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WEYL TRANSFORMS ASSOCIATED WITH A SINGULAR
SECOND-ORDER DIFFERENTIAL OPERATOR

CYRINE BACCAR AND LAKHDAR TANNECH RACHDI

For a class of singular second-order differential operators1, we define and
study the Weyl transformsWσ associated with1, whereσ is a symbol inSm,
for m ∈ R. We give criteria in terms of σ for boundedness and compactness
of the transform Wσ .

Introduction

Herman Weyl [1931] studied extensively the properties of pseudodifferential oper-
ators arising in quantum mechanics, regarding them as bounded linear operators on
L2(Rn), the space of square-integrable functions onRn with respect to Lebesgue
measure). M. W. Wong calls these operators, which are the subject of his book
[Wong 1998], Weyl transforms.

Here we consider the second-order differential operator defined on]0,+∞[ by

1u= u′′+
A′

A
u′+ ρ2u,

whereA is a nonnegative function satisfying certain conditions andρ is a nonneg-
ative real number.

This operator plays an important role in analysis. For example, many special
functions (orthogonal polynomials) are eigenfunctions of an operator of1 type.
The radial part of the Beltrami–Laplacian in a symmetric space is also of1 type.
Many aspects of such operators have been studied; we mention, in chronologi-
cal order, [Chebli 1979; Trimèche 1981; Zeuner 1989; Xu 1994; Trimèche 1997;
Nessibi et al. 1998]. In particular, the first two of these references investigate stan-
dard constructions of harmonic analysis, such as translation operators, convolution
product, and Fourier transform, in connection with1.

Building on these results, we define and study the Weyl transforms associated
with 1, giving criteria for boundedness and compactness of these transforms. To
obtain these results we first define the Fourier–Wigner transform associated with
1, and establish an inversion formula.

MSC2000:42A38, 65R10.
Keywords: Weyl transform, compact operator, Fourier–Wigner transform.
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202 C. BACCAR AND L. T. RACHDI

More precisely, in Section 1 we recall some properties of harmonic analysis for
the operator1. In Section 2 we define the Fourier–Wigner transform associated
with 1, study some of its properties, and prove an inversion formula.

In Section 3 we introduce the Weyl transformWσ associated with1, with σ
a symbol in classSm, for m ∈ R, and we give its connection with the Fourier–
Wigner transform. We prove that, forσ sufficiently smooth,Wσ is a compact
operator fromL2(dν) (the space of square-integrable functions with respect to the
measuredν(x)= A(x)dx) into itself.

In Section 4 we defineWσ for σ in a certain spaceL p(dν⊗dγ ), with p∈ [1,2],
and we establish thatWσ is again a compact operator.

In Section 5 we defineWσ for σ in another function space, and use this to prove
in Section 6 that forp> 2 there exists a functionσ in theL p space corresponding
to that of Section 4, with the property that the Weyl transformWσ is not bounded
on L2(dν).

1. The operator1

We consider the second-order differential operator1 defined on]0,+∞[ by

1u= u′′+
A′

A
u′+ ρ2u,

whereρ is a nonnegative real number and

A(x)= x2α+1B(x), α >−1
2,(1–1)

for B a positive, even, infinitely differentiable function onR such thatB(0) = 1.
Moreover we assume thatA andB satisfy the following conditions:

(i) A is increasing and lim
x→+∞

A(x)=+∞.

(ii)
A′

A
is decreasing and lim

x→+∞

A′(x)

A(x)
= 2ρ.

(iii) There exists a constantδ > 0 such that

B′(x)

B(x)
= D(x)exp(−δx) if ρ = 0,

A′(x)

A(x)
= 2ρ+ D(x)exp(−δx) if ρ > 0,

whereD is an infinitely differentiable function on]0,+∞[, bounded and with
bounded derivatives on all intervals[x0,+∞[, for x0 > 0.

This operator was studied in [Chebli 1979; Nessibi et al. 1998; Trimèche 1981],
and the following results have been established:
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(I) For all λ ∈ C, the equation

(1–2)

{
1u=−λ2u
u(0)= 1, u′(0)= 0

admits a unique solution, denoted byϕλ, with the following properties:

• ϕλ satisfies theproduct formula

(1–3) ϕλ(x)ϕλ(y)=
∫
∞

0
ϕλ(z)w(x, y, z)A(z)dz for x, y≥ 0;

wherew(x, y, · ) is a measurable positive function on[0,+∞[, with support
in [|x−y|, x+y], satisfying∫

∞

0
w(x, y, z)A(z)dz= 1,

w(x, y, z)= w(y, x, z) for z≥ 0,

w(x, y, z)= w(x, z, y) for z> 0;

• for x ≥ 0, the functionλ 7→ ϕλ(x) is analytic onC;

• for λ ∈ C, the functionx 7→ ϕλ(x) is even and infinitely differentiable onR;

• |ϕλ(x)| ≤ 1 for all λ ∈ R andx ∈ R;

• for x > 0, andλ > 0 we have

(1–4) ϕλ(x)=
1

√
B(x)

jα(λx)+ A−1/2(x)θλ(x),

where jα is defined byjα(0) = 1 and jα(s) = 2α0(α + 1)s−α Jα(s) if s 6= 0
(with Jα the Bessel function of first kind), and the functionθλ satisfies

|θλ(x)| ≤
c1

λα+
3
2

(∫ x

0
|Q(s)|ds

)
exp

(
c2

λ

∫ x

0
|Q(s)|ds

)
with c1, c2 positive constants andQ the function defined on]0,+∞[ by

(1–5) Q(x)=
1
4 −α

2

x2
+

1

4

(
A′(x)
A(x)

)2
+

1

2

(
A′(x)
A(x)

)′
− ρ2.

(II) For nonzeroλ ∈ C, the equation1u=−λ2u has a solution8λ satisfying

8λ(x)= A−1/2(x)exp(iλx)V(x, λ),

with limx→+∞ V(x, λ) = 1. Consequently there exists a function (spectral func-
tion)

λ 7→ c(λ),



204 C. BACCAR AND L. T. RACHDI

such that

ϕλ = c(λ)8λ+ c(−λ)8−λ for nonzeroλ ∈ C.

Moreover there exist positive constantsk1, k2, k3 such that

(1–6) k1 |λ|
α+1/2

≤ |c(λ)|−1
≤ k2 |λ|

α+1/2

for all λ such that Imλ≤ 0 and|λ| ≥ k3.

Notation. We denote by

• dν(x) the measure defined on[0,+∞[ by

dν(x)= A(x)dx;

• L p(dν), for 1 ≤ p ≤ +∞, the space of measurable functions on[0,+∞[
satisfying

‖ f ‖p,ν :=

(∫
+∞

0
| f (x)|pdν(x)

)1/p

<+∞ for 1≤ p<+∞,

‖ f ‖∞,ν := ess sup
x∈[0,+∞[

| f (x)|<+∞;

• dγ (λ) the measure defined on[0,+∞[ by

dγ (λ)=
dλ

2π |c(λ)|2
;

• L p(dγ ), for 1 ≤ p ≤ +∞, the space of measurable functions on[0,+∞[
satisfying‖ f ‖p,γ <+∞;

• D∗(R) the space of even, infinitely differentiable functions onR, with compact
support;

• H∗(C) the space of even analytic functions onC, rapidly decreasing of expo-
nential type.

Definition 1.1. The translation operatorassociated with1 is defined onL1(dν)
by

Tx f (y)=
∫
+∞

0
f (z)w(x, y, z)dν(z) for x, y≥ 0,

wherew is defined in (1–3). Theconvolution productassociated with1 is defined
by

( f ∗ g)(x)=
∫
+∞

0
Tx f (y)g(y)dν(y) for f, g ∈ L1(dν).
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Properties of translation and convolution.

• The translation operator satisfies

Txϕλ(y)= ϕλ(x)ϕλ(y).

• Let f ∈ L1(dν). Then∫
+∞

0
Tx f (y)dν(y)=

∫
+∞

0
f (y)dν(y) for x ∈ [0,+∞[

and
‖Tx f ‖1,ν ≤ ‖ f ‖1,ν .

• Let f ∈ L p(dν) with 1≤ p ≤ +∞. For all x ∈ [0,+∞[, the functionTx f
belongs toL p(dν) and

‖Tx f ‖p,ν ≤ ‖ f ‖p,ν .

• For f, g ∈ L1(dν) the function f ∗ g also lies inL1(dν). The convolution
product is commutative and associative.

• For f ∈ L1(dν) andg ∈ L p(dν), with 1≤ p< +∞, the function f ∗ g lies
in L p(dν) and we have

‖ f ∗ g‖p,ν ≤ ‖ f ‖1,ν ‖g‖p,ν .

• For f, g even and continuous onR, with supports

supp f ⊂ [−a,a] and suppg⊂ [−b,b],

the function f ∗ g is continuous onR and

(1–7) supp( f ∗ g)⊂ [−a−b,a+b].

Definition 1.2. The Fourier transformassociated with the operator1 is defined
on L1(dν) by

F f (λ)=
∫
+∞

0
f (x)ϕλ(x)dν(x) for λ ∈ R.

Properties of the Fourier transform.

• For f ∈ L1(dν) such thatF f ∈ L1(dγ ), we have the inversion formula

(1–8) f (x)=
∫
+∞

0
F f (λ)ϕλ(x)dγ (λ) for a.e.x ∈ [0,+∞[.

• For f ∈ L1(dν),

F(Tx f )(λ)= ϕλ(x)F f (λ) for all x ∈ [0,+∞[ andλ ∈ R.
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• For f, g ∈ L1(dν),

F( f ∗ g)(λ)= F f (λ)Fg(λ). for all λ ∈ [0,+∞[.

• F can be extended to an isometric isomorphism fromL2(dν) onto L2(dγ ).
This means that

‖F f ‖2,γ = ‖ f ‖2,ν for f ∈ L2(dν),(1–9)

‖F−1 f ‖2,ν = ‖ f ‖2,γ for f ∈ L2(dγ ).(1–10)

Proposition 1.3.Let f be in Lp(dν), with p∈[1,2]. ThenF f belongs to Lp
′

(dγ ),
with 1/p+1/p′ = 1, and

(1–11) ‖F f ‖p′,γ ≤ ‖ f ‖p,ν .

Proof. Since |ϕλ(x)| ≤ 1 for λ ∈ R and x ∈ R, we get‖F f ‖∞,γ ≤ ‖ f ‖1,ν .
This, together with (1–9) and the Riesz–Thorin Theorem [Stein 1956; Stein and
Weiss 1971], shows that for under the conditions of the propositionF f belongs to
L p′(dγ ) and satisfies (1–11). �

From [Chebli 1979], the Fourier transformF is a topological isomorphism from
D∗(R) ontoH∗(C) (see page 204 for notation). The inverse mapping is given by

(1–12) F−1 f (x)=
∫
+∞

0
f (λ)ϕλ(x)dγ (λ) for x ∈ R.

2. Fourier–Wigner transform associated with1

Definition 2.1. The Fourier–Wigner transform associated with the operator1 is
the mappingV defined onD∗(R)× D∗(R) by

V( f, g)(x, λ)=
∫
+∞

0
f (y)Txg(y)ϕλ(y)dν(y) for (x, λ) ∈ R×R.

Remark. The transformV can also be written in the forms

(2–1) V( f, g)(x, λ)= F( f Txg)(λ)= ϕλ f ∗ g(x).

Notation. We denote by

• D∗(R2) the space of infinitely differentiable functions onR2, even with respect
to each variable, with compact support;

• S∗(R2) the space of infinitely differentiable functions onR2, even with respect
to each variable, rapidly decreasing together with all their derivatives;
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• L p(dν ⊗ dν), for 1 ≤ p ≤ +∞, the space of measurable functions on the
product[0,+∞[× [0,+∞[ satisfying

‖ f ‖p,ν⊗ν :=

(∫
+∞

0

∫
+∞

0
| f (x, y)|pdν(x)dν(y)

)1/p

<+∞ for 1≤ p<+∞,

‖ f ‖∞,ν⊗ν := ess sup
x,y∈[0,+∞[

| f (x, y)|<+∞;

• L p(dν⊗dγ ), for 1≤ p≤+∞, the space similarly defined (withdν(x)dγ (y)
in the integrand).

Proposition 2.2. (i) The Fourier–Wigner transform V is a bilinear mapping from
D∗(R)× D∗(R) into S∗(R2).

(ii) For p ∈]1,2] and p′ such that1/p+1/p′ = 1, we have

‖V( f, g)‖p′,ν⊗γ ≤ ‖ f ‖p,ν ‖g‖p′,ν .

The transform V can be extended to a continuous bilinear operator, denoted
also by V, from Lp(dν)× L p′(dν) into Lp′(dν⊗dγ ).

Proof. (i) Let F be the function defined onR2 by F(x, y)= f (y)Txg(y). It’s clear
that F ∈ D∗(R2), and we have

V( f, g)(x, λ)= I ⊗F(F)(x, λ),

where I is the identity operator. This and the fact thatF is a topological isomor-
phism fromD∗(R) ontoH∗(C) imply (i).

