defined
by d(exp X) = jG(X)d X , where jG(X) =

∣∣det(1− e−ad X )/ad X
∣∣. Let 1 be the

modular function: d(ab)=1(b) da. The coadjoint action of G on g∗ extends to an
action of G on s∗ and restricts to an action of G on each ideal s j . We denote each
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such action multiplicatively. For each 1 ≤ j ≤ n, set s⊥j =
{
` ∈ g∗ | `(s j ) = {0}

}
,

let µ j : G→ C∗ be defined by s · Z∗j = µ j (s)Z∗j mod s⊥j , and let γ j : g→ C be
the differential of µ j . Since G is exponential, there is a real number α j such that
γ j =<(γ j )(1+ iα j ), for 1≤ j ≤ n .

The results stated in [Currey 1992, Proposition 2.6, Theorem 2.8] provide us
with a stratification of the linear dual g∗ of g into Ad∗(G)-invariant layers � and
in each layer an explicit description of the space of coadjoint orbits. We summarize
the stratification procedure as follows.

(1) To each ` ∈ g∗ there is associated an index set e(`)⊂ {1, 2, . . . , n} defined by

e(`)= {1≤ j ≤ n | s j 6⊂ s j−1+ s(`)}.

For a subset e of {1, 2, . . . , n}, the set �e = {` ∈ g∗ | e(`) = e} is algebraic
and G-invariant, and we refer to the collection of nonempty �e as the coarse
stratification of g∗. The coarse stratification has had various applications; see
for example [Pedersen 1984]. There is an ordering on the coarse stratification
for which the minimal element is Zariski open in g∗ and consists of orbits
having maximal dimension.

(2) To each ` there is associated a polarizing sequence of subalgebras

s= h0(`)⊃ h1(`)⊃ · · · ⊃ hd(`)= p(`),

and an index sequence pair (i(`), j(`)) having values i(`)={i1<i2<· · ·<id}

and j(`)= { j1, j2, . . . , jd} in e(`), defined for 1≤ k ≤ d by the recursive
equations

ik =min
{
1≤ j ≤ n | s j ∩ hk−1(`) 6⊂ hk−1(`)

`
}
,

hk(`)=
(
hk−1(`)∩ sik

)`
∩ hk−1(`),

jk =min
{
1≤ j ≤ n | s j ∩ hk−1(`) 6⊂ hk(`)

}
.

Then ik < jk for each k, and e(`) is the disjoint union of the values of i(`)
and j(`). Note that since i(`) must be increasing, it is determined by e(`)
and j(`). For any splitting of e into such a sequence pair (i, j) we set �e, j =

{` ∈ �e | j(`) = j}. These sets are also algebraic and G-invariant, and we
refer to the collection of nonempty �e, j as the fine stratification of g∗. There
is an ordering on the fine stratification for which the minimal layer is a Zariski
open subset of the minimal coarse layer.

(3) Now fix a layer �e, j in the fine stratification. For each ` ∈�e, j , set

ϕ(`)=
{

j ∈ e | s`j ′ ∩ ker(γ j )= s`j ′′ ∩ ker(γ j )
}
.
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The index set ϕ(`) identifies those directions j in e where the coadjoint action
of G dilates by its character µ j . If j ∈ ϕ, then j − 1 ∈ I , and j ∈ I if and
only if µ j is real. It is easily seen that ϕ(`) is contained in the values of
i , and there are examples where ϕ(`) is not constant on the fine layer. For
each j ∈ i , there is a rational function q j : g

∗
→ C such that q j is relatively

invariant with multiplier µ−1
j , and such that for ` ∈ �e, j , one has j ∈ ϕ

if and only if q j (`) 6= 0. So for each subset ϕ of the values of i , the set
�e, j ,ϕ = {` ∈�e, j | ϕ(`)= ϕ} is an algebraic subset of �e, j . We refer to this
further refinement of the fine stratification as the ultrafine stratification of g∗.
The ultrafine stratification also has an ordering for which the minimal layer is
a Zariski open subset of the minimal fine layer.

(4) Now fix an ultrafine layer�=�e, j ,ϕ and let ι={ j ∈ e−ϕ | j /∈ I and j+1 /∈ e}.
Let V0 be the span of those Z∗j for which either j /∈ e or j ∈ ϕ ∪ ι. Then for
each i ∈ ι, there is a rational function pi : g

∗
→ C such that the set

6 =
{
` ∈�∩V0 | pi (`)= 0 for every i ∈ ι, and |q j (`)| = 1 for every j ∈ ϕ

}
is a topological cross-section for the orbits in �.

1.2. Parametrizing an orbit. Take ` ∈ g∗ and write e(`)= {e1 < e2 < · · ·< e2d}.
Then, for each j ∈ e, one can select X j ∈ g∩ (s j ′′ − s j ′) so that

(t1, t2, . . . , t2d)→ exp(t1 Xe1) exp(t2 Xe2) · · · exp(t2d Xe2d )`

is an analytic diffeomorphism Q(t, `, Xe1, Xe1, . . . , Xe2d ) of R2d with the coadjoint
orbit of `. The starting point for the constructions of [Currey 1992] is a procedure
for selecting the X j , in terms of the elements ` belonging to a fine layer �e, j , so
that the resulting map Q(t, `) is analytic in ` and has a manageable and somewhat
explicit form. The relevant result is [Currey 1992, Lemma 1.3]; the following
lemma is a restatement of the important aspects of this result in a somewhat sim-
plified form. We then include a description of the procedure by which this result
is proved in [Currey 1992]. Finally, we show how this result is used to define the
orbit parametrization, and we observe that a slight modification of the selection
procedure in [Currey 1992] obtains a parametrization that is simpler in some cases.

Lemma 1.2.1 [Currey 1992, Lemma 1.3]. Let g be an exponential solvable Lie
algebra over R, and choose a good basis for s= gc. Let �e, j be a fine layer. Then
there is a cover F = {Ot } of �e, j by finitely many Zariski open sets, and for each
O ∈ F and 1 ≤ k ≤ d, there are analytic functions Xk : O→ g, Yk : O→ g, and
φk : O→ S1 with the following properties.

(i) `[X j (`), Xk(`)] = `[Y j (`), Yk(`)] = 0 for 1≤ j, k ≤ d.

(ii) `[X j (`), Yk(`)] = 0 if and only if j 6= k, for 1≤ j, k ≤ d.
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(iii) For each k, the functions ` → φk(`)Xk(`) and ` → φk(`)Yk(`) extend to
rational functions from �e, j into s and are independent of O.

(iv) For each 1≤ k ≤ d, set

mk(`)= C-span
{
φ1(`)Y1(`), φ2(`)Y2(`), . . . ,

φk(`)Yk(`), φ1(`)X1(`), φ2(`)X2(`), . . . , φk(`)Xk(`)
}
,

so that s=mk(`)⊕mk(`)
` for each ` ∈�. For Z ∈ s and ` ∈�, let ρk(Z , `)

be the projection of Z into mk(`)
` parallel to mk(`), with ρ0(Z , `)= Z. Then

Xk(`) and Yk(`) are in the image of ρk−1( · , `), and the function ρk is defined
recursively by the formula

(1.2.1) ρk(Z , `)= ρk−1(Z , `)−
`[ρk−1(Z , `), Xk(`)]

`[Yk(`), Xk(`)]
Yk(`)

−
`[ρk−1(Z , `), Yk(`)]

`[Xk(`), Yk(`)]
Xk(`).

(v) For each ` ∈�, ρk(s j , `)⊂ s j ′′ for 1≤ j ≤ n and 0≤ k ≤ d , and Xk(`) ∈ s j ′′k ,
Yk(`) ∈ si ′′k .

(vi) For 1≤ k ≤ d, Xk(`) has the form

Xk(`)=<
(
`[ρk−1(Z jk , `), Yk(`)]ρk−1(Z jk , `)

)
.

Remark 1.2.2. In the construction of [Currey 1992, Lemma 1.3], one actually has

Xk(`)= a(`) <
(
`[ρk−1(Z jk , `), Yk(`)]ρk−1(Z jk , `)

)
,

where a(`) is a real-valued analytic function on O . Formula (vi) above represents
a simplification of the procedure there.

For the purposes of this paper it will be necessary to analyze the preceding
objects in some detail, so we recall how these objects are defined. Let 1 ≤ k ≤ d .
If k > 1, assume that a Zariski open subset O of �e, j has been selected, and
that Y1, Y2, . . . Yk−1, X1, X2, . . . , Xk−1 have been defined so as to satisfy (i)–(vi)
above, so that we have the map ρk−1. If k = 1, set O = �e, j and ρ0(Z , `) = Z
for Z ∈ s and ` ∈ g∗. We then proceed to select a Zariski open subset of O and to
construct Yk and Xk . We consider several cases. In each of them Xk(`) is defined
essentially as in Lemma 1.2.1(vi) above, although in Cases 3 and 5, Remark 1.2.2
applies. In those cases we justify the remark.

Case 0. ik ∈ I and ik − 1 ∈ I . Here Zik ∈ g, and we set

Yk(`)= ρk−1(Zik , `).

The rest of the cases are those for which Zik 6= Z ik .



ORBITAL PARAMETERS AND PLANCHEREL MEASURE FOR LIE GROUPS 105

Case 1. ik /∈ I and ik + 1 /∈ e. Here one finds that the complex numbers

β1,k(`)= `[ρk−1(Z jk , `),<Zik ] and β2,k(`)= `[ρk−1(Z jk , `),=Zik ],

satisfy =
(
β1,k(`)β2,k(`)

)
=0. Write O=O1∪O2, where Ot ={`∈O |βt,k(`) 6=0}.

For ` ∈ Ot , set

φt,k(`)=
βt,k(`)

|βt,k(`)|
,

and

Yt,k(`)= φt,k(`)
−1(β1,k(`)ρk−1(<Zik , `)+β2,k(`)ρk−1(=Zik , `)

)
, t = 1, 2.

Case 2. ik − 1= jr /∈ I . Here we set

Yk(`)= ρk−1(X̃r (`), `)

where
X̃r (`)= =

(
`[ρr−1(Z jr , `), Yr (`)]ρr−1(Z jr , `)

)
.

Case 3. ik /∈ I and ik + 1 = jk . Here Yk(`) = ρk−1(=Zik , `) and in the proof of
[Currey 1992, Lemma 1.3], Xk(`)= ρk−1(<Zik , `). Note that

<
(
`[ρk−1(Z jk , `), Yk(`)]ρk−1(Z jk , `)

)
= `[ρk−1(<Zik , `), ρk−1(=Zik , `)] ρk−1(<Zik , `)

so that Remark 1.2.2 holds.

Case 4. ik /∈ I, ik + 1= ik+1. This case splits into two subcases.

Case 4a. Z jk+1 = Z jk . Here Yk(`)= ρk−1(<Zik , `).

Case 4b. Z jk+1 6= Z jk . This case is just like Case 1: the functions βt,1(`), and the
sets Ot , t = 1, 2 are defined exactly the same way, as is Yt,k(`), for `∈ Ot , t = 1, 2.

Case 5. ik − 1= ik−1 /∈ I . Again there are two subcases.

Case 5a. Z jk−1 = Z jk . Set r = k − 1 and note that Case 4 holds for r . We
have Yk(`)= ρr (=Zir , `), and in the proof of [Currey 1992, Lemma 1.3], Xk(`) is
defined as Xk(`)= ρk−1(X̃r (`), `) where

X̃r (`)= =
(
`[ρr−1(Z jr , `), Yr (`)]ρr−1(Z jr , `)

)
.

We claim that Remark 1.2.2 holds in this case also. Set

βr (`)= `[ρr−1(Z jr , `), Yr (`)];

then

ρr−1(Z jr , `)=
βr (`)

|βr (`)|2
(
Xr (`)+ i X̃r (`)

)
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and

ρr−1(Z jk , `)= ρr−1(Z jr , `)=
βr (`)

|βr (`)|2

(
Xr (`)− i X̃r (`)

)
.

