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It is not known whether there exists a computable function bounding the
number of Pachner moves needed to connect any two triangulations of a
compact 3-manifold. In this paper we find an explicit bound of this kind for
all Haken 3-manifolds that contain no fibred submanifolds as strongly sim-
ple pieces of their JSJ-decomposition. The explicit formula for the bound is
in terms of the number of tetrahedra in the two triangulations. This implies
a conceptually trivial algorithm for recognising any nonfibred knot comple-
ment among all 3-manifolds.

1. Introduction

It is a nontrivial fact, proved in [Pachner 1991], that any triangulation of a compact
PL n-manifold can be transformed into any other triangulation of the same man-
ifold by a finite sequence of simplicial moves and simplicial isomorphisms. The
moves can be described as follows.

Definition. Let T be a triangulation of a compact PL n-manifold M . Suppose D
is a combinatorial n-disc which is a subcomplex both of T and of the boundary
of a standard (n+ 1)-simplex 1n+1. A Pachner move consists of changing T by
removing the subcomplex D and inserting ∂1n+1

−int D (see Figure 1 for the case
n = 3).

(3–2)

(2–3)

(4–1)

(1–4)

Figure 1. Three-dimensional Pachner moves.

It is an immediate consequence of the definition that precisely n+1 Pachner
moves are possible in dimension n. If our n-manifold M has nonempty boundary,
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the moves from this definition do not alter the induced triangulation of ∂M . But
changing the simplicial structure (we use the term synonymously with “triangula-
tion”) of the boundary with an (n−1)-dimensional Pachner move can be achieved
by gluing onto (or removing from) our manifold M the standard n-simplex 1n

that exists by the definition of the move. Our aim in this paper is to consider
the triangulations of Haken 3-manifolds. Their JSJ-decompositions (see Section 2
for the precise definition) consist of strongly simple pieces, I -bundles and Seifert
fibred spaces. The strongly simple pieces are the ones that contain all the interesting
topological information about the manifold and also have the crucial property of
being atoroidal (meaning that all incompressible tori in them are boundary parallel)
and are hence hyperbolic. It is precisely the strongly simple submanifolds that we
have to make additional hypothesis on in the next theorem.

Convention. We let E denote the base-2 exponential function x 7→ 2x , and write
Ek for the k-fold composition of E with itself.

Theorem 1.1. Let M be a Haken 3-manifold whose JSJ-decomposition does not
contain strongly simple pieces which are surface bundles or semibundles. Let P
and Q be two triangulations of M containing p and q tetrahedra respectively.
Then there exists a sequence of Pachner moves, of length at most

E2ap
(p)+ E2aq

(q),

that transforms P into a triangulation isomorphic to Q. The constant a is bounded
above by 200. The homeomorphism of M realizing this simplicial isomorphism
is supported in the characteristic submanifold of M and does not permute the
components of ∂M.

The triangulations appearing in the theorem are allowed to be noncombinatorial,
meaning that the simplices are not (necessarily) uniquely determined by their ver-
tices. Since the formula in Theorem 1.1 is explicit, it gives a conceptually trivial
algorithm (see Proposition 1.3 in [Mijatović 2003]) to recognise any 3-manifold
that satisfies the hypothesis of the theorem (just make all possible sequences of
Pachner moves whose length is smaller than the bound!).

The unthinkable magnitude of this bound should, I suppose, be measured against
the vastness of the class of 3-manifolds it covers. It for example gives a direct way
of determining whether any 3-manifold is homeomorphic to a given nonfibred knot
complement. In Section 3 we outline a simple procedure, based on Theorem 3.1
(which is a slight generalisation of Theorem 1.1), that can be used to decide if a
knot, represented by a knot diagram, is the same as our given nonfibred knot.

The proof of Theorem 3.1 is carried out in several stages and uses a variety of
techniques. The goal is to find an explicit bounded sequence of Pachner moves
going from one triangulation to the other. We start by subdividing the original
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triangulation so that the characteristic submanifold is supported by a subcomplex
of the subdivision. In other words, we start by constructing a triangulation of
each piece of the JSJ-decomposition of our 3-manifold. The basic idea is to use
the topological properties of the pieces to find the bounded sequence of Pachner
moves in each of them.

The distinguished hierarchy techniques (see Section 4), together with Theo-
rem 1.2 of [Mijatović 2003], are applied to the strongly simple pieces of the JSJ-
decomposition. This strategy amounts to building a two-dimensional polyhedron,
called the distinguished hierarchy, with the property that its complement in our
piece consists of embedded 3-balls. The additional hypothesis in Theorem 1.1 on
the topology of the simple pieces of the JSJ-decomposition is crucial here, because
without it we wouldn’t be able to build our distinguished object. Once we have it,
with the aid of Theorem 1.2 of [Mijatović 2003], it is possible to find a bounded
sequence of Pachner moves connecting any two triangulations of the piece. The
simplicial structure of the characteristic submanifold, which was obtained by sub-
dividing the original triangulation of M , can be altered directly by applying the
main theorem of [Mijatović 2004].

In Section 2 we give a brief exposition of JSJ-theory, generalise it to the setting of
3-manifolds with boundary pattern and prove a bound on the normal complexity of
the canonical surfaces. Section 3 gives a precise definition of fibre-free 3-manifolds
and states our main theorem. In Section 4 we define the distinguished hierarchy
and prove that it has all the required properties. The last section puts everything
together and proves Theorem 3.1.

2. Canonical decompositions of 3-manifolds

Any 3-manifold contains a (possibly empty) collection of canonical tori and annuli.
Cutting along these surfaces we obtain a canonical decomposition of our space.
These so-called JSJ-decompositions of 3-manifolds are due to Jaco and Shalen
[1979] and Johannson [1979], with ideas from Waldhausen. When studying a
triangulation of a Haken 3-manifold, it is profitable to make it interact well with
the pieces of the JSJ-decomposition. In other words, the first step toward simpli-
fying the triangulation of our 3-manifold will consist of subdividing the original
triangulation so that the pieces of the JSJ-decomposition are triangulated by the
subcomplexes of the subdivision.

In Section 2A we define canonical surfaces, JSJ-decompositions and character-
istic submanifolds. The main reference for this is [Neumann and Swarup 1997].
Then, in Section 2B, we will study the parallel theory of canonical annuli in the
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presence of boundary patterns. This will be very useful when analysing the topol-
ogy of hyperbolic pieces of our 3-manifold (see Section 4). In Section 2C we
construct the canonical tori and annuli from fundamental surfaces.

2A. JSJ-decomposition and the characteristic submanifold. Consider an irre-
ducible 3-manifold M with (possibly empty) incompressible boundary. Let F be
a subsurface of ∂M . Recall that a properly embedded annulus or torus in the pair
(M, F) is called essential if it is incompressible and not parallel to an annulus or
torus in F . The manifold M is atoroidal if the pair (M, ∂M) contains no essential
tori, and an-annular if (M, ∂M) contains no essential annuli. An essential annulus
or torus S is called canonical if any other essential annulus or torus in (M, ∂M)
can be isotoped to be disjoint from S.

Now we want to look at a disjoint maximal collection {S1, . . . , Sk} of canonical
surfaces in M such that no two of the Si are parallel. Since we are assuming that
∂M is incompressible in M , the essential annuli in {S1, . . . , Sk} are also boundary
incompressible. So a straightforward application of the Kneser–Haken finiteness
theorem (see Theorem III.20 in [Jaco 1980]) guarantees the existence of such a
maximal collection. The result of cutting M along such a union of canonical
surfaces is sometimes referred to as a Waldhausen decomposition of M . It is
shown in [Neumann and Swarup 1997, Lemma 2.2] that a maximal system of
disjoint canonical surfaces {S1, . . . , Sk} is unique up to isotopy. In other words,
any incompressible annulus or torus S in (M, ∂M) can be isotoped to be disjoint
from the surface S1 ∪ · · · ∪ Sk . Moreover, if S is not parallel to any Si , its final
position in M−int N(S1∪· · ·∪Sk) is determined up to isotopy, where N( ) denotes
a regular neighborhood.

Let’s now look at a piece M ′ of the Waldhausen decomposition of M . Put
differently, M ′ is simply a component of the cut-open manifold

M − int N(S1 ∪ · · · ∪ Sk).

Let ∂1 M ′ be the part of ∂M ′ coming from the surface S1∪· · ·∪Sk and let ∂0 M ′ equal
M ′∩∂M . Clearly the union of ∂0 M ′ and ∂1 M ′ equals ∂M ′ and the components of
∂1 M ′ are annuli and tori. Also both surfaces ∂0 M ′ and ∂1 M ′ are incompressible,
whereas it is possible for ∂M ′ to compress into M ′. We say that a piece M ′ is simple
if any essential annulus or torus in (M ′, ∂0 M ′) is parallel to a component of ∂1 M ′.
If M ′ is a simple piece not admitting an incompressible annulus which is properly
embedded in (M ′, ∂1 M ′), then we call it strongly simple. It turns out that all the
pieces that are simple but not strongly simple are either Seifert fibred or of the form
(torus)× I with ∂1 M ′= (torus)×∂ I (the manifold M is in this case homeomorphic
to a torus bundle over a circle with holonomy of trace different from ±2). The
simple Seifert fibred pieces are of course very restricted as well; see [Neumann
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and Swarup 1997, Proposition 3.2 and Figure 1]. It is the topology of strongly
simple pieces from our 3-manifold M that we will be exploring in Section 4. The
central result of the JSJ-theory [Neumann and Swarup 1997, Proposition 3.2] says
that each complementary piece M ′ falls into one of the three categories:

(a) (M ′, ∂0 M ′) is strongly simple.

(b) (M ′, ∂0 M ′) is an I -bundle over a (possibly closed) surface.

(c) (M ′, ∂0 M ′) is a Seifert fibred space with a possibly nonorientable base space.

These possibilities are almost mutually exclusive. Assuming that ∂1 M ′ is not
empty, M ′ cannot be both strongly simple and Seifert fibred. The only I -bundles
that are also strongly simple are the ones over the twice punctured disc and the
once punctured Möbius band. The only I -bundle that is also Seifert fibred is the
one over a Möbius band (see [Neumann and Swarup 1997, Proposition 3.3] for
these nonuniqueness statements).

A canonical annulus in the 3-manifold M separating two fibred pieces whose fi-
brations match along it, or separating a fibred piece from itself so that the fibrations
on both sides of the annulus still match, is called a matching annulus. Notice that a
piece M ′ of the Waldhausen decomposition containing a matching annulus has to
be Seifert fibred, because an annulus separating two I -bundles is never canonical
and hence cannot be a matching annulus. It also not hard to see that a canonical
torus cannot separate two pieces with matching fibrations. Matching annuli do
exist [Neumann and Swarup 1997, Lemma 3.4], but they carry no topological in-
formation. By deleting all matching annuli from our disjoint maximal collection of
canonical surfaces {S1, . . . , Sk} we obtain the JSJ-system of canonical surfaces for
M . The decomposition of M along this JSJ-system is called the JSJ-decomposition
of M . Its pieces still fall into the three categories mentioned above.

Let’s define a submanifold 6 of M in the following way. Let 6 be a union
of the I -bundle pieces and the Seifert fibred pieces of the JSJ-splitting of M . Let
it also contain a regular neighbourhood of every canonical annulus or torus that
separates two strongly simple pieces of the JSJ-decomposition, neither of which
is an I -bundle. If two pieces of the JSJ-splitting of M are already contained in
6 and meet along a canonical torus or annulus, we remove the interiors of their
regular neighbourhoods from 6. The submanifold 6 defined in this way is called
the characteristic submanifold of M . Notice that the tori and annuli whose regular
neighbourhoods we have removed from 6 when defining it are precisely the ones
along which two nonmatching fibred pieces meet (e.g., a Seifert fibred piece and an
I -bundle). It also follows directly from the definition that every essential annulus
or torus in M can be isotoped into the characteristic submanifold 6.
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2B. JSJ-theory with boundary pattern. Here and throughout this paper we will
assume familiarity with the contents of [Mijatović 2004, Section 2]. This amounts
to the basic definitions of incompressibility and ∂-incompressibility of embedded
surfaces as well as some normal surface theory. We now define a key concept for
the construction of the distinguished hierarchy.

A boundary pattern P in a compact 3-manifold M is a (possibly empty) collec-
tion of disjoint simple closed curves and trivalent graphs embedded in ∂M such
that the surface ∂M − P is incompressible in M . Assume from now on that our
3-manifold M is equipped with a boundary pattern P . If M contains a properly
embedded two-sided incompressible surface S with ∂S intersecting P transversally
(and missing the vertices of P), the cut-open manifold MS naturally inherits a
boundary pattern as follows. If S′ and S′′ are the two copies of S in ∂MS , then the
new boundary pattern, lying in ∂MS , can be defined as (P∩∂MS)∪∂S′∪∂S′′. Our
definition of a boundary pattern implies that the manifold M has incompressible
boundary if and only if it admits an empty boundary pattern.

We shall use boundary patterns to keep track of the topological information as
we move down the distinguished hierarchy (see Section 4). This is precisely the
idea that Haken exploited to find an algorithm for classifying nonfibred 3-manifolds
that contain an injective surface. At the heart of Haken’s classification program lies
the concept of a P-canonical annulus, which shall be described shortly.

Let M be a 3-manifold with nonempty boundary that contains a boundary pattern
P . Recall that a subset of M is called pure if it has empty intersection with the
pattern P . Most concepts from general 3-manifolds carry over to 3-manifolds with
pattern in a very natural way. For example, a properly embedded surface F in M
is P-boundary incompressible if for any pure disc D in M such that

D ∩ (∂M ∪ F)= ∂D

and D ∩ F is a single arc in F , the arc D ∩ F cuts off a pure disc from F . Our
definitions imply that a pure incompressible annulus in M is P-boundary incom-
pressible if and only if it is not parallel to a pure annulus in ∂M . A P-boundary
incompressible pure annulus A in M will be called trivial if it is parallel (rel ∂A)
to an annulus in the boundary of M . The interior of this annulus in ∂M that A is
parallel to must have a nonempty intersection with the pattern P . Furthermore no
spanning arc of this annulus in ∂M can be pure. All this follows from the definition
of the boundary pattern P and the fact that A is P-boundary incompressible. Also,
an incompressible P-boundary incompressible pure annulus in M is termed P-
essential. So, according to our definitions, a P-essential annulus can be trivial.
The next concept is of great importance in all that follows.

Definition. A properly embedded annulus A in M is a P-canonical annulus if it
is nontrivial and P-essential in M and has the following properties:
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• Any P-essential annulus in M can be isotoped off of A by an ambient isotopy
that is invariant on the pattern P .

• Any incompressible torus not parallel to a (possibly nonpure) boundary com-
ponent of M can be isotoped off of A by an isotopy that is fixed on the
boundary of M .