(ii) This follows from the first equality in (2–1) together with Proposition 1.3,
Minkowski’s inequality for integrals [Folland 1984, p.186], and the fact that

‖Txg‖p′,ν ≤ ‖g‖p′,ν for x ∈ R. �

Theorem 2.3.For f, g ∈ D∗(R), we have

F⊗F−1 (V( f, g)) (µ, λ)= ϕµ(λ) f (λ)Fg(µ) for µ, λ ∈ R.

Proof. Using Definition 2.1 and Fubini’s Theorem we have, for allµ, λ ∈ R,

F⊗F−1 (V( f, g)) (µ, λ)=
∫
+∞

0

∫
+∞

0
V( f, g)(x, y)ϕµ(x)ϕy(λ)dν(x)dγ (y)

=

∫
+∞

0

∫
+∞

0
F( f Txg)(y)ϕµ(x)ϕy(λ)dν(x)dγ (y)

=

∫
+∞

0
ϕµ(x)

(∫
+∞

0
F( f Txg)(y)ϕy(λ)dγ (y)

)
dν(x).
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From (1–8) we deduce

F⊗F−1 (V( f, g)) (µ, λ)=
∫
+∞

0
ϕµ(x) f (λ)Txg(λ)dν(x)

= f (λ)F(Tλg)(µ)= f (λ)ϕµ(λ)Fg(µ). �

Corollary 2.4. For all f , g ∈ D∗(R), we have∫
+∞

0
F⊗F−1 (V( f, g)) (µ, λ) dν(λ)= F f (µ)Fg(µ) for µ ∈ R,∫

+∞

0
F⊗F−1 (V( f, g)) (µ, λ)dγ (µ)= f (λ)g(λ) for λ ∈ R.

Proof. Theorem 2.3 gives∫
+∞

0
F⊗F−1 (V( f, g)) (µ, λ)dν(λ)=

∫
+∞

0
ϕµ(λ) f (λ)Fg(µ)dν(λ)

= F f (µ)Fg(µ) for µ ∈ R,∫
+∞

0
F⊗F−1 (V( f, g)) (µ, λ)dγ (µ)=

∫
+∞

0
ϕµ(λ) f (λ)Fg(µ)dγ (µ)

= f (λ)
∫
+∞

0
ϕµ(λ)Fg(µ)dγ (µ)

= f (λ)g(λ) for λ ∈ R. �

Theorem 2.5. Let f, g ∈ L1(dν)∩ L2(dν) be such that c=
∫
+∞

0 g(x)dν(x) 6= 0.
Then

F f (λ)=
1

c

∫
+∞

0
V( f, g)(x, λ)dν(x) for λ ∈ R.

Proof. From Definition 2.1, we have∫
+∞

0
V( f, g)(x, λ)dν(x)=

∫
+∞

0

(∫
+∞

0
f (y)Txg(y)ϕλ(y)dν(y)

)
dν(x)

for all λ ∈ R. The result follows from Fubini’s Theorem and the equality∫
+∞

0
Txg(y)dν(y)=

∫
+∞

0
g(x)dν(x)= c. �

Corollary 2.6. With the hypothesis of Theorem 2.5, if F f ∈ L1(dγ ), we have the
following inversion formula for the Fourier–Wigner transform V:

f (x)=
1

c

∫
+∞

0
ϕµ(x)

(∫
+∞

0
V( f, g)(y, µ)dν(y)

)
dγ (µ) for a.e. x ∈ R.
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3. The Weyl transform associated with1

We now introduce the Weyl transform and relate it to the Fourier–Wigner trans-
form. To do this, we must define the class of pseudodifferential operators [Wong
1998].

Definition 3.1. Let m∈R. We defineSm to be the set of all infinitely differentiable
functionsσ on R×R, even with respect to each variable, and such that for all
p,q ∈ N, there exists a positive constantCp,q,m satisfying∣∣∣( ∂

∂x

)p( ∂
∂y

)q
σ(x, y)

∣∣∣≤ Cp,q,m(1+ y2)m−q.

Definition 3.2. For m ∈ R andσ ∈ Sm, we define the operatorHσ on D∗ (R)×
D∗ (R) by

(3–1) Hσ ( f, g)(λ)=
∫
+∞

0

(∫
+∞

0
σ(x, y)ϕy(λ)V( f, g)(x, y)dν(x)

)
dγ (y),

for all λ ∈ R, and we put

(3–2) Hσ ( f, g)= Hσ ( f, g)(0).

Proposition 3.3. Defineσ ∈ Sm by σ(x, y) = −y2 for x, y ∈ R. Then, for all
f, g ∈ D∗(R), we have

Hσ ( f, g)(λ)= c1 f (λ) for λ ∈ R,

where c=
∫
+∞

0 g(x)dν(x).

Proof. From (3–1), we have

Hσ ( f, g)(λ)=
∫
+∞

0

(∫
+∞

0
−y2ϕy(λ)V( f, g)(x, y)dν(x)

)
dγ (y)for λ ∈ R.

Using Definition 2.1 we obtain

Hσ ( f, g)(λ)=
∫
+∞

0

(∫
+∞

0
−y2ϕy(λ)

(∫
+∞

0
f (z)Txg(z)ϕy(z)dν(z)

)
dν(x)

)
dγ (y)

for λ ∈ R. From Fubini’s Theorem, we get

Hσ ( f, g)(λ)

=

∫
+∞

0
−y2ϕy(λ)

(∫
+∞

0
f (z)ϕy(z)

(∫
+∞

0
Tzg(x)dν(x)

)
dν(z)

)
dγ (y)

= c
∫
+∞

0
−y2ϕy(λ)

(∫
+∞

0
f (z)ϕy(z)dν(z)

)
dγ (y)

= c
∫
+∞

0
−y2ϕy(λ)F f (y)dγ (y).
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But, for all y ∈ R, −y2F f (y) = F(1 f )(y). We complete the proof using the
inversion formula (1–8). �

Definition 3.4. Let σ ∈ Sm
; m< −α− 1. TheWeyl transformassociated with1

is the mappingWσ defined onD∗(R) by

Wσ ( f )(λ)=
∫
+∞

0

(∫
+∞

0
ϕy(λ)σ (x, y)Tλ f (x)dν(x)

)
dγ (y) for λ ∈ R.

Notation. We denote by

• S∗(R) the space of even, infinitely differentiable functions onR, rapidly de-
creasing together with all their derivatives.

• S2
∗
(R)= ϕ0S∗(R), whereϕ0 is the solution of (1–2) withλ= 0.

For ρ = 0 these two spaces coincide [Trimèche 1997]. The Fourier transformF

is a topological isomorphism fromS2
∗
(R) onto S∗(R), whose inverse is given by

(1–12).

Lemma 3.5.For σ ∈ D∗(R2), the function k defined by

k(x, y)=
∫
+∞

0
ϕλ(x)Tx

(
σ( · , λ)

)
(y)dγ (λ) for x, y ∈ R

belongs to Lp(dν⊗dν), for all p ∈ [2,+∞[.

Proof. The defining equation ofk can be rewrittenk(x, y) = Tx(G( · , x))(y),
where

G(x, y)= I ⊗F−1(σ )(x, y) for x, y ∈ R,

for I the identity operator. It follows that, for allp ∈ [2,+∞[,∫
+∞

0

∫
+∞

0
|k(x, y)|pdν(x)dν(y)=

∫
+∞

0

(∫
+∞

0

∣∣Tx(G( · , x)(y))
∣∣pdν(y)

)
dν(x)

≤

∫
+∞

0

(∫
+∞

0
|G(y, x)|pdν(y)

)
dν(x)

≤

∫
+∞

0

(∫
+∞

0

∣∣I ⊗F−1(σ )(y, x)
∣∣pdν(y)

)
dν(x).

We distinguish two cases,p= 2 andp∈ ]2,+∞[, the casep=+∞ being trivial.
For p= 2,∫
+∞

0

∫
+∞

0
|k(x, y)|2 dν(x)dν(y)≤

∫
+∞

0

(∫
+∞

0

∣∣F−1(σ (x, · )(y))
∣∣2 dν(x)

)
dν(y).

From (1–10) we deduce that∫
+∞

0

∫
+∞

0
|k(x, y)|2 dν(x)dν(y)≤

∫
+∞

0

(∫
+∞

0
|σ(y, x)|2 dγ (y)

)
dν(y) <+∞,
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becauseσ belongs toD∗(R2). The casep ∈ ]2,+∞[ is more complex. From the
hypotheses on1, we deduce that, asx→+∞,

(3–3) A(x)∼

{
x2α+1 if ρ = 0,

exp(2ρx) if ρ > 0.

• For ρ = 0, recall thatF is an isomorphism fromS∗(R) onto itself. Thus
I ⊗F−1(σ ) belongs toS∗(R2), and the asymptotics (3–3) implies

(3–4)
∫
+∞

0

∫
+∞

0
|k(x, y)|pdν(x)dν(y)

≤

∫
+∞

0

(∫
+∞

0

∣∣I ⊗F−1(σ )(y, x)
∣∣p dν(x)

)
dν(y) <+∞.

• Forρ > 0, we have from [Trimèche 1997, p. 99]

|ϕλ(x)| ≤ ϕ0(x)≤m(1+ x)exp(−ρx) for all λ ∈ R andx ≥ 0,

wherem is a positive constant. Then

∣∣I ⊗F−1(σ )(y, x)
∣∣≤m(1+ x)exp(−ρx)

∫
+∞

0
|σ(y, z)|dν(z).

Sinceσ belongs toD∗(R2), there exists a positive constantM such that∫
+∞

0
|σ(y, z)|dν(z)≤ M for y≥ 0,

which implies that∣∣I ⊗F−1(σ )(y, x)
∣∣≤mM(1+ x)exp(−ρx).

This, together with the asymptotics (3–3), implies the validity of the same
bound (3–4) as in the previous case. �

Theorem 3.6.Letσ ∈ D∗(R2) and f ∈ D∗(R).

(i) Wσ ( f )(x)=
∫
+∞

0
k(x, y) f (y)dν(y) for all x ∈ R.

(ii) ‖Wσ ( f )‖p′,ν≤‖k‖p′,ν⊗ν‖ f ‖p,ν for p∈[1,2] and p′ such that1/p+1/p′=1.

(iii) Wσ can be extended to a bounded operator from Lp(dν) into Lp′(dν). In
particular, Wσ : L2(dν) → L2(dν) is a Hilbert–Schmidt operator, hence
compact.
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Proof. (i) From Definition 3.4, we have, for allx ∈ R;

Wσ ( f )(x)=
∫
+∞

0
ϕy(x)

(∫
+∞

0
σ(z, y)Tx f (z)dν(z)

)
dγ (y)

=

∫
+∞

0
ϕy(x)

(∫
+∞

0
f (z)Tx[σ(., y)](z)dν(z)

)
dγ (y)

.

From Fubini’s Theorem, we get, for allx ∈ R,

Wσ ( f )(x)=
∫
+∞

0
f (z)

(∫
+∞

0
ϕy(x)Tx[σ(., y)](z)dγ (y)

)
dν(z)

=

∫
+∞

0
f (z)k(x, z)dν(z).

(ii) Follows from (i), Hölder’s inequality, and Lemma 3.5.

(iii) Since k ∈ L2(dν⊗dν), the mapping

Wσ : L
2(dν)−→ L2(dν)

is a Hilbert–Schmidt operator, and so compact. �

Theorem 3.7.Let m<−α−1 andσ ∈ Sm. For all f , g ∈ D∗(R),

(3–5) Hσ ( f, g)=
∫
+∞

0
f (x)Wσg(x)dν(x).

Proof. Using (3–2) and Definition 2.1 we obtain

Hσ ( f, g)=
∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y)

=

∫
+∞

0

(∫
+∞

0
σ(x, y)

(∫
+∞

0
f (λ)Txg(λ)ϕy(λ)dν(λ)

)
dν(x)

)
dγ (y).

From Fubini’s theorem, we get

Hσ ( f, g)=
∫
+∞

0
f (λ)

(∫
+∞

0
ϕy(λ)

(∫
+∞

0
σ(x, y)Txg(λ)dν(x)

)
dγ (y)

)
dν(λ)

=

∫
+∞

0
f (λ)Wσ (g)(λ)dν(λ). �

4. The Weyl transform with symbol in L p(dν ⊗ dγ ), for 1 ≤ p ≤ 2

In this section we show using (3–5) that, if 1≤ p ≤ 2, the Weyl transform with
symbol inL p(dν⊗dγ ) is a compact operator.
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Notation. We denote byB(L2(dν)) theC∗-algebra of bounded operators9 from
L2(dν) into itself, equipped with the norm

‖9‖∗ = sup
‖ f ‖2,ν=1

‖9( f )‖2,ν .

Theorem 4.1.Let〈 · / · 〉 denote the inner product in L2(dν). There exists a unique
operator Q: L2(dν ⊗ dγ )→ B(L2(dν)), whose action we denote byσ 7→ Qσ ,
such that

〈Qσ (g)/ f̄ 〉=
∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y) for f, g∈ L2(dν).

Furthermore, ‖Qσ‖∗ ≤ ‖σ‖2,ν⊗γ .

Proof. Let σ ∈ D∗(R2). For g ∈ D∗(R), put Qσ (g)=Wσ (g). From Theorems 3.6
and 3.7, we obtain

〈Qσ (g)/ f̄ 〉 = 〈Wσ (g)/ f̄ 〉 = Hσ ( f, g)

=

∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y).