Now

ρr (Z jk , `)= ρr−1(Z jk , `)−
`[ρr−1(Z jk , `), Xr (`)]

`[Yr (`), Xr (`)]
Yr (`)

−
`[ρr−1(Z jk , `), Yr (`)]

`[Xr (`), Yr (`)]
Xr (`)

=
βr (`)

|βr (`)|2
(
Xr (`)− i X̃r (`)

)
−
−iβr (`)

|βr (`)|2
`[X̃r (`), Xr (`)]

`[Yr (`), Xr (`)]
Yr (`)

−
βr (`)

|βr (`)|2
Xr (`)

=
−iβr (`)

|βr (`)|2

(
X̃r (`)−

`[X̃r (`), Xr (`)]

`[Yr (`), Xr (`)]
Yr (`)

)
,

and so because `[Yk(`), Yr (`)] = 0, we get

<
(
`[ρr (Z jk , `), Yk(`)]ρr (Z jk , `)

)
=<

(
iβr (`)

|βr (`)|2
`[X̃r (`), Yk(`)] ρr (Z jk , `)

)
= `[X̃r (`), Yk(`)] <

(
iβr (`)

|βr (`)|2

(
−iβr (`)

|βr (`)|2

(
X̃r (`)−

`[X̃r (`), Xr (`)]

`[Yr (`), Xr (`)]
Yr (`)

)))
=
`[X̃r (`), Yk(`)]

|βr (`)|2

(
X̃r (`)−

`[X̃r (`), Xr (`)]

`[Yr (`), Xr (`)]
Yr (`)

)
=
`[X̃r (`), Yk(`)]

|βr (`)|2
ρr (X̃r (`), `).

This proves the claim.

Case 5b. Z jk−1 6= Z jk . Again we set r = k − 1. Then Case 4b holds for r and we
have

Yk(`)= β1,r (`)ρr−1(=Zir , `)−β2,r (`)ρr−1(<Zir , `).

(In this subcase Xk(`) is defined in [Currey 1992, Lemma 1.3] exactly as Lemma
1.2.1(vi) above.)

Write e = {e1 < e2 < · · · < e2d} and fix O ∈ F . In [Currey 1992, Proposition
1.5], the objects Xk(`) and Yk(`) are used to define analytic functions ra : O→ g
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for the purpose of parametrizing the orbit of each `∈ O in a manageable way. The
definition given there is

ra(`)=


Xk(`)∣∣`[Zea , Xk(`)]

∣∣ if ea = ik,

Yk(`)∣∣`[Zea , Yk(`)]
∣∣ if ea = jk .

Suppose that j = ea ∈ e with j − 1 ∈ I . If also j ∈ I , then

ad∗ra(`)`= ζa(`)Z∗j mod s⊥j ,

where ζa(`)=±1 (and is constant on O). If j /∈ I , then

ad∗ra(`)`= ζa(`)Z∗j + ζa(`)Z∗j+1 mod s⊥j+1,

where ζa(`) is a complex number of modulus one. (Recall Z j+1= Z j in this case.)
If also j + 1= ea+1 ∈ e, then similarly

ad∗ra+1(`)`= ζa+1(`)Z∗j + ζa+1(`)Z∗j+1 mod s⊥j+1

Note that ζa(`)= `[Z j , ra(`)] (and ζa+1(`)= `[Z j , ra+1(`)] if j + 1 ∈ e), so that
`→ ζa(`) (and `→ ζa+1(`)) are analytic functions on O .

It is shown in [Currey 1992, Proposition 1.5] that if j /∈ I and both j = ea and
j + 1 belong to e, then for each ` the complex numbers ζa(`) and ζa+1(`) are
linearly independent over R. It will simplify a subsequent computation if we can
show that in fact they are orthogonal, that is, that

<
(
ζa(`)ζa+1(`)

)
= 0.

To do this it is necessary to alter (slightly) the definition of ra(`) in one particular
case: suppose that ea = ik and that Case 4a holds for k. In other words, suppose
that ea = ik /∈ I , that ik + 1 = ik+1, and that Z jk+1 = Z jk . Then I claim that we
could have defined the Xk(`), Xk+1(`), Yk(`) and Yk+1(`) as follows. Set

X ′k(`)= ρk−1(<Z jk , `),

and then set

Y ′k(`)=<
(
`[ρk−1(Z ik , `), X ′k(`)] ρk−1(Zik , `)

)
and

Y ′k+1(`)= =
(
`[ρk−1(Z ik , `), X ′k(`)] ρk−1(Zik , `)

)
.
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Note that `[Y ′k+1(`), X ′k(`)] = `[Y
′

k+1(`), Y ′k(`)] = 0. Hence if we set

X ′k+1(`)= ρ
′

k(=Z jk , `)

= ρk−1(=Z jk , `)−
`[ρk−1(=Z jk , `), Y ′k(`)]

`[X ′k(`), Y ′k(`)]
X ′k(`)

−
`[ρk−1(=Z jk , `), X ′k(`)]

`[Y ′k(`), X ′k(`)]
Y ′k(`),

then
`[X ′k+1(`), X ′k(`)] = `[X

′

k+1(`), Y ′k(`)] = 0.

By virtue of our assumptions for this case, `[X ′k+1(`), Y ′k+1(`)] does not vanish.
This proves the claim. Now for this case, with ea = ik and ea+1 = ik+1 = i ′′k , we
set

ra(`)=
X ′k(`)∣∣`[Zea , X ′k(`)]

∣∣ and ra+1(`)=
X ′k+1(`)∣∣`[Zea , X ′k+1(`)]

∣∣ .
We emphasize here that this is merely an alteration of the definitions of ra(`) and
ra+1(`) in this case. In particular the definition of ρk( · , `) is not changed. The
advantage of this alteration is that it allows for the following result, which is used
in the proof of Proposition 1.4.1 (see also Proposition 2.1.1).

In the remainder of this paper we shall refer to Case 0 above as Case (1.2.0),
Case 1 as Case (1.2.1), and so on.

Lemma 1.2.3. Let O be a covering set in F for the fine layer �e, j . Suppose
that j /∈ I , and that both j and j + 1 belong to e. Write j = ea . Then for each
` ∈ O the complex numbers ζa(`)= `[Z j , ra(`)] and ζa+1(`)= `[Z j , ra+1(`)] are
orthogonal.

Proof. It suffices to show that in each of the above cases where j /∈ I and j
and j + 1 both belong to e, one has U (`) and Ũ (`) belonging to g such that
`[U (`), ra+1(`)] = `[Ũ (`), ra(`)] = 0, and such that

Z j = α(`)U (`)+ α̃(`) Ũ (`) mod s j−1,

where α(`) and α̃(`) are orthogonal complex numbers.
First suppose that { j, j+1} includes a term of the index sequence j . Thus either

j = jr and j + 1= ik , or { j, j + 1} = { jr , jk}, with r < k in both cases. We set

U (`)= Xr (`)=<
(
`[ρr−1(Z j , `), Yr (`)] ρr−1(Z j , `)

)
and

Ũ (`)= =
(
`[ρr−1(Z jr , `), Yr (`)] ρr−1(Z jr , `)

)
.

Then

Z j =
βr (`)

|βr (`)|2
(
U (`)+ iŨ (`)

)
mod s j−1,
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where

βr (`)= `[ρr−1(Z j , `), Yr (`)].

It follows immediately that

Z j = α(`)U (`)+ α̃(`)Ũ (`) mod s j−1,

where α(`) and α̃(`) are orthogonal. If j + 1= ik , an examination of Case (1.2.2)
shows that Ũ (`) = Yk(`) mod s j−1, while if { j, j + 1} = { jr , jk}, a computation
exactly as in Case (1.2.5a) shows that Ũ (`) is a real multiple of Xk(`). Hence in
either case we have `[U (`), ra+1(`)] = `[Ũ (`), ra(`)] = 0.

Secondly, suppose that j = ik and j + 1= ik+1. If Z jk+1 = Z jk , we set U (`)=
Y ′k(`) and Ũ (`)= Y ′k+1(`). From the definitions of Y ′k(`) and Y ′k+1(`) we have

Z j =
βk(`)

|βk(`)|2

(
U (`)+ iŨ (`)

)
mod s j−1,

where now

βk(`)= `[ρk−1(Z j , `), X ′k(`)].

and (with the alternate definitions of ra and ra+1) we find that `[U (`), ra+1(`)] =

`[Ũ (`), ra(`)] = 0. Finally, if j = ik , j + 1 = ik+1, and Z jk+1 6= Z jk , then we set
U (`)= Yk(`) and Ũ (`)= Yk+1(`). From the definitions of Yk and Yk+1 in this case
we have

Z j =
β1,k(`)+ iβ2,k(`)

β1,k(`)2+β2,k(`)2
(
U (`)+ iŨ (`)

)
mod s j−1.

As in the previous cases we find that U and Ũ satisfy the desired conditions. This
completes the proof. �

For ` ∈ O and t ∈ R, set ga(t, `)= exp(tra(`)) and set

ga(t, `)= g1(t1, `)g2(t2, `) · · · ga(ta, `) for t ∈ R2d ,

with g(t, `)= g2d(t, `). Then, for each ` ∈ O ,

Q(t, `)= g(t, `)`=
n∑

j=1

Q j (t, `)Z∗j

defines a diffeomorphism of R2d onto the coadjoint orbit of `. Note that for each
1≤ j ≤ n, if 1≤ b≤ 2d is defined by eb ≤ j ′′< eb+1, then Q j (t, `)=

(
gb(t, `)`

)
j ,

so that Q j ( · , `) depends only upon t1, t2, . . . , tb. Note also that if j /∈ I , then
Q j+1 = Q j .
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1.3. A closer look at parametrization. The form of the functions Q j (t, `) as func-
tions of t ∈ R2d is well-known. We wish to closely examine these functions not
just as functions of t , but as functions of `1, `2, . . . , `n as well. We assume that
we have fixed a layer �e, j belonging to the fine stratification, with all associated
objects as described in the preceding section. We begin with some observations
that follow immediately from the results of [Currey 1992].

Remark 1.3.1. The definition of ρk implies that ρk(ρr (Z , `), `) = ρk(Z , `) for
0≤ r ≤ k, Z ∈ s, ` ∈�.

Remark 1.3.2. Because Xk(`) and Yk(`) are in the image of ρk−1( · , `), we have

`([V, Yk(`)])= `([ρk−1(V, `), Yk(`)]),

`([V, Xk(`)])= `([ρk−1(V, `), Xk(`)]),

for any V ∈ s, by the definition of ρk−1( · , `). Formula (1.2.1) can be simplified
accordingly.

Remark 1.3.3. Fix 1≤ k ≤ d and let Z ∈ s. Then ρk−1(Z , `) belongs to s`ik
′ .

Lemma 1.3.4. Fix a covering set O ∈ F , let Yk and Xk be the functions described
in Lemma 1.2.1 and let 1≤ k ≤ d.

(i) One has

Xk(`)= a1,k(`) ρk−1(<Z jk , `)+ a2,k(`) ρk−1(=Z jk , `),

Yk(`)= b1,k(`) ρk−1(<Zik , `)+ b2,k(`) ρk−1(=Zik , `)

where a1,k(`), a2,k(`), b1,k(`), and b2,k(`) all depend only upon `1, . . . , `ik .
Moreover, if Case (1.2.4a) holds for k, the above statement also holds for the
functions X ′k, Y ′k, X ′k+1, and Y ′k+1.

(ii) Fix j such that 1 ≤ j ≤ n, and let Z ∈ s j ′′, V ∈ s. Then `→ `[Z , ρk(V, `)]
depends only on `1, `2, . . . , ` j .

Proof. We proceed by induction on k; suppose that k = 1. Note that si1−1 = si1−1.
An examination of the construction of Y1(`) and X1(`) in [Currey 1992, Proof of
Lemma 1.3], and outlined in the various cases of Section 1.2, shows that (i) is
true. In fact, the functions a1,1(`), a2,1(`), b1,1(`), and b2,1(`) depend only upon
the expressions

`[<Z j1,<Zi1], `[<Z j1,=Zi1], `[=Z j1,<Zi1], `[=Z j1,=Zi1].