The notion of a P-canonical annulus in 3-manifolds with pattern is a direct
generalisation of the notion of a canonical annulus coming from JSJ-theory. It
will be useful in Section 4 to observe that a solid torus with some pattern on its
boundary can contain a P-essential annulus, but this annulus has to be trivial and
therefore not P-canonical. Or more generally, a P-canonical annulus in M cannot
be parallel to an annulus in the boundary of M .

The next theorem will play a key role in the construction of the distinguished
hierarchy (see Section 4). Its proof is a good example of how the ideas from JSJ-
theory generalise naturally to 3-manifolds with pattern.

Theorem 2.1. Let M be an irreducible atoroidal 3-manifold with boundary pattern
P. If M contains a nontrivial P-essential annulus but no P-canonical one, then
either of the two possibilities must occur:

(a) M is homeomorphic to an I -bundle over a (possibly nonorientable) compact
surface F , and its horizontal boundary (∂ I -bundle over F) is pure. The pat-
tern P is contained in the vertical boundary (I -bundle over ∂F) and no fibre
over any point in ∂F can be pure.

(b) The manifold M is an atoroidal Seifert fibred space. (For an explicit descrip-
tion see Figure 3 in [Mijatović 2004].)

Proof. We first take a maximal collection {A1, . . . , Ak} of disjoint nonparallel
P-essential annuli in M (two pure annuli are parallel if they are parallel in the
usual sense and the parallelism region between them is pure). Since we can as-
sume that M is triangulated and that the pattern P is contained in the 1-skeleton
of that triangulation, any collection of disjoint P-essential annuli can be put into
normal form. So our maximal collection of disjoint P-essential annuli exists by
the Kneser–Haken finiteness theorem. Also, by assumption, we can make sure that
at least one of the annuli Ai is nontrivial. Let N be a component of the cut-open
manifold M − int N(A1 ∪ · · · ∪ Ak). We will show that N fibres either as an I -
bundle or as a Seifert fibred space. Moreover these fibrations will match up when
we reglue the pieces to form the manifold M we started with. The atoroidality of
M will impose severe restrictions on the Seifert fibred spaces that can arise. Most
of the statements above will follow from the next claim.

Claim. The manifold N is either homeomorphic to a pure I -bundle over an an-
nulus, a punctured annulus, a Möbius band, or a punctured Möbius band or it is
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homeomorphic to a Seifert fibred space over a base surface from Figure 2. The
pattern on the toral component of N ∩ ∂M in Figure 2γ intersects every fibre of
the Seifert fibration that is contained in that torus. All annular components of
N ∩ ∂M in all the cases are pure except when the exceptional fibre in Figure 2β is
not singular. Then the annulus from N ∩ ∂M must contain components of pattern
P and no spanning arc of that annulus can be disjoint from the pattern.

α β γ

Figure 2. The Seifert fibred pieces that can arise as the manifold
N . The solid and dashed parts of the boundary of the base surfaces
correspond, respectively, to the part of the boundary of N coming
from N ∩ ∂M and N ∩ ∂N(A1 ∪ · · · ∪ Ak). The dot in case β
represents a fibre that may or may not be singular.

Before proving the claim, we note that if N is a pure I -bundle over an annulus,
M has to be an I -bundle over a torus or a Klein bottle with empty pattern, and the
theorem follows. This is because M contains no P-canonical annuli and also no
two annuli in {A1, . . . , Ak} are parallel.

We are assuming that none of the P-essential annuli Ai are P-canonical. So, an
annulus Ai is either trivial or there exists another P-essential annulus or an essential
torus A′i in M , such that the intersection Ai ∩ A′i is minimal and nonempty. The
first possibility gives a solid torus as in Figure 2β with the boundary as described
in the claim. The dot in this case represents a nonsingular fibre.

We can assume now that N is not a solid torus as in Figure 2β with no ex-
ceptional fibres (such a piece must exist in M because M contains at least one
nontrivial P-essential annulus). This means that it contains in its boundary a copy
of an annulus Ai which is not trivial. We shall now analyse the intersection Ai∩A′i
for the annulus Ai that is contained in ∂N . The 1-manifold Ai ∩ A′i contains no
trivial simple closed curves and no separating properly embedded arcs in either of
the two surfaces (among other things here, we are using the fact that the surface
∂M − P is incompressible in M). The intersection can therefore consist either of
nontrivial simple closed curves in Ai and A′i , or of spanning arcs if both of our
surfaces are annuli. The atoroidality of M will impose limitations on the former
possibility.
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Let’s first look at the latter case. We are therefore assuming that the surface A′i is
an annulus. The intersection N∩A′i consists of a disjoint union of discs of length 4
which inherit a natural product structure from the annulus A′i . In other words, they
are of the form I× I . Let D⊂ N be one of those discs which intersects Ai , and let
s be a component of D∩Ai . The product structure on D naturally decomposes ∂D
into four arcs, s being one of them. The two segments adjacent to s are contained
in ∂M and are disjoint from the pattern P . Let t be the fourth segment of ∂D, lying
somewhere in the surface A1∪ · · ·∪ Ak , say in the component A j . We distinguish
two subcases, depending on whether A j equals Ai .

For the proof of the fact that these two subcases yield the I -bundle possibilities
in our claim, we refer the reader to the proof of Cases A1 and A2 of [Neumann
and Swarup 1997, Proposition 3.2]. It is worth bearing in mind that if any of the
annuli constructed by cut-and-paste in the cited proof are compressible, then they
have to be isotopically trivial (that is, they bound a cylinder in N ). This is because
both discs obtained by compressing this cut-and-paste annulus chop off two 3-balls
from M . Neither of these 3-balls can contain a properly embedded incompressible
annulus. They can therefore not be nested and our cut-and-paste annulus must be
isotopically trivial.

Now let’s look at the case where Ai ∩ A′i consists of nontrivial simple closed
curves. The surface A′i can either be a P-essential annulus or an essential torus.
This will make N into a Seifert fibred space as described by the claim. The inter-
section N ∩ A′i consists of a disjoint union of annuli. Let A be one of these annuli
that intersects Ai , and let s be a simple closed curve component of Ai ∩ A. Let t
be the other boundary component of A. We have three possibilities, according to
the position of the simple closed curve t .

If t is contained in N∩∂M , then cutting Ai along s and pasting parallel copies of
A to the resulting annuli gives a pair of pure annuli that have to be P-essential. They
inject into M because Ai injects. If either of them were P-boundary compressible,
we could have reduced the number of components of the intersection Ai∩A′i . They
are therefore parallel to components of A1 ∪ · · · ∪ Ak , which gives Figure 2α.

If t is contained in A j and j is different from i , cutting and pasting as before
gives two incompressible annuli that cannot both be P-boundary compressible (that
would make Ai and A j parallel). They cannot both be parallel into {A1, . . . , Ak}

(that is, parallel to elements of this collection), because that would contradict the
maximality of the family {A1, . . . , Ak}. Thus one is parallel into N ∩ ∂M and the
other to an annulus from N ∩ N(A1 ∪ · · · ∪ Ak). This gives Figure 2α again.

If t lies in Ai , we have two further subcases, coming from A meeting Ai from
the same side or from the opposite sides. The latter possibility gives the same as
the previous case, except for one extra case when both annuli produced by cut-
and-paste are parallel into N ∩ ∂M . This leads to N being an I -bundle over an
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annulus. The manifold M is then an I -bundle over a torus or over a Klein bottle
with empty boundary pattern.

If A meets Ai from the same side and the orientations on s and t coincide, then
cutting and pasting as before yields a torus and an annulus. The torus has to be
either boundary parallel or compressible since N is atoroidal. The annulus cannot
be parallel into {A1, . . . , Ak}, because that would give rise to a new P-essential
annulus in N , contradicting the maximality of {A1, . . . , Ak}. So the annulus has to
be P-boundary compressible. This gives possibilities β and γ from Figure 2. In
case β the exceptional fibre has to be singular, because otherwise we could reduce
the number of components of the intersection Ai ∩ A′i . Also, the pattern on the
toral boundary component in Figure 2γ has to be such that no fibre of the Seifert
fibration on that torus is pure.

The last case, when A meets Ai from the same side but the orientations s and t
do not coincide, cannot occur. Cut-and-paste as before gives an annulus which is
parallel into either N ∩∂M or {A1, . . . , Ak}. In both cases N is an S1-bundle over
a Möbius band with a part of its boundary coming from a pure annulus in N ∩∂M .
We can easily construct a pure annulus in N , running once around the Möbius
band, contradicting the maximality of {A1, . . . , Ak}. This proves the claim.

It is clear that the only manifold pieces from the claim for which the fibration is
not unique up to isotopy on their boundaries are an I -bundle over a Möbius band
and an I -bundle over an annulus. The first one also fibres as a Seifert fibred space
from Figure 2β with a singular fibre of index 1

2 . The second we do not need to
consider, because we already know that the theorem is true if such a piece appears.
Since the nonunique piece N has a single annulus coming from the collection
{A1, . . . , Ak}, we can always extend uniquely the fibration on the boundary. Since
we can do that for all other pieces of the complement M− int N(A1∪· · ·∪ Ak) as
well, it follows that M is either an I -bundle with the described boundary pattern
or a Seifert fibred space. But since the Seifert fibred space is also atoroidal, the
theorem follows. �

2C. Canonical surfaces in normal form. We now explain how to construct canon-
ical tori and annuli in a triangulated 3-manifold using normal surface theory. Our
proofs rely on the key notion of a trivial patch and are based on the following
lemma and theorem (see Section 2 in [Mijatović 2004]):

Lemma 2.2. Let M be an irreducible 3-manifold with a (possibly empty) boundary
pattern P. Let F be a incompressible P-boundary incompressible normal surface
of minimal weight. If the sum F = F1 + F2 is in reduced form then each patch
is both incompressible and P-boundary incompressible and no patch is trivial.
Furthermore, if F is injective, each patch has to be injective.



TRIANGULATIONS OF FIBRE-FREE HAKEN 3-MANIFOLDS 149

Theorem 2.3. Let M be an irreducible 3-manifold with a possibly empty boundary
pattern P. Let F be a normal surface of least weight properly embedded in M.
Assume also that F is two-sided incompressible P-boundary incompressible and
F = F1+F2. Then F1 and F2 are incompressible and P-boundary incompressible.

The next two propositions are going to be crucial when we subdivide the original
triangulation of M . In particular we will find Proposition 2.5 (page 153) indis-
pensable while deciphering the topology of the strongly simple pieces in the JSJ-
decomposition of M .

Proposition 2.4. Let M be an irreducible 3-manifold with (possibly empty) incom-
pressible boundary. Let t be the number of tetrahedra in the triangulation T of
M. Then every canonical torus in M can be isotoped into normal form so that
it contains not more than 280t2

normal discs. The same remains true if a single
canonical torus in M is replaced by a disjoint maximal collection of nonparallel
canonical tori in M.

Proof. We start by taking our maximal collection C of disjoint canonical tori in M
and putting it into normal form, so that it has the smallest weight in its isotopy class.
The normal surface C can then be expressed as a sum of fundamental surfaces
C = k1 F1+ · · ·+ kn Fn , where k1, . . . , kn are positive integers.

Claim 1. Each surface Fi is either an incompressible torus or an incompressible
Klein bottle.

Proof. We get the incompressibility of Fi by applying Theorem 2.3. All we need
to do is fix a copy of the surface Fi and make all regular alterations along curves of
intersection (in the sum k1 F1+ · · · + kn Fn) that do not lie in our copy of Fi . This
yields a sum C = Fi + F ′, where F ′ is some normal surface in M . Since both C
and M are orientable, the surface C is two-sided. Since the normal representative
for C has minimal weight, we can apply Theorem 2.3 to conclude that Fi must be
incompressible as well.

If we isotope the sum C = Fi + F ′ into reduced form, we can apply Lemma 2.2
to conclude that no patch can be trivial. This means that the surface Fi cannot be
a 2-sphere. We are assuming that M contains at least one canonical torus and is
therefore different from RP3. Since it is also irreducible, Fi cannot be a projective
plane either. Now all fundamental surfaces in our sum are closed and connected.
So the claim follows by the additivity of the Euler characteristic. �

Note that the proof of the claim uses only the incompressibility of C , not the
fact that it is canonical. Also the same method of proof shows that any connected
normal surface that appears as a summand of C has to be an incompressible torus
or an incompressible Klein bottle.
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Figure 3. Regular alteration along the curve ∂Di and the isotopy across
the 3-ball B.

We now want to bound the coefficients ki in the sum C = k1 F1 + · · · + kn Fn .
After making all regular alterations in the sum above, except the ones on the surface
ki Fi , our expression can be rewritten as C = ki Fi+ S. The surface S is a (possibly
disconnected) closed incompressible normal surface with zero Euler characteristic.

Let’s now investigate the patches of the polyhedron K = Fi ∪ S, i.e., the surface
components of the complement of the singular locus of K . It is clear that our
surface C lies in a regular neighbourhood of K . The plan is to alter K in such a
way that it contains no disc patches but is still a union of normal surfaces whose
integral linear combination represents C . We want to do this in such a way that the
weight of the new normal surfaces is not greater than that of Fi and S.

If there exists a trivial patch Di in Fi bounded by a simple closed curve from
Fi ∩ S, then this curve must bound a disc D in S distinct from Di . We now look at
each patch Di of K that is contained in Fi , such that a copy of the disc D is also
a patch in K . In other words, the singular locus of K intersects D in its boundary
only, making the disc D into a patch in the surface C .

After making all regular alterations in the sum ki Fi + S, one of the parallel
copies of the disc Di is adjacent to the disc D in the surface C (see Figure 3).
Since the manifold M is irreducible, the union of discs D ∪ Di bounds a 3-ball B
as in Figure 3. If the weights of the discs were not equal, we could use this 3-ball
B to isotope C so that its weight is reduced. Thus we must have w(Di )= w(D).

Now we modify the surface C by pushing the disc D across the ball B. Notice
that this operation did not change the weight of C . Also the surface we end up
with is again in normal form. A similar kind of modification can be done to the
surface S. In this case we push the disc D so that it misses all parallel copies of Di

but it is still normally parallel to the disc Di . This produces a new normal surface
S′ which has the same weight as S. Also the normal equation C = ki Fi + S′ holds
for the isotoped surface C .

We keep applying this same procedure to all patches of K which are discs in
Fi and have adjacent trivial patches from S next to them. In the end we obtain a
polyhedron K ′ = Fi ∪ S′ where S′ is a normal surface with the property w(S′) =
w(S) and K ′ contains no pairs of adjacent disc patches.



TRIANGULATIONS OF FIBRE-FREE HAKEN 3-MANIFOLDS 151

Claim 2. The polyhedron K ′ contains no patches which are discs.