On the other hand, from Proposition 2.2(ii), we have∣∣〈Qσ (g)/ f̄ 〉
∣∣≤ ‖σ‖2,ν⊗γ ‖ f ‖2,ν ‖g‖2,ν .

ThusQσ ∈B(L2(dν)) and

‖Qσ‖∗ ≤ ‖σ‖2,ν⊗γ .(4–1)

Now considerσ ∈ L2(dν ⊗ dγ ). Let (σk)k∈N be a sequence inD∗(R2) such that
‖σk− σ‖2,ν⊗γ approaches 0 ask→+∞. From (4–1) we have, for allk, l ∈ N,

‖Qσk − Qσl ‖∗ ≤ ‖σk− σl‖2,ν⊗γ ≤ ‖σk− σ‖2,ν⊗γ +‖σl − σ‖2,ν⊗γ .

Thus(Qσk)k∈N is a Cauchy sequence inB(L2(dν)). Let it converge toQσ . Clearly
Qσ is independent from the choice of(σk)k∈N, and we have

‖Qσ‖∗ = lim
k→+∞

‖Qσk‖∗ ≤ lim
k→+∞

‖σk‖2,ν⊗γ = ‖σ‖2,ν⊗γ .

We consider firstf, g ∈ D∗(R). Then

〈Qσ (g)/ f̄ 〉 = lim
k→+∞

〈Qσk(g)/ f̄ 〉

= lim
k→+∞

∫
+∞

0

(∫
+∞

0
σk(x, y)V( f, g)(x, y)dν(x)

)
dγ (y)

=

∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y).
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Now let f, g be in L2(dν). Pick sequences( fk)k∈N, and(gk)k∈N in D∗(R) con-
verging to f andg, respectively, in the‖ · ‖2,ν-norm. Then

〈Qσ (g)/ f̄ 〉 = lim
k→+∞

〈Qσ (gk)/ f̄k〉

= lim
k→+∞

∫
+∞

0

(∫
+∞

0
σ(x, y)V( fk, gk)(x, y)dν(x)

)
dγ (y)

=

∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y). �

We now give an extension of Theorem 4.1 that will allow us to prove that for
1≤ p≤ 2 the Weyl transform with symbol inL p(dν⊗dγ ), is a compact operator.

Theorem 4.2.Let p∈ [1,2]. There exists a unique bounded operator

Q : L p(dν⊗dγ )→B(L2(dν)),

whose action is denoted byσ → Qσ , such that

〈Qσ (g)/ f̄ 〉 =
∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y) for f, g∈ D∗(R).

Moreover, ‖Qσ‖∗ ≤ ‖σ‖p,ν⊗γ .

Proof. The casep = 2 is given by Theorem 4.1. We turn to the casep = 1. For
σ ∈ D∗(R2), we defineQσ by

Qσ (g)=Wσ (g) for g ∈ D∗(R).

From Theorems 3.6 and 3.7, we have, forf ∈ D∗(R),

〈Qσ (g)/ f̄ 〉 = Hσ ( f, g)=
∫
+∞

0

(∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)

)
dγ (y).

From Hölder’s inequality we then obtain∣∣〈Qσ (g)/ f̄ 〉
∣∣≤ ‖σ‖1,ν⊗γ ‖V( f, g)‖∞,ν⊗γ ≤ ‖σ‖1,ν⊗γ ‖ f ‖2,ν ‖g‖2,ν .

This shows thatQσ ∈B(L2(dν)) and‖Qσ‖∗ ≤ ‖σ‖1,ν⊗γ .
We extend the definition ofQσ and the two facts just proved to the case of

σ ∈ L1(dν⊗dγ ), working as in the proof of Theorem 4.1.
Finally, the Riesz–Thorin Theorem [Stein 1956; Stein and Weiss 1971], allows

us to generalize the same results from the casesp=1 andp=2 to all p∈ [1,2]. �

Theorem 4.3.Let p∈ [1,2]. For σ ∈ L p(dν⊗dγ ), the operator Qσ from L2(dν)
into itself is compact.
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Proof. Given σ ∈ L p(dν ⊗ dγ ), choose a sequence(σk)k∈N in D∗(R2) approxi-
matingσ in the‖ · ‖p,ν⊗γ -norm. The last assertion of Theorem 4.2 says that

‖Qσk − Qσ‖∗ ≤ ‖σk− σ‖p,ν⊗γ ,

so Qσk approachesQσ in B(L2(dν)). From Theorem 3.6 we know thatWσk =

Qσk is compact for allk ∈ N. The theorem then follows from the fact that the
subspaceK(L2(dν)) of B(L2(dν)) consisting of compact operators is a closed
ideal ofB(L2(dν)). �

5. The Weyl transform with symbol in S′
∗,0(R

2)

Notation. We denote by

• S∗,0(R2) the subspace ofS∗(R2) consisting of functions with compact support
with respect to the first variable;

• S′
∗,0(R

2) the topological dual ofS∗,0(R2);

• D′
∗
(R) the space of even distribution onR. It is the topological dual ofD∗(R).

Definition 5.1. Forσ ∈ S′
∗,0(R

2) andg∈ D∗(R), we define the operatorWσ (g) on
D∗(R) by

(5–1)
(
Wσ (g)

)
( f )= σ(V( f, g)) for f ∈ D∗(R),

whereV is the mapping from Definition 2.1. ClearlyWσ (g) belongs toD′
∗
(R).

Proposition 5.2. Consider the distributionσ of S′
∗,0(R

2) given by the constant
function1. For all g ∈ D∗(R), we have

Wσ (g)= cδ,

where c=
∫
+∞

0
g(x)dν(x) andδ is the Dirac distribution at0.

Proof. For f, g ∈ D∗(R), we get(
Wσ (g)

)
( f )= σ(V( f, g))=

∫
+∞

0

(∫
+∞

0
V( f, g)(x, y)dν(x)

)
dγ (y).

But from the proof of Theorem 2.5, we have∫
+∞

0
V( f, g)(x, y)dν(x)= cF f (y) for y ∈ R.

Integrating both sides over[0,+∞[ with respect to the measuredγ and using
(1–8), we obtain

σ(V( f, g))=
(
Wσ (g)

)
( f )= c

∫
+∞

0
F f (y)dγ (y)= c f (0)= (cδ, f ). �
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Note that by Proposition 5.2, there existsσ ∈ S′
∗,0(R

2), given by a function in
L∞(dν⊗dγ ), such that for allg∈ D∗(R) satisfyingc=

∫
+∞

0 g(x)dν(x) 6= 0, the
distributionWσ (g) is not given by a function inL2(dν).

6. The Weyl transform with symbol in L p(dν ⊗ dγ ), for 2 < p < ∞

Theorem 6.1. Let p ∈ ]2,∞[. There exists a functionσ ∈ L p(dν ⊗ dγ ) such
that the Weyl transform Wσ defined by(5–1) is not a bounded linear operator on
L2(dν).

We break down the proof into two lemmas, of which the theorem is an immediate
consequence.

Lemma 6.2. Let p ∈ ]2,∞[. Suppose that for allσ ∈ L p(dν ⊗ dγ ), the Weyl
transform Wσ given by(5–1) is a bounded linear operator on L2(dν). Then there
exists a positive constant M such that

(6–1) ‖Wσ‖∗ ≤ M ‖σ‖p,ν⊗γ for all σ ∈ L p(dν⊗dγ ).

Proof. Under the assumption of the lemma, there exists for eachσ ∈ L p(dν⊗dγ )
a positive constantCσ such that

‖Wσ (g)‖2,ν ≤ Cσ‖g‖2,ν for g ∈ L2(dν).

Let f, g ∈ D∗(R) be such that‖ f ‖2,ν = ‖g‖2,ν = 1 and define a linear operator
Q f,g : L p(dν⊗dγ )→ C by

Q f,g(σ )=
〈
Wσ (g)/ f̄

〉
.

Then

sup
| f |2,ν=|g|2,ν=1

|Q f,g(σ )| ≤ Cσ .

By the Banach–Steinhaus theorem, the operatorQ f,g is bounded onL p(dν⊗dγ ),
so there existsM > 0 such that

‖Q f,g‖ = sup
‖σ‖p,ν⊗γ=1

|Q f,g(σ )| ≤ M.

From this we deduce that for allf, g ∈ D∗(R) andσ ∈ L p(dν⊗dγ ),∣∣〈Wσ (g)/ f̄ 〉
∣∣≤ M‖σ‖p,ν⊗γ ‖ f ‖2,ν ‖g‖2,ν,

which implies (6–1). �

Lemma 6.3.For 2< p<∞, there is no positive constant M satisfying(6–1).
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Proof. Suppose there exists such anM . Let p′ be such that 1/p+1/p′ = 1. Then
p′ ∈ ]1,2[. We consider, forf, g ∈ D∗(R), the functionV( f, g) of Definition 2.1.
We have

‖V( f, g)‖p′,ν⊗γ = sup
‖σ‖p,ν⊗γ=1

∣∣∣∣∫ +∞
0

∫
+∞

0
σ(x, y)V( f, g)(x, y)dν(x)dγ (y)

∣∣∣∣
= sup
‖σ‖p,ν⊗γ=1

∣∣〈Wσ (g)/ f̄ 〉
∣∣≤ sup
‖σ‖p,ν⊗γ=1

‖Wσ (g)‖2,ν‖ f ‖2,ν,

and consequently

(6–2) ‖V( f, g)‖p′,ν⊗γ ≤ M ‖ f ‖2,ν ‖g‖2,ν .

Now consider f, g in L2(dν). Choose sequences( fk)k∈N and(gk)k∈N in D∗(R)
approximating f and g in the ‖ · ‖2,ν-norm. By Proposition 2.2, the sequence
(V( fk, gk))k∈N converges toV( f, g) in L p′(dν⊗dγ ), and thus we have extended
(6–2) to all f, g ∈ L2(dν). We will exhibit an example where this leads to a
contradiction.

Let f be an even, measurable function onR, supported in[−1,1]. We have∣∣V( f, f )(x, y)
∣∣≤ | f | ∗ | f |(x),

where∗ is the convolution product (Definition 1.1). From (1–7), we deduce that
for all y ∈ R, the functionx 7→ V( f, f )(x, y) is supported in[−2,2]. Hölder’s
inequality gives(∫

+∞

0

∣∣∣∣∫ 2

0
V( f, f )(x, y)dν(x)

∣∣∣∣p′dγ (y))1/p′

≤

(∫ 2

0
dν(x)

)1/p(∫ +∞
0

(∫ 2

0
|V( f, f )(x, y)|p

′

dν(x)

)
dγ (y)

)1/p′

=

(∫ 2

0
dν(x)

)1/p

‖V( f, f )‖p′,ν⊗γ ≤ M

(∫ 2

0
dν(x)

)1/p

‖ f ‖22,ν,

the last inequality following from (6–2). This proves that the function

y 7→
∫
+∞

0
V( f, f )(x, y)dν(x)= cF f (y)

belongs toL p′(dγ ); herec =
∫
+∞

0 f (x)dν(x). and we have used the proof of
Theorem 2.5 for the equality on the right-hand side. Putting this together with the
preceding inequality we see that, ifc 6= 0, the functionF f belongs toL p′(dγ ) and

‖F f ‖p′,γ ≤
M

|c|

(∫ 2

0
dν(x)

)1/p

‖ f ‖22,ν .(6–3)
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Now consider the particular functionf given by

f (x)=
|x|r
√

B(x)
1[−1,1](x)

whereB is the function defined by (1–1) and1[−1,1] is the characteristic function
of the interval[−1,1]. If r >−(α+1), this function belongs toL1(dν)∩ L2(dν).
From (1–4) we get

F f (λ)=
∫ 1

0
xr+2α+1 jα(λx)dx+

∫ 1

0
xr+α+1/2θλ(x)dx

=
1

λr+2α+2

∫ λ

0
xr+2α+1 jα(x)dx+

∫ 1

0
xr+α+1/2θλ(x)dx.

Using the asymptotic expansion of the functionjα [Lebedev 1972; Watson 1944],
given by

jα(x)=
2α+1/20(α+1)
√
πxα+1/2

(
cos
(

x−απ
2
−
π

4

)
+O

(1
x

))
asx→+∞,

we deduce that for−(α+1) < r <−(α+ 1
2), the integral

a :=
∫
+∞

0
xr+2α+1 jα(x)dx

exists and is finite, so

1

λr+2α+2

∫ λ

0
xr+2α+1 jα(x)dx∼

a

λr+2α+2
asλ→+∞.

On the other hand, forλ > 1,∣∣∣∣∫ 1

0
xr+α+1/2θλ(x)dx

∣∣∣∣≤ c1

λα+3/2

∫ 1

0
xr+α+1/29(x)dx,

where

9(x)=

(∫ x

0
|Q(s)|ds

)
exp

(
c2

∫ x

0
|Q(s)|ds

)
for all x > 0

andQ is given by (1–5). Since−(α+1) < r <−(α+ 1
2), we deduce that

F f (λ)∼
a

λr+2α+2
asλ→+∞.