We now turn to the statement (ii) when k = 1. Observe first that, having verified
(i) for k = 1, and referring to Lemma 1.2.1(v), we see that the function

`→ `[X1(`), Y1(`)]
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depends only on `1, `2, . . . , `i1 . Now consider the function `→ `[Z , ρ1(V, `)],
where Z ∈ s j ′′ and V is any element of s. We have

`[Z , ρ1(V, `)] = `[Z , V ] −
`[V, X1(`)]

`[Y1(`), X1(`)]
`[Z , Y1(`)]

−
`[V, Y1(`)]

`[X1(`), Y1(`)]
`[Z , X1(`)].

If j ≤ i ′1, then `[Z , Y1(`)] and `[Z , X1(`)] are both zero, whence `[Z , ρ1(V, `)] =
`[Z , V ] and the conclusion follows. If j > i ′1 but j ≤ j ′1, then `[Z , Y1(`)] = 0, so

`[Z , ρ1(V, `)] = `[Z , V ] −
`[V, Y1(`)]

`[X1(`), Y1(`)]
`[Z , X1(`)].

Again using parts (i) and (v) of Lemma 1.2.1, we have that

`→ `[V, Y1(`)] and `→ `[Z , X1(`)]

depend only on `1, `2, . . . , ` j , and the result follows. Finally, if j > j ′1, using (i)
and Lemma 1.2.1 in a similar way, we find that each factor in each term of the
above depends only on `1, `2, . . . , ` j . This completes the case k = 1.

Now suppose that k > 1 and that (i) and (ii) hold for all 1 ≤ r ≤ k − 1. We
note that the induction hypothesis (together with the properties of the functions
ρr ( · , `)) implies that for each 1≤ r ≤ k− 1 and 1≤ s ≤ k, the function

`→ `[ρr (<Z js , `), ρr (<Zis , `)] = `[ρr (<Z js , `),<Zis ]

depends only upon `1, . . . , `ik . (Recall here that is ≤ ik .) Similarly, the expressions

(1.3.1) `[ρr (<Z js , `), ρr (=Zis , `)],

`[ρr (=Z js , `), ρr (<Zis , `)] and `[ρr (=Z js , `), ρr (=Zis , `)]

depend only upon `1, . . . , `ik .
To see that (i) holds for k, we begin by observing that if (i) is true for Yk(`), it

is true for Xk(`) as well, by virtue of the formula

Xk(`)=<
(
`[ρk−1(Z jk , `), Yk(`)] ρk−1(Z jk , `)

)
= `[ρk−1(<Z jk , `), Yk(`)] ρk−1(<Z jk , `)

+`[ρk−1(=Z jk , `), Yk(`)] ρk−1(=Z jk , `).

As for Yk(`), we examine each of the five cases outlined in Section 1.2 for the
formulae by which Yk(`) is defined. In Case (1.2.0), b1,k(`) = 1 and b2,k(`) = i ,
while in Case (1.2.1), b1,k(`)= φt,k(`)

−1β1,k(`) and b2,k(`)= φt,k(`)
−1β2,k(`) are

easily seen to depend upon the expressions (1.3.1), with r = k − 1. Suppose that
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we are in Case (1.2.2), which means that we have r < k such that jr = ik − 1 /∈ I
and Zik = Z jr . The formula for Yk(`) in this case is

ρk−1
(
=
(
`[ρr−1(Z jr ,`),Yr (`)]ρr−1(Z jr ,`)

)
,`
)

= `[ρr−1(<Z jr ,`),Yr (`)]ρk−1(=Z jr ,`)− `[ρr−1(=Z jr ,`),Yr (`)]ρk−1(<Z jr ,`)

=−`[ρr−1(=Z jr ,`),Yr (`)]ρk−1(<Zik ,`)− `[ρr−1(<Z jr ,`),Yr (`)]ρk−1(=Zik ,`),

where we have used Remark 1.3.1. So b1,k(`) = −`[ρr−1(=Zik , `), Yr (`)] and
b2,k(`) = −`[ρr−1(<Zik , `), Yr (`)] are seen to depend only upon the expressions
(1.3.1). Cases (1.2.3), (1.2.4a), and (1.2.5a), are trivial: bt,k(`) = 0 or ±1, and
Cases (1.2.4b) and (1.2.5b) are similar to Cases (1.2.1) and (1.2.2), respectively.
Finally, in Case (1.2.4a), the definitions of X ′k(`), X ′k+1(`), Y ′k(`), and Y ′k+1(`)

resemble those for Xk(`), Xk+1(`), Yk(`), and Yk+1(`), except with the letters X
and Y interchanged, and we leave it to the reader to check that they also satisfy (i).
This completes the induction step for statement (i).

Turning to the statement (ii), we argue as we did for k = 1. We observe using
(i) and Lemma 1.2.1(v) that the function

`→ `[Xk(`), Yk(`)]

depends entirely upon the expressions (1.3.1) with r = k−1, and hence only upon
`1, `2, . . . , `ik . Let Z ∈ s j ′′ and let V be any element of s. From the simplified
form of (1.2.1) (Remark 1.3.2), we have

`[Z , ρk(V, `)] = `[Z , ρk−1(V, `)] −
`[V, Xk(`)]

`[Yk(`), Xk(`)]
`[Z , Yk(`)]

−
`[V, Yk(`)]

`[Xk(`), Yk(`)]
`[Z , Xk(`)].

If j ≤ i ′k , then `[Z , Yk(`)] and `[Z , Xk(`)] are both zero, whence `[Z , ρk(V, `)] =
`[Z , ρk−1(V, `)] and the conclusion follows by induction. If j > i ′k but j ≤ j ′k ,
then `[Z , Yk(`)] = 0, so

`[Z , ρk(V, `)] = `[Z , ρk−1(V, `)] −
`[V, Yk(`)]

`[Xk(`), Yk(`)]
`[Z , Xk(`)].

Again using (i) and Lemma 1.2.1(v), we see that

`→ `[V, Yk(`)] and `→ `[Z , Xk(`)]

depend only on `1, `2, . . . , ` j , and the result follows. Finally if j> j ′k , using (i) and
Lemma 1.2.1 in a similar way, we find that each factor in each term of the above
depends only on `1, `2, . . . , ` j . This completes the induction step for part (ii). �
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Lemma 1.3.5. Assume given:

(a) an index j , 1≤ j ≤ n such that j − 1 ∈ I ;

(b) indices 1 ≤ k1, k2, . . . , kp ≤ d and 1 ≤ ea1 ≤ ea2 ≤ · · · ≤ eap ≤ j ′′ such that
eas is equal to one of iks or jks , 1≤ s ≤ p;

(c) for each 1 ≤ s ≤ p, an element Vs ∈ s such that ρks−1(Vs, `) belongs to s`e′as
for every ` ∈�;

(d) an element Z ∈ s j ′′ .

Then the function

`→ `
[
[· · · [[Z , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
depends only on `1, `2, . . . , ` j .

Proof. We proceed by induction on N =
∑p

s=1 ks ; if N = 1 then p= 1 and k1 = 1,
and the result is obvious. Assume that N > 1. It is clear that we may assume
that k1 > 1, and by Lemma 1.3.4, we may assume that p > 1. Note also that
Yk1−1(`) ∈ si ′′k1−1

⊂ se′as
for all 2≤ s ≤ p. By the assumption about the elements Vs

we have

`
[
[· · · [[Z , Yk1−1(`)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
= 0,

and hence, for each ` ∈�,

(1.3.2) `
[
[· · · [[Z , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
= `

[
[· · · [[Z , ρk1−2(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
− b(`) `

[
[· · · [[Z , Xk1−1(`)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
,

where

b(`)=
`[ρk1−2(V1, `), Yk1−1(`)]

`[Xk1−1(`), Yk1−1(`)]
.

Now the data

1≤ k1− 1, k2, . . . , kp ≤ d, ik1−1 < ea2 < · · ·< eap , V1, V2, . . . , Vp

satisfy the conditions of the lemma since ρk1−2(V1, `) belongs to s `i ′k1−1
. Hence by

induction the first term of the right-hand side above, namely,

`
[
[· · · [[Z , ρk1−2(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
depends only on `1, `2, . . . , ` j .

As for the second term of (1.3.2), we apply the formulas Lemma 1.3.4(i):

Yk1−1(`)= b1(`)ρk1−2(<Zik1−1, `)+ b2(`)ρk1−2(=Zik1−1, `),

Xk1−1(`)= a1(`)ρk1−2(<Z jk1−1, `)+ a2(`)ρk1−2(=Z jk1−1, `),
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with a1(`), a2(`), b1(`) and b2(`) depending only upon `1, `2, . . . , `ik1−1 . From
this and Lemma 1.3.4(ii) it follows that b(`) depends only upon `1, `2, . . . , `ik1−1 .

Moreover, we observe that the data

1≤ k1− 1, k2, . . . , kp ≤ d, ik1−1 < ea2 < · · ·< eap , <Z jk1−1, V2, . . . , Vp

satisfy the conditions for this lemma and so, by induction,

`
[
[· · · [[Z , ρk1−2(<Z jk1−1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
depends only upon `1, `2, . . . , ` j . Similarly,

`
[
[· · · [[Z , ρk1−2(=Z jk1−1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
depends only upon `1, `2, . . . , ` j . We conclude that the second term of (1.3.2)
depends only upon `1, `2, . . . , ` j . This completes the proof. �

Proposition 1.3.6. Fix O ∈ F , and for each `∈ O , let Q(t, `)= g(t, `)` be defined
as above. Then for each 1≤ j ≤ n and for each t ∈R2d , the function `→ Q j (t, `)
depends only on `1, `2, . . . , ` j .

Proof. Fix 1 ≤ j ≤ n; we may assume that j − 1 ∈ I . Set a = max{1 ≤ b ≤ 2d |
eb ≤ j ′′}. Note that rb(`) ∈ s`j ′′ for b > a, and hence exp(tbrb(`))`Z j = ` j then.
Now fix t ∈ R2d . Let q ∈ {0, 1, 2, . . . }a be a multi-index. With the conventions
tq
= tq1

1 tq2
2 · · · t

qa
a and q! = q1!q2! · · · qa!, we have

Q j (t, `)= g(t, `)`Z j

= exp(t1r1(`)) . . . exp(tara(`))`Z j =
∑

q∈{0,1,2,... }a
w j (q, t, `),

where

(1.3.3) w j (q, t, `)=
tq

q!
(ad∗ r1(`))

q1 (ad∗ r2(`))
q2 · · · (ad∗ ra(`))

qa` Z j .

It remains to show that for each t ∈ R2d and each multi-index q , the function
`→ w j (q, t, `) depends only on `1, `2, . . . , ` j . Fix a multi-index q and write

(e1, e1, . . . , e1, e2, . . . , e2, . . . , ea, . . . ea)= (ea1, ea2, . . . , eap),

where on the left-hand side eb is listed qb times, for 1≤ b≤ a. For each 1≤ s ≤ p,
let 1 ≤ ks ≤ d be such that eas ∈ {iks , jks }. Note that iks ≤ j ′′ holds for 1 ≤ s ≤ p.
Writing

Yk(`)= b1,k(`) ρk−1(<Zik , `)+ b2,k(`) ρk−1(=Zik , `)

as in Lemma 1.3.4, the functions b1,ks and b2,ks , for each 1≤ s≤ p, depend only on
`1, `2, . . . , ` j . Similarly for the functions a1,ks and a2,ks that appear in the formula
for Xks (`). Also by Lemma 1.3.4, the functions `[Z j , Xks (`)] and `[Z j , Yks (`)]
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depend only upon `1, `2, . . . , ` j . (If Case (1.2.4a) holds for ks , replace Xks (`)

by X ′ks
(`) and the same statements hold.) Substituting the formula for rb(`) into

(1.3.3) we obtain a function A(`)= A(`1, `2, . . . , ` j ) such that

w j (q1, q2, . . . , qa, t, `)

=
tq

q!
A(`) `

[
[· · · [[Z , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
,

where Vs is one of <Z jks
,=Z jks

if eas = iks , and one of <Ziks
,=Ziks

if eas = jks .
The factor

`
[
[· · · [[Z , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
appearing in the preceding satisfies the hypothesis of Lemma 1.3.5, and hence
depends only upon `1, `2, . . . , ` j . This completes the proof. �

Lemma 1.3.7. Let 1≤ j ≤ n be an index with j −1 ∈ I , and let ik be a term of the
index sequence i = {i1 < i2 < · · · < id} with ik < j . Then for each V ∈ s and for
0≤ r ≤ k, the function `→ γ j (ρr (V, `)) depends only upon `1, `2, . . . , ` j−1.