Proof. Clearly it is enough to show that the sum C = ki Fi + S′ contains no trivial
patches. Let’s assume that there exists a trivial patch R somewhere in C and that
it has the smallest weight among all trivial patches. Since χ(Fi ) = χ(S) = 0, the
boundary of R has to be two-sided in both summands. So there exists a unique
disc R′ in C whose boundary is adjacent to that of R. Disc R′ is different from
the trivial patch R, but it might contain it. Also R′ is not itself a patch, since K ′

contains no pairs of adjacent disc patches. We must havew(R′)=w(R); otherwise
we could reduce the weight of C . Therefore R′ contains precisely one trivial patch
Q with w(Q)=w(R) and also other annular patches of zero weight. Now we take
the patch Q and repeat the procedure. We can use the same argument as in the
proof of Lemma 3.6 in [Bart and Scharlemann 1996] to express the surface C as
a sum C = C ′ + B, where B is a normal surface with zero weight (compare the
proof of Lemma 2.2 in [Mijatović 2004]). This contradiction proves the claim. �

Claim 2 implies that all patches of K ′ are incompressible subsurfaces of C with
nonpositive Euler characteristic. Therefore they have to be incompressible annuli.
So the regular neighbourhood N(K ′) supports a structure of a Seifert fibred space
with no singular fibres. The surface C is naturally contained in N(K ′) and can be
viewed as a circle bundle over a disjoint union of simple closed curves in the base
surface of our Seifert fibration.

The boundary ∂N(K ′) consists of tori. If a toral component of ∂N(K ′) is com-
pressible in M , it either bounds a solid torus in M (which is disjoint from N(K ′),
because a solid torus cannot contain an incompressible torus) or it is contained in
a 3-ball. The latter possibility cannot occur, because then some fibre from N(K ′)
would be homotopically trivial, contradicting the incompressibility of patches of
K ′. In the former case we can extend the Seifert fibration over the solid torus. We
can always do that because the fibres in the boundary are homotopically nontrivial
in M . Doing that for all compressible components of ∂N(K ′), we obtain a new
Seifert fibred space X which is embedded in M , contains N(K ′), and must have
a nonempty incompressible boundary in M . If the 3-manifold X were closed, it
would have to be equal to the whole of M , making it into a closed Seifert fibred
space containing vertical canonical tori. This is clearly a contradiction.

We should note at this point that the construction up to now was based on the
fact that the surface C is incompressible. The hypothesis that C is in fact canonical
will now come into play.

Assume that some simple closed curve in the base surface of X is not boundary
parallel in the base space, and that a toral component C0 of C fibres over this curve.
Then we can find in the base surface another simple closed curve such that C0

cannot be isotoped off the vertical torus above this curve by an isotopy supported
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in X . Because ∂X is incompressible in M , so is the vertical torus. Hence, since
C0 is canonical, there exists a homotopy h : C0 × I → M that will move C0 so
that it is disjoint from the vertical torus and from the boundary ∂X . The preimage
of ∂X under h is a closed surface in the product C0 × I . Using Dehn’s lemma
and the loop theorem we can modify the homotopy so that h−1(∂X) becomes a
disjoint union of copies of C0 in the interior of the product C0 × I . The fact
that two homotopic embeddings of an incompressible surface are isotopic (see
Corollary 5.5 in [Waldhausen 1968]) implies that we were isotoping C0 over a
boundary component of X and that C0 is parallel to it. But this contradicts our
initial assumption. So the collection of simple closed curves in the base surface of
X that C fibres over must be boundary parallel.

The classification of surfaces implies that there exists, in the base surface of the
Seifert fibred space X , a family of disjoint annuli such that one boundary compo-
nent of each annulus is a boundary curve of the base surface. The union of the
other boundary components of our annuli is precisely the simple closed curves in
the base surface of X that the surface C fibres over.

Even though the manifold X can contain singular fibres, the family of annuli
just described contains no singular points. This again follows from the fact that
C is canonical. If one of the annuli contained a singular point, we could easily
construct an incompressible torus in X that could not be isotoped off C .

Claim 3. Each coefficient ki can either be 1 or 2.

Proof. Let’s assume that ki is larger than 2 and let’s look at some annular patch of
Fi with nonzero weight. Since there are at least 3 copies of this patch contained
in C , after using the projection of X onto its base surface, we can conclude that
the images of two adjacent copies of our patch belong to the same boundary com-
ponent of one of the annuli constructed above. Furthermore there exists an arc α,
properly embedded in this annulus, running between the two adjacent copies of
the projections of our patch. The arc α chops off a disc in the annulus, bounded
by α on one side and an arc β which is contained in the image of the projection
of C . Now we can use this disc to isotope β onto α. Since our annulus contains
no singular points, we can extend this isotopy, thus obtaining an isotopy of C ,
which pushes the annulus over β onto the annulus over α. By choosing the arc α
judiciously, we can make sure that this isotopy reduces the weight of C since the
patch of Fi we started with had positive weight. But this is a contradiction because
C had minimal weight. So the claim follows. �

The formula in Lemma 6.2 of [Hass et al. 1999] giving a bound on the number
of all fundamental surfaces is bounded above by 270t2

. Using a well known bound
on the normal complexity of fundamental surfaces (see [Hass and Lagarias 2001],
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for example) and the estimate 2·20t227t
≤210t2

for t ≥2, we get the desired bound,
proving Proposition 2.4. �

Note that the proof only required the property that surfaces in C are torus-
canonical, i.e., that each torus in C can be isotoped off any incompressible torus
in M . This notion is very close to but not identical with the notion of a canonical
surface. In fact an essential torus is torus-canonical if and only if it is either canon-
ical or it is parallel to a torus formed from a canonical annulus and an annulus in
∂M (see Proposition 4.2 in [Neumann and Swarup 1997]). This means that even if
M has nonempty pattern on its boundary, Proposition 2.4 still bounds the normal
complexity of P-canonical tori in it.

Now we describe how to construct canonical annuli in triangulated 3-manifolds.

Proposition 2.5. Let M be an irreducible 3-manifold with nonempty boundary.
Assume that M admits a possibly empty boundary pattern P contained in the 1-
skeleton of the triangulation T of M. Let t be the number of tetrahedra in T .
Then every P-canonical annulus in M can be isotoped into normal form so that it
consists of not more than 280t2

normal discs. The same bound is valid if we replace
a single P-canonical annulus with a maximal collection of disjoint topologically
nonparallel P-canonical annuli.

Proof. Let A be a maximal collection of disjoint topologically nonparallel P-
canonical annuli in M . Without loss of generality we can assume that the surface
A is in normal form and that its weight is minimal. We can therefore express it as
a sum of fundamental surfaces A = k1 F1 + · · · + kn Fn , where the coefficients ki

are positive integers. Just as in the proof of Proposition 2.4, we can show that the
surfaces Fi are incompressible P-boundary incompressible and pure. By applying
Lemma 2.2 in the same way as before, we can conclude that χ(Fi ) is zero.

We now want to bound each integer ki . As before we can express A as a sum
A= ki Fi+S, where S is a pure normal incompressible P-boundary incompressible
surface in M with zero Euler characteristic. Let’s look at the polyhedron K = Fi∪S.
By using the procedure described in Figure 3 we can make sure that K contains
no adjacent trivial patches that are bounded by a simple closed curve from the
intersection Fi ∩ S. The same argument that justified Claim 2 from the previous
proof tells us that after this modification, the polyhedron K contains no trivial
patches disjoint from ∂M . It might however contain trivial patches that do meet
the boundary of M .

We start by looking at adjacent trivial patches in K , i.e., the ones that meet along
an arc of intersection Fi ∩ S (any such pair of trivial patches cannot be contained
in one of the surfaces Fi or S, because both Fi and S are not a disc). By doing
regular alterations in the sum A = ki Fi + S along each such arc from Fi ∩ S and
then performing an isotopy that is invariant on the pattern P we get a new normal
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surface S′ such that w(S) = w(S′) (adjacent trivial patches must have the same
weight because A has minimal weight). Furthermore the equality A = ki Fi + S′

holds for the isotoped surface A and the new polyhedron K ′ = Fi ∪ S′ contains
no adjacent trivial patches. It follows directly that the surface A now contains
no adjacent trivial patches either. In fact it contains no trivial patches at all. If
it contained one, we could do the same construction as in the second part of the
proof of [Mijatović 2004, Lemma 2.2] to obtain a normal sum A= A′+ B, where
the normal surface B misses the 1-skeleton. This contradiction, together with the
fact that Fi is connected, implies that all patches of A are either annuli or discs of
length four. The latter case means that the patches are discs bounded by four arcs,
two of them in (ki Fi )∩ S′ and the other two in ∂M .

The former case, when the patches are annuli, is almost identical to the situation
from the previous proposition. Again the regular neighbourhood N(K ′) supports a
structure of a Seifert fibred space. The surface A is vertical in this Seifert fibration
and is therefore determined by a collection of properly embedded disjoint arcs in
the base surface of the fibration. All compressible toral components of ∂N(K ′)
that are disjoint from ∂M have to bound solid tori in M disjoint from N(K ′).
This follows by the same argument as in the proof of Proposition 2.4. We can
extend the fibration over all such solid tori. The annuli from ∂N(K ′)− ∂M are
incompressible simply because their core curves are generators of the fundamental
group of A. If such an annulus is P-boundary compressible, then it is parallel to
a pure annulus in ∂M . This parallelism region is topologically a solid torus. We
can extend the existing fibration of our manifold over it. After we have adjoined
all such parallelism regions to our submanifold, we obtain a Seifert fibred space X
that contains A as a vertical surface.

As in the proof of Proposition 2.4, we can show that any vertical torus in X that
is not parallel to a component of ∂M can be isotoped off A by an isotopy that is
supported in X . Since the tori from ∂X are incompressible in M , we have two
possibilities. Either we are able to isotope A off all of the essential vertical tori
in X or we are not. In the former case the annuli of A are boundary parallel in
X . In other words, their projection onto the base surface of X chops off from the
base surface discs that contain no singular points. We can therefore use the same
technique that proved Claim 3 from the proof of Proposition 2.4 to bound each
coefficient ki . In the latter case there exists at least one annulus A0 in A that lies
in a component X0 of X which is homeomorphic to one of the atoroidal Seifert
fibred spaces (see Figure 3 in [Mijatović 2004]). This is because X0 cannot have
any essential vertical tori. Also, since the surface ∂X is incompressible in M , the
boundary components of X0 that contain ∂A0 must be parallel to components of
∂M . The components of ∂X0 that are disjoint from A0 are not necessarily parallel
into ∂M and can be canonical tori in M . In this topological setting it is not hard
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to prove, using our trivial patch reduction techniques and Theorem 2.3, that A0 is
actually fundamental in M and that it therefore satisfies Proposition 2.5.

We can now assume that all patches of A are discs of length four. This implies
that the regular neighbourhood N(K ′) supports an I -bundle structure. The bound-
ary of the manifold N(K ′) is naturally divided into two bits. The horizontal part,
which is contained in ∂M , is just a ∂ I -bundle. The vertical part is a complement
(in ∂N(K ′)) of the horizontal boundary and it consists of properly embedded pure
annuli in M .

Claim. If an annulus V from the vertical boundary of N(K ′) is compressible, it
bounds a pure submanifold of the form D2

× I in M , such that (D2
× I )∩ ∂M =

D2
× ∂ I and (D2

× I )∩ V = ∂D2
× I . This submanifold is disjoint from A.

Proof. By compressing the annulus V we obtain two pure properly embedded discs
D′1 and D′2 in M . From the the definition of the pattern P and the fact that M is
irreducible it follows that D′1 and D′2 are parallel to discs D1 and D2 in ∂M . The
parallelism region between the discs Di and D′i is a pure 3-ball Bi for i = 1, 2.
Then there are two possibilities.

If B1 and B2 are disjoint, the discs D1 and D2 are also disjoint and the 2-sphere
D1∪D2∪V bounds a 3-ball with the required properties. Also A has to be disjoint
from this 3-ball because it consists of incompressible annuli. So the claim follows
in this case.

If B1 and B2 are nested, we can assume that B1 is contained in B2, so D1 lies
in int D2. The surface A is disjoint from V and hence does not meet the boundary
circles ∂V = ∂D1 ∪ ∂D2. Since A consists of incompressible annuli, both A∩ D1

and A∩D2 must be empty. But it follows from the definition of V that there exists
an embedded arc in ∂M , running from ∂D1 to ∂A, which is disjoint from ∂D2. In
other words, A∩ int D2 cannot be empty. This contradiction proves the claim. �

We can now extend the I -bundle structure of N(K ′) over every compressible
vertical annulus in the boundary of N(K ′). If an incompressible vertical annulus
is P-boundary compressible, then it has to be parallel to a pure annulus in ∂M .
The parallelism region, which is a solid torus, can be used to construct a pure ∂-
compression disc for some annulus in A. So this cannot arise. After adjoining
all the solid cylinders to N(K ′), we obtain a pure I -bundle X in M whose verti-
cal boundary consists of incompressible P-boundary incompressible annuli. The
horizontal boundary of X is a pure subsurface of ∂M . The collection of vertical
annuli in ∂X is not empty, since otherwise M would have to be homeomorphic to
an I -bundle over a closed (possibly nonorientable) surface with an empty boundary
pattern. But such manifolds contain no canonical annuli.

We now apply the fact that the annuli in A are P-canonical. It follows, in the
same way as before, that A can be isotoped off any annulus in X that fibres over a
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simple closed curve in the base surface of X , by an isotopy that is supported in X .
This implies that the components of A have to be parallel to the vertical annuli from
∂X . So we can use the same strategy as in Claim 3 from the proof of Proposition
2.4 to show that the coefficient ki cannot exceed 2. The only difference is that the
weight-reducing isotopy is supported in a pure solid cylinder rather than in a solid
torus. Also the same bounds on the number of normal discs, as in the proof of
Proposition 2.4, are valid here. This concludes the proof of Proposition 2.5. �

It is probably true that the bound on normal complexity of canonical surfaces
given by Propositions 2.4 and 2.5 is not the best possible. On the other hand it is
not hard to construct simple closed curves in a bounded surface, none of which is
boundary parallel, but whose “normal” sum is boundary parallel. The S1-bundle
over such a surface can be a component of the characteristic submanifold in some
ambient 3-manifold. The boundary torus of the S1-bundle is certainly not going to
be fundamental, but in this setting it is clearly canonical.

It is worth pointing out that Propositions 2.4 and 2.5 together imply the same
bound on the normal complexity of the whole JSJ-system of surfaces in M .

The proof of Proposition 2.5 clearly bounds the normal complexity of every triv-
ial P-essential annulus in M . This is because such an annulus can also be isotoped
off of any other P-essential annulus in M . But it is not hard to show that, in an
atoroidal 3-manifold where all P-essential annuli are trivial and which is not a
solid torus, every trivial P-essential annulus is isotopic to a fundamental annulus.
First we isotope it so that it has minimal weight. If it is a sum of two surfaces, we
can assume that they are connected. By applying Lemma 2.2 we can conclude that
both of them have zero Euler characteristic, since they are both pure. By Theorem
2.3 they are both incompressible and P-boundary incompressible. At least one of
the summands is bounded. It cannot be a Möbius band because our manifold is
not a solid torus. So it is a trivial P-essential annulus which can be isotoped off
of our original annulus by an isotopy that is invariant on the pattern. If the other
summand is closed, then these two annuli have to be parallel. This contradicts
our minimal-weight assumption on the original trivial P-essential annulus. If the
other summand is also a trivial P-essential annulus then, after removing all trivial
patches in the normal sum, we can conclude that both of the summands have to be
parallel to our original annulus. This contradiction proves our claim.