Using this and (1–6), it follows that there existK , R> 0 such that

|F f (λ)|p
′ 1

2π |c(λ)|2
≥

K

λp′(r+2α+2)−2α−1
for λ > R;
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so forr such thatp′(r +2α+2) < 2α+2, we get

‖F f ‖p′

p′,γ ≥

∫
+∞

R
|F f (λ)|p

′ dλ

2π |c(λ)|2
≥

∫
+∞

R

K

λp′(r+2α+2)−2α−1
dλ=+∞.

This shows that the relation (6–3) is false if we chooser so as to satisfy simulta-
neously the conditionsr >−(α+1), r <−(α+ 1

2) and

r <−(2α+2)+
2α+2

p′
.

This contradiction proves the lemma and Theorem 6.1. �
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DISTANCE AND BRIDGE POSITION

DAVID BACHMAN AND SAUL SCHLEIMER

J. Hempel’s definition of the distanceof a Heegaard surface generalizes to
a notion of complexity for any knot that is in bridge position with respect
to a Heegaard surface. Our main result is that the distance of a knot in
bridge position is bounded above by twice the genus, plus the number of
boundary components, of an essential surface in the knot complement. As
a consequence knots constructed via sufficiently high powers of pseudo-
Anosov maps have minimal bridge presentations which are thin.

1. Introduction

Hempel’s definition [2001] of thedistanceof a Heegaard splitting is a natural
measure of complexity, generalizing the standard notions ofreducibility (distance
zero),weak reducibility(distance at most one), andstrong irreducibility(distance
at least two). Hempel proves that there exist Heegaard splittings of arbitrarily high
distance.

In his Ph.D. thesis, K. Hartshorn related the distance of a Heegaard splitting to
the genus of any essential surface, thus refining work of T. Kobayashi [1988]:

Theorem [Hartshorn 1999].Let M be a closed, orientable, irreducible3-manifold
with Heegaard splitting F. Suppose M contains an orientable, incompressible
surface S. Then the distance of F is bounded above by twice the genus of S.

We introduce our results by recalling a generalization of the curve complex for
surfaces with nonempty boundary. This allows us to translate Hempel’s definition
of distance for Heegaard splittings to a definition of distance for knots that are in
bridge position with respect to a Heegaard surface [Morimoto and Sakuma 1991].
Our main result is a translation of Hartshorn’s Theorem into this new context:

Theorem 5.1. Let K be a knot in a closed, orientable3-manifold M which is in
bridge position with respect to a Heegaard surface F. Let S be a properly embed-
ded, orientable, essential surface in MK . Then the distance of K with respect to F
is bounded above by twice the genus of S plus|∂S|.

MSC2000:57M25, 57M27.
Keywords: Heegaard splitting, curve complex.

221



222 DAVID BACHMAN AND SAUL SCHLEIMER

In the special case of a meridional disk we find that a stronger result holds; the
distance ofK with respect toF is zero. This follows from a variant of the Haken
Lemma (see Lemma 4.1).

Although our proof contains Hartshorn’s result as a special case (K =∅), there
is an interesting qualitative difference. Unlike Hartshorn, we make no minimality
assumption on the way in whichS intersectsF . That is,any generic positionof S
with respect toF forces the bound on distance as stated in the theorem.

The main idea behind our proof is to simply count saddles. Letd(K , F) denote
the distance ofK with respect toF . It is a standard technique in 3-manifold
topology to use a Heegaard splittingF for a 3-manifoldM to define a height
function h on M . This, in turn, induces a height function on a surfaceS in M .
With respect to this height functionS will have maxima, minima, and saddles.
The moral of the story is that each critical point ofS either

(1) contributes at most 1 tod(K , F) and exactly−1 to the Euler characteristic of
S, or

(2) contributes nothing tod(K , F) and nothing to the Euler characteristic ofS.

Hence, the distance ofK with respect toF would then be bounded by the neg-
ative of the Euler characteristic ofS. Unfortunately, for Heegaard splittings the
above classification isn’t exactly correct. We find that there may be at most two
special critical points that each contribute one to the distance ofK , but nothing to
the Euler characteristic ofS. This gives the bound

d(K , F)≤−χ(S)+2= 2g(S)+ |∂S|.

We note that several authors have explicitly computed the distances of vari-
ous classes of knots (using varying definitions ofdistance). See, for example,
[Akiyoshi et al. 2000; Morimoto 1989; Saito 2004].

In the final section we present corollaries to Theorem 5.1. Among these are:

Corollary 6.1. Suppose K is a knot in S3 whose distance is d(K , F) with respect
to a bridge sphere F. Then the genus of K is at least1

2

(
d(K , F)−1

)
.

Corollary 6.2. If K is a knot whose distance is at least3 with respect to some
Heegaard surface, the complement of K is hyperbolic.

Finally, we define thebridge link associated to an element of the braid group
B2n to be the link obtained by gluing two trivialn-strand tangles by this element.
By a construction essentially due to Kobayashi [1988], powers of certain pseudo-
Anosov maps give associated bridge links with arbitrarily high distance. Suppose
φ is such a map. Then it follows from Corollary 6.5 that for all sufficiently high
powers ofφ if the associated link is a knot, its minimal bridge presentation is thin.
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A priori, bridge knots associated to high powers of pseudo-Anosov maps might
have low bridge numbers. We conjecture that this is not in fact possible:

Conjecture. SupposeK is a knot whose distance is at least 2 with respect to some
Heegaard surfaceF . Then the distance ofK with respect to any other Heegaard
surface is bounded above byχ(F − K )+2.

Compare this to the statement of Theorem 5.1. In the theorem we assert that
the distance of a knot with respect to a Heegaard surface is bounded by two plus
the Euler characteristic of an essential surface. In the conjecture we propose that
distance is similarly bounded by a strongly irreducible surface.

2. Basic definitions

In this section we give the definitions that will be used throughout the paper. Let
K be a knot in a closed, orientable 3-manifold,M . Let MK = M − N(K ) where
N(K ) denotes a regular neighborhood ofK . For the remainder of this paper all
surfacesS in MK will be embedded, compact, and orientable withS∩∂MK ⊂ ∂S.

Definition 2.1. A cut surface(see Figure 1) is either

(1) a diskE ⊂ MK such thatE ∩ ∂MK =∅,

(2) a bigonE ⊂ MK such thatE ∩ ∂MK is an arc, or

(3) an annulusE ⊂ MK with exactly one meridional boundary component on
∂MK . In other words,E ∩ ∂MK is a loop bounding a disk inN(K ).

If E is a cut surface andγ = ∂E− ∂MK we say thatγ bounds a cut surface.

γ

γ

γ

Figure 1. Disk, bigon, and meridional cut surfaces.

A properly embedded simple curve inS is inessentialif it bounds a subsurface
of S that is a cut surface, andessentialotherwise.

Supposeγ bounds a cut surfaceE, thatS is properly embedded inMK , and that
S∩ E = γ . We may thensurger SalongE by replacing a neighborhood ofγ in S
with two parallel copies ofE. If γ is essential inS we sayE is acompressionfor
S. In this case we also sayγ bounds a compressionfor S.
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A properly embedded surfaceS⊂ MK is essentialif first there are no curves
on S which bound compressions inMK and second∂S (if nonempty) is not null-
homotopic on∂MK . We also consider a 2-sphere to be essential if it does not
bound a ball inMK . This notion of essentialness isnot identical to that of “super-
incompressible” found in [Morgan and Bass 1984].

A handlebodyis a 3-manifold homeomorphic to the closure of a regular neigh-
borhood of a compact, connected graph inR3. If such a graph has no valence-one
vertices and the corresponding handlebody has nonzero genus, the graph’s image
under such a homeomorphism is aspineof the handlebody. We will insist that the
spine of a 3-ball be a single edge.

A closed surfaceF in M is aHeegaard surfaceof M if F separatesM into two
handlebodies. An arc properly embedded inH is trivial if it bounds a bigon inH .
SupposeK is a knot in a 3-manifoldM with Heegaard surfaceF . The knotK is in
bridge position with respect to F[Morimoto and Sakuma 1991] ifK meets each
of the handlebodies bounded byF in a collection of trivial arcs. Such a position
is sometimes referred to as a(g,b)-presentationof K , whereg = genus(F) and
2b= |K ∩ F |.

3. The arc complex

Following Hempel’s definition [2001] of the distance of a Heegaard splitting, we
now define thedistanceof a knot K that is in bridge position with respect to a
Heegaard surfaceF ⊂ M . Set

MK = M − N(K ) and FK = F ∩MK .

Construct a 1-complex0(FK ) as follows: for each proper isotopy class of es-
sential curves inFK there is a vertex of0(FK ). There is an edge of0(FK ) between
two distinct vertices if and only if there are representatives of the corresponding
isotopy classes which are disjoint.0(FK ) is called thearc complexof FK (see
[Masur and Minsky 1999], for example).

Now, FK dividesMK into two submanifolds,H and H ′. Let V andV ′ denote
the sets of vertices of0(FK ) corresponding to curves that bound compressions in
H and H ′, respectively. Thend(K , F), the distance of K with respect to F, is
defined to be the number of edges in the shortest path fromV to V ′ in 0(FK ). As
long asχ(FK ) is at most−2 this is well defined, since the arc complex is connected
in those cases.

4. Lemmas

The following is a slight variant of the Haken Lemma [1968]. We assume famil-
iarity with the proof of this result found in [Jaco 1980, Theorem II.7].
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Lemma 4.1(Haken).Let K be a knot in a3-manifold M which is in bridge position
with respect to a Heegaard surface F. If MK contains an essential2-sphere or
meridional disk then d(K , F)= 0.

Proof. Among all essential 2-spheres and meridional disks inMK choose one,S,
meetingFK minimally. Let H and H ′ denote the submanifolds ofMK bounded
by FK , with ∂S (if nonempty) contained inH . If S∩ FK =∅ thenS lies entirely
in H or H ′, a contradiction. It follows thatS∩ FK is a nonempty set of loops that
are essential onFK . Hence, ifS meetsFK in a single loop, the result follows.

Suppose then that|S∩ FK |> 1. Let H∗ denote one ofH or H ′, where there is
a componentT of S∩H∗ with |∂T−∂S| ≥ 2. Choose abasis3 for H∗, that is, a
system of disks and bigons cuttingH∗ into a 3-ball. If S∩3 contains any loops,
surgerS along these loops, innermost (on3) first. At least one component of the
resulting surface is again an essential sphere or meridional disk. We continue to
denote this surface byS.

Now reduce|S∩3| as follows. If any component of(S∩ H∗)−3 is a bigon,
surger3 along this surface. Some subcollection of the resulting set is again a basis,
which we continue to denote by3. If not, choose a bigon of3− S, and use this
to guide an isotopy ofS (see the “isotopy of type A” in [Jaco 1980, p. 24]). Repeat
this procedure until all componentsT of S∩ H∗ satisfy |∂T − ∂S| = 1. Let S′

denote the resulting surface.
It follows from the argument of [Jaco 1980, Lemma II.9] that ifH∗ = H ′ then
|S′ ∩ FK | < |S∩ FK |, and we have reached a contradiction. IfH∗ = H then
|S′ ∩ FK | ≤ |S∩ FK |. If equality holds we repeat the preceding steps withS′

replacingSand lettingH∗= H ′. This gives a surfaceS′′ with |S′′∩FK |< |S∩FK |,
a contradiction. �

Lemma 4.2. Let K be a knot in a3-manifold M which is in bridge position with
respect to a Heegaard surface F. Supposeγ bounds two cut surfaces A and B
with A∩ B= γ . Then A and B are both bigons, both annuli, or both disks, unless
d(K , F)= 0.

Proof. If A andB are of different types, their union is a meridional disk. The result
now follows from Lemma 4.1. �

Lemma 4.3. Let K be a knot in a3-manifold M which is in bridge position with
respect to a Heegaard surface F and let Q be any properly embedded surface in
MK . If there is a curveγ that is essential on Q and bounds a cut surface E in MK

then either there is a curveγ ′ ⊂ E ∩ Q that bounds a compression for Q, unless
d(K , F)= 0.

Proof. Let3 ⊂ E ∩ Q be the collection of curves that are essential onQ. Let E′

denote the closure of a component ofE−3 that is a cut surface. Setγ ′ = E′∩3.
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Consider the set2 of cut surfaces bounded byγ ′ such that the only curve of
intersection withQ, essential onQ, is γ ′. Note thatE′ is such a surface, so2 is
nonempty. LetE∗ be an element of2 with |E∗ ∩ Q| minimal.

We now claimE∗ ∩ Q = γ ′. Suppose not. LetE′′ be a cut surface component
of E∗−Q. The curveγ ′′ = E′′∩Q is inessential onQ and hence bounds two cut
surfaces,A⊂ Q andE′′. Note thatA∩ E′′ = γ ′′. By Lemma 4.2 we may obtain
a new cut surface fromE∗ by replacingE′′ with a push-off ofA. This violates
the minimality of|E∗ ∩ Q|. We conclude thatE∗ is a compression forQ, which
finishes the proof. �

Lemma 4.4. Let K be a knot in a3-manifold M which is in bridge position
with respect to a Heegaard surface F and let S be an essential surface in MK .
If we surger S along a disk or bigon cut surface then at least one of the remaining
components is essential, unless d(K , F)= 0.