Proof. We proceed by induction on r : if r = 0, the result is obvious. Suppose that
r > 0, and assume that the result holds for r − 1. We have

γ j (ρr (V, `))= γ j (ρr−1(V, `))−
`[ρr−1(V, `), Xr (`)]

`[Yr (`), Xr (`)]
γ j (Yr (`))

−
`[ρr−1(V, `), Yr (`)]

`[Xr (`), Yr (`)]
γ j (Xr (`)).

Note that ir ≤ ik < j ; hence γ j (Yr (`))= 0. If also jr ≤ j ′′ then γ j (Xr (`))= 0, so
γ j (ρr (V, `)) = γ j (ρr−1(V, `)), and the induction step is complete. Suppose that
jr > j ′′. It remains to check that each of the expressions

`[ρr−1(V, `), Yr (`)], `[Xr (`), Yr (`)] and γ j (Xr (`))

depend only upon `1, `2, . . . , ` j−1. Using formulas Lemma 1.3.4(i) for Xr (`) and
Yr (`), the fact that ir < j , and Lemma 1.3.4(ii), we see that both `[ρr−1(V,`),Yr (`)]

and `[Xr (`), Yr (`)] depend only upon `1, `2, . . . , ` j−1. As for γ j (Xr (`)), we apply
the formula for Xr (`) again:

γ j (Xr (`))= a1,r (`)γ j (ρr−1(<Z jr , `)) + a2,r (`)γ j (ρr−1(=Z jr , `))

where a1,r (`) and a2,r (`) depend only on `1, `2, . . . , `ir . By the induction assump-
tion, γ j (ρr−1(<Z jr , `)) and γ j (ρr−1(=Z jr , `)) depend only on `1, `2, . . . , ` j−1.
This completes the induction step and the proof. �

We now recall the procedure of substitution [Currey 1992, Proposition 2.6] by
which Q(t, `) is simplified to obtain a map P(z, `). Let � ⊂ �e, j be a layer
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belonging to the ultrafine stratification. Given any covering set O ∈ F , then for
each ` ∈ O , we make substitutions

z1 = ξ1(t, `), z2 = ξ2(t, `), . . . , z2d = ξ2d(t, `), t ∈ R2d , ` ∈�∩ O,

that result in a simplification of the expressions Qea (t, `), for 1≤a≤2d. If j=ea /∈

ϕ and e′′a ∈ e, then za = Q j (t, `) (this is always the situation in the nilpotent case.)
If j = ea /∈ ϕ and e′′a /∈ e (that is, j ∈ ι), then za = c j (t, `)<

(
c j (t, `)−1 Q j (t, `)

)
,

where
c j (t, `)= sign

(
µ j (ga−1(t, `)

)
ζa(`).

(Here signw = w/|w| for a nonzero complex number w.) If j = ea ∈ ϕ, then
za = µ j (ga(t, `)) q j (`)

−1, where

q j (`)=
γ j (ra(`))

ζa(`)

is a nonvanishing, µ−1
j -relatively invariant rational function on �; see [Currey

1992, Proposition 1.8, Corollary 2.2, and the definition of � on p. 256]. Solving
for ta in terms of z1, z2, . . . , za and `, we obtain inverse maps 81(z, `), 82(z, `),
. . . , 82d(z, `) as described in [Currey 1992, proof of Proposition 2.6, p. 261], so
that

Q(8(z, `), `)= P(z, `)=
n∑

j=1

Pj (z, `)Z∗j .

For each ` ∈� there is a submanifold T (`) of C2d , depending only on the orbit of
`, such that P( · , `) is an analytic bijection of T (`) with the coadjoint orbit of `.
The functions Pj (z, `), for 1≤ j ≤ n, satisfy

(i) Pj (z, s`)= Pj (z, `) for s ∈ G;

(ii) Pj (z, `)= 0 mod (z1, z2, . . . , za), where ea ≤ j < ea+1;

(iii) Pea (z, `) = za mod (z1, z2, . . . , za−1), with Pea (z, `) ≡ za unless ea ∈ ι∪ ϕ.
(In the nilpotent case, ι∪ϕ =∅.)

The function P(z, `) is defined on the entire ultrafine layer �, independently of
the covering set O , and is a precise generalization of the map of [Pukánszky 1967,
Lemma 4].

Finally, one has an analytic map z :�→Cm with z(s`)= z(`) and z(`) ∈ T (`)
such that P∗ : `→ P(z(`), `) maps � onto an orbital cross-section 6. The map
z(`) = (z1(`), z2(`), . . . , z2d(`)) is defined as follows. If ea /∈ ϕ, set za(`) = 0.
Suppose that j = ea ∈ ϕ. Assume that if b < a, then zb(`) is defined, and set

ga−1(`)= ga−1(81(z1(`), `), . . . , 8a−1(z1(`), . . . , za−1(`), `), `
)
.
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Then

z(`)=
µ j (ga−1(`))

q j (`)

∣∣∣∣ q j (`)

µ j (ga−1(`))

∣∣∣∣1+iα j

,

where 1+ iα j = µ j/<µ j . Set

θ j (`)= ` j −
1

q j (`)
, ` ∈�.

It is also shown in [Currey 1992, Lemma 2.1] that the function θ j (`) depends only
upon `1, `2, . . . , ` j−1. It follows from this, from the definition of the substitutions
za = ξa(t, `) [Currey 1992, p. 263], and from Proposition 1.3.6 and Lemma 1.3.7
that for each 1≤ a≤ 2d , both ξa(t, `) and8a(z, `) depend only on `1, `2, . . . , `ea .
Thus the following is immediate.

Corollary 1.3.8. For each 1 ≤ j ≤ n and for z fixed, Pj (z, · ) and P∗j depend only
upon `1, `2, . . . , ` j .

We now proceed with more technical results aimed at a better understanding of
the structure of � as a bundle over the cross-section 6. If j = ea ∈ e but j /∈ ι∪ϕ,
we already know that Pj (z, `)= za . What is needed is a better understanding of the
functions Q j (t, `), and hence the functions Pj (z, `), in the cases where j ∈ ι∪ϕ.
This will be our present focus.

Lemma 1.3.9. Let 1 ≤ j ≤ n be an index with j /∈ I , j ∈ e, and j + 1 /∈ e. Then,
for any ` ∈�e, j ,

(i) s`j ′′ ⊂ ker(γ j ), and

(ii) if j = jk , then s`i ′k
⊂ ker(γ j ).

Proof. Let 1≤k≤d with j ∈{ik, jk}, and fix `∈�. From the definition of ik and jk ,
we have Y (`)∈hk−1(`)∩sik and X (`)∈hk−1(`)∩s jk so that X (`)= Z j mod s j−1,
Y (`) = Zik mod sik−1, and `[X (`), Y (`)] 6= 0. Moreover, we have Z(`) ∈ s(`),
such that s j ′′ = s j ′ +C-span{Z j , Z(`)}.

To prove part (i), assume that j = ik . If V ∈ s`j ′′ ,

`[V, [X (`), Y (`)]] = 0 and `[Z(`), [X (`), V ]] = 0.

By the Jacobi identity it follows that

`[X (`), [V, Z(`)]] = 0.

Since j /∈ I , this can only happen if γ j (V ) = 0. If j = jk , the proof is the same,
with Y (`) and X (`) reversing roles. This proves part (i).

Now to prove (ii), assume that j = jk and let V ∈ s`i ′k
. Then V ∈ hk−1(`) and so

[V, X (`)] = γ j (V ) Z j +W, [V, Y (`)] = γik (V ) Zik +U,
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with W ∈ hk−1(`)∩s j−1 and U ∈ hk−1(`)∩sik−1. Hence, from the Jacobi identity,
we get

0= `[V, [X (`), Y (`)]] = (γ j (V )+ γik (V ))`[X (`), Y (`)],

so that γ j (V )=−γik (V ). (Since γ j (V ) is not real, it follows that ik
′′
− ik

′
= 2.)

Now referring to the cases described in Section 1.2, the proof here branches into
several cases:

(a) Case (1.2.0) or Case (1.2.1) holds for k: We have [X (`), Y (`)] ∈ si ′k . Since
V ∈ s`i ′k

, we may repeat the same argument given for part (i) verbatim.

(b) Case (1.2.2) holds for k: Here ik − 1= jr with r ≤ k− 1 and we have Xr (`) ∈

sik ∩ g and X̃r (`) ∈ sik ∩ g such that sik = sik−2+ span{Xr (`), X̃r (`)} and such
that Xr (`) /∈ hr (`), X̃r (`) ∈ hr (`). Now V ∈ hr (`), so [V, hr (`)] ⊂ hr (`). But if
γik (V ) 6= 0, then [V, X̃r (`)] = a X̃r (`)+bXr (`)+W , where W ∈ sik−2 and b 6= 0.
This would mean that s jr ′′ = span{[V, X̃r (`)], X̃r (`)} + s jr ′ ⊂ hr (`)+ s j ′r , which
contradicts the definition of jr =min{1≤ j ≤ n | hr−1(`)∩ s j 6⊂ hr (`)}.

(c) Case (1.2.4) holds for k: We have Xk(`) and X̃k(`) belonging to s j ′′ ∩ g with
s j ′′ = span{Xk(`), X̃k(`)}+s j ′ , `[Xk(`), Yk(`)] 6= 0, and `[X̃k(`), Yk(`)]= 0. This
means that Xk(`) /∈ hk(`), and X̃k(`)∈ hk+1(`), the latter because, by virtue of our
assumption that j + 1 /∈ e, we have jk+1 > j + 1. Now γ j (V ) = 0 if and only if
γ j (ρk+1(V, `))= 0, and ρk+1(V, `) belongs to hk+1(`). Hence if γ j (ρk+1(V, `)) 6=
0, then [ρk+1(V, `), X̃k(`)] = a X̃k(`)+bXk(`) mod s j ′ , where b 6= 0. This would
imply that s j ⊂ hk(`)+ s j ′ , contradicting the definition of jk = j .

(d) Case (1.2.5) holds for k: This case is similar to (c), and we omit the details. �

Lemma 1.3.10. Suppose given j with 1≤ j ≤ n and j−1∈ I , and k 1≤ k≤ d with
ik < j . Assume further that if j = jr for some r < k, then j /∈ I and j+1 /∈ e. Then,
for 0 ≤ r ≤ k− 1 and for each V ∈ s, the function `→ `[Z j , ρr (V, `)] defined on
�e, j is of the form

`[Z j , ρr (V, `)] = γ j (ρr (V, `))` j + u(`),

where u(`) depends only upon `1, `2, . . . , ` j−1.

Proof. We proceed by induction on r , the result being clear for r = 0. Assume
that r > 0 and that the result holds for r −1. This means in particular that we may
assume that

`[Z j , ρr−1(V, `)] = γ j (ρr−1(V, `))` j + u0(`1, `2, . . . , ` j−1).

By our hypothesis and the properties of sequence pairs we have ir < j , and also
j + 1 6= jr if j /∈ I . We therefore have three cases: j ′′ < jr , j = jr , and j ≥ j ′′r .
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Case 1: j ′′ < jr . Here `[Z j , Yr (`)] = `[ρr−1(Z j , `), Yr (`)] = 0, so

`[Z j , ρr (V, `)] = `[Z j , ρr−1(V, `)] − c(`)`[Z j , Xr (`)].

where

c(`)=
`[ρr−1(V, `), Yr (`)]

`[Xr (`), Yr (`)]
.