3. Statement of the Main Theorem

In order to state Theorem 3.1 we need to clarify what we mean by a fibre-free 3-
manifold. We start by recalling some standard terminology. A surface bundle with
an orientable fibre S is just a mapping torus, i.e., a quotient S×I/(x, 0)∼ (ϕ(x), 1),
for some orientation-preserving surface automorphism ϕ : S → S. Since S is
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orientable this construction gives an orientable 3-manifold. But for a nonorientable
surface R with a nontrivial two-sheeted covering S→ R, the mapping cylinder of
the covering projection is an orientable twisted I -bundle over R. Gluing two such
I -bundles together along their horizontal boundaries by an automorphism of S
gives a 3-manifold N foliated by parallel copies of S and the two copies of R. The
leaves of this foliation are the “fibres” of a natural projection map N → I , where
the two copies of R are the preimages of the endpoints of the interval I . Such a
3-manifold N will be called a semibundle (with fibre S) over an interval I . The
surfaces S and R can be either closed or bounded.

Manifolds which are semibundles do sometimes arise in nature. For example, a
Klein bottle is a semibundle with fibre S1, since it splits as a union of two Möbius
bands. The simplest example in dimension 3 is a connected sum of two projective
spaces RP3 #RP3, where the fibre is a 2-sphere. On the other hand, a semibundle
structure can never arise in a knot complement. This is because the boundary
circles of the two nonorientable leaves would be disjoint curves in the boundary
torus and could therefore be capped off by the annuli they bound. This would then
give a closed nonorientable surface in S3.

Any semibundle over an interval can be viewed as a quotient of the product
S × I with identifications (x, 0) ∼ (α(x), 0) and (x, 1) ∼ (β(x), 1). The homeo-
morphisms α and β are orientation-reversing fixed-point-free involutions of the
fibre S. Using this representation it is easy to see that every semibundle admits a
two-sheeted covering space that is a surface bundle. The holonomy of the surface
bundle is the composition of α and β. So for example every semibundle, except
the one mentioned above, is irreducible, because the surface bundle covering it is
covered by R3, which is irreducible.

Recall that a Haken 3-manifold is an irreducible 3-manifold with possibly empty
incompressible boundary and containing an injective surface different from a disc
or a 2-sphere. We now define the class of 3-manifolds considered in Theorem 3.1.

Definition. A 3-manifold M with a nontrivial JSJ-decomposition or with nonempty
boundary is fibre-free if none of the strongly simple pieces in its JSJ-decomposition
are homeomorphic to a surface bundle or semibundle containing no closed injective
surfaces. A closed atoroidal Haken 3-manifold is fibre-free if it is not homeo-
morphic to a closed surface bundle over S1 or to a closed surface semibundle
over I .

Thus a fibre-free 3-manifold M can contain a bounded surface bundle or semi-
bundle if it is a part of the characteristic submanifold 6 or if it contains a closed
injective surface. In other words, if, say, a surface-bundle in a JSJ-decomposition
of M supports a Seifert fibration, then the manifold M is still fibre-free. It is known
that, if the surface-fibre has negative Euler characteristic, this happens if and only if
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the holonomy is a periodic element of the mapping-class group of the surface-fibre;
see Lemma VI.31 in [Jaco 1980].

Theorem 3.1. Let M be a fibre-free Haken 3-manifold. Let P and Q be two
triangulations of M that contain p and q tetrahedra respectively. Then there exists
a sequence of Pachner moves of length at most E2ap

(p)+ E2aq
(q) (see Convention

on page 140) that transforms P into a triangulation isomorphic to Q. The constant
a is bounded above by 200. The homeomorphism of M , that realizes this simplicial
isomorphism, is supported in the characteristic submanifold 6 of M and it does
not permute the components of ∂M.

This theorem gives a conceptually trivial algorithm for determining whether any
3-manifold is homeomorphic to a complement of a given nonfibred knot in the 3-
sphere. Say we also wanted a simple procedure enabling us to determine whether
any knot is the same as our given nonfibred knot. It is enough to establish whether
their respective complements are homeomorphic and, if they are, to determine
if the homeomorphism maps the meridian of one onto the meridian of the other
(the last requirement is a direct consequence of the famous result of Gordon and
Luecke [1989], but we would like to stress here that our algorithm works without
this complicated and deep result). If the boundary torus of this knot complement
is not contained in the characteristic submanifold, then the homeomorphism from
Theorem 3.1 equals the identity on the boundary. If on the other hand the bound-
ing torus is contained in 6, we first make sure that the simplicial structures on
the boundary of both knot complements coincide. It will be clear from the proof
of Theorem 3.1 that this makes the homeomorphism equal to the identity on the
boundary torus. So in this way, using Theorem 3.1, we can solve the recognition
problem for any nonfibred knot.

The proof of Theorem 3.1 starts by subdividing the original triangulation of M
so that the characteristic submanifold 6 is triangulated by a subcomplex of the
subdivision. We then look at the strongly simple pieces of the JSJ-decomposition.
We will simplify their triangulations using the distinguished hierarchy which is
described in Section 4. The distinguished triangulation is obtained from the dis-
tinguished hierarchy by applying Theorem 1.2 from [Mijatović 2003]. So a trian-
gulation of every strongly simple piece will impose a simplicial structure in the
boundary of both Seifert fibred and I -bundle components of 6. The former can
then be simplified by Theorem 3.1 of [Mijatović 2004], and the latter can be dealt
with using techniques from [Mijatović 2004, Section 6.2] and from Section 4B.

4. The distinguished hierarchy

Let M be a 3-manifold satisfying the hypothesis of Theorem 3.1. In this section
we describe the distinguished two-dimensional object lying inside M that will give
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rise to an intermediate triangulation, later to be used to bridge the gap between any
two triangulations of M . Let’s start by introducing some standard terminology. Let
S be an incompressible surface contained in the 3-manifold M . The operation of
cutting M along S results in a 3-manifold MS that is just a complement (in M) of
the interior of the regular neighbourhood N(S).

Definition. A partial hierarchy for a Haken 3-manifold M is a sequence of 3-
manifolds M1, . . . ,Mn , where M1 equals M and Mi+1 is obtained from Mi by
a cutting along an orientable, incompressible, properly embedded surface in Mi ,
no component of which is a 2-sphere. A hierarchy is a partial hierarchy with the
property that Mn is a collection of 3-balls. We shall denote (partial) hierarchies by,
for example,

M1
S1
−→ M2

S2
−→ · · ·

Sn−2
−→ Mn−1

Sn−1
−→ Mn,

where Si is the surface in Mi that we cut along.

It is well known that every Haken 3-manifold possesses a hierarchy. Since we
are going to construct a hierarchy with some additional properties we will be,
among other things, reproving this result. Another classical fact about hierarchies
is contained in Lemma 4.1. Since it represents a key step in the construction of the
distinguished hierarchy, we will include its proof.

Lemma 4.1. Let M be a compact orientable irreducible 3-manifold with (possibly
empty) boundary. Let

M1
S1
−→ M2

S2
−→ · · ·

Sk−2
−→ Mk−1

Sk−1
−→ Mk

be a partial hierarchy for M and let N = N(∂M ∪ S1 ∪ · · · ∪ Sk−1) be a regular
neighbourhood of the union of all the surfaces in the hierarchy. Then:

1. The surface ∂N − ∂M is incompressible in N.

2. Compressing the surface ∂N −∂M into the 3-manifold M− int N as much as
possible gives a disjoint union of closed connected separating surfaces, each
of which is either incompressible in M or is a 2-sphere bounding a 3-ball
in M.

Proof. Let’s start by observing that the (partial) hierarchy for M from the lemma
gives a partial hierarchy for N , where the manifold we end up with after cutting
along surfaces S1, . . . , Sk−1 is homeomorphic to (∂N−∂M)× I . Now we proceed
by induction on k. For k = 2 we have a single incompressible surface S1. We can
assume that a compression disc D for ∂N − ∂M (in N ) intersects S1 in simple
closed curves only and that it is disjoint from ∂M . Every component of S1 ∩ D is
homotopically trivial and hence bounds a disc in S1 (since S1 is incompressible).
The innermost such curve in S1 bounds a disc D′ in S1 disjoint from D. By cutting
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D along ∂D′ and gluing in a parallel copy of D′ we obtain a new compression
disc (again denoted by D), such that the number of components of the intersection
D ∩ S1 is reduced by at least one. By repeating this procedure we can make D
disjoint from S1. This implies that D is in fact a compression disc for the surface
∂N − ∂M in the product (∂N − ∂M)× I . So its boundary has to bound a disc in
(∂N − ∂M). The inductive step is proved in the similar fashion by first making
the compression disc disjoint from the surface S1, and then applying the induction
hypothesis to the partial hierarchy in MS1 . This proves part 1.

The closed surface ∂N−∂M is separating in M and can only compress into M−
int N . Furthermore, these new compression discs can be viewed as the continuation
of the existing partial hierarchy. So by applying the first part of the lemma to this
extended hierarchy, we see that each component of the compressed surface is either
incompressible both in the regular neighbourhood of the extended hierarchy and in
its complement, or it is a 2-sphere. In both cases part 2 of the lemma follows. �

The distinguished two-dimensional polyhedron lying inside of the hyperbolic
pieces of M can now be topologically, but not yet algorithmically, described as
follows. It will consist of the union of surfaces in the distinguished hierarchy
which is given by the following three-step procedure. We should note here that
there are many different choices for the surfaces in the hierarchy we are about to
describe. The term “distinguished” simply means that we can make one choice
and stick with it in any triangulation of our 3-manifold M .

Step 1. Let S1 be the first surface in the hierarchy. Its components will be defined
recursively. We start by adjoining all canonical tori and annuli from the JSJ-system
of M . In other words at this point S1 consists of the surfaces ∂6 − ∂M , where
6 is the characteristic submanifold of M . We will adjoin new closed connected
surfaces to S1 in the components of the JSJ-decomposition of M which are not
contained in 6 and are neither homeomorphic to a solid torus nor to a (torus)× I .
Boundary of such a piece might or might not be incompressible in M . For each
incompressible boundary component of such a component, we add a parallel copy
of it to our surface S1 (this makes sure that all the complementary pieces we need
to work on in Step 2 are pure). In each component of the complement M − int6
defined above, the rest of the surface S1 will consist of disjoint closed connected
orientable incompressible surfaces. If two components of S1 are parallel, then no
other connected subsurface in S1 will be parallel to them. They are defined by the
following recursion.

1a. If the complementary piece of the surface we have defined so far contains no
canonical annuli, then we proceed by looking for a closed, injective surface
that is not boundary parallel (in that piece), and that has the largest Euler char-
acteristic (smallest genus) out of all such surfaces in our piece. If a surface like
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that does not exist, S1 gets no new components in the piece we are studying.
If it does exist, we adjoin to S1 a boundary of its regular neighbourhood in
our piece.

1b. If, on the other hand, our submanifold contains a canonical annulus, we look at
the union of all canonical annuli with the boundary of the piece. Compressing
the boundary of the regular neighbourhood of that two-dimensional polyhe-
dron as far as we can, gives a disjoint union of closed separating orientable
surfaces. If this union contains a surface that is neither homeomorphic to S2,
nor parallel to any of the boundary components of the piece, then we adjoin
to S1 a boundary of a regular neighbourhood of a closed injective surface (in
our piece), which is not boundary parallel, and that has the largest negative
Euler characteristic among all such surfaces. If there aren’t any such surfaces,
we do nothing.

The union of all the surfaces in M obtained in this way, defines the surface S1 in
our hierarchy.

Step 2. Let’s look at a piece of the cut-open manifold MS1 that is not homeo-
morphic to an I -bundle over a surface and is not contained in the characteristic
submanifold of M . Such a piece either contains a canonical annulus or it doesn’t.
If it does, take the surface S2 in that piece to be a union of two parallel copies of
each canonical annulus in it. If it doesn’t, let S2 be the horizontal boundary of a
regular neighbourhood of a connected bounded two-sided incompressible surface
with the largest Euler characteristic.

Step 3. The pieces of M after the first two steps are either homeomorphic to
compression bodies, whose negative boundary ∂− can be empty (the case of han-
dlebodies) or disconnected, or to I -bundles over (perhaps nonorientable) closed
surfaces. All the subsequent surfaces in the distinguished hierarchy are going to
be annuli and discs and are going to be defined recursively using boundary patterns
on the pieces.

This construction both raises a number of questions and also requires some
explanation. The recursion defining the surfaces S1 must stop by the Kneser–Haken
finiteness theorem (see [Jaco 1980] and [Hempel 1976]). Moreover it follows that
M can contain at most 8t+β1(M;Z)+β1(M;Z2) closed connected incompressible
surfaces that are nonparallel, where t is the number of tetrahedra in T . Therefore
the surface S1 can contain at most 2 · 20t components, since the Betti numbers
β1(M;Z) and β1(M;Z2) are smaller than 6t .

It is clear from the definition of S1 that all components of the cut-open mani-
fold obtained at each stage of the recursion defining S1, which are disjoint from
the characteristic submanifold 6, are atoroidal. So the set of all surfaces in the
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JSJ-system of each such 3-dimensional piece is either empty or it contains only
annuli. All components of the 3-manifold MS1 have nonempty boundary. It is well
known (see [Hempel 1976]) that a bounded compact irreducible 3-manifold that is
not a 3-ball contains an orientable (and hence two-sided) nonseparating properly
embedded incompressible surface with boundary. So even in the components of
MS1 that contain no canonical annuli, we can still find and fix one such surface
with the largest Euler characteristic. Therefore we can carry out Step 2 as well.

In order to determine what the pieces of the complement look like topologically
after Step 2 we need the following definition. A compression body is a connected
orientable 3-manifold obtained from a (possibly disconnected) closed orientable
surface S by attaching 1-handles to the surface S × {1} in the boundary of the
product S× I . The negative boundary ∂− of the compression body is precisely the
incompressible part of its boundary, which equals S×{0}. The rest of the boundary
is called positive and is denoted by ∂+. It is convenient to regard handlebodies as
compression bodies with empty negative boundary ∂−.