Proof. By assumption there is a curveγ ⊂ S that bounds a cut surfaceE′, home-
omorphic to a disk and such thatE′ ∩ S= γ . SinceS is essential,γ bounds a cut
surfaceE ⊂ S. SurgeringS along E′ produces two surfaces, isotopic toE ∪ E′

andS′ = (S− E)∪ E′. SupposeS′ is not essential. Letγ ′ bound a compression
C for S′. As E′ is homeomorphic to a disk we may properly isotopeγ ′ off of E′.
The curveγ ′ is now onS, and bounds the cut surfaceC. By Lemma 4.3 there is a
compressionC′ for S, a contradiction. �

Lemma 4.5. Let K be a knot in a3-manifold M which is in bridge position with
respect to a Heegaard surface F and let S be an essential surface in MK . If we
surger S along a cut surface then at least one of the remaining components is
essential, unless d(K , F)= 0.

Proof. By assumption there is a curveγ ⊂ S which bounds a cut surfaceE′ such
that E′ ∩ S= γ . SinceS is essential,γ bounds a cut surfaceE in S. SurgeringS
alongE′ then produces two surfaces, isotopic toE ∪ E′ andS′ = (S− E)∪ E′.

By Lemma 4.4 we may assumeE′ is an annulus. By Lemma 4.2 we may assume
E is also an annulus. IfE∪ E′ is essential, we are done. Otherwise there must be
a compressing bigonB for E∪ E′ (since the core loop ofE∪ E′ is not essential).
SurgeringE ∪ E′ alongB gives a diskD with ∂D ⊂ ∂MK bounding a diskD′ ⊂
∂MK . If the sphereD ∪ D′ is essential, the proof is complete by Lemma 4.1.
Otherwise we conclude thatE ∪ E′, together with an annulus of∂MK , bounds a
solid torus. If the interior of the solid torus is disjoint fromS thenS′ is properly
isotopic toS and we are done. IfS meets the interior of the solid torus we may
push it entirely into the solid torus. Now considerB ∩ S. Some component of
B− S is then a cut surface forS. This cut surface is either a disk or a bigon. By
Lemma 4.4 we may surgerS along this cut surface and obtain another essential
surface that meetsB fewer times. Continuing in this way we obtain an essential
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surface inside the solid torus that missesB, and is hence contained in a ball. This
is impossible. �

5. Proof of the Main Theorem

We recall the statement.

Theorem 5.1. Let K be a knot in a closed, orientable3-manifold M which is in
bridge position with respect to a Heegaard surface F. Let S be a properly embed-
ded, orientable, essential surface in MK . Then the distance of K with respect to F
is bounded above by twice the genus of S plus|∂S|.

We now begin the proof. Throughout we assume thatd(K , F) > 0 to avoid the
special cases of the lemmas from Section 4. Let60 and61 denote spines of the
handlebodies bounded byF . Let h : M → I denote a height function onM such
thath−1(0)=60 andh−1(1)=61. We require that for everyt ∈ (0,1) the surface
h−1(t) is parallel toF =h−1

(1
2

)
. BecauseK is in bridge position with respect toF

we may isotopeK so that each arc ofK − F has one critical point with respect to
h. Now pull each minimum down to60 and each maximum up to61. If M = S3

andF is a sphere we may assume thatK has at least two maxima and at least two
minima. In this case60 and61 are edges, and we assume that the vertices∂60

coincide with two minima ofK and the vertices∂61 coincide with two maxima.
Set F(t) = h−1(t)∩ MK . Let H(t) be the closure of the component ofMK −

F(t) that contains60. Let H ′(t) be the closure ofMK − H(t). Let ε0 be chosen
just larger than the radius ofN(K ), but small enough so thatS meetsH(ε0) and
H ′(1− ε0) in compressions forF(ε0) and F(1− ε0). Then the surfaceF(t) is
homeomorphic toFK = F ∩ MK for every value oft ∈ [ε0,1− ε0]. Hence, the
submanifold

⋃1−ε0
t=ε0

F(t) is homeomorphic toFK × [ε0,1− ε0]. Let π denote the
composition of such a homeomorphism with projection onto the first factor. Hence,
if γ is a curve onF(t) for somet ∈ [ε0,1− ε0], thenπ(γ ) is a curve onFK .

We make two types of assumptions on the position of the essential surfaceS.
Any surface whose position satisfies these assumptions we will say is instandard
position. The first concerns howS meets∂MK and the second is a genericity
assumption on the interior ofS. Near the boundary ofSwe assume the following:

• Meridional boundary components are “level”; that is, ifS has meridional
boundary, there exists for each boundary componentC of S a t ∈ (ε0,1− ε0)

such thatC ⊂ ∂F(t). We considert a critical value forS if some boundary
component ofS is contained in∂F(t).

• If Sdoes not have meridional boundary then for generict and each component
γ of ∂S−F(t) the endpoints ofγ lie on distinct boundary components ofF(t).
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F(t + ε)

F(t − ε)

∂MK

PC

Figure 2. A piece of S between levels,F(t − ε) and F(t + ε),
before and after a meridional boundary component,C.

These stipulations are possible since∂S is not null-homotopic on∂MK . In the
interior of MK we assume the position ofS is generic in the following sense:

• All critical points ofh|S are maxima, minima, or saddles. We will refer to any
such critical point whose height is betweenε0 and 1−ε0 and to any meridional
boundary component as acritical submanifold(of S).

• The heights of any two critical submanifolds ofS are distinct.

• Suppose a meridional boundary componentC of Shappens at heightt . Let P
denote the closure of the component ofS− F(t±ε) that hasC as a boundary
component. ThenP is a once-punctured annulus with one boundary compo-
nent on each ofF(t − ε) andF(t + ε) (see Figure 2). (This uses the fact that
∂MK is connected.)

Claim 5.2. For each t∈ [ε0,1− ε0] the submanifolds H(t) and H′(t) of MK do
not contain any essential surfaces.

Proof. Choose a basis3 of compressing disks and bigons inH(t) that cut it into
a ball. SupposeD ∈3. Let D′ be a cut surface component ofD−Q, whereQ is
some essential surface inH(t). By Lemma 4.4, compressingQ alongD′ yields an
essential surface that meetsD fewer times. Continuing in this way we produce an
essential surface inH(t) disjoint from3, and hence in a ball. This is impossible.

�

Definition 5.3. Let t0 be the supremum oft ∈ [ε0,1− ε0] such that some curve in
S∩ F(t) bounds a compression forF(t) in H(t). (The compression forF(t) need
not be a subsurface ofS.) Definet1 likewise with infimum instead of supremum
andH ′(t) instead ofH(t).
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Claim 5.4. The values t0 and t1 are well defined, and t0 > ε0.

Proof. To establish the claim it is enough to show that for some smallε > ε0 there
are curves inS∩ F(ε) and S∩ F(1− ε) that bound compressions forF(ε) and
F(1− ε) in H(ε) andH ′(1− ε), respectively.

There are essentially two cases. Suppose first the essential surfaceS is closed, or
has meridional boundary. IfS∩60 = ∅ thenS can be properly isotoped entirely
into H ′(ε), violating Claim 5.2. We conclude thatS∩60 6= ∅. F(ε) ∩ S then
contains a loop that bounds a compression forF(ε) in H(ε). On the other hand, if
Shas nonempty, nonmeridional boundary thenF(ε)∩Scontains an arc that bounds
a bigon compression inH(ε). This proves thatt0 is well defined andt0 > ε > ε0.
A symmetric argument showst1 is well defined. �

Claim 5.5. The value of t0 is less than1− ε0.

Proof. Supposet0 = 1− ε0. Let ε > ε0 be small enough that 1− ε is greater than
the height of the highest critical submanifold. Ast0 = 1− ε0 there is a curveα of
F(1− ε)∩ S that is essential inF(1− ε) but bounds a compression inH(1− ε).

Recall that the boundary ofShas been isotoped into standard position. It follows
that the components ofS∩ H ′(1− ε) are all disks and bigons. Hence,α bounds
compressions forF(1− ε) on both sides andd(K , F)= 0. �

Claim 5.6. If t0= t1 < 1− ε0 then d(K , F)= 1.

Proof. If t0 = t1 < 1− ε0 then for all sufficiently smallε there is a curve of
S∩F(t0+ε) bounding a compression inH ′(t) and a curve ofS∩F(t0−ε) bounding
a compression inH(t). But for ε sufficiently small the curves ofπ(S∩ F(t0+ ε))
can be made disjoint from the curves ofπ

(
S∩ F(t0− ε)

)
, becauseF and S are

orientable. This is basically identical to [Gabai 1987, Lemma 4.4]. �

Henceforth we assume thatε0 < t0 < t1 < 1− ε0.

Claim 5.7. If t∗ ∈ (t0, t1) is a critical value then for sufficiently smallε the curves of
π(F(t∗−ε)∩S) are at a distance of at most one from the curves ofπ(F(t∗+ε)∩S).

Proof. As in the proof of Claim 5.6, the curves ofπ(S∩F(t∗+ε)), for ε sufficiently
small, can be made disjoint from the curves ofπ(S∩F(t∗−ε)). The result follows
unless either of these are collections of inessential curves, and hence are not repre-
sented in0(FK ). However, if this is the case then all curves ofS∩ F(t∗+ ε) (say)
are inessential onS. By Lemma 4.5 a sequence of surgeries produces an essential
surface disjoint fromF(t∗+ ε), contradicting Claim 5.2. �

Claim 5.8. A component of F(t)∩S that is inessential on F(t) is inessential on S.

Proof. This follows directly from Lemma 4.3. �
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Now let t ∈ [ε0,1− ε0] be a regular value ofh|S. Pick a componentγ of
F(t)∩ S. The curveγ is mutually essentialif it is essential on bothF(t) andS,
mutually inessentialif it is inessential on both andmutualif it is mutually essential
or mutually inessential. Finally,γ is specialif it is inessential onSbut essential on
F(t). There are three kinds of special curves: loops that bound disks onS, loops
that cobound (with∂S) annuli in S, and arcs isotopic (via bigons) into∂S.

Claim 5.9. Suppose t is a regular value of h|S in [t0, t1]. Every curve of F(t)∩ S
is mutual.

Proof. Pick a regular valuet ∈ [ε0,1−ε0]. By Claim 5.8 we may assume that there
is a special curveγ in F(t)∩S. By definition,γ is essential onF(t) but inessential
on S. It follows that a componentE of S−γ is a cut surface. By Lemma 4.3 there
is a curve ofE∩F(t) that bounds a compression forF(t). This compression either
lies in H(t) or in H ′(t). SinceE ∩ F(t)⊂ S∩ F(t) we concludet /∈ [t0, t1]. �

Claim 5.10. If α is an arc component of F(t)∩ S and h(α)= t ∈ (t0, t1) thenα is
mutually essential.

Proof. By Claim 5.9 the only other possibility is thatα is mutually inessential. In
this case∂α is the boundary of some arcγ of ∂S− F(t). Also, ∂γ = ∂α lies on
the same component of∂F(t). This violates our assumption thatS is in standard
position. �

In h−1([t0, t1]) we see the usual four types of critical submanifolds forS: max-
ima, minima, saddles, and meridional boundary components. Suppose a critical
submanifold happening at heightt is a saddle or meridional boundary component.
Let P be the closure of the component ofS−F(t±ε) that contains the critical sub-
manifold. We callP a horizontal neighborhood(in S) of the critical submanifold.
Let ∂±P = P ∩ F(t ± ε). We say the critical submanifold att is specialif there
is some component of∂±P that is special. If the critical submanifold att is not
special, we say it isinessentialif some component of the closure ofS−P is a disk
andessentialotherwise. If the critical submanifold att is inessential, Claim 5.10
implies that there is a mutually inessential loop component of∂±P that bounds a
disk in S.

Claim 5.11. Suppose t∗ ∈ [t0, t1]. If there is a special critical submanifold at t∗
then t∗ = t0 or t1.

Proof. By definition, if a special critical submanifold happens att∗ there is a special
curveα in S∩ F(t∗−ε) or S∩ F(t∗+ε). Assuming the former, Claim 5.9 implies
t∗ − ε /∈ [t0, t1]. Hencet∗ = t0. If, on the other hand,α ⊂ F(t∗ + ε), we deduce
t∗ = t1. �
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Figure 3. ConstructingS′ from S. On the left two new critical
values are created. On the right four are created.

Lemma 5.12. Let t− and t+ be regular values in[t0, t1] such that every saddle
and every meridional boundary component of S in h−1(t−, t+) is inessential. Then
π(F(t−)∩ S) andπ(F(t+)∩ S) share a vertex in0(FK ).

Proof. Let {ti } be the critical values ofh|S lying in [t−, t+]. Chooser i slightly
greater than theti and letR= {r i } ∪ {t−+ ε}.

For everyr ∈ R surgerS in the following way. If S∩ F(r ) contains mutually
inessential curves, some such curve bounds a cut surface inF(r ). SurgerS along
this cut surface. After a sequence of such surgeries we obtain fromSa surface that
meetsF(r ) only in mutually essential curves, for allr ∈ R.

Set M ′ = h−1([t−, t+]). Let S′ be the intersection of the surgered surface with
M ′. Note thath|S′ , the height function restricted toS′, has either two or four new
critical values for every surgery performed. See Figure 3.