By Lemma 1.3.4, we have

Yr (`)= br,1(`)ρr−1(<Zir , `)+ br,2(`)ρr−1(=Zir , `),

Xr (`)= ar,1(`)ρr−1(<Z jr , `)+ ar,2(`)ρr−1(=Z jr , `),

where ar,1(`), ar,2(`), br,1(`), and br,2(`) depend only upon `1, `2, . . . , `ir . It fol-
lows from these formulas and the induction hypothesis that c(`) depends only upon
`1, `2, . . . , ` j−1. Also by induction we have

`[Z j , ρr−1(<Z jr , `)] = γ j (ρr−1(<Z jr , `))` j + v1(`1, `2, . . . , ` j−1),

`[Z j , ρr−1(=Z jr , `)] = γ j (ρr−1(=Z jr , `))` j + v2(`1, `2, . . . , ` j−1),

and it follows that we have u1(`1, `2, . . . , ` j−1) such that

`[Z j , Xr (`)] = γ j (Xr (`))` j + u1(`1, `2, . . . , ` j−1).

Hence

`[Z j , ρr (V, `)] = γ j (ρr−1(V, `))` j + u0(`)− c(`)
(
γ j (Xr (`))` j + u1(`)

)
= γ j (ρr (V, `))` j + u(`),

where u(`)= u0(`)− c(`)u1(`) depends only upon `1, `2, . . . , ` j−1.

Case 2: j = jr . Here j /∈ I and j + 1 /∈ e. By Remark 1.3.3 and Lemma
1.3.9, for each ` ∈ �, the image of ρr−1( · , `) is contained in ker(γ j ). This,
combined with the induction hypothesis, implies that for any V ∈ s, the expres-
sion `[Z j , ρr−1(V, `)] depends only upon `1, `2, . . . , ` j−1. Combining this with
Lemma 1.3.4, we find that the expressions

c(`)=
`[ρr−1(V, `), Yr (`)]

`[Xr (`), Yr (`)]
, d(`)=

`[ρr−1(V, `), Xr (`)]

`[Yr (`), Xr (`)]

depend only upon `1, `2, . . . , ` j−1, and hence that

`[Z j , ρr (V, `)] = `[Z j , ρr−1(V, `)] − c(`) `[Z j , Xr (`)] − d(`)`[Z j , Yr (`)]

depends only upon `1, `2, . . . , ` j−1 also. Since ρr (V, `) ∈ ker(γ j ), we are done
with this case.

Case 3: j ≥ j ′′r . This is similar to Case 1, with an additional term that is handled
in a way precisely analogous to the arguments in Case 1. We omit the details. �
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Lemma 1.3.11. Assume given:

(a) an index j with 1 ≤ j ≤ n and j − 1 ∈ I , and such that, if j = jr , then j /∈ I
and j + 1 /∈ e;

(b) indices 1≤ k1, k2, . . . , kp ≤ d and 1≤ ea1 ≤ ea2 ≤ · · · ≤ eap ≤ j such that eas

is equal to one of iks or jks , for 1≤ s ≤ p;

(c) for each 1≤ s≤ p, an element Vs ∈ s such that for every `∈�e, j , ρks−1(Vs, `)

belongs to s`e′as
.

Then, for each ` ∈�e, j ,

`
[
[· · · [[Z j , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
=

p∏
s=1

γ j (ρks−1(Vs, `))` j + y(`),

where y(`) depends only upon `1, `2, . . . , ` j−1.

Proof. Set rs = ks−1, for 1≤ s ≤ p. As in Lemma 1.3.5, we proceed by induction
on N =

∑p
s=1 ks , and by Lemma 1.3.10, we may assume that p > 1.

Suppose first that r1 = 0. Writing [Z j , V1] = γ j (V1)Z j +W with W ∈ s j−1, we
apply induction to

`
[
[. . . [Z j , ρr2(V2, `)], . . . ], ρrp(Vp, `)

]
and Lemma 1.3.5 to

y1(`)= `
[
[. . . [W, ρr2(V2, `)], . . . ], ρrp(Vp, `)

]
,

obtaining that

`
[
[· · · [[Z j ,V1],ρr2(V2,`)], · · · ],ρrp(Vp,`)

]
= γ j (V1)

( p∏
s=2

γ j (ρrs (Vs,`))` j+ y0(`)

)
+`

[
[. . . [W,ρr2(V2,`)], . . . ],ρrp(Vp,`)

]
= γ j (V1)

p∏
s=2

γ j (ρrs (Vs,`))` j+γ j (V1) y0(`)+ y1(`).

Now suppose that r1 > 0. From our assumption about the indices and the elements
Vs , we have `

[
[. . . [Yr1(`), ρr2(V2, `)], . . . ], ρrp(Vp, `)

]
= 0. Thus

(1.3.4) `
[
[· · · [[Z j , ρr1(V1, `)], ρr2(V2, `)], · · · ], ρrp(Vp, `)

]
= `

[
[· · · [[Z j , ρr1−1(V1, `)], ρr2(V2, `)], · · · ], ρrp(Vp, `)

]
− c(`)`

[
[· · · [[Z j , Xr1(`)], ρr2(V2, `)], · · · ], ρrp(Vp, `)

]
,
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where

c(`)=
`[ρr1−1(V1, `), Yr1(`)]

`[Xr1(`), Yr1(`)]
.

We now proceed in much the same way as in the proof of Lemma 1.3.5. Looking
at the first term of the right-hand side of 1.3, we observe that the data

1≤ k1− 1, k2, . . . , kp ≤ d, ik1−1 < ea2 < · · ·< eap , V1, . . . , Vp

satisfy the hypothesis of this lemma, so by induction,

`
[
[· · · [[Z j , ρr1−1(V1, `)], ρr2(V2, `)], · · · ], ρrp(Vp, `)

]
= γ j (ρr1−1(V1, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y0(`),

where y0(`) depends only upon `1, `2, . . . , ` j−1.
Turning to the second term, we apply formulas Lemma 1.3.4(i) to conclude that

c(`) depends only upon `1, `2, . . . , `ik1−1 . We then observe that the data

1≤ k1− 1, k2, . . . , kp ≤ d, ik1−1 < ea2 < · · ·< eap , <Z jk1−1, V2, . . . , Vp

satisfy the conditions for this lemma, and so, by induction,

`
[
[· · · [[Z j , ρr1−1(<Z jk1−1, `)], ρr2(V2, `)], · · · ], ρrp(Vp, `)

]
= γ j (ρr1−1(<Z jr1

, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y1(`),

where y1(`) depends only upon `1, `2, . . . , ` j−1. An entirely similar formula holds
involving =Z jk1−1 instead of <Z jk1−1 and a remainder y2(`) depending only upon
`1, `2, . . . , ` j . Using the formula for Xr1(`) from Lemma 1.3.4, we can substitute
the preceding into equation 1.3 to get

`
[
[· · · [[Z j , ρk1−1(V1, `)], ρk2−1(V2, `)], · · · ], ρkp−1(Vp, `)

]
= γ j (ρr1−1(V1, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y0(`)

− c(`)a1(`)

(
γ j (ρr1−1(<Z jr1

, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y1(`)

)

− c(`)a2(`)

(
γ j (ρr1−1(=Z jr1

, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y2(`)

)
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= γ j (ρr1−1(V1, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y0(`)

−c(`)γ j (Xr1(`))

p∏
s=2

γ j (ρrs (Vs, `)) ` j − c(`)a1(`)y1(`)− c(`)a2(`)y2(`)

= γ j (ρr1(V1, `))

p∏
s=2

γ j (ρrs (Vs, `))` j + y(`),

where y(`)= y0(`)− c(`)a1(`)y1(`)− c(`)a2(`)y2(`) depends only upon `1, `2,
. . . , ` j−1. This completes the proof. �

We now examine the functions Q j , 1≤ j ≤ n, in light of the preceding results.
Observe that Lemma 1.3.11 applies to every index j belonging to ι∪ϕ, and recall
that it is these indices that primarily concern us at present.

Fix a covering set O ∈ F . Choose 1≤ j ≤ n such that j − 1 ∈ I , set

a =min{1≤ b ≤ 2d | eb ≥ j},

and define Q◦j (t, `)= ga−1(t, `)` Z j . We begin by computing Q◦j (t, `).

Lemma 1.3.12. We have

Q◦j (t, `)= µ j (ga−1(t, `))` j + Y ◦j (t, `),

where Y ◦j (0, `) ≡ 0 for every ` ∈ O. Moreover, Y ◦j (t, `) depends only upon
`1, . . . , ` j−1, unless j ∈ j and j ′′ ∈ e.

Proof. We compute in much the same way as Proposition 1.3.6, with the added
information of subsequent lemmas. If q = q1, q2, . . . , qa−1 ∈ {0, 1, 2, . . . }a−1 is a
multi-index, we have

Q◦j (t, `)= ga−1(t, `)`Z j =
∑

q∈{0,1,2,... }a−1

w j (q, t, `),

where

w j (q, t, `)=
tq

q!

(
ad∗r1(`)

q1 ad∗r2(`)
q2 · · · ad∗ra−1(`)

qa−1 `
)
Z j .

Fix a multi-index q 6= (0, 0, . . . , 0) and write

(e1, e1, . . . , e1, e2, . . . , e2, . . . , ea−1, . . . , ea−1)= (ea1, ea2, . . . , eap),
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where on the left-hand side each index eb is listed qb times, for 1≤ b≤ a−1. For
each 1≤ s ≤ p, let 1≤ ks ≤ d be such that eas ∈ {iks , jks }. If eas = jks , then

ras (`)=
Yks (`)∣∣`[Zeas
, Yks (`)]

∣∣
=

b1,ks (`)∣∣`[Zeas
, Yks (`)]

∣∣ ρks−1(<Ziks
, `)+

b2,ks (`)∣∣`[Zeas
, Yks (`)]

∣∣ ρks−1(=Ziks
, `).

Similarly, if eas = iks ,

ras (`)=
a1,ks (`)∣∣`[Zeas
, Xks (`)]

∣∣ ρks−1(<Z jks
, `)+

a2,ks (`)∣∣`[Zeas
, Xks (`)]

∣∣ ρks−1(=Z jks
, `).

Substituting these expressions into the formula for w j (q, t, `) above we get, for
q 6= (0, 0, . . . , 0),

w j (q, t, `)=
tq

q!

∑
cs=1,2
1≤s≤p

A(q, c1, . . . , cp, `)

·
(
ad∗ρk1−1(Vc1, `) ad∗ρk2−1(Vc2, `)× ad∗ρkp−1(Vcp , `)`

)
Z j ,

where

Vcs =


<Z jks

if eas = iks and cs = 1,

=Z jks
if eas = iks and cs = 2,

<Ziks
if eas = jks and cs = 1,

=Ziks
if eas = jks and cs = 2,

and where A(q, c, `) is the product of the corresponding coefficients. Specifically,

A(q, c, `)=
p∏

s=1

As(q, c, `),

where

As(q, c1, . . . , cp, `)=



a1,ks (`)∣∣`[Zeas
, Xks (`)]

∣∣ if eas = iks and cs = 1,

a2,ks (`)∣∣`[Zeas
, Xks (`)]

∣∣ if eas = iks and cs = 2,

b1,ks (`)∣∣`[Zeas
, Yks (`)]

∣∣ if eas = jks and cs = 1,

b2,ks (`)∣∣`[Zeas
, Yks (`)]

∣∣ if eas = jks and cs = 2.
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By Lemma 1.3.4, A(q, c, `) depends only upon `1, `2, . . . , ` j−1. Turning next to
the expression(

ad∗ρk1−1(Vc1, `) ad∗ρk2−1(Vc2, `) · · · ad∗ρkp−1(Vcp , `)`
)
Z j ,

we see that it can be written as
p∏

s=1

γ j (ρks−1(Vcs , `))` j + y j (q, c, `).

We may apply Lemma 1.3.11 to this expression unless j ∈ j and j ′′ ∈ e: for each
multi-index q 6= (0, 0, . . . , 0) and c, y j (q, c, `) depends only upon `1, `2, . . . , ` j−1.
We obtain

w j (q, t, `)=
tq

q!