We now have to examine the boundary of the regular neighbourhood N =
N(∂M ∪ S1 ∪ S2). The boundary of N is a disjoint union of closed surfaces, some
of which are parallel to the components of the surface ∂M∪ S1 and some of which
are not. The former are incompressible in M . The latter are incompressible only
in N . Lemma 4.1 also tells us that these surfaces either compress all the way, and
therefore bound handlebodies, or they become closed incompressible surfaces in
M after a few compressions. The second alternative implies that they have to be
parallel (in M) to components of ∂M ∪ S1. This follows from the construction
of S1, since all closed orientable incompressible surfaces in any component of the
3-manifold MS1 have to be boundary parallel. Putting all this together we can
conclude that each piece of the cut-open manifold M − int N is homeomorphic to
a handlebody, a compression body with a possibly disconnected negative boundary
∂−, or an I -bundle over a (possibly nonorientable) closed incompressible surface.

All surfaces in Step 3 of our hierarchy will be annuli and discs. The topological
information coming from the manifold M will be reflected in the boundary patterns
(as described in Section 2B) on the boundaries of the pieces.

There is a very natural way of obtaining boundary pattern from any partial hi-
erarchy of M . Let

M1
S1
−→ M2

S2
−→ · · ·

Sk−1
−→ Mk

be such a hierarchy and let K denote a two-dimensional polyhedron that is a union
of ∂M with all the surfaces from this hierarchy. The singular locus S(K ) of the
polyhedron K consists of all the points in K that do not have neighbourhoods
homeomorphic to discs (i.e., those points whose links in K are not circles). Let Q
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be a closure (in M) of a component of M − K . In our setting Q is always an em-
bedded submanifold of M . It also inherits the boundary pattern from the hierarchy
in the following way: P = ∂Q ∩ S(K ). Note that P consists of trivalent graphs
and disjoint simple closed curves, and that the surface ∂Q − P is by definition
incompressible in Q.

Now let Q be a complementary piece of the distinguished hierarchy after Step
2. The pattern on ∂Q consists of a (possibly empty) collection of disjoint simple
closed curves. All the subsequent surfaces in the distinguished hierarchy that are
contained in Q are going to be annuli and discs. They will be defined using the
information coming from the pattern. We will adjoin them in such a way that
the closures of the complementary components at any step of the hierarchy are
embedded submanifolds.

Before describing the next step in the distinguished hierarchy, we need to impose
some pattern on the pure pieces of the form (torus)× I that are not contained in
the characteristic submanifold 6. Such submanifolds arise from canonical tori in
M that are separating Seifert fibred pieces with nonmatching fibrations. So on
each boundary component of (torus) × I , we take our pattern to be the regular
fibre of the Seifert fibration on that side. Since the fibrations do no match (if they
did, the defining torus of the piece would not be canonical), this pattern admits no
nontrivial P-essential annuli in our piece.

The third step in the construction of the distinguished hierarchy will be carried
out in three substeps:

3a. Fix an ordering of the 3-manifold components of the complement M−(S1∪S2)

that are not contained in the characteristic submanifold 6. Go through all
the pieces one by one, respecting this ordering, and each time add a disjoint
maximal collection of P-canonical annuli that exist in that piece. Every time
new P-canonical annuli are adjoined, the pattern on the boundaries of the
neighbouring pieces acquires some additional simple closed curves. Also, if a
P-canonical annulus does not separate the piece it lies in, we add two copies
of it. When we are done with all the components of M − (S1 ∪ S2), we fix a
new ordering on the pieces of M − (S1 ∪ S2 ∪ S), where S equals the union
of all P-canonical annuli we have added in so far. We repeat the procedure
above on this new ordering. We iterate the whole process until we reach an
ordering of the complementary components with boundary patterns admitting
no P-canonical annuli in any of the pieces.

3b. At this step of the hierarchy all the complementary pieces that contain non-
trivial P-essential annuli are I -bundles with pure horizontal boundaries (see
Theorem 2.1). In this step we simplify proper compression bodies and I -
bundles over closed surfaces down to handlebodies by inserting the spanning
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annuli. First we fix a complementary piece that is a compression body. We
adjoin each trivial P-essential annulus in our piece with the following prop-
erty: the annulus in the boundary of the piece that it is parallel to contains
precisely two pure subannuli and no simple closed curve components of the
pattern (this technical requirement ensures that the adjoined trivial P-essential
annulus is uniquely determined by the existing pattern on the boundary of our
piece). The topology of our complementary piece remains unchanged after
we have added all such trivial P-essential annuli. We need these annuli so
that normal surface theory can be applied to decompose the piece. Now we
adjoin an incompressible spanning annulus that has minimal intersection with
the pattern. Spanning in the context of compression bodies means that the
bounding circles of the annulus lie in distinct boundary components of the
compression body. If the chosen spanning annulus is not separating, we take
two parallel copies of it. We repeat this procedure for each component of the
negative boundary ∂−. We now run 3a again. If there are compression bodies
left we repeat 3b on one of them. Otherwise we do 3b on an I -bundle over a
closed surface. Once all complementary pieces are handlebodies we move to
the next step.

3c. Now all complementary pieces are handlebodies and none of them contains a
P-canonical annulus. Fix a complementary piece that contains no nontrivial
P-essential annuli and which is neither a 3-ball nor a solid torus with a pure
injective annulus in its boundary. If no such piece exists we stop. Other-
wise we adjoin all trivial P-essential annuli in our piece that have the same
property as the ones described in 3b. We adjoin them using the same method
as in 3b. Then we choose a compression disc in our piece having minimal
intersection number with the boundary pattern among all compression discs
in our handlebody. If it is not separating, we take two copies of it. Notice that
the compressed handlebody, which is not necessarily connected, satisfies the
same conditions as the original piece we have just compressed. So we carry
on with the compressions until the original piece becomes a union of 3-balls.
Now we run 3a again. The situation now is precisely as it was at the beginning
of 3c, so we can repeat it.

The description of Step 3 requires some explanation. Step 3a is there to eliminate
the nontrivial P-essential annuli in the complementary pieces. This is crucial for
the algorithmic construction of the surfaces in the hierarchy, because such annuli
make normal surface theory impossible to apply. In Step 3b we make sure that
all complementary pieces are handlebodies. Step 3c is there to compress these
handlebodies down to 3-balls with the exception of solid tori which contain a pure
annulus in their boundaries.
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If no complementary piece after Step 3a is homeomorphic to a proper com-
pression body or to an I -bundle over a closed surface, we do nothing in 3b. On
the other hand, if such pieces exist, we need to make sure that they contain no
nontrivial P-essential annuli, so that we can use normal surface theory later on to
construct the vertical annuli.

Lemma 4.2. A compression body from Step 3b in the hierarchy can contain no
nontrivial P-essential annuli. When there are no more compression bodies left,
any I -bundle over a closed surface from 3b has the same property.

Proof. No piece in 3b contains a P-canonical annulus by 3a. So a compression
body containing a nontrivial P-essential annulus would have to be homeomorphic
to either an atoroidal Seifert fibred space which is not a solid torus or to an I -
bundle. This follows directly from Theorem 2.1, which can be applied since all
the complementary pieces in Step 3 are atoroidal.

The first possibility cannot occur since all such Seifert fibred spaces have incom-
pressible boundary (see Figure 3 in [Mijatović 2004]). Also a proper compression
body is not homeomorphic to an I -bundle over a compact surface because it has a
compressible boundary component and at least one incompressible one. Since both
possibilities lead to contradiction, no compression body can contain a nontrivial P-
essential annulus after 3a. Notice also that the complement of the spanning annulus
in a compression body is again a compression body whose negative boundary has
fewer components than that of the original piece.

If there existed an I -bundle over a closed surface that contained a nontrivial
P-essential annulus then, by Theorem 2.1, it would have to be homeomorphic to
an I -bundle over a compact surface with pattern lying in the annuli that fibre over
the boundary circles of the base surface. So our piece is actually pure because any
I -bundle over a bounded surface has compressible boundary. This means that the
boundary of our I -bundle is contained in the surface S1.

Our piece can in general be adjacent to an I -bundle, a compression body or a
handlebody.

The first possibility would make M into a closed atoroidal surface bundle over
S1 or semibundle over I , since the boundary of our I -bundle is both pure and
contained in S1 (by definition, S1 does not have more than two parallel copies of
any component). This contradicts our initial hypothesis on M .

The second possibility with the compression body cannot take place, because
Step 3b does not touch I -bundles while compression bodies are still around. But
the adjacent piece also cannot be a handlebody since all components of S1 are
incompressible in M . All this implies that, when there are no more compression
bodies in the complement of the hierarchy, each I -bundle over a closed surface
contains no nontrivial P-essential annuli. �
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After we have adjoined the spanning annuli in all the compression bodies and
I -bundles over closed surfaces (i.e., after we have completed Step 3b), every com-
plementary region of the hierarchy becomes a handlebody.

In Steps 3b and 3c we also have to adjoin certain trivial P-essential annuli to
the complementary pieces. If the pattern on the boundary of our piece consists of
simple closed curves only, we do not need to adjoin such annuli. Otherwise we
add in the ones that are parallel to the annuli in the boundary of the piece which
contain no simple closed curves of the pattern and do contain precisely two pure
subannuli. This rule makes sure that no two of the trivial P-essential annuli we add
are topologically parallel (that is, parallel disregarding the pattern). This process
creates more of the solid tori, in the complement of the hierarchy, which contain
injective pure annuli in their boundaries. But it does not change the topology of the
complementary piece. The reason we have to adjoin the trivial P-essential annuli
before applying normal surface theory is that we need to make sure that any surface
F we are trying to find, be it a disc or an annulus, is isotopic, by an isotopy that
is invariant on the pattern, to a surface obtained from F by twisting along a trivial
P-essential annulus. It is clear that after we adjoin the trivial annuli this can be
achieved.

Now that we have fully described the distinguished hierarchy, we need to show
that Step 3 (i.e., 3a and hence most other substeps) does not run forever and that,
when it terminates, the complementary pieces of the hierarchy we get are solid
tori with pure annuli in their boundaries and 3-balls. To do that we have to un-
derstand how incompressible (but not ∂-incompressible) annuli lie in handlebodies
and compression bodies. In fact we can concentrate only on the annuli that are
not ∂-parallel in the piece we adjoin them to, because the number of the boundary
parallel ones is easily controlled by the complexity of the pattern.

It follows directly from the definition that a P-canonical annulus is not boundary
parallel in the complementary piece we adjoin it to. Let’s start by looking at a han-
dlebody component H of M− int N(S1∪S2). The process described above creates
a sequence of pure incompressible properly embedded annuli in H . Moreover no
two annuli can be parallel, because that would make one of them ∂-parallel in a
submanifold of H . So what we have is a disjoint collection of properly embedded
nonparallel annuli in the handlebody H (here we are only taking into account one
of the two parallel copies of P-canonical annuli that we sometimes had to adjoin,
because the annulus was not separating), none of which is ∂-parallel.

There are at most 6g such annuli, where g is the genus of handlebody H . To see
this, suppose A is the union of at least 6g such annuli in H . We can then perform a
sequence of ∂-compressions to A until we end up with a ∂-incompressible surface.
Since the only such surfaces in handlebodies are discs, we get a collection of at
least 6g disjoint discs in H . Now, each annulus in A is compressed only once and
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the disc it yields, after the ∂-compression, is a compression disc for ∂H . This is
because none of the components of A are ∂-parallel. But there are at most 3g− 3
disjoint nonparallel compression discs in a handlebody of genus g. So at least
three of our discs are parallel. It is easy to see that, if we reconstruct the annuli
corresponding to these parallel discs by reversing the ∂-compressions, at least two
of the annuli are going to be parallel in H .

The same proof tells us that in a compression body H we cannot have more
than 6g(∂+H) incompressible ∂-compressible annuli that are neither ∂-parallel
nor parallel to each other (a compression body contains at most 3g(∂+H) − 3
disjoint nonparallel compression disc). On the other hand, compression bodies do
contain incompressible ∂-incompressible annuli. We can always choose the handle
structure of the compression body H so that our family of annuli is vertical in the
product structure of the complement of the 1-handles. This can be seen as follows.
Choose a family of compression discs in H which cuts it down to (∂−H)× I and
which intersects our annuli in the minimal number of arcs. Since all the annuli
are ∂-incompressible, all the arcs of intersection must be inessential. Consider an
outermost arc separating off a disc D in one of the annuli. The arc lies in one of
the compression discs and divides it into subdiscs D′ and D′′. Remove D′, say,
from the compression disc and replace it with D. By choosing D′ appropriately
we may ensure that the family of compression discs we obtain after this operation
still cuts H down to (∂−H)× I . Clearly this family of discs intersects our annuli
in fewer arcs, which is a contradiction.

This implies that there are no more than(
3g(∂−H)− 3

)
+ 2

(
g(∂+H)− g(∂−H)

)
nonparallel incompressible ∂-incompressible annuli in H . The first summand
bounds the number of disjoint nonparallel simple closed curves in the surface
∂−H . The second summand accounts for the fact that two vertical annuli parallel
in ∂−H × I need not be parallel in H . Since each 1-handle of H produces two
discs in the boundary of (∂−H)× I , we get the bound. Putting all these numbers
together we can conclude that each compression body can contain no more than
9g(∂H) disjoint nonparallel incompressible annuli that are not ∂-parallel.

We are now going bound the genus of any closed surface that bounds a compres-
sion body or a handlebody from M−int N(S1∪S2) (see Corollary 4.5). This bound
implies that there are only finitely many compression discs in 3c. The number of
annuli in Steps 3a, 3b and 3c, which are not boundary parallel, is, by the discussion
in the previous paragraphs, controlled by the genus of these surfaces. Each trivial
P-essential annulus featured in Steps 3b and 3c is always parallel to an annulus in
the boundary of the piece which contains some pattern. This pattern is such that
it must contain at least one simple closed curve that is embedded in it and that is
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a boundary component of some surface in the hierarchy that was adjoined to the
neighbouring piece at some earlier instance (notice that this simple closed curve
must contain at least one vertex of the pattern). Corollary 5.8 in [Tollefson and
Wang 1996] gives us control over the negative Euler characteristic of nonannular
components of S2. The number of boundary components of annular pieces of S2

is bounded by 20 · 18t , where t is the number of tetrahedra in M . This follows
from the Kneser–Haken finiteness theorem and the fact that all canonical annuli
lie in the complement of the amalgams (see the proof of Corollary 4.5). So we
have complete control over the number of boundary components of the surface
S2. Also, when we adjoin trivial P-essential annuli, the pattern that they generate
cannot contribute to the birth of new trivial P-essential annuli. Therefore, since
we can bound the number of P-canonical annuli, we can also bound the number
of trivial P-essential annuli that come out of 3b and 3c. All this implies that the
procedure described by Step 3 in the construction of the distinguished hierarchy
must terminate.