We say a surfaceV is vertical in M ′ if V = π−1(α)∩M ′, whereα is a properly
embedded one-manifold inFK . A vertical surfaceV is either a disk or an annulus.
We need the following claim to prove the lemma:

Claim 5.13. Each component S′′ of S′ is either

• a sphere or a meridional annulus, or

• properly isotopic into F(t−) or F(t+), or

• properly isotopic to a vertical surface V withπ(V) essential in FK .

Proof. If h|S′′ has no critical values,S′′ is isotopic to a vertical annulus or disk.
In this caseS′′ ∩ ∂M ′ must be essential by the construction ofS′. Note that this
kind of situation is the desired conclusion of the lemma at hand. Ifh|S′′ has only
critical values of even index (and no meridional boundary components) thenS′′ is
a boundary parallel disk or a sphere.
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We now assume thatS′′ contains a critical submanifold which is not a max or
min. The componentS′′ either contains a saddle or meridional boundary compo-
nent ofS, or it does not. Suppose the latter. It follows thatS′′ is either a meridional
annulus or a boundary parallel annulus (with one boundary component on∂MK ).

Now suppose thatS′′ contains a saddle or meridional boundary component ofS
at heightt∗. Let P be the closure of the component ofS′′− F(t∗±ε) that contains
this critical submanifold. (Note thatP is also a subsurface ofS sinceε is very
small.) Recall thatP is the horizontal neighborhood of the critical submanifold.
Let ∂±P= P∩F(t∗±ε). Since every critical submanifold ofS∩M ′ is inessential,
at least one loop component of∂±P bounds a disk inS(see the comment preceding
Claim 5.11).

Now suppose thatS′′ contains a meridional boundary component ofSat height
t∗. Let P be the corresponding horizontal neighborhood. Let∂±P = C1 ∪ C2,
whereC1 bounds a diskD in S. Hence,D ∪ P ⊂ S is a cut annulus and we see
thatC2 is also inessential inS. By Claim 5.9 theCi are inessential inF(t∗± ε). It
now follows from Lemma 4.2 thatC1 bounds a disk inF(t∗± ε) while C2 bounds
a cut annulus inF(t∗∓ ε). ThusS′′ is a meridional annulus.

We now assume thatS′′ contains no meridional boundary components ofS, and
hence contains a saddle. Suppose some such saddle has a horizontal neighborhood
P such that two components of∂±P are inessential. It follows that all three com-
ponents are inessential. If two bound disks, all three do. Therefore, by Lemma 4.2,
S′′ is a sphere. If one bounds a disk and the other two bound cut annuli thenS′′ is
a meridional annulus.

Finally, we assume thatS′′ contains no meridional boundary components and
that every saddlex has a horizontal neighborhoodPx with exactly one component
γx of ∂±Px inessential, bounding a disk inS (see Figure 4). By Claim 5.9 and
Lemma 4.2 it follows thatγx bounds a disk inS′′. HenceS′′ is either a union of
disks or a union of annuli. In the first caseS′′ is isotopic to a vertical disk. In

γx

x

Figure 4. Surgery near a saddle whose horizontal neighborhood
has exactly one inessential boundary component.
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the latter caseS′′ is either isotopic to a vertical annulus or is a boundary parallel
annulus. �

To complete the proof of the Lemma 5.12, suppose no component ofS′ meets
both boundary components ofM ′. By Claim 5.13, every component ofS′ meeting
F(t−) is boundary parallel inM ′. IsotopeF(t−) across these boundary parallelisms
to obtain a surfaceF ′ that intersects the surfaceS only in mutually inessential
curves. Some component ofF ′ − S is then a cut surface, which we may use to
surgerS. By Lemma 4.5 we obtain an essential surface that meetsF ′ in fewer
curves. Continuing in this fashion we obtain an essential surface disjoint fromF ′,
violating Claim 5.2.

We conclude that there is a componentS′′ ⊂ S′ meeting bothF(t−) andF(t+).
By Claim 5.13, thisS′′ must be isotopic to a vertical annulus or vertical disk with
essential boundary. The lemma is thus proved. �

We now complete the proof of Theorem 5.1. Note that whent ∈ [t0, t1] is a
regular value,π(F(t) ∩ S) is a properly embedded 1-manifold inFK (recall that
FK = F∩MK ). The distance between the loops and arcs ofπ(F(t0−ε)∩S) and of
π(F(t1+ε)∩S) in 0(FK ) is an upper bound for the distanced(K , F). By Lemma
5.12 and Claim 5.7 this number is bounded by the number of essential critical
submanifolds,e, plus the number of special critical submanifolds. By Claim 5.11
this latter number is at most two. We therefore concluded(K , F)≤ e+2.

We now bound the Euler characteristic ofS. Suppose an essential critical sub-
manifold happens att∗ and letP be its horizontal neighborhood inS. Note that
in all casesχ(P) = −1. (WhenP has vertical boundary compute its Euler char-
acteristic by doubling across the vertical boundary and taking half of the Euler
characteristic of the resulting surface. See, for example, the surface on the left in
Figure 4.) By the definition of an essential critical submanifold∂P−∂S is essential
in S. We conclude thatχ(S)≤−e.

Putting these facts together we conclude that

d(K , F) ≤ e+2 ≤ −χ(S)+2 = −(2−2g(S)− |∂S|)+2 = 2g(S)+ |∂S|.

6. Applications

We now present a few quick corollaries to Theorem 5.1.

Corollary 6.1. Suppose K is a knot in S3 whose distance is d(K , F) with respect
to a bridge sphere F. Then the genus of K is at least1

2

(
d(K , F)−1

)
.

Proof. The genus ofK is defined to be the smallest genus of all orientable spanning
surfaces forK . Such a spanning surface is essential and has exactly one boundary
component. Hence, an immediate application of Theorem 5.1 impliesd(K , F) ≤
2g(K )+1. �
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Corollary 6.2. If K is a knot whose distance is at least3 with respect to some
Heegaard surface, the complement of K is hyperbolic of finite volume.

Proof. If the distance is greater than two,MK is irreducible, atoroidal, anannular,
and has incompressible boundary. It follows from Thurston’s geometrization the-
orem for Haken manifolds thatMK is hyperbolic of finite volume. �

Definition 6.3. SupposeM is obtained by removing a neighborhood of a knotK
in S3 and gluing in a new solid torus to the resulting boundary component. Then
we say thatM was obtained byDehn surgeryon K .

Corollary 6.4. Suppose K is a knot in S3 whose distance is d(K , F) with respect
to a bridge sphere F. If a manifold M obtained by Dehn surgery on K contains an
incompressible torus T, then

∣∣∂(T ∩MK )
∣∣ is at least d(K , F)−2.

Proof. ChooseT so as to minimize|T∩K | in M . Let TK = T∩MK . follows from
the minimality assumption thatTK is essential. Theorem 5.1 says thatd(K , F) is
bounded above by twice the genus ofTK plus|∂TK |. But T is a torus, so the genus
of TK is one. �

Corollary 6.5. Suppose K is a knot in S3 whose distance with respect to some
bridge sphere is greater than its bridge number. Then a minimal bridge presenta-
tion for K is thin.

Proof. Let F be a bridge sphere for whichd(K , F) ≥ |K ∩ F |. If thin position
for K does not equal bridge position then by [Thompson 1997] there is a planar,
meridional, essential surfaceS in the complement ofK with fewer boundary com-
ponents than|K ∩ F |. Hence, by Theorem 5.1 the distanced(K , F) is at most
|∂S| ≤ |K ∩ F |. �
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ON THE BEHAVIOUR OF ∞-HARMONIC FUNCTIONS ON
SOME SPECIAL UNBOUNDED DOMAINS

TILAK BHATTACHARYA

We study nonnegative∞-harmonic functions defined on unbounded do-
mains, in particular the half-space and the exterior of the unit closed ball.
We prove that if such a function u vanishes continuously on the boundary
then in the first caseu is affine, and in the second caseu is radial and linear.
We also discuss growth rates in an infinite strip.

1. Introduction and statements of results

We study nonnegative∞-harmonic functions on unbounded domains with special
geometry, in particular the half-space and the exterior of the unit closed ball. We
consider functions that vanish on the boundaries while their behaviour at infinity is
left unspecified. One may view this work as a step towards understanding the kind
of growth rates possible for infinity-harmonic functions on unbounded domains.
An analogous result appears in [Crandall et al. 2001], where it is shown that an
∞-harmonic function bounded below by a plane is affine. This is related to the
conjecture that globally Lipschitz∞-harmonic functions onRn are affine; however
we do not attempt to prove this. The restriction on the sign plays a strong role in
this work and has been critical in obtaining estimates for growth rates. It is unclear
what happens if this restriction is removed.

Let u = u(x) be an∞-harmonic function defined on a (possibly unbounded)
domain�⊂ Rn, for n≥ 2. That is,u solves

1∞u(x)=
n∑

i, j=1

∂u

∂xi

∂u

∂x j

∂2u

∂xi ∂x j
= 0 for x ∈�

in the viscosity sense. We refer to [Bhattacharya 2002; 2004, Crandall and Evans
2001; Crandall et al. 1992; 2001] for definitions. For the most part we assume that
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u(x) ≥ 0 for x ∈ �, that the boundary∂� is smooth, and thatu is continuous up
to ∂�. Let O denote the origin inRn, and forx = (x1, x2, . . . , xn) ∈ Rn, set

|x| =
√∑n

i=1 x2
i .

Theorem 1.1(The infinite half-space).Let� = {x ∈ Rn
: xn > 0} be the infinite

half-space. Suppose u(x) ≥ 0 is∞-harmonic in� and vanishes continuously on
the hyperplane{xn = 0}. Then either u(x) = 0 for all x ∈ �, or there exists a
positive constant K> 0 such that u(x)= K xn for all x ∈�.

In this case, the sign restriction leads to linear growth rate in�. This also holds
when� is the exterior of a ball. In both cases, linear growth rate implies global
Lipschitz continuity. The truth of the conjecture mentioned earlier would then
imply Theorem 1.1. Solutions with unrestricted sign may have faster growth rates
as demonstrated by the well known example

u(x, y)= |x|4/3− |y|4/3

onR2, in the half planes bounded by|x| = |y|. It is not clear whether a growth rate
faster than4

3 is possible in general, or whether the imposition of a growth rate of
4
3 would imply thatu is of this type.

Let B(1,O) be the unit open ball inRn, centered atO, and let�=Rn
\B(1,O),

whereB(1,O) denotes the closure ofB(1,O).

Theorem 1.2(The exterior of a ball).Let u≥ 0 be∞-harmonic in�. Suppose
that u vanishes continuously on∂B(1,O). Then either u(x) = 0 for all x ∈ �, or
there exists a positive constant K such that u(x)= K (|x| −1) for all x ∈�.

While solutions are globally Lipschitz continuous, Theorem 1.2 would not fol-
low from the conjecture mentioned earlier. It is unclear if a faster growth rate is
possible when the sign restriction is removed. It would also be interesting to know
if Theorems 1.1 and 1.2 would follow for solutions with unrestricted sign but with
linear growth rate.

We also discuss the case of the infinite strip{x : 0 < xn < 1} and show that
any nontrivial solutionu(r ) grows faster than any integral power ofr , wherer
is the distance from thexn-axis. However, it is not clear if nontrivial solutions
exist (see Section 5). In this work, we make considerable use of the properties
proven in [Bhattacharya 2002; 2004; Crandall et al. 2001]. The devices mostly used
are monotonicity, the Harnack inequality, comparison, cone comparison and the
boundary Harnack inequality for flat boundaries. For discussion see [Bhattacharya
2002; Crandall et al. 2001]. Also see [Aronsson et al. 2004; Bhattacharya et al.
1989] for more information of the origins of such questions and issues related to
∞-harmonic functions.
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We have divided our work as follows. In Section 2, we introduce notations
needed in our work, and recall some preliminary results about∞-harmonic func-
tions. We prove Theorem 1.1 in Section 3, and the proof of Theorem 1.2 appears
in Section 4. Finally, in Section 5, we present a short discussion in the case of the
infinite strip.

2. Notations and Preliminaries

Let O be the origin inRn, let U denote the closure of a setU in Rn, and letEen

be the unit vector parallel to the positivexn-axis. Let B(r, P) denote the open
ball in Rn with center P and radiusr > 0, let �(r, P) denote the intersection
� ∩ B(r, P), let ∂(r, P) be ∂� ∩ B(r, P) and letE(r, P) be ∂B(r, P) ∩�. For
A= (A1, A2, A3, . . . , An)∈Rn, let xn(A)= An, let A′= (A1, A2, A3, . . . ., An−1),
let

|P−Q|n−1=

√∑n−1
i=1 (Pi−Qi )

2

and, for t ∈ R, let A+ t Een = (A′, An + t). For P ∈ Rn, let C(r, P) denote the
cylinder{x ∈ Rn

: Pn < xn < Pn+2r, |x−P|n−1 < r }. ThusC(r, P) has length 2r
and radiusr , and its axis is parallel to thexn-axis. LetF(r, P) denote the flat face
{x ∈Rn

: xn = Pn, |x−P|n−1<r } of C(r, P) which lies in the hyperplanexn = Pn.
We study the problem

1∞u(x)= 0 for x ∈�,

u(x)= 0 for x ∈ ∂�.