∑
cs=1,2
1≤s≤p

A(q, c, `)
( p∏

s=1

γ j (ρks−1(Vcs , `))` j + y j (q, c, `)
)
,

and finally,

Q◦j (t, `)=
∑

q

w j (q, t, `)

=

∑
q

tq

q!

∑
cs=1,2
1≤s≤p

A(q, c, `)
( p∏

s=1

γ j (ρks−1(Vcs , `))` j + y j (q, c, `)
)

=

∑
q

tq

q!

∑
cs=1,2
1≤s≤p

A(q, c, `)
p∏

s=1

γ j (ρks−1(Vcs , `))` j

+

∑
q 6=(0,0,...0)

tq

q!

∑
cs=1,2
1≤s≤p

A(q, c, `)y j (q, c, `)

=

(∑
q

tq

q!

p∏
s=1

γ j (ras (`))

)
` j +

∑
q 6=(0,0,...0)

tq

q!
Y ◦j (q, `)

= µ j (g1(t1, `)g2(t2, `) · · · ga−1(ta−1, `))` j + Y ◦j (t, `),

where Y ◦j (t, `) satisfies the conditions of the lemma. This completes the proof. �

Note that µ j (gb(t, `)) = exp(tbγ j (rb(`)) for 1 ≤ b ≤ a− 1, and from Lemmas
1.3.4 and 1.3.7, the function `→γ j (rb(`)) depends only upon `1, . . . , ` j−1. Hence
the function ` → µ j (ga−1(t, `)) = µ j (g1(t, `)) · · ·µ j (ga−1(t, `)) depends only
upon `1, . . . , ` j−1.

We now use this to describe Q j (t, `), for 1 ≤ j ≤ n. Fix an index j such that
j − 1 ∈ I . The value of dim(s`j ′ /s

`
j ′′) is constant on � (equal to 0, 1, or 2) and we
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denote it by d j . If d j = 0, that is, j /∈ e, then Q◦j (t, `) = Q j (t, `). Suppose that
d j = 1; then j = ea ∈ e and

Q(t, `)= Q◦(t, ga(ta, `)`).

Now ga(ta, `)` |s j−1 = ` |s j−1 and

(ga(ta, `)`) j = ` j + ta F(taγ j (ra(`)))ζa(`),

where F : R→ R is the real analytic function

F(x)= 1+
x
2!
+

x2

3!
+ · · · .

Recall the rational, relatively-invariant function

q j (`)=
γ j (ra(`))

ζa(`)
.

If j /∈ ϕ, then q j (`) = 0 for all ` ∈ � and one computes from the above that
(ga(ta, `)`) j = ` j + taζa(`). If j ∈ ϕ, then q j is nonvanishing on �, and

(ga(ta, `)`) j = etaγ j (ra(`)) q j (`)
−1
+ θ j (`),

where, as before, θ j (`) = ` j − q j (`)
−1. Suppose that d j = 2. Then both j and

j + 1= j ′′ belong to e, and

Q(t, `)= Q◦
(
t, ga(ta, `)ga+1(ta+1, `)`

)
.

We have
(ga(ta, `)ga+1(ta+1, `)`) |s j−1 = ` |s j−1

and, because g is exponential, j, j + 1 /∈ ϕ. It follows that(
ga(ta, `)ga+1(ta+1, `)`

)
j = ` j + taζa(`)+ ta+1ζa+1(`).

Proposition 1.3.13. Fix a covering set O ∈ F , and let 1≤ j ≤ n such that j−1∈ I .
Then the function Q j (t, `) has the form

µ j (ga−1(t, `))` j + Y j (t, `) if j /∈ e,

µ j (ga−1(t, `)) (` j + taζa(`))+ Y j (t, `) if d j = 1 and j /∈ ϕ,

µ j (ga−1(t, `)) (etaγ j (ra(`))q j (`)
−1)+ Y j (t, `) if d j = 1 and j ∈ ϕ,

µ j (ga−1(t, `)) (` j + taζa(`)+ ta+1ζa+1(`))+ Y j (t, `) if d j = 2.

Moreover, if j /∈ e, or if j ∈ ι∪ϕ, then Y j (t, `) depends only upon `1, `2, . . . , ` j−1.
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Proof. If j /∈ e or if γ j (ra(`)) = 0, the formula holds with Y j = Y ◦j , whereas if
j ∈ ϕ, then Q j (t, `) has the indicated form with

Y j (t, `)= µ j (ga−1(t, `)) θ j (`)+ Y ◦j (t, `). �

Combining these formulas with the substitutions of [Currey 1992, p. 263], we
obtain the following, which will be useful in the sequel. Recall the definition
of ga−1(`) given before Corollary 1.3.8; note that ga−1(`) depends only upon
`1, `2, . . . , ` j−1. Recall that signw = w/|w| for a nonzero complex number w.

Corollary 1.3.14. Let � be an ultrafine layer with P∗ : �→ 6 the natural pro-
jection onto its cross-section 6. For each 1 ≤ j ≤ n, there is a function Y ∗j (`)
depending only upon `1, `2, . . . , ` j−1 such that P∗ is given by

P∗j (`)=



µ j (ga−1(`))` j + Y ∗j (`) if j /∈ e,

0 if j ∈ e but j /∈ ι∪ϕ,

ζa(`) sign(µ j (ga−1(`)))i

· =
(
|µ j (ga−1(`))|ζa(`)

−1` j + Y ∗j (`)
)

if j ∈ ι,

µ j (ga−1(`))

q j (`)

∣∣∣∣ q j (`)

µ j (ga−1(`))

∣∣∣∣1+iα j

+ Y ∗j (`) if j ∈ ϕ.

1.4. The local trivializations. Let�⊂�e, j be an ultrafine layer with cross-section
6 and with the covering F of Lemma 1.2.1. Let F∗ be the covering of 6 defined
by F∗ = {E =6 ∩ O | O ∈ F}. For each E ∈ F∗, set

�E =
⋃
{O ∈�/G | O∩ E 6=∅} = (P∗)−1(E).

It is evident that
(t, λ)→ Q(t, λ)

defines a diffeomorphism of�E with R2d
×E . In this way we see that Q furnishes

us with local trivializations of �/G, with fiber R2d . The local trivialization P̃
referred to above represents a simplification of the map Q, obtained by changing
the fiber. Let W =W1×W2×· · ·×W2d be the subset of R2d defined by Wa =R if
ea /∈ ϕ and Wa = (0,+∞) if ea ∈ ϕ. The description of � as a bundle over 6 with
fiber W is given in [Currey 1992, Theorem 2.8]. We make this description more
explicit here: we describe how the local trivialization can be obtained by a method
of substitution, in a way that is analogous to the construction of the Pukánszky
map P(z, `).

Proposition 1.4.1. Let W be the subset of R2d defined as above. Let O ∈ F be a
covering set for the ultrafine layer�, let E=O∩6, and let P̃ :W×E→�E be the
local trivialization map for which P∗(P̃(w, λ)) = λ for all λ ∈ E , as described in
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[Currey 1992, Theorem 2.8]. Then there is an analytic function ψ :W ×6→R2d

such that
P̃(w, λ)= Q(ψ(w, λ), λ) forw ∈W, λ ∈6.

Set ga(w, λ) = ga(ψ(w, λ), λ) for 1 ≤ a ≤ 2d. For 1 ≤ a ≤ 2d , write j = ea and
assume j − 1 ∈ I . Then ψa satisfies the following.

(a) For each w ∈W , the function ψa(w, λ) depends only on λ1, λ2, . . . , λ j .

(b) For each λ ∈ E , if d j = 1, then

ψa(w, λ)=


ζa(λ)

−1µ j (ga−1(w, λ))−1wa mod (w1, . . . , wa−1) if j /∈ ι∪ϕ,∣∣µ j (ga−1(w, λ))
∣∣−1
wa mod (w1, . . . , wa−1) if j ∈ ι,

<
(
γ j (ra(λ))

)−1 logwa mod (w1, . . . , wa−1) if j ∈ ϕ.

If d j = 2, then[
ψa(w, λ)

ψa+1(w, λ)

]
= A(w, λ)

[
wa

wa+1

]
mod (w1, . . . , wa−1),

where

|det A(w, λ)| =
∣∣µ j (ga−1(w, λ))−2∣∣= ∣∣µ j (ga−1(w, λ))−1µ j+1(ga−1(w, λ))−1∣∣.

Proof. It is the inverse mapping 2 : (P∗)−1(E)→W × E of P̃ that is described in
[Currey 1992, Theorem 2.8]: 2 has the form 2(`)= (w(`), P∗(`)) where w(`) is
as follows. For 1≤ a ≤ 2d such that j = ea and j − 1 ∈ I , if d j = 1 then

wa(`)=


` j if j /∈ ι∪ϕ,

<
(
sign(µ j (s))−1ζa(λ)

−1` j
)

if j ∈ ι,

|q j (`)|
−1 if j ∈ ϕ.

Here s ∈ G satisfies sλ= `. If d j = 2, then

wa(`)=<(` j ), wa+1(`)= =(` j ).

The mapψ can therefore be obtained by the substitutions ta=ψa(w, λ), 1≤a≤2d,
as follows. First, let j = e1. If d j = 1 and j /∈ ι ∪ ϕ, since g is exponential and
by virtue of condition (ii) of our chosen basis (page 101), we have j ∈ I . Setting
w1 = Q j (t1, λ), then ψ1(w1, λ) is obtained by solving for t1 in terms of w1 and λ.
If j ∈ ϕ, then w1 = |q j (g1(t1, λ)λ)|−1

= |µ j (g1(t1, λ))| (recall that |q j (λ)| = 1).
The desired formula for ψ1(w1, λ) is again obtained by solving for t1. If d j = 2,
setting w1 =<

(
Q j (t1, λ)

)
and w2 = =

(
Q j (t1, λ)

)
, we get

w1+ iw2 = t1ζ1(λ)+ t2ζ2(λ)+ λ j .



128 BRADLEY N. CURREY

Hence [
ψ1(w, λ)

ψ2(w, λ)

]
= Z(λ)−1

[
w1−<(λ j )

w2−=(λ j )

]
,

where

Z(λ)=
[
<(ζ1(λ)) <(ζ2(λ))

=(ζ1(λ)) =(ζ2(λ))

]
.

By Lemma 1.2.3, | det Z | = 1. This finishes the case j = e1.
Suppose that 1 < a ≤ 2d and that we have defined ψ1(w, λ), ψ2(w, λ), . . . ,

ψa−1(w, λ), each of which satisfy conditions (a) and (b) of the proposition. For j=
ea , if d j =1 and j /∈ ι∪ϕ, letwa=Q j (t1, t2, . . . , ta, λ) and solve for ta , while at the
same time substituting tb =ψb(w, λ), 1≤ b≤ a−1. Thus ψa(w1, w2, . . . , wa, λ)

is obtained. If j ∈ ι, set

wa =<
(
sign(µ j (ga−1(t, λ)))−1ζa(λ)

−1 Q j (t, λ)
)

= |µ j (ga−1(t, λ))|ta +<
(
|µ j (ga−1(t, λ))|ζa(λ)

−1λ j

+ sign(µ j (ga−1(t, λ)))−1ζa(λ)
−1Y j (t, λ)

)
.

It is evident that, solving for ta and substituting tb = ψb(w, λ) for 1 ≤ b ≤ a− 1,
the desired form for ψa(w1, w2, . . . , wa, λ) is obtained. If j ∈ ϕ, one gets

wa = |q j (g(t, λ)λ)|−1
= |µ j (ga(t, λ))| = |µ j (ga−1(t, λ))| eta<γ j (ra(λ)),

from which ψa(w, λ) is obtained by solving for ta . Suppose that d j = 2. Making
the substitution we get

wa + iwa+1 = µ j (ga−1(t, λ))
(
taζa(λ)+ ta+1ζa+1(λ)+ λ j

)
+ Y j (t, λ),

and substituting tb = ψb(w, λ) for 1≤ b ≤ a− 1,

taζa(λ)+ ta+1ζa+1(λ)= µ j (ga−1(w, λ)−1)
(
wa + iwa+1− Y j (w, λ)

)
− λ j .