The rest of this section is devoted to showing that all the embedded submanifolds
in the complement of the whole distinguished hierarchy, after we have carried out
Step 3, are indeed 3-balls and tori that contain pure annuli in their boundaries. Since
Step 3a cannot run forever under any circumstances, we can assume that Steps 3b
and 3c have been implemented as well. This means that all the complementary
pieces are either handlebodies not containing P-canonical annuli, or 3-balls. The
only pieces we need to worry about are the handlebodies which contain nontrivial
P-essential annuli (the ones that do not have already been compressed all the way
in Step 3c). We will now show that such handlebodies support a natural I -bundle
structure with pure horizontal boundaries. Moreover we will see that they are
stacked one on top of the other along their horizontal boundaries, forming a surface
bundle or semibundle.

Assume that, after Step 3 of the hierarchy has been done, there is a comple-
mentary piece Q containing a nontrivial P-essential annulus. By Theorem 2.1, it
has to be an I -bundle over a bounded surface of negative Euler characteristic. The
pattern is contained in the vertical boundary and the horizontal boundary is pure.

Now we look at the complementary piece Q′ which is on the other side of the
horizontal boundary of Q. We know that Q′ is a (possibly trivial) handlebody
containing no P-canonical annuli (by 3a). We will now show that it must contain
a nontrivial P-essential annulus. Once we establish that, the I -bundle structure of
Q′ will follow from Theorem 2.1.

The horizontal boundary of Q is incompressible in Q′, by the definition of a
hierarchy. Q′ is therefore not a 3-ball. Furthermore Q′ must contain a nontrivial
P-essential annulus, because if it didn’t, its boundary would have been compressed
down to a 2-sphere by 3c. Since Q′ doesn’t contain any P-canonical annuli, we
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can apply Theorem 2.1 to conclude that Q′ is an I -bundle over a bounded surface
as well. Moreover the horizontal boundary of that I -bundle is pure. It is either
connected or it has two components, depending on whether the base surface is
nonorientable or not. In the first case the horizontal boundary of Q′ has to coincide
with a component of the horizontal boundary of Q. In the second case a component
of the horizontal boundary of Q′ matches a component of the horizontal boundary
of Q. If Q and its neighbour meet along all of their horizontal boundaries, their
union is an embedded submanifold N in M that is a surface bundle or semibundle
with the fibre a bounded surface. If not, we can extend the I -bundle structure over
the union Q ∪ Q′. We can repeat the argument for the enlarged I -bundle and the
pieces adjacent to it. After finitely many repetitions we must arrive at the surface
bundle or semibundle situation described above, since we are in the complement
of the characteristic submanifold 6. (If the horizontal boundary of the extended
I -bundle hits ∂M , it is not hard to see that the annuli in vertical boundary of the
I -bundle are incompressible and ∂-incompressible in M , making our I -bundle a
subset of6.) The following lemma will give the final contradiction with our initial
hypothesis on the 3-manifold M .

Lemma 4.3. The submanifold N constructed above is a bounded strongly simple
piece of the JSJ-decomposition of the 3-manifold M. In particular, N is atoroidal
and an-annular. For the surfaces S1 and S2 obtained after the first and second
steps in the construction of the distinguished hierarchy, we have ∂N − ∂M equal
to N ∩ S1 and consisting of canonical tori from M ; and we have N ∩ S2 equal to
either a union of two parallel components of S2 (if N is a surface bundle over S1)
or a single component of S2 (if N is a surface semibundle over I ).

Proof. Since M is fibre-free and the submanifold N lies in the complement of 6,
the surface fibre of N cannot be closed. In other words, the boundary of N cannot
be empty. First we need to show that the components of ∂N are incompressible
tori in M . Let S be one such torus. Assume that it is compressible. Then it
either bounds a solid torus in M or is contained in a 3-ball in M . But S contains
a boundary circle of the fibre of N . Since this surface injects in M , the torus S
cannot be contained in a 3-ball, nor can it bound a solid torus with the slope of the
meridian disc equaling the slope of the fibre of N .

Let F be a connected surface in the distinguished hierarchy that contains one of
the fibres of the surface bundle N . It is clear that F has to be either a component
of the closed surface S1 or a nonannular component of the bounded surface S2.
In both cases we are going to consider how the surface F interacts with the solid
torus bounded by S (we can assume without loss of generality that the solid torus
is disjoint from int N ). We have two possibilities. The surface F is either disjoint
from its interior, or it intersects it. In the former case it has to contain another
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surface fibre of N . This leads directly into contradiction because it renders F
compressible in N and hence in M . In the latter case the subsurface of F that is
contained in the solid torus has to be injective in the solid torus. This follows from
the injectivity of F and the fact that the intersection F ∩ S has to inject into M
as well, since it is part of the pattern. So F consists of annuli in the solid torus
bounded by S (Möbius bands are ruled out by orientability of F). This means that
again F has to contain at least two surface fibres of N . Take an annulus from F
that is outermost in the solid torus bounded by S. The two fibres of N that are
contained in F and lie one on each side of this annulus can be used to show that
in this case F has to be compressible as well. This proves that the surface ∂N is
incompressible in M .

Since the submanifold N is disjoint from the characteristic submanifold6, each
boundary torus from ∂N has to be parallel either to a canonical torus in M or to a
toral boundary component of M . Therefore N has to be a strongly simple piece of
the JSJ-decomposition of M . If an essential annulus in (N , ∂N ) is canonical then,
by Proposition 4.1 from [Neumann and Swarup 1997], it has to be a matched annu-
lus, making N into a Seifert fibred space. If (N , ∂N ) contains no canonical annulus
and yet contains an essential one, then it is again Seifert fibred by Proposition 3.2
in [Neumann and Swarup 1997]. This implies that N is in fact an-annular.

It follows from the construction of N that any surface from the intersection
N ∩ S1 will either contain the whole boundary component of N or it will contain
a surface fibre of N . The latter possibility cannot occur because any component
of S1 that is not contained in ∂N has to be disjoint from it and can therefore not
carry a fibre of N . The intersection N ∩ S2 consists of components of S2 which are
therefore surface fibres of N . But since S2 contains at most two parallel copies of
an incompressible ∂-incompressible surface the lemma follows. �

4A. Topological complexity. There are two kinds of complexities of the surfaces
in the distinguished hierarchy we need to consider. First there is the normal com-
plexity, i.e. the number of normal pieces a minimal weight representative in the
isotopy class of the surfaces consist of. We will deal with it in Section 4B. Second
there is the topological complexity of the surfaces in the hierarchy, that is defined in
terms of their components in the following way. To each component we assign its
negative Euler characteristic and then define the complexity to be the sum over all
of its components. Topological complexity of the surfaces S1 and S2 will, together
with the Kneser–Haken finiteness theorem, determine the number of connected
surfaces we needed to cut along. Bounding it therefore provides a crucial step in
the actual construction of the distinguished hierarchy. Since there are no 2-spheres,
discs or projective planes in the first two steps of the hierarchy, our topological
complexity coincides with the Thurston complexity as defined in [Thurston 1986].
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Lemma 4.4. Let M be a triangulated irreducible 3-manifold with (possibly empty)
incompressible boundary that is different from RP3. Assume further that the man-
ifold M is atoroidal and that it is not homeomorphic to an I -bundle. Then any
closed injective surface in M that is not boundary parallel and that has the smallest
topological complexity among all such surfaces is ambient isotopic to a fundamen-
tal surface.

Proof. The general strategy of the proof is to apply a version of Theorem 2.3 to an
injective surface of minimal complexity and thus conclude that it is fundamental.
But first we need to collect some facts about M and about normal surfaces in it.

Claim. M cannot contain a projective plane or an injective Klein bottle.

Proof. A boundary of a regular neighbourhood of an injective Klein bottle is an
incompressible torus. But all such tori in M are boundary parallel, making M
into an I -bundle. Since M is irreducible and not homeomorphic to RP3, it cannot
contain an embedded projective plane. �

The next result is well known.

Sublemma. If F is a connected normal surface which is a sum F = F1+ F2, then
it can be expressed as another sum F = F ′1 + F ′2, where both normal surfaces F ′1
and F ′2 are connected and no component of the intersection F ′1∩ F ′2 separates both
surfaces. Furthermore we can assume that the sum F = F ′1+F ′2 is in reduced form.

Proof. The proof is by making regular alterations along certain arcs and circles
in F1 ∩ F2. The procedure, we are just about to describe, must terminate because
there is only finitely many components in F1∩ F2. If, say, F1 is not connected, fix
one of its components and do all regular alterations along curves in the intersection
between all other components and F2. Name the component we fixed (and didn’t
touch) F1 again, and call the new normal surface F2. Notice that the number of
components of F1 ∩ F2 is smaller than what it was before. Now, if F2 is not
connected, we can reiterate the above procedure with F2 taking the place of F1

and vice versa. The repetition of these steps must eventually terminate with both
F1 and F2 being connected.

Assume now that there exists a component of F1∩F2 that separates both surfaces
into

Fi = F (1)i ∪ F (2)i for i = 1, 2.

This cannot be the only component of F1∩ F2 because the surface F is connected.
Choose notation so that the regular alteration along this component pastes F ( j)

1 with
F ( j)

2 for j = 1, 2. Doing regular alterations along the components of F ( j)
1 ∩ F ( j)

2 ,
for j = 1, 2, produces two normal surfaces, called F1 and F2 again, with fewer
components in their intersection and with the property F = F1 + F2. If either
of them is not connected, we repeat the procedure for making them connected.
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Alternating between the above two processes will eventually produce surfaces F1

and F2 that are connected, their normal sum F1+ F2 equals F , and no component
of the intersection F1 ∩ F2 is separating in both surfaces.

Now take two normal surfaces G and H that satisfy all these three conditions
and their intersection has the smallest number of components among all such pairs
of surfaces. We claim that the sum F = G+ H is in reduced form. Otherwise we
can isotope the surfaces G and H to normal surfaces G ′ and H ′ so that the sum
F = G ′ + H ′ is in reduced form. This means that the number of components in
G ′ ∩ H ′ is strictly smaller than the number of pieces of G ∩ H . The surfaces G ′

and H ′ are still connected, but the third condition from above must fail. But then
we can repeat the procedure described above on G ′ and H ′, possibly reducing the
number of components in G ′ ∩ H ′ even further, making sure that both summands
are connected and that no component of intersection separates both of them. This
contradicts the choice of G and H and hence proves the sublemma. �

Now we can prove the lemma. Suppose F is a closed injective surface in M of
the smallest topological complexity. It is therefore connected and incompressible.
We isotope it into normal form so that it is weight minimising. Assume now that F
is not fundamental and can therefore be expressed as a sum F = F1+ F2 and that
the conclusion of the sublemma is satisfied. Now we can apply the main theorem
of [Bart and Scharlemann 1996] to F = F1+F2, without isotoping the summands,
because the sum is in reduced form. This gives that the surfaces F1 and F2 are
also injective. Moreover, it follows from Lemma 2.2 that neither of the surfaces
Fi is a 2-sphere. Since the Euler characteristic is additive over normal sums and
M contains no projective planes, we now have that χ(F)= χ(F1) and χ(F2)= 0.
Since F2 cannot be an injective Klein bottle, by the above claim, it can only be
a boundary parallel parallel torus. Since F2 is connected, it can contain only one
copy of such a torus.

We now have to consider the intersection F2 ∩ F1. None of the simple closed
curves from F2∩F1 are homotopically trivial in either of the two surfaces because,
by Lemma 2.2, there are no trivial patches. So the space F2 ∩ F1 is a 1-manifold
that is homeomorphic to a disjoint union of nontrivial parallel simple closed curves
in the torus F2. Let X be the (torus)× I region between F2 and the toral boundary
component of M that F2 is parallel to. Then the components of the surface F1∩ X
must be injective in X , simply because the patches of F = F1+F2 are injective by
Lemma 2.2, and ∂X is incompressible in M . So, since F1 ∩ X contains no closed
components, it consists of incompressible annuli that are disjoint from the torus
X ∩ ∂M . Each such annulus must be topologically parallel to an annulus in F2.
Let B be an outermost annular component of F1 ∩ X , lying in the product region
X , and let A be the annulus in F2 that is parallel to B. There are three possible
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A

B

(a)

(b)

(c)

Figure 4. Possible normal alterations.

(essentially different) ways a normal alteration can act on ∂A. They are depicted
by Figure 4.

They all lead to contradiction. Case (a) produces a disconnected sum. In case
(b) we can isotope the union of the patches A and B over the solid torus that
they bound, to reduce the weight of F . If both A and B had zero weight, then
there would exist a normal isotopy that would reduce the number of components
in F1 ∩ F2. This contradicts the reduced form assumption. Case (c) contradicts it
as well, because the surfaces we obtain after we do the normal alterations along
∂A, are isotopic to F1 and F2, but have fewer components of intersection. This
proves the lemma. �

Now we are in the position to bound the topological complexity of surfaces
S1 and S2 in the distinguished hierarchy. The next corollary will follow from
the construction of the first two surfaces in the hierarchy, from Corollary 5.8 in
[Tollefson and Wang 1996] and Lemma 4.4 and also from the bound in Lemma
6.1 of [Hass et al. 1999]. Corollary 4.5 will be used in Section 5 to bound the
number of connected surfaces in the distinguished hierarchy.

Corollary 4.5. Let M be a Haken 3-manifold with (possibly empty) boundary. Let
T be its triangulation that consists of t 3-simplices. Then the sum of the topological
complexities of all closed surfaces in M , that bound handlebodies, compression
bodies and I -bundles in the complement of the distinguished hierarchy after Step
2, is bounded above by 2150t .

Proof. If F is a normal surface with respect to the triangulation T , then the comple-
ment of F in M inherits a polyhedral structure from T . It is obvious that there are
at most 6 polyhedra in any tetrahedron of T , lying in the complement of the normal
pieces of F , that don’t inherit a natural product structure of the form (triangle)× I
or (quadrilateral) × I (see Figure 4 in [Mijatović 2003]). The complementary
polyhedra with this product structure are called parallelism regions. We will be
interested in the components of the union of all parallelism regions in M−F which
are called amalgams. They were precisely defined and studied in [Lackenby 2003,
Sections 7 and 8]. Notice that a vertical boundary of an amalgam (i.e. the part
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which is not contained in F) is a union of annuli. If they are all injective, we
say that the amalgam is maximal. It is described in [Lackenby 2003] how every
amalgam can be extended uniquely to the maximal one. A key property of maximal
amalgams that will be crucial is the following: if a component M ′ of M−F , which
is different from an I -bundle, contains no canonical annuli, then all the maximal
amalgams in it are of the form (disc) × I . It is easy to show that under these
circumstances the 3-manifold M ′ can be triangulated by less than 18t tetrahedra
(left as an exercise).

The negative Euler characteristic of any normal surface is bounded above by
four times the number of normal discs that the surface contains. The topological
complexity of the surfaces which bound handlebodies, compression bodies and I -
bundles in the complement of the hierarchy after Step 2, increases each time we
add in a closed component of S1 and a nonannular component of S2. The quantity
from the corollary we would like to have an estimate on is smaller than twice the
sum of negative Euler characteristics of S1 and S2. So all we need is:

Claim. The negative Euler characteristic of each component of the surfaces S1

and S2 is bounded above by 2127t+19.