We assume thatu(x) ≥ 0 for x ∈ � unless otherwise stated, and that∂� will
be smooth andu continuous up to∂�. It is well known thatu is locally Lips-
chitz continuous in� (see [Bhattacharya 2002; Crandall et al. 2001; Jensen 1993;
Lindqvist and Manfredi 1995]) and has the cone comparison property, and we
make considerable use of these facts throughout this work. We now list a set of
facts about∞-harmonic functions.

We use the following version of the Harnack inequality [Bhattacharya 2002;
2004; Lindqvist and Manfredi 1995]: letu> 0 be∞-harmonic in�, and letδ > 0
be such that the set�δ = {x ∈ � : dist(x, ∂�) ≥ δ} is not empty. If P and Q
are points in�δ and the segmentP Q⊂ �δ, thenu(P)≥ e−|P−Q|/δu(Q). If P is
joined toQ by a smooth path in�δ, with arc lengthl (P, Q) then

(1) u(P)≥ e−l (P,Q)/δu(Q).

Monotonicity plays a crucial role here [Bhattacharya 2002, Lemma 3.6; 2004,
Lemma 3]. Letu ≥ 0 be∞-harmonic in�, and B(r, z) ⊂ �. For x ∈ B(r, z),
defined(x)= r −|x−z| = dist(x, ∂B(r, z)); if Eη is a unit vector and 0≤ s< t < r ,
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then

(2)
u(z)

r
=

u(z)

d(z)
≤

u(z+ sEη)

d(z+ sEη)
=

u(z+ sEη)

r − s
≤

u(z+ t Eη)

r − t
=

u(z+ t Eη)

d(z+ t Eη)
.

We will need a different version of (2). We takeu = 0 on∂�, and forz∈ Rn we
defineM(r, z)= sup�(r,z) u(x)= sup∂�(r,z) u(x).

Lemma 2.1. Let u≥ 0 be∞-harmonic in� and u|∂� = 0; suppose z∈ Rn, and
r >0 is such that�(r, z) is not empty. Let x, y∈�(r, z) be on the same radial line
through z, with |x−z|< |y−z|<r , and suppose that u(x)≤ l+(M(r, z)−l )|x−z|/r
for some l∈ R, and all x∈�(r, z). Then

M(r, z)− l

r
≤

M(r, z)−u(x)

r − |x− z|
≤

M(r, z)−u(y)

r − |y− z|
.

If z ∈� this holds with u(z) in place of l.

Proof. Fix x ∈�, setB(r, x, z)= B(r −|x−z|, x) andO(x, z, r )= B(r, x, z)∩�.
Forw ∈ O(x, z, r ) define

ω(w)= u(x)+
(M(r, z)−u(x))|w− x|

r − |x− z|
.

Thenu ≤ ω on ∂B(r, x, z)∩� and∂�∩ B(r, x, z), andu(x) = ω(x). By com-
parison,u≤ω in O(x, z, r ) [Barles and Busca 2001; Bhattacharya 2002; Crandall
et al. 2001; Jensen 1993]. Note thatO(x, z, r ) ⊂ �(r, z). The first inequality
follows trivially, and the second follows by takingw = y. Let z∈� and define

v(x)= u(z)+
(M(r, z)−u(z))|x− z|

r

in �(r, z). By comparison,u(x)≤ v(x) in �(r, z) and the claim follows. �

We recall the boundary Harnack inequality [Bhattacharya 2002]. LetP ∈ Rn

and s > 0. Suppose thatu1,u2 > 0 are∞-harmonic inC(8s, P), and vanish
continuously onF(8s, P). Then there exist constantsM1 andM2, independent of
s andui , such that for allx ∈ C(s, P),

(3) M1
u1(z)

u2(z)
≤

u1(x)

u2(x)
≤ M2

u1(z)

u2(z)
,

wherez= (P′, Pn+2s). We now assume that� is unbounded and show that non-
constant∞-harmonic functions, with unrestricted sign, have at least linear growth.
If u ≥ 0 and has linear growth in� then Lemma 2.3 implies global Lipschitz
continuity.

Lemma 2.2.Let u be∞-harmonic in� such that u|∂� = 0. Fix z∈ Rn and t≥ 0,
and defineδ = dist(z, �). Then
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(i) M(r, z) is convex in r, for all r ≥ δ, and

(ii) M(r, z)≥ M(δ, z)+
(
M(t, z)−M(δ, z)

)(r−δ
t−δ

)
for r > t > δ.

Proof. Setρ(x) = |x− z| and choosea,b andc such thatδ < a < c< b. As the
intersection∂B(a, z)∩ ∂� is not empty, by the maximum principle,

0≤ M(a, z)≤ M(c, z)≤ M(b, z).

Definev(x) = M(a, z)+
(
M(b, z)− M(a, z)

)
(ρ(x)− a)/(b− a) ≥ 0 for all x

in �(b, z) \�(a, z). Clearly, u ≤ v on ∂B(a, z) ∩� and on∂B(b, z) ∩�, and
u = 0≤ v on ∂�∩ (B(b, z) \ B(a, z)). By the cone comparison,u(x) ≤ v(x) for
all x ∈�(b, z) \�(a, z). Hence

sup
|x−z|=c

u(x)= M(c, z)≤ M(a, z)+
(
M(b, z)−M(a, z)

)
(c−a)/(b−a),

and convexity follows. Since
(
M(r, z)−M(a, z)

)
/(r −a) increases asr increases,

selectinga = δ andr > t > δ, a simple rearrangement yields part (ii). Note that
M(δ, z)= 0 if z∈ Rn

\�, andM(δ, z)= M(0, z)= u(z) if z∈�. �

Lemma 2.3. Let u≥ 0 be∞-harmonic in� and u|∂� = 0. If , for some z∈ �,
some C>0 and some a>0, M(r, z)≤Cr for all r ≥a, then u is globally Lipschitz
continuous in�, with Lipschitz constant C.

Proof. Fix x, y∈�. Forρ > 0, letv(w)= u(x)+
(
M(ρ, x)−u(x)

)
(|w− x|/ρ) in

�(ρ, x). Thenu≤v=M(ρ, x), on∂B(ρ, x)∩�. Also,u=0≤v on∂�∩B(ρ, x)
andu(x) = v(x). By comparison,u ≤ v in �(ρ, x). By the maximum principle,
M(ρ, x)≤ M(ρ+ |x− z|, z)≤ C(ρ+ |x− z|). Setw = y andρ > |x− y|, then

u(y)−u(x)

|x− y|
≤

M(ρ, x)−u(x)

ρ

≤
M(ρ+ |x− z|, z)−u(x)

ρ
≤ C

(
1+
|x− z|

ρ
−

u(x)

ρ

)
.

The claim follows by lettingρ→∞. �

3. The infinite half-space

Here� ⊂ Rn is the half-spaceH = {x ∈ Rn
: xn > 0} and H0 is the hyperplane

xn = 0. Alsou≥ 0 is∞-harmonic inH and vanishes continuously onH0. By the
Harnack inequality,u > 0 in H . We will prove thatu(x) = Cxn in H for some
C>0. This will be the consequence of several lemmas. ForP ∈Rn, it follows that
∂(r, P)=∂�∩B(r, P)=H0∩B(r, P) andE(r, P)=∂B(r, P)∩�=∂B(r, P)∩H .
Thus∂�(r, P)= ∂(r, P)∪E(r, P). If �(r, P) is not empty, then by the maximum
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principle

(4) M(r, P)= sup
�(r,P)

u(x)= sup
∂�(r,P)

u(x)= sup
E(r,P)

u(x) > 0.

If P ∈ H , then M(0, P) = u(P). We introduce some additional notation. For
S∈ H0, let

T(S)= {x : x = (S1, S2, . . . , Sn−1, t)= (S
′, t) for t ≥ 0}

be the straight ray inH , starting atS and parallel to thexn-axis. Setu(S+ t) =
u(S+ t Een) for t > 0, and letB(θ, S+ θ) be the ball of radiusθ > 0 centered at
S+ θ Een.

Lemma 3.1. Let u> 0 be∞-harmonic in H such that u|H0 = 0, and let xn > 0.
Then for every S∈ H0

(i) u(S+ xn)/xn is decreasing in xn and limxn↑∞ u(S+ xn)/xn = L(S,∞) <∞,

(ii) 0< limxn↓0 u(S+ xn)/xn = L(S,0) <∞, and

(iii) 0< L(S,∞)≤ L(S,0).

Moreover, there is a positive number L such that L(S,∞)= L for all S∈ H0.

Proof. Let S∈H0 and, forxn>0, consider the ballB=B(xn, S+xn). If 0< yn<xn

thenS+yn andS+xn lie in T(S). Also yn=dist(S+yn, ∂B) andxn=dist(xn, ∂B).
Monotonicity (2) implies thatu(S+xn)/xn≤u(S+yn)/yn. Thus the first assertion
follows and implies the second. Except for the finiteness ofL(S,0), the third
assertion follows from the first two. To show thatL(S,0) is finite, consider the
functionv(x)= M(1, S)|x−S| in �(1, S). Clearlyv(x)≥ u(x) on ∂�(1, S). By
comparison,u(x)≤v(x) in�(1, S) andu(S+xn)≤M(1, S)xn for 0≤xn≤1. Thus
0< L(S,0) ≤ M(1, S) <∞. We now show that theL(S,∞) are all equal. Take
xn> |S|, thenS+xn∈B(xn,O+xn) and dist(S+xn, ∂B(xn,O+xn))=xn−|S|. By
(2), u(O+ xn)/xn ≤ u(S+ xn)/(xn− |S|). ThenL(O,∞) ≤ L(S,∞) by letting
xn → ∞. Switch S with O to get equality. We employ the boundary Harnack
inequality (3) to show thatL > 0. We selectu1(x)= u(x) andu2(x)= xn. For all
s> 0, the cylinderC(8s,O) is contained inH ; (3) then implies that

M1
u(O+2sEen)

2s
≤

u(x)

xn
≤ M2

u(O+2sEen)

2s
for all x ∈ C(s,O).

Takes>0 large and fixt ∈ (0, s). The preceding inequalities yield, forx=O+t Een,

M1L = lim
s→∞

M1
u(O+2sEen)

2s
≤

u(O+ t Een)

t
≤ lim

s→∞
M2

u(O+2sEen)

2s
= M2L .

Letting t→0, it follows M1L ≤ L(O,0)≤M2L. It is clear that this estimate holds
for everyS∈ H . �
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Remark 3.2. Lemma 3.1 implies thatM1L ≤ b= supS∈H0
L(S,0) ≤ M2L <∞.

By the first part of Lemma 3.1, we have 0< Lxn ≤ u(x)≤ bxn for x ∈ H .

This remark and Lemma 2.3 imply thatu is globally Lipschitz continuous inH .
Thus there existsK > 0, independent ofx, y ∈ H , such that

(5) |u(x)−u(y)| ≤ K |x− y| for x, y ∈ H.

We now studyu on infinite strips inH . For a > 0, defineHa = {x : xn = a},
H(a)= {x : 0< xn < a}, and∂H(a)= H0∪ Ha. Define

(6) µ(a)= supHa
u(x) > 0 and F(a)= supH(a) u(x) > 0.

By Remark 3.2 and (5),µ(a) is bounded, andF(a) is bounded and increasing.

Lemma 3.3.Let u> 0 be as in Lemma 3.1. If µ(a) and F(a) are as defined in(6),

µ(a)= F(a) and µ(a)=3a,

where3= µ(1) and a> 0 is arbitrary.

Proof. By the Harnack inequality (1),F(a) cannot be attained in the interior of
H(a). If F(a) >µ(a), then there is a sequence{Pm}

∞

m=1 such that 0< xn(Pm) < a
for all m, |Pm| → ∞ and u(Pm) → F(a) > µ(a). We argue by contradiction.
For eachm, let Qm = (P′m,a) ∈ Ha, thenu(Qm) ≤ µ(a). By (5), we see that
u(Pm)−µ(a)≤ u(Pm)−u(Qm)≤ K

(
a− xn(Pm)

)
for all m. Thus, for largem,

(7) a− xn(Pm)≥
u(Pm)−u(Qm)

K
≥

3

4

F(a)−µ(a)

K
= A> 0.

For 0< θ < 1, let Rm(θ)= (P′m,a− θA) ∈ Ha−θA⊂ H(a). From (5), we see that
u(Pm)≤ K xn(Pm) and so, for allm,

(8)
F(a)

K
≤ lim inf

k→∞
xn(Pk)≤ lim sup

k→∞
xn(Pk)≤ a− A< xn(Rm(θ))= a− θA.

Fix θ ; then (7) and (8) imply that, for largem,

0< xn(Pm)≤ a− A< xn(Rm(θ))= a− θA,

lim sup
k→∞

∣∣Pk− Rk(θ)
∣∣= lim sup

k→∞

(
xn(Rk(θ))− xn(Pk)

)
≤ (a− θA)− F(a)/K ,

and

min
(
dist(Pm, ∂H(a)),dist(Rm(θ), ∂H(a))

)
≥min(θA, F(a)/K )= B> 0.
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By applying the Harnack inequality to the functionv(x) = F(a)− u(x), we now
see that

0= lim
m→∞

(
F(a)−u(Pm)

)
≥ exp

(
−
(
(a− θA)− F(a)/K

)
B

)
lim

m→∞

(
F(a)−u(Rm(θ))

)
≥ 0.