Setting ψa(w, λ)= ta and ψa+1(w, λ)= ta+1, we get[
ψa(w, λ)

ψa+1(w, λ)

]
= Z(w, λ)−1

(
M(w, λ)−1

[
wa −<(Y j (w, λ))

wa+1−=(Y j (w, λ))

]
−

[
<λ j

=λ j

])
,

where

Z(w, λ)=
[
<(ζa(λ)) <(ζa+1(λ))

=(ζa(λ)) =(ζa+1(λ))

]
and

M(w, λ)=
[
<(µ j (ga−1(w, λ))) −=(µ j (ga−1(w, λ)))

=(µ j (ga−1(w, λ))) <(µ j (ga−1(w, λ)))

]
.

Again by Lemma 1.2.3, |det Z(w, λ)| = 1, and also, as desired,

det M(w, λ)=
∣∣µ j (ga−1(w, λ))

∣∣2. �
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Making the substitutions indicated above yields the following description of P̃ .
We use the notation wa−1

= w1, . . . , wa−1.

Proposition 1.4.2. Let 1 ≤ j ≤ n be such that j − 1 ∈ I . Let 1 ≤ a ≤ 2d be
defined by ea−1 < j ≤ ea . There is an analytic function Y j (w, `), depending only
uponw1, w2, . . . , wa−1 and λ1, λ2, . . . , λ j−1, such that P̃j (w, λ) has the following
form, according to the cases below.

(i) j /∈ e. If j < e1, then P̃j (w, λ)= λ j . If j > e1, then

P̃j (w, λ)= µ j (ga−1(w, λ)) λ j + Y j (w, λ).

(ii) d j = 1.

– If j /∈ ι∪ϕ, then P̃j (w, λ)= wa .

– If j ∈ ι, then, with c j (w
a−1, λ)= sign

(
µ j (ga−1(w, λ))

)
ζa(λ),

P̃j (w,λ)=c j (w
a−1,λ)

(
wa+i=

(
c j (w

a−1,λ)−1µ j (ga−1(w,λ))λ j
))
+Y j (w,λ).

– If j ∈ ϕ, then

P̃j (w, λ)=
µ j (ga−1(w, λ))∣∣µ j (ga−1(w, λ))

∣∣1+iα j
w

1+iα j
a q j (λ)

−1
+ Y j (w, λ),

where 1+ iα j = γ j/<(γ j ).

(iii) d j = 2. Then P̃j (w, λ)= wa + iwa+1.

2. The Plancherel Measure

2.1. Computation of the canonical measure on an orbit. We now proceed to
apply the results of Section 1 to harmonic analysis on an exponential Lie group
G. Let s be the complexification of g and assume that we have chosen a basis
{Z1, Z2, . . . , Zn} for s satisfying conditions (i)–(iii) of page 101. We retain all
other notations from Section 1 as well. We begin by computing the canonical mea-
sure on any coadjoint orbit [Pukánszky 1968] in terms of the data from Proposition
1.4.2. Set µe =

∏
j∈e µ j .

Proposition 2.1.1. Let � be an ultrafine layer with cross-section 6. Fix λ ∈ 6,
let Oλ be the coadjoint orbit through λ and let βλ be the canonical measure on Oλ.
Choose any covering set E ∈ F∗ that contains λ and let P̃ : W × E → �E be the
local trivialization of Proposition 1.4.2. For any nonnegative Borel measurable
function f on Oλ, one has∫

Oλ

f dβλ =
c

|Pe(λ)|

∫
W

f (P̃(w, λ))
∣∣µe(g(w, λ))

∣∣−1 dw,

where c = (2π)d
∏

j∈ϕ |1+ iα j |.
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Proof. From [Pedersen 1984, Lemma 2.1.3] and the definitions above, we have∫
Oλ

f dβλ

=
(2π)d

|Pe(λ)|

∫
R2d

f (g(t, λ)λ)
∏
a<b

∣∣µea (exp(tbrb(λ)))
∣∣−1 dt

=
(2π)d

|Pe(λ)|

∫
W

f (P̃(w, λ))
∏
a<b

∣∣µea (exp(ψb(w, λ)rb(λ)))
∣∣−1
|Jψ(w, λ)| dw.

It remains to compute
∏

a<b

∣∣µea (exp(ψb(w, λ)rb(λ)))
∣∣−1
|Jψ(w, λ)|, and for this

we refer to the description of the functions ψa(w, λ) given in Proposition 1.4.1. If
j = ea ∈ e−ϕ and d j = 1, we have∣∣∣∣∂ψa

∂wb

∣∣∣∣=

∣∣µ j (ga−1(w, λ))

∣∣−1 if b = a,

0 if b > a.

If j = ea ∈ e − ϕ with j − 1 ∈ I and d j = 2, then for all b > a + 1 we have
∂ψa/∂wb = ∂ψa+1/∂wb = 0 and∣∣∣∣det

(
∂ψa/∂wa ∂ψa/∂wa+1

∂ψa+1/∂wa ∂ψa+1/∂wa+1

)∣∣∣∣= |det A(w, `)|

=
∣∣µ j (ga−1(w,λ))

∣∣−1∣∣µ j+1(ga−1(w,λ))
∣∣−1
.

On the other hand, if j = ea ∈ ϕ, then

∂ψa

∂wb
=


∣∣µ j (ga(w, λ))

∣∣−1(
<(γ j (ra(λ)))

)−1 if b = a,

0 if b > a.

Now, by [Currey 1992, Proposition 1.8], j = ea ∈ e− ϕ implies γ j (ra(λ)) = 0,
hence µ j (ga−1(w, λ))= µ j (ga(w, λ)). It follows that

|Jψ(w, λ)| =
∏

j∈e−ϕ

∣∣µ j (ga−1(w, λ))
∣∣−1 ∏

j∈ϕ

∣∣µ j (ga(w, λ))
∣∣−1
|<(γ j (ra(λ)))|

−1

=

∏
j∈e

∣∣µ j (ga(w, λ))
∣∣−1 ∏

j∈ϕ

∣∣<(γ j (ra(λ)))
∣∣−1
.

Finally we combine this with the fact that
∣∣<(γ j (ra(λ)))

∣∣−1
= |1+ iα j | to get∏

a<b

∣∣µea (exp(ψb(w, λ)rb(λ)))
∣∣−1
|Jψ(w, λ)| =

(∏
j∈ϕ

|1+ iα j |

)
|µe(g(w, λ))|−1.

This completes the proof. �
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2.2. A natural measure on the cross-section. As indicated in Section 1.1 and
proved in [Currey 1992, Proposition 1.9], the ultrafine stratification has a total
ordering for which the minimal layer is Zariski open and consists of coadjoint
orbits of maximal dimension. Let � denote this minimal “generic” layer, with 6
its cross-section. In [Currey 1992, Theorem 2.9] it is shown that6 is a submanifold
of g∗; in this section we describe it in more detail.

Let K j = R if j ′′− j ′ = 1 and K j = C if j ′′− j ′ = 2. For each 1 ≤ j ≤ n, let
6 j =π j (6)={(λ1, λ2, . . . , λ j ) |λ∈6}. To obtain a picture of the cross-section6
we describe 6 j in terms of 6 j−1 and a subset of K j , for each j such that j−1∈ I .

Fix 1≤ j ≤ n, j − 1 ∈ I . For each (λ1, λ2, . . . , λ j−1) ∈6 j−1, set

L j (λ1, λ2, . . . , λ j−1)=



K j if j /∈ e,

{0} if j ∈ e but j /∈ ι∪ϕ,

Riζa(λ1, λ2, . . . , λ j−1) if j = ea ∈ ι,

S j ′′− j ′−1
+ θ j (λ1,λ2, . . . ,λ j−1) if j ∈ ϕ.

Proposition 2.2.1. Let 6 = P∗(�) be the orbital cross-section in�. Fix 1≤ j ≤ n
with j−1∈ I . For each (λ1, λ2, . . . , λ j−1)∈6 j−1 let U j (λ1, λ2, . . . , λ j−1) be the
subset of K j defined by

6 j =
{
(λ1, λ2, . . . , λ j ) | (λ1, λ2, . . . , λ j−1) ∈6 j−1

and λ j ∈U j (λ1, λ2, . . . , λ j−1)
}
.

Then the set U j (λ1, λ2, . . . , λ j−1) is a dense open subset of L j (λ1, λ2, . . . , λ j−1).

Proof. Fix 1 ≤ j ≤ n with j − 1 ∈ I , and for each (λ1, λ2, . . . , λ j−1) ∈ 6 j−1, let
W (λ1, λ2, . . . , λ j−1) = {(λ1, λ2, . . . , λ j−1, x) | x ∈ K j }. By Corollary 1.3.8, P∗j
can be regarded as a function on π j (�), and it is clear that

U j (λ1, λ2, . . . , λ j−1)= P∗j (W (λ1, λ2, . . . , λ j−1)∩π j (�)).

With (λ1, λ2, . . . , λ j−1) ∈ 6 j−1 fixed, let h j : K j → L j (λ1, λ2, . . . , λ j−1) be the
map defined by

h j (x)=



x if j /∈ e,

0 if j ∈ e but j /∈ ι∪ϕ,

iζ j (λ1,λ2, . . . ,λ j−1)=
(
ζ j (λ1,λ2, . . . ,λ j−1)

−1x
)

if j ∈ ι,

x − θ j (λ1, λ2, . . . , λ j−1)

|x − θ j (λ1, λ2, . . . , λ j−1)|1+iα j

+θ j (λ1, λ2, . . . , λ j−1) if j ∈ϕ.
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It is easily seen that h j is a continuous, open mapping; we claim that

P∗j (`)= h j (` j ) for each ` ∈W (λ1, λ2, . . . , λ j−1)∩π j (�).

To see this, observe first that for ` ∈W (λ1, λ2, . . . , λ j−1)∩π j (�),

π j−1(`)= π j−1(P∗(`))= π j−1(Q(81(z(`), `), . . . , 8a−1(z(`), `), `)),

where a = min{1 ≤ b ≤ 2d | j ≤ eb}. This shows that 81(z(`), `) = · · · =
8a−1(z(`), `) = 0, and hence ga−1(`) = e. Furthermore, Y ∗j (`) = 0 unless j ∈ ϕ,
whence Y ∗j (`)= θ j (`).

With this in mind we apply Corollary 1.3.14: if j /∈ e, then P∗j (`) = ` j , while
if j ∈ e− ι∪ϕ, there is nothing to prove. If j ∈ ι, then

P∗j (`)= iζ j (λ1, λ2, . . . , λ j−1)=
(
ζ j (λ1, λ2, . . . , λ j−1)

−1` j
)
,

while if j ∈ ϕ, then, recalling that q j (`)
−1
= ` j − θ j (λ1, λ2, . . . , λ j−1), the claim

follows in this case as well.
Now, since � is dense and open in g∗, the intersection W (λ1, λ2, . . . , λ j−1)∩

π j (�) is dense and open in W (λ1, λ2, . . . , λ j−1), and we have a dense open subset
V (λ1, λ2, . . . , λ j−1) of K j such that

U (λ1, λ2, . . . , λ j−1)= h j (V (λ1, λ2, . . . , λ j−1)).

Since h j is a continuous and open mapping, the proof is complete. �

The picture of the cross-section thus obtained is therefore as a line bundle over
circles. More specifically, for j ∈ ec

∪ ι∪ ϕ such that j − 1 ∈ I , let S j be defined
by

S j =


K j if j /∈ e,
R if j ∈ ι,

S0
= {±1} if j ∈ ϕ and j ′′− j ′ = 1,

S1 if j ∈ ϕ and j ′′− j ′ = 2.