Proof. If a new component of the surface S1 is added in a complementary piece
which contains no canonical annuli, Lemma 4.4 and the bound from [Hass et al.
1999, 6.1] imply that 4 · 5 · 18t (7 · 18t27·18t) < 2127t+19 bounds its topological
complexity (the bound is 4 times the normal complexity of a fundamental surface
in a triangulation with 18t tetrahedra and the factor 5 · 18t bounds the number of
distinct types of normal discs contained in the surface). The same bound works
for the components of S2 because we always adjoin them to the complementary
pieces with no canonical annuli. Instead of applying Lemma 4.4 we have to use
[Tollefson and Wang 1996, Corollary 5.8].

If we are adding a component of S1 to a piece which contains canonical annuli,
then the process described in (1b) of the definition of the distinguished hierarchy
guarantees that the negative Euler characteristic of the surface we are adding is
bounded above by some linear function of t . This is because the same is true
for the parts of the boundary of the piece which are disjoint from the maximal
amalgams contained in the piece. This proves the claim. �

We know already that the number of components of S1 is bounded above by
2 · 20t (number 2 accounts for the fact that sometimes we use two parallel copies
of the same component when defining S1). This implies that S2 has fewer than
80t nonannular components. This is because there is at most two nonannular
components of S2 in each complementary piece obtained by cutting along S1. The
Euler characteristic of the surface from the corollary is twice the sum of the Euler
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characteristics of S1 and S2. So our bound comes from the estimate

2 · (40+ 80)t2127t+19 < 2150t for t ≥ 2. �

4B. Normal complexity. We now investigate how many normal discs are needed
to construct surfaces from the distinguished hierarchy. For the components of S1

and S2 with negative Euler characteristic we will use similar techniques to the ones
that bounded their genus. For the canonical surfaces we will apply Propositions 2.4
and 2.5. But the nonpure surfaces from Step 3 will require some additional normal
surface theory. The estimates of the number of normal pieces will be in terms
of the number of tetrahedra in the subdivision of the piece we are adjoining the
surfaces to. Not subdividing and using the same triangulation to bound the normal
complexity of several levels of the distinguished hierarchy would certainly lead to
much better bounds. But passing the information, which is contained in the pattern,
down the hierarchy without both subdividing and keeping the pattern itself in the
1-skeleton proved to be an insuperable task.

Lemma 4.6. Let M be a 3-manifold that either contains a closed injective surface
or has a nontrivial JSJ-decomposition. Assume that M has a triangulation T that
consists of t tetrahedra. Then the surface S1 from the distinguished hierarchy can
be isotoped into normal form so that it contains not more than 2350t2

normal discs.

Proof. We have already mentioned that Propositions 2.4 and 2.5 together imply that
all the surfaces of the JSJ-system of M can be put into normal form so that they
consist of not more than 2 · 280t2

normal discs. The rest of the components of S1

were obtained by the recursion described in Step 1 of the distinguished hierarchy.
In order to bound their normal complexity in terms of the number of tetrahedra
in M , we can use the same strategy as in Lemma 2.6 in [Mijatović 2003]. There
are at most 20t nonparallel connected surfaces in S1. The argument from Lemma
2.6 in [Mijatović 2003] gives us that S1 contains not more than 2(2 · 11t211t)20t

copies of a single normal disc type from T . The factor 2 in front of the bracket is
there to account for the parallel copies of the components of S1 that we sometimes
have to adjoin. All together there are at most 5t possible distinct normal disc types
contained in S1. So we have

5t · 2(2 · 11t · 211t)20t
+ 2 · 280t2

< 2t+4(212t+5)20t
+ 2 · 280t2

< 2350t2
. �

The normal complexity of the components of the surface S2 contained in any of
the pieces of M − int N(S1) is bounded above by 280s2

, where s is the number of
3-simplices needed to triangulate the piece. This follows directly from Proposition
2.5 for canonical annuli and from Corollary 5.8 in [Tollefson and Wang 1996] for
bounded surfaces with negative Euler characteristic. We have established already
that there are at most 20t regions in the complement of S1 where we have to insert
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the components of S2. Here t denotes the number of tetrahedra in the triangulation
of M . So the number of normal discs in the whole of S2 is bounded above by

20t · 280s2
.

Now we need to bound the normal complexity of the surfaces in Step 3 of the
distinguished hierarchy. Proposition 2.5 does that for all P-canonical annuli that
need to be constructed in the process. In 3b and 3c we might need to adjoin trivial
P-essential annuli of a certain kind. In the discussion that followed the proof
of Proposition 2.5 we showed that such annuli are fundamental, provided our 3-
manifold contains no nontrivial P-essential annuli. All other surfaces that we have
to construct have nonempty intersection with the pattern P . Let ι(F) be the number
of points in the intersection F ∩ P for any properly embedded surface F which is
transverse to the pattern, If the pattern P is contained in the 1-skeleton then the
function ι is additive over normal summation.

In order to implement Step 3 we need to describe how to construct the nonpure
spanning annuli of 3b and also how to find compression discs in handlebodies from
3c. We will see that in the construction of surfaces with nonempty intersection with
the pattern, it is crucial that even the trivial P-essential annuli are well behaved in
the way that was specified in 3b and 3c. The strategy in this case will be slightly
different from what we usually do. Instead of proving that our fixed surface, which
minimises the intersection with the pattern, is (almost) fundamental, we are first
going to find some other fundamental surface F that has the same property as our
original one, but is not necessarily isotopic to it. We will then calculate ι(F). If
we express our original surface as a sum of fundamental surfaces, we can use the
additivity of ι to bound the number of summands in the expression.

Lemma 4.7. Let M be an irreducible bounded 3-manifold triangulated by t tetra-
hedra. Let P be a nonempty boundary pattern in ∂M contained in the 1-skeleton of
the triangulation. Assume every P-essential annulus in M is parallel to an annulus
in the boundary of M that intersects the pattern in a disjoint union of homotopically
nontrivial simple closed curves.

(a) Assume further that M is a compression body with nonempty negative bound-
ary ∂−M and that each toral component of ∂−M is pure. If we fix an in-
compressible annulus in M whose boundary circles lie in distinct components
of ∂M and which has minimal intersection with the pattern P , among all
annuli satisfying these conditions, then we can isotope it into normal form, by
an isotopy which is invariant on the pattern, so that it consists of not more
than 240t normal discs. If such an annulus is not separating and we take two
parallel copies of it the same bound still holds.
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(b) If M is an I -bundle over a closed surface which is not a torus, then an incom-
pressible ∂-incompressible annulus A (or its double if necessary) in M , which
has minimal intersection with the pattern P , can be isotoped, by an isotopy
that preserves the pattern, into normal form so that it contains less than 240t

normal discs. If the base surface is a torus and if the pattern P consists of
two nonhomotopic simple closed curves, one in each boundary component,
the same bound holds.

(c) Let M be a handlebody and let D be a compression disc in M which minimises
ι(D) among all compression discs in M. Then we can isotope D into normal
form, by an isotopy that is invariant on the pattern, so that it contains not
more than 240t normal discs.

The crucial assumption in Lemma 4.7 is the one about P-essential annuli in M .
Put differently it says that M contains no nontrivial P-essential annuli and that
every trivial one has to be parallel to an annulus in ∂M containing the simplest
possible pattern. Before we add in a surface with nonempty intersection with the
pattern in Steps 3b and 3c, we always make sure that this hypothesis holds for
the piece we are in by first adjoining the trivial P-essential annuli that violate
this rule. Notice also that the annulus from Lemma 4.7(a) is automatically ∂-
incompressible since its boundary circles lie in distinct components of ∂M . Since
it is also incompressible it has to be a “spanning” annulus described in Step 3b.

It is clear that toral boundary components of genuine compression bodies have
to be contained in ∂−M . The fact that all such tori are pure can be seen as follows.
Each such torus is incompressible in the piece we are in and therefore has to be
incompressible in the ambient manifold. So it is either contained in the JSJ-system
or in the boundary of the ambient manifold. It is clearly pure in the latter case. If it
is a canonical torus, then it is there to separate a strongly simple piece from a Seifert
fibred piece. It therefore has to be pure again because at this stage we haven’t
touched the fibred pieces. Notice also the pattern on the (torus)× I pieces, which
are not contained in the characteristic submanifold6, satisfies the assumption from
Lemma 4.7(b).

Proof of Lemma 4.7. We will start by proving (a). Let F be an incompressible
annulus in a compression body M with one of its boundary circles lying in a given
component of ∂−M and the other in ∂+M . Assume that F is in normal form and
that it has minimal weight among all possible annuli that satisfy the conditions
above. Notice that we haven’t stipulated anything as far as ι(F) is concerned.

Claim 1. The surface F is fundamental.

Assume to the contrary that F = U + V . We can apply the Sublemma from
the proof of Lemma 4.4. So both U and V are connected, no component of the
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1-manifold U ∩ V separates both of them and the sum is in reduced form. Now
we will go through all the potential connected surfaces U and V that satisfy the
equation 0= χ(U )+χ(V ), showing each time that we get a contradiction.

The techniques that proved Lemma 2.2 imply that there are no disc patches in
F=U+V which are disjoint from the boundary of M . So neither of the summands
is a 2-sphere. Since M does not contain a projective plane we can assume that U
is a disc. In that case V is either a punctured torus, a punctured Möbius band or
a punctured annulus. There are no simple closed curves in the 1-manifold U ∩ V ,
because U contains no disc patches. Therefore the boundaries of the summands
must intersect. So the first case cannot occur because it implies that both ∂U and
∂V are contained in a single component of ∂M . In the remaining two cases every
outermost arc of U ∩ V chops off a patch in U which is a genuine ∂-compression
disc for V , since no component of U ∩ V separates both surfaces. Let C be one
such patch in U which has the smallest weight among all “outermost arc” patches
in U . If we ∂-compress V along C we obtain an annulus which satisfies the same
conditions as F (it is incompressible because one of its boundary components
coincides with a boundary circle of F). Its weight is at most that of F . But since
one of the parallel copies of C (that was inserted in the ∂-compression) was pasted
in as an irregular normal alteration, there exists a weight reducing isotopy of the
annulus. This contradicts the minimal weight assumption on F .

Now we have to consider the case χ(U ) = χ(V ) = 0. If one of the surfaces
is closed, then the other surface is an annulus which is lighter than F and has the
same properties. Both of them cannot be Möbius bands because then we would
have an embedded Möbius band in M with its boundary contained in ∂−M . Gluing
two such compression bodies along their negative boundaries gives a 3-manifold
which can be embedded in S3, but which would contain an embedded Klein bottle.
This argument also shows that if V is a Möbius band, then ∂V lives in ∂+M and
U has to be an annulus. But in this situation U satisfies the defining conditions
for F and w(U ) < w(F). We get the same contradiction if V is an annulus with
both of its boundary circles contained in a single component of ∂M . The only case
left is when both U and V are annuli with boundaries lying in distinct components
of ∂M . Since w(U ) < w(F) the annulus U has to be compressible in M . So it
has to bound a cylinder of the form (disc)× I , because its boundary circles lie in
distinct components of ∂M . There are no arcs in U ∩ V which are ∂-parallel in
either of the annuli. This is because no curve from U ∩ V is separating both in U
and V . Since there are no homotopically trivial simple closed curves in U ∩V , the
intersection consists of spanning arcs in both annuli. So V intersects the cylinder
(disc)× I in a collection of discs of length four. Now we look at the disc in ∂M
which is bounded by a circle from ∂U . This disc intersects V in a collection of
arcs that decompose it into complementary regions. The situation for an outermost
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such arc is described by Figure 4 (take A to be a subarc in ∂V which is contained
in the disc from ∂M). By an argument analogous to the one following Figure 4,
we arrive at a contradiction, which proves the claim.

Each normal disc in F intersects the 1-skeleton of the triangulation in not more
than four points. Since F is fundamental and therefore consists of less than

5t · 7t · 27t

normal discs, the number ι(F) is bounded above by 140t2
·27t . Here we are using

the fact that the pattern P lies in the 1-skeleton.
Let A be our spanning annulus which minimises ι(A). We can assume that A is

in normal form and that it minimises the weight in its (P-invariant) isotopy class.

Claim 2. If A = X + Y and X is a connected surface with nonnegative Euler
characteristic, then ι(X) is not zero.

We can assume that the sum is in reduced form. Then by Theorem 2.3 and
Lemma 2.2 we have that both X and Y are incompressible, P-boundary incom-
pressible and that there are no disc patches. So X cannot be a pure disc or a
2-sphere. Projective planes and a Klein bottles do not embed in M so they cannot
appear as summands. If X is a torus, then, since it is incompressible, it has to be
parallel to a component of ∂−M . By the same argument as the one at the end of the
proof of Lemma 4.4 we can conclude that the surface Y intersects the parallelism
region (between X and the component of ∂−M) in (circle)× I . Since there is no
pattern we are free to isotope the circle from ∂A in this component as much as we
like. This makes the summand X redundant and leads into contradiction. If X were
a pure P-boundary incompressible Möbius band, then 2X would be a P-essential
annulus in M . Such an annulus is ∂-parallel by assumption. Since the parallelism
region cannot contain a pure Möbius band, the 3-manifold M would have to be a
solid torus which is a contradiction.

The last case we need to consider is when X is a P-essential annulus. By
assumption this annulus has to be trivial. Since it is pure and there are no disc
patches in A, the components of X ∩Y are either spanning arcs in X or nontrivial
simple closed curves in X . The latter possibility cannot occur because it would
imply that ∂A = ∂X which is a contradiction. Let R be the solid torus between
X and an annulus in ∂M . The components of Y ∩ R are patches in A. They all
inject into M an hence into R. None of them is homeomorphic to a Möbius band
because A is orientable. So the surface Y ∩ R is either a disjoint union of discs
or a disjoint union of annuli. In the latter case each patch from Y ∩ R intersect
the annulus X in at least two spanning arcs. Using that we can construct a pure
∂-compression disc for any patch form Y ∩ R (the pattern in (∂R)− X consists of
parallel nontrivial simple closed curves only). This contradicts Lemma 2.2. So all
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the components of the surface Y ∩ R are discs. Furthermore if a single patch from
Y ∩R intersects X in more than one spanning arc, then, like before, this patch is P-
boundary compressible. This again contradicts Lemma 2.2. So every patch from
Y ∩R intersects each of the components of the pattern in (∂R)−X in precisely one
point. This again follows from the P-boundary incompressibility of the patches of
A. So we can conclude that the patches from Y ∩ R, which are all topologically
discs, are in one-to-one correspondence with the components of X ∩ Y and are
isotopic by an isotopy which is invariant on the pattern. In particular each arc from
X ∩ Y chops of a disc in Y . There are essentially two ways of performing regular
alterations along the arcs in X ∩ Y so that the resulting normal surface does not
have more components than Y . Both of these possibilities yield a surface which is
isotopic to Y via an isotopy that is invariant on the pattern. Since A is connected,
Y must be an embedded annulus which is isotopic to A and which satisfies the
inequality w(Y ) < w(A). This contradiction proves claim 2.