Recall that 6 is covered by the sets E =6∩O , where O ∈ F , and that we denoted
this covering by F∗. Fix E ∈ F∗ and define σ = σE : E→ S =

∏
j−1∈I S j by

σ j (λ)=


λ j if j /∈ e,
=(ζa(λ)

−1λ j ) if j = ea ∈ ι,

q j (λ)
−1 if j ∈ ϕ

Corollary 2.2.2. The mapping σE is a diffeomorphism between E and a dense,
open subset of S.
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Proof. Clearly σ has rank n−2d, hence its image is an open submanifold of S. We
claim that it is also dense in S. Let s ∈ S, and assume that we have a sequence s(n)
in σ(6) such that for some j ∈ ec

∪ ι∪ϕ, we have si (n)→ si for all i ∈ ec
∪ ι∪ϕ

with i < j . Let λ(n)= σ−1(s(n)). If j /∈ e, by density of U j (λ1(n), . . . , λ j−1(n))
for each n, we can choose s j (n) ∈ U j (λ1(n), . . . , λ j−1(n)) such that s j (n)→ s j .
Similarly, if j ∈ ι, we can choose s j (n) ∈ iζ j (λ)U j (λ1(n), . . . , λ j−1(n))⊂R such
that s j (n)→ s j , and if j ∈ϕ, we can choose s j (n)∈U j (λ1(n), . . . , λ j−1(n))−θ j (λ)

such that s j (n)→ s j . �

Now let m be Lebesgue measure on S, and define the Borel measure µ on 6 by
µ(A)=m(σE(A∩ E)). We claim that the measure µ is independent of the choice
of the covering set E ∈ F∗.

Note first that, by the constructions of [Currey 1992] (see, for example, remarks
preceding 2.4 of that reference), if O1 and O2 are any two elements of F and ζa,1

and ζa,2 are the functions on O1 and O2 (respectively) with values in S1 associated
with the index ea and as defined on page 107, then ζa,1(`) = ±ζa,2(`) for each
` ∈ O1 ∩ O2. Now let E1 and E2 be any two elements of F∗; the preceding
observation shows that if A is a Borel subset of 6, then

m(σE1(A∩ E1 ∩ E2))= m(σE2(A∩ E1 ∩ E2)).

Let p be a polynomial function on g∗ such that E2 = {λ ∈6 | p(λ) 6= 0}. Then

σE1(A∩ E1 ∩ Ec
2)= σE1(A∩ E1)∩ {s ∈ σE1(E1) | p(σ−1

E1
(s))= 0},

and hence
m(σE1(A∩ E1))= m(σE1(A∩ E1 ∩ E2)).

Applying the same argument with E1, E2 reversed, we conclude that

m(σE1(A∩E1))=m(σE1(A∩E1∩E2))=m(σE2(A∩E1∩E2))=m(σE2(A∩E2)).

Thus the claim is verified. We shall use the simplified notation dµ(λ)= dλ.

Lemma 2.2.3. Let 1≤ j ≤ n such that j − 1 ∈ I and j /∈ e. Let 0≤ k ≤ d , and let
V ∈ g.

(i) The function `→ γ j (ρk(V, `)) on � depends only upon `1, `2, . . . , ` j−1.

(ii) There is a function v(`) on �, depending only upon `1, `2, . . . , ` j−1, such
that

`[Z j , ρk(V, `)] = γ j (ρk(V, `))` j + v(`) for each ` ∈�.

The proof of this lemma is quite similar to that of Lemmas 1.3.7 and 1.3.10 (see
also [Currey 1991, Lemma 2.3]) and is therefore omitted here.
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By [Duflo and Raïs 1976, Lemme 5.2.2], the stabilizer algebra g(`) is abelian
for each ` ∈ �. Since the roots of the action of g(`) on g/g(`) are already of the
form±ν1, · · ·±νd , it follows that G(`) is contained in the kernel of1. This allows
the following. Fix O ∈ g∗/G with parameter λ ∈ 6, let βλ denote the canonical
measure on O, and let β̃λ denote the corresponding measure on G/G(λ). Given
any positive, 1−1 relatively invariant function ψ on g∗, we have

ψ(λ)

∫
O

f (`)ψ(`)−1dβλ(`)=
∫

G/G(λ)
f (aλ)1(a)dβ̃λ(a).

Hence we have defined a relatively invariant measure on O independent of the
choice of ψ . In particular, the relatively invariant Borel measure ωλ on O given by∫

O
f dωλ = rψ(λ)

∫
O

f (`)ψ(`)−1dβλ(`),

where

rψ(λ)=
|Pe(λ)|ψ(λ)

(2π)d
∏

j∈ϕ |1+ iα j |
,

is independent of the choice of ψ . Choose any covering set E ∈ F∗ that contains
λ and let P̃ : W × E → �E be the local trivialization of Proposition 1.4.2. Then
Proposition 2.1.1 yields∫

O
f dωλ = rψ(λ)

∫
O

f (`)ψ(`)−1dβλ(`)

= ψ(λ)

∫
W

f (P̃(w, λ))ψ(P̃(w, λ))−1 ∣∣µe(g(w, λ))
∣∣−1 dw

= ψ(λ)

∫
W

f (P̃(w, λ))ψ(g(w, λ)λ)−1 ∣∣µe(g(w, λ))
∣∣−1 dw

=

∫
W

f (P̃(w, λ))1(g(w, λ))
∣∣µe(g(w, λ))

∣∣−1 dw

=

∫
W

f (P̃(w, λ))
∏
j /∈e

∣∣µ j (g(w, λ))
∣∣ dw.

We sum up these observations:

Proposition 2.2.4. Let O be a coadjoint orbit in � with parameter λ ∈ 6, and let
ωλ be the relatively invariant measure defined by∫

O
f dωλ =

|Pe(λ)|

(2π)d
∏

j∈ϕ |1+ iα j |

∫
G/Gλ

f (aλ)1(a) dβ̃λ(a).

Choose any covering set E ∈ F∗ that contains λ and let P̃ :W×E→�E be the lo-
cal trivialization of Proposition 1.4.2. Then for any nonnegative Borel measurable
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function f on O, we have∫
O

f dωλ =
∫

W
f (P̃(w, λ))

∏
j /∈e

∣∣µ j (g(w, λ))
∣∣ dw.

We are now ready for the main result of this paper.

Theorem 2.2.5. For any nonnegative measurable function h on g∗,∫
g∗

h(`) d`=
∫
6

∫
Oλ

h(`) dωλ(`) dλ.

Proof. Fix E ∈ F∗ and set SE = σE(E)⊂ S. Let P̃ be the associated trivialization
of�E and write P̃(w, s)= P̃(w, σ−1(s)) and g(w, s)= g(w, σ−1(s)), for w ∈W ,
s ∈ SE . It is enough to show that∫

�E

h(`) d`=
∫

SE

∫
W

h(P̃(w, s))
∏
j /∈e

∣∣µ j (g(w, s))
∣∣ dw dm(s).

A straightforward computation, based upon the formulas of Proposition 1.4.2 and
Corollary 2.2.2, shows that P̃j (w, s) is given as follows. Assume that j − 1 ∈ I ,
and define the index a = a( j) as before. If j /∈ e, then

P̃j (w, s)= µ j (ga−1(w, s))s j + Y j (w, s),

where ga−1(w, s) and Y (w, s) depend only uponw1, . . . , wa−1 and the si , for i< j
with i ∈ ec

∪ ι∪ϕ. If j = ea ∈ e but j /∈ ι∪ϕ, then

P̃j (w, s)=

{
wa if j ′′− j ′ = 1,

wa + iwa+1 if j ′′− j ′ = 2.

If j ∈ ι, then

P̃j (w, s)= c j (w, s)
(
wa + i

∣∣µ j (ga−1(w, s))
∣∣ s j + i=(Y j (w, s))

)
,

while if j ∈ ϕ, then

P̃j (w, s)=
µ j (ga−1(w, s))

|µ j (ga−1(w, s))|1+iα j
w

1+iα j
a s j + Y j (w, s).

Here again ga−1(w, s) and Y j (w, s) depend only upon w1, . . . , wa−1 and the si ,
for i < j with i ∈ ec

∪ ι∪ ϕ. Given this explicit description of P̃ , it follows from
the change of variables theorem in calculus that∫

�E

h(`) d`=
∫

SE

∫
W

h(P̃(w, s))J (w, s) dw dm(s),
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where

J (w, s)=
∏

j−1∈I
j /∈e

∣∣µ j (ga( j)−1(w, s))
∣∣ j ′′− j ′ ∏

j∈ι

∣∣µ j (ga( j)−1(w, s))
∣∣ ∏

j=ea∈ϕ
j ′′− j ′=2

wa.

It remains for us to simplify the expression J (w, s). By Lemma 2.2.3,∏
j−1∈I

j /∈e

∣∣µ j (ga( j)−1(w, s))
∣∣ j ′′− j ′

=

∏
j /∈e

d j=0

∣∣µ j (g(w, s))
∣∣.

By Lemma 1.3.9(i) and the fact that |µ j | = |µ j ′′ |, we have∏
j∈ι

∣∣µ j (ga( j)−1(w, s))
∣∣= ∏

j /∈e
j−1∈ι

∣∣µ j (g(w, s))
∣∣.

Finally, if j = ea ∈ ϕ, we have observed in the proof of Proposition 1.4.2 that
wa =

∣∣µ j (ga(w, s))
∣∣ and by Lemma 1.3.9, µ j (ga(w, s)) = µ j (g(w, s)). Again

using the fact that |µ j | = |µ j ′′ |,∏
j=ea∈ϕ
j ′′− j ′=2

wa =
∏
j /∈e

j−1/∈I
j−1∈ϕ

∣∣µ j (g(w, s))
∣∣.

Hence
J (w, s)=

∏
j /∈e

∣∣µ j (g(w, s))
∣∣.

This completes the proof. �

We now show how this gives a natural and explicit computation of the Plancherel
measure. For each λ ∈ 6, let b(λ) = hd(λ) ∩ g with B(λ) = exp(b(λ)) and let
πλ= indG

B(λ)(χλ) be the representation induced from the character χλ of B(λ) with
differential iλ. As is well-known, πλ is irreducible, and it is clear that {πλ,Hλ}λ∈6

is a measurable field of irreducible representations. From the construction of hd(λ)

and the fact that G(λ) ⊂ ker1, it follows that B(λ) is contained in ker1. Thus
we can define the positive, self-adjoint operator Dλ on (a dense subset of) Hλ by
Dλ f (a)=1(a) f (a).

Now let ψ be any positive Borel function on g∗ satisfying ψ(a`)=1(a)−1ψ(`)

for ` ∈ g∗, a ∈ G. For each λ ∈6, let Aψ,λ be the densely defined operator on Hλ

defined by Aψ,λ f (a)= ψ(aλ)1/2 f (a). Let mψ be the measure on g∗/G given by∫
g∗

h(`)ψ(`)d`=
∫

g∗/G

∫
O

h(`)dβO(`)dmψ(O).
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As is shown in [Duflo and Raïs 1976], the Plancherel measure is A−2
ψ,λdmψ(Oλ).

But it is clear that ψ(λ)A−2
ψ,λ = Dλ and from Proposition 2.2.4 and Theorem 2.2.5,

an easy calculation shows that dmψ(Oλ)= rψ(λ)dλ. Hence

A−2
ψ,λdmψ(Oλ)= Kλ dλ,

where
Kλ =

|Pe(λ)|

(2π)n+d
∏

j∈ϕ |1+ iα j |
Dλ.

We sum up:

Corollary 2.2.6. Let G be an exponential solvable Lie group and fix a good basis
for the complexified Lie algebra s=gc. Then there is an algorithm for constructing,
in a unique and natural way,

(i) an explicit cross-section 6 for almost all orbits in g∗/G,

(ii) a Lebesgue measure dλ on 6,

(iii) a measurable field {πλ,Hλ} of irreducible representations (associated with
the parameters λ via the Kirillov–Bernat correspondence) and a measurable
field {Kλ}λ∈6 of positive, self-adjoint, semi-invariant operators acting in Hλ,
such that

φ(e)=
∫
6

Tr
(
K 1/2
λ πλ(φ)K 1/2

λ

)
dλ

for any smooth function φ on G having compact support.

For each λ ∈6, one has

Kλ =
|Pe(λ)|

(2π)n+d
∏

j∈ϕ |1+ iα j |
Dλ,

where Dλ is the multiplication operator determined by 1 on Hλ.
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