Let’s express our annulus A as a sum of fundamental surfaces: A= k1 F1+· · ·+

kn Fn . The number of summands in this expression, that have negative Euler char-
acteristic, is bounded above by the number of disc summands. All other surfaces
in the sum have nontrivial intersection with the pattern by Claim 2. So by Claim 1
there are less than 280t2

· 27t summands in the above expression. The number of
normal discs in A is thus bounded above by 280 t2

·27t
·5t ·7t ·27t <218t+14<240t−1.

This proves (a). Part (b) will work in the same way. Claim 1 is easier now because
the boundary of our manifold is incompressible which means that we can apply
Theorem 2.3. Claim 2 is true as well. The only difference is that when we are
dealing with toral boundary, because of our assumption on the pattern, we can
perform the isotopy that leads to contradiction and thus shows that there are no
toral summands in A. All numerical bounds are the same as in (a).

To prove part (c) of the lemma, we need the following analogue of Claim 2.

Claim 3. Let D be a compression disc in the handlebody M which minimises
ι(D) and which is in normal form and has minimal weight in its (P-invariant)
isotopy class. If D = X + Y and X is a connected surface with nonnegative Euler
characteristic, then ι(X) is nonzero.

The proof is analogous to that of Claim 2 and is left as an exercise. The rest
of the proof of part (c) of our lemma is identical to what we did at the end of the
proof of (a). �

The last type of complementary pieces we need to construct some normal sur-
faces in are the I -bundles that arise as components of the characteristic subman-
ifold 6. Our starting point is a triangulated I -bundle M → B over a possibly
nonorientable bounded surface B. Let V be the vertical boundary of M with a
fixed triangulation. This prescribed simplicial structure on V will arise from the
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distinguished hierarchy on the other side of V . The surfaces we are looking for are
vertical compression discs that will simplify M to a 3-ball. A vertical disc in M
is a one that fibres over an arc in B. Our collection will contain 1−χ(B) vertical
compression discs and will be highly nonunique. But we will define it in such
a way that any two choices are related by a homeomorphism of M which is an
identity on the vertical boundary. In fact this homeomorphism will come from an
automorphism of the base surface B, which is fixed on the boundary (see Lemma
6.4 in [Mijatović 2004]).

Let V1 be the first annulus in an ordering of the components of V and let
D1, . . . , Dn be a collection of disjoint vertical discs we want to describe, where
n = 1− χ(B). We are assuming that the vertical boundary of each Di (namely
Di ∩ V ) intersects the annulus V1 and that every other annulus in V intersects
precisely one compression disc. Let g be the genus of B, which, in case of a
nonorientable surface, is a maximal number of RP2 summands it contains when
expressed as a connected sum. We also stipulate that if B is orientable (resp.
nonorientable) the first 2g (resp. g) the compression discs have their entire vertical
boundaries contained in V1. The last requirement is that, even if B is not orientable,
the base surface of the I -bundle M − int N(D1) is orientable.

Now we need to make sure that the vertical boundary of the surface D1∪ · · · ∪Dn

interacts in a prescribed way with the triangulation of V . Choose a fibre λ in each
component of V which consists of the smallest number of normal arcs with respect
to the given triangulation of V . Using these normal fibres we can define the family
F of 2n fibres that will have the property F = V ∩ (D1 ∪ · · · ∪ Dn). In every
annulus from V − V1 the family F consists of a single copy of the fibre λ. In
the annulus V1 we take 2g + 1− χ(B) (resp. g + 1− χ(B)) copies of λ if the
base surface B is orientable (resp. nonorientable). We will now give a recursive
definition of the collection of vertical compression discs (compare [Mijatović 2004,
Section 6.2]). Assuming that we have already created a sub-collection D1, . . . , Dk ,
for some k < n, whose vertical boundary lies in F and which satisfies all other
requirements, we look at the I -bundle Mk = M − int N(D1 ∪ · · · ∪ Dk) which
inherits a natural polyhedral structure from the original triangulation of M . Any
choice of the vertical disc Dk+1 has to lie in Mk and can be made normal with
respect to this polyhedral decomposition. It is precisely defined as follows.

Proposition 4.8. Let M→ B be a triangulated I -bundle over a (possibly nonori-
entable) bounded surface B and let D1, . . . , Dk , where k ∈ {1, . . . , n − 1}, be
normal vertical compression discs as described above. Fix two normal arcs e
and f from F ∩ Mk , which are not contained in the union D1 ∪ · · · ∪ Dk and
are supposed to be the vertical boundary of the next disc in our collection. Let
Dk+1 be the normal vertical compression disc whose vertical boundary consists of
e∪ f and which minimises the weight, with respect to the polyhedral structure on
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Mk , among all normal vertical compression discs that carry nontrivial elements of
H2(Mk, ∂Mk;Z2) and are bounded by e∪ f . Then Dk+1 is fundamental in Mk .

Proposition 4.8 is very similar to Proposition 6.3 of [Mijatović 2004]. Its proof
is simpler because the incompressible summands we need to deal with are never
horizontal. Since the triangulation of M induces a simplicial structure on the
vertical boundary V , we can use ∂V as a boundary pattern on M (or even on
Mk). This enables us to apply our usual techniques. The proof of Proposition
4.8 is by contradiction. We assume that our disc Dk+1 is a sum of two normal
surfaces. Then, using the familiar patch arguments, we can show that one of the
summands has to be a vertical disc and the other one is a pure vertical annulus.
To get a contradiction we then proceed in exactly the same way as in the proof of
Proposition 6.3 in [Mijatović 2004]. The details are left for the reader.

To make sure that, after the first compression along D1, the base surface of the
I -bundle M1 is orientable, we proceed exactly as in [Mijatović 2004, Section 6.2].
Also the same bounds on the normal complexity apply in the setting of Proposition
4.8. Hence our chosen family of compression discs contains no more than

(2 · 211t)12t < 280t2

discs (for the proof see the discussion in [Mijatović 2004], just before Lemma
6.4). Since any automorphism of B, that is fixed on the boundary, extends to a
homeomorphism of the I -bundle M , we can use Lemma 6.4 in [Mijatović 2004]
to go between any two such families of compression discs.

5. Proof of the Main Theorem

Now we can prove Theorem 3.1. What we need to do is to connect any two tri-
angulations of a given fibre-free Haken 3-manifold using Pachner moves. First
we subdivide both triangulations so that the characteristic submanifold 6 is tri-
angulated by a subcomplex in each of the subdivisions. In the strongly simple
pieces of the JSJ-decomposition which are not contained in 6, the subdivisions
are then further simplified using the distinguished hierarchy. The gap between the
triangulations in the components of 6 is bridged by Theorem 3.1 of [Mijatović
2004] if they are Seifert fibred and by Proposition 4.8 if they are I -bundles.

Before continuing with the proof we should note that Theorem 3.1 is not nec-
essarily false for Haken 3-manifolds which are not fibre-free. The only reason for
the fibre-free hypothesis is to make sure that we can construct the distinguished
hierarchy in all strongly simple pieces of the JSJ-decomposition of our 3-manifold
M . If, for example, our manifold is a surface bundle over the circle, then, after
cutting along the fibre, there are no distinguished surfaces in the cut-open manifold
(which is an I -bundle) to continue the hierarchy. One possible way around this
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problem in the surface bundle case, is to look carefully for the first surface, making
sure that it is not a fibre. Such a strategy however could not work for all surface
bundles because a nonfibre does not always exist and even when it does, it is not
clear how to construct it algorithmically.

Going back to the proof of Theorem 3.1, let M be a fibre-free Haken 3-manifold
with a triangulation T that contains t tetrahedra. We are now going to construct a
distinguished triangulation T of the complement of the characteristic submanifold
6. We start by subdividing T so that the distinguished hierarchy appears as a
subcomplex of this subdivision. This subcomplex induces a simplicial structure
of the manifold M − int6 which is uniquely determined by the topology of M .
The new triangulation will be closely related to the distinguished hierarchy which
was described in Section 4. We know that each complementary piece of the dis-
tinguished hierarchy in M − int6 is a 3-ball or a solid torus with at least one
pure annulus in its boundary. So we can define T to be conical in each of the
3-balls. Let K be the two-dimensional polyhedron which is a union of surfaces
in the distinguished hierarchy. In order to avoid confusion we should emphasise
that K also contains the surfaces from ∂(M − int6). The complement of the
singular locus of K is a disjoint union of discs and pure annuli which live in the
boundaries of the solid tori. The discs will be contained in the 2-skeleton of T
and will be triangulated as cones on their boundaries. Since the singular locus of
K is a graph which is embedded in the 3-manifold M , it already has a canonical
simplicial structure. This induces a triangulation on each of the boundaries of the
two-dimensional faces of the polyhedron K . So by definition the triangulation T is
uniquely determined by the distinguished hierarchy in the complementary regions
which are 3-balls.

We still need to define T in the complementary pieces which are solid tori with
pure annuli in their boundaries. Notice that it follows directly from the definition
of the boundary pattern that a pure annulus in the boundary of a complementary
solid torus cannot be homotopically trivial. It therefore induces a unique Seifert
fibration of the whole piece. If there are several pure annuli in the boundary of a
single solid torus then they must all be disjoint. So they induce the same Seifert
fibration of the piece. Therefore the union of all such solid tori is a disjoint union
of Seifert fibred spaces. Furthermore there is a simplicial structure on all boundary
components of this Seifert fibred space which is induced by the singular locus of
K . So we can take T to be the simplified triangulation of our Seifert fibred space
that was defined in the proof of Theorem 3.1 in [Mijatović 2004].

Now we need to construct T using Pachner moves. The starting point is the
original triangulation T of M . Our main tool for subdividing a triangulation, so that
the subdivision contains a given normal surface in its 2-skeleton, will be Lemma 4.1
from [Mijatović 2004]. Before we start estimating the number of Pachner moves
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we need to make, we should remind ourselves that the notation En(x) stands for the
composition of the exponential function E(x)= 2x with itself n times. By Lemma
4.6 the surface S1 consists of 2350t2

normal discs in the triangulation T . Making less
than 200 t ·2350t2

<2360t2
Pachner moves we can subdivide T so that the subdivision

contains S1 in its 2-skeleton. The number of 3-simplices in the subdivision is
bounded above by s = 20(t + 2350t2

) < 2360t2
. We also know (see the discussion

after Lemma 4.6) that the surface S2 consists of not more than 20 t · 280s2
< 290s2

normal discs in the subdivision. Applying Lemma 4.1 of [Mijatović 2004] again,
we see that

200 · 290s2
2360t2

< 2100s2
< E2(730t2)

bounds the number of Pachner moves needed to construct the subdivision of T
which supports S1∪ S2 as a subcomplex. The same expression bounds the number
of tetrahedra in this subdivision.

In order to see how much more we need to subdivide the current triangulation
of M − int6 if we want it to contain the polyhedron K in its 2-skeleton, we have
to estimate the number of connected surfaces that arise during the implementation
of Step 3. Corollary 4.5 implies that the sum of the topological complexities of
all closed surfaces in M , which bound complementary pieces after the first two
steps of the hierarchy, is bounded above by 2150t . The P-canonical annuli are
never ∂-parallel in the piece they appear in. The same is true of the spanning
annuli which feature in 3b. We have already established, when we were proving
that the distinguished hierarchy has to terminate, that there can be at most 9g(∂H)
disjoint nonparallel incompressible annuli which are not boundary parallel in any
complementary piece H .

It is clear from the construction that all P-canonical annuli that occur in a single
complementary piece H are disjoint and therefore not parallel (the annuli we add
after we have cut H for the first time are vertical in the product structure given by
Theorem 2.1). So 2 ·9 ·2150t is an upper bound on the number of such annuli in the
distinguished hierarchy (the factor 2 is there because we sometimes need to add
two parallel copies of a surface). The following expression

40t + (2−χ(S2))+ 18 · 2150t < 20 · 2150t

bounds the number of P-essential annuli in the distinguished hierarchy. We have
shown (see page 168) that the first two summands control the number of boundary
components of S2 and hence the number of trivial P-essential annuli in K . The
number of P-canonical annuli is controlled by the exponential expression at the
end. The inequality follows from the bound on 2− χ(S2) which can be found in
the proof of Corollary 4.5. We can now conclude that the total number of surfaces
in Step 3 of the hierarchy is bounded above by 2160t .
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Proposition 2.5 and Lemma 4.7 tell us that if we are looking for any of the
surfaces in some complementary piece with r tetrahedra, we can construct it by
using less than 280r2

normal discs. By Lemma 4.1 in [Mijatović 2004] we need
to make not more than 200r280r2

Pachner moves to make this surface part of the
2-skeleton of the subdivision. The same expression also bounds the number of
tetrahedra in the subdivision. It is clearly smaller than E2(r) for r larger than say
100. Since the numbers we are going to apply this to are significantly bigger than
that, we can use this bound. In other words we can make the whole polyhedron K
a subcomplex of some subdivision of the triangulation of M by making less than

E2·2160t
(E2(730t2)) < E2·2160t

(E3(10t)) < E2170t
(t)

moves. Again this expression bounds the number of 3-simplices involved. Now
we have to apply Theorem 5.2 in [Mijatović 2004] to every complementary 3-ball
region of K in order to make it conical. Theorem 3.1 from [Mijatović 2004] can
be used to deal with Seifert fibred spaces which are unions of solid tori that had
pure annuli in their boundaries. Since r (i.e. the number of tetrahedra) at this stage
is so large, the bounds in those theorems are certainly smaller than E7(r). The
number of 3-balls and Seifert fibred pieces we need to deal with is bounded above
by the number of 3-simplices in the subdivision. Also the procedures simplifying
the simplicial structure of the faces of K are linear in the number of tetrahedra of
the subdivision. The amalgamation of the edges in the singular locus of K takes
linearly many steps as well. Processes very similar to these are described in the
proof of Theorem 6.5 in [Mijatović 2004]. So we can assume that after E2180t

(t)
Pachner moves our subdivision looks like T .

Proposition 4.8 implies that a triangulation of an I -bundle over a bounded sur-
faces can be dealt with in the same way Theorem 6.5 in [Mijatović 2004] deals with
S1-bundles over bounded surfaces. In fact we can obtain a complete analogue of
Theorem 6.5 from [Mijatović 2004] for I -bundles over bounded surfaces. We then
apply it to the I -bundle components of 6. All that is left now is to apply Theorem
3.1 of [Mijatović 2004] to the Seifert fibred components of6. This gives the bound
from Theorem 3.1. If our manifold is an I -bundle over a closed surface which is
not Seifert fibred, we first look for some vertical annulus which is fundamental,
and then do the procedure described above to its complement. Clearly the bound
from Theorem 3.1 still applies.
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