Thusu(Rm(θ))→ F(a) asm→∞. We show that this, together with (5), leads to
a contradiction. LetXm(θ)= (Rm(θ)

′,a); then (7) holds. That is, for largem,

θA= a− xn(Rm(θ))≥
u(Rm(θ))−u(Xm(θ))

K
≥

3

4

F(a)−µ(a)

K
= A> 0.

ThusF(a)= µ(a).
We now prove thatµ(a)=3a. Let b> a; we show thatµ(a)/a≥ µ(b)/b. By

the first part of Lemma 3.1,u(S+ a Een)/a ≥ u(S+ b Een)/b for all S∈ H0. Now
take the supremum of both sides. We claim thatµ(a) is convex ina. Let S∈ H0

and, for 0≤ s< t , setr = (s+ t)/2. Consider

vs,t(x)= µ(s)+
(
µ(t)−µ(s)

) |x−S| − s

t − s
≥ 0,

for all x ∈�(t, S)\�(s, S). Using the equalityF(a)=µ(a) and the cone compar-
ison we see thatu≤ vs,t in �(t, S)\�(s, S). Now we takex= S+ r Een to see that
µ(r )= supS∈H0

u(S+ r Een)≤
1
2

(
µ(s)+µ(t)

)
. Convexity follows. Sinceµ(0)= 0,

we see thatµ(a)/a is both increasing and decreasing as a function ofa — in other
words, it is constant. �

Proof of Theorem 1.1.It is clear that Theorem 1.1 would follow if we could show
that3 = L. For Q ∈ H0 and r > 0, set PQ(r ) = (Q′, r ). For 0≤ ε < 3, let
Q= Q(ε)∈ H0 be such thatu(PQ(ε)(1))≥3−ε=µ(1)−ε. We fix ε andQ, and
suppress the argumentε. By Lemma 3.1(i) we haveu(PQ(1))≤ u(Q+ xn)/xn for
0< xn < 1. Thus

(9) u(PQ(xn))= u(Q+ xn)≥ (3− ε)xn for 0< xn ≤ 1.

SinceM(0, Q) = 0, Lemma 2.2(i) and equation (4) imply thatM(r, Q)/r is in-
creasing. From (9)

M(1, Q)≥ u(PQ(1))≥3− ε and M(r, Q)≥ (3− ε)r for r ≥ 1.(10)

Forr >0, definet= t (ε, r ) byµ(t)=3t= (3−ε)r . LetT=T(r, ε)∈∂B(r, Q) be
such thatu(T)= M(r, Q). By Lemma 3.3 and (10),u(x) < µ(t) for all x ∈ H(t);
moreover

T ∈ ∂B(r, Q)∩ {x : xn ≥ t} and xn(T)≥ t =
(
1− ε

3

)
r.(11)
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Letϒ =ϒ(ε, Q) be the interior of the cone with vertexQ, axis parallel toEen and
half-angleθ = θ(ε, Q) = cos−1(1− ε/3). Clearly (11) implies thatT lies in the
intersectionϒ ∩ ∂B(r, Q). Since the pointsPQ(r ) andT lie on ∂B(r, Q), the arc
length of PQ(r )T , along a great circle, is at mostθr . The distance toH0 is at
leastt . Applying the Harnack inequality (1) tou(PQ(r )) andu(T) = M(r, Q),
and using (10), we see that forr > 1,

u(PQ(r ))≥ exp
(
−

θ

1−ε/3

)
M(r, Q)≥ exp

(
−

cos−1(1− ε/3)

1− ε/3

)
(3− ε)r,

and so

L = lim
r↑∞

u(Q+ r Een)

r
= lim

r↑∞

u(PQ(r ))

r
≥ exp

(
−

cos−1(1− ε/3)

1− ε/3

)
(3− ε).

Since this holds for allε > 0, it follows thatL ≥3 andu(x)=3xn for xn > 0. �

4. The exterior of a ball

Let � = Rn
\ B(1,O), and assume thatu > 0 andu|∂� = 0. We prove that

u= K (|x| −1) for someK > 0. Forr > 1 set

µ(r )= sup
|x|=r

u(x)= sup
B(r,O)\B(1,O)

u(x),

m(r )= inf
|x|=r

u(x) > 0.

(On the first line we have used the maximum principle.) Clearly,µ(1)=m(1)= 0.
Let Sn−1 be the unit sphere inRn, and for t > 1 andω ∈ Sn−1 set1(t, ω) =
u(tω)/(t −1).

Lemma 4.1.Let u> 0 be∞-harmonic inRn
\ B(1,O) and u|∂B(1,O) = 0. Letµ,

m and1 be as defined above. Then

(i) u(tω)/(t−1) decreases as t increases, andlimt→∞ u(tω)/(t−1)= L(ω)>0
for all ω ∈ Sn−1;

(ii) µ(2)= µ(t)/(t −1) for all t > 1, and L(ω)≤ µ(2) for all ω ∈ Sn−1;

(iii) m(t)/(t − 1) decreases as t increases, and L(ω) ≥ limt→∞m(t)/(t − 1) ≥
e−πµ(2) > 0, for all ω ∈ Sn−1;

(iv) there exists K> 0 such that, if min(t1,t2) > 4, max(t1,t2) < 10 min(t1,t2), and
α = cos−1

〈ω1, ω2〉 for ω1, ω2 ∈ Sn−1, then∣∣1(t1, ω1)−1(t2, ω2)
∣∣≤ K

(
|t1−t2|
t2−1

+α
)
.

Proof. Parts (i), (ii) and (iii) follow from (2) and are interrelated. Fixω ∈ Sn−1; for
t>1, consider the ballB(t−1, tω). If 1<s< t then dist

(
sω, ∂B(t−1, tω)

)
=s−1,
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and (2) impliesu(sω)/(s−1)≥u(tω)/(t−1). ThusL(ω)≥0 exists (for positivity
see part (iii)). Taking the supremum overω on both sides, we see thatµ(t)/(t−1)
decreases ast increases. Similarly,m(t)/(t − 1) decreases ast increases. By
Lemma 2.2,µ(t) is convex int ≥ 1 and sinceµ(1) = 0, µ(t)/(t − 1) increases
ast increases. Thusµ(t) is linear int − 1 and part (ii) follows. LetP(t), Q(t) ∈
∂B(t,O) be such thatu(P(t)) = µ(t) and u(Q(t)) = m(t). The arc length of
P(t)Q(t) along a great circle does not exceedπ t , and dist

(
P(t)Q(t), ∂B(1,O)

)
=

t −1. Applying the Harnack inequality (1),

u(tω)

t−1
≥

m(t)

t−1
=

u(Q(t))

t−1
≥

u(P(t))

t−1
exp

(
−π t
t−1

)
= µ(2) exp

(
−π t
t−1

)
.

Part (iii) follows by lettingt → ∞. To see (iv), fixω1 andω2 in Sn−1 and let
0≤ α = cos−1

〈ω1, ω2〉 ≤ π . Take min(t1, t2) > 4 andt1≤ t2≤ 10t1. The distance
from t1ω1 to t2ω2 is estimated by going fromt1ω1 to t1ω2 along a great circle, and
then fromt1ω2 to t2ω2. Settingδ = |t1− t2| + t1α andd = t1− 1 (the distance
to the boundary), the Harnack inequality impliesu(t1ω1) ≤ eδ/du(t2ω2). Set J =
max

(
u(t1ω1),u(t2ω2)

)
; then, for someK1= K1(µ(2)) > 0 andK = K (µ(2)) > 0,

1(t1, ω1)−1(t2, ω2)=
u(t1ω1)(t2− t1)

(t1−1)(t2−1)
+

u(t1ω1)−u(t2ω2)

t2−1

≤ µ(2)
|t2− t1|

t2−1
+ J

eδ/d−1

t2−1

≤ K1

(
|t2− t1|

t2−1
+
δ

d

)
≤ K

(
|t2− t1|

t2−1
+α

)
,

which proves part (iv). �

Remark 4.2. From Lemma 4.1, ifL =infω∈Sn−1 L(ω), thenL ≤ u(x)/(|x| − 1) ≤
µ(2) for all x ∈�. Also |L(ω1)− L(ω2)| ≤ µ(2)(eα −1)≤ C|ω1−ω2|.

Remark 4.3. As in Section 3, there is a ray throughO on whichµ(t) is attained
for every t > 1. To see this, letP(t) ∈ ∂B(t,O) be such thatu(P(t)) = µ(t),
and letω(t) = P(t)/|P(t)|. SinceSn−1 is compact, there is a sequence{tm}∞m=1
so thattm ↑∞, ω(tm)→ ω0, andθm = cos−1

〈ω(tm), ω0〉 → 0 asm↑∞. Setting
Qm= tmω0, the Harnack inequality (1) and Lemma 4.1 imply that

µ(2)=
u(P(tm))

tm−1
≥

u(Qm)

tm−1
≥

u(P(tm))

tm−1
exp

(
−θmtm
tm−1

)
= µ(2) exp

(
−θmtm
tm−1

)
for all m. ClearlyL(ω0)= µ(2) and the claim follows.

We now prove thatu(tω) = L(ω)(t − 1) for all ω ∈ Sn−1 and all t > 1 (see
Lemma 4.5). This depends on a comparison result, Lemma 4.4, involvingu and
a scaled version ofu, and uses the fact that the1(t, ω), for different values of
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ω, are comparable at large values oft . Now some notation for Lemma 4.4: fix
P ∈ ∂B(1,O). For ω ∈ Sn−1, let R1 = R1(ω) be the ray{O + sω, s ≥ 0}, and
R2= R2(ω) be the ray{P+ sω, s≥ 0}; also setQ= Q(ω)= O+ω ∈ ∂B(1,O).
For x ∈�, letω=ω(x)= (x−P)/|x−P|, thenx= P+|x−P|ω(x)∈ R2(w(x)).
We definey= y(x, P)= Q(ω(x))+ (x− P), so|y−Q| = |x− P|. We scalex as
follows: for θ >1, setxθ =xθ (P)= P+θ(x−P) andyθ = yθ (x, P)=Q+θ(x−P).
Theny, yθ ∈ R1(ω(x)) andx, xθ ∈ R2(ω(x)), andy− x = yθ − xθ = Q− P; thus
|y− x| = |yθ − xθ | ≤ 2. Now setuθ (x) = uθ (x, P) = u(xθ ) = u

(
P+ θ(x− P)

)
.

Clearly for fixedP andθ > 0, uθ (x) is∞-harmonic.

Lemma 4.4.Let u>0 be as in Lemma 4.1 and P∈ ∂B(1,O). For θ >1 and x∈�,
letω(x), R1, R2, Q, xθ , and yθ be as defined above. Set uθ (x)=uθ (x, P)=u(xθ );
if 1< s< θ , then uθ (x)≥ su(x) for all x ∈�. Then uθ (x)≥ θu(x) for all x ∈�.

Proof. This is done in four steps. FixP andθ > 1. We show that there existsρ > 1
such thatuθ (x) ≥ su(x) for all x ∈ ∂B(r,O) andr ≥ ρ. Comparison will then
imply the lemma.

Step 1: Properties of uθ . Clearly the set

Zθ = {x : uθ (x)= 0} =
{
|x− (1−1/θ)P| = 1/θ

}
lies in B(1,O). Thusuθ (x)≥ 0 on∂B(1,O). Since|Q| = |P| = 1, we have

(a) θ |x− P| −1≤ |xθ | ≤ θ |x− P| +1,

(b) |yθ | = θ |x− P| +1, and

(c) |x− P| −1≤ |x| ≤ |x− P| +1.

Thus dist(yθ , ∂B(1,O)) = |yθ | − 1 ≈ dist(xθ , ∂B(1,O)) = |xθ | − 1 when|x| is
large. From (a), (b) and the Harnack inequality,

u(yθ ) exp

(
−
|yθ − xθ |

θ |x− P|

)
≤ uθ (x)= u(xθ )≤ u(yθ ) exp

(
|yθ − xθ |

θ |x− P| −2

)
.

Fix ω and selectx, xθ ∈ R2(ω), andy, yθ ∈ R1(ω). Divide by |yθ | − 1 and note
that (a), (b), (c) and Lemma 4.1 imply that

(12) lim
x→∞

uθ (x)

|x| −1
= θL(ω) and lim

x→∞

u(x)

|x| −1
= L(ω),

since|yθ − xθ | = |P− Q|. The second conclusion follows by working similarly
with u, x andy.

Step 2.Fix 1< s< θ and letε1 > 0 andε2 > 0 be such thatε1+ ε2 < L(θ − s),
whereL = infω L(ω). ThenθL(ω)−ε1> sL(ω)+ε2 for all ω ∈ Sn−1. From (12)
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there is aρ = ρ(ε1, ε2, s, ω) > 0, such that for allx ∈ R2(ω) with |x| ≥ ρ,

uθ (x)

|x| −1
> θL(ω)− ε1 > sL(ω)+ ε2 >

su(x)

|x| −1
.(13)

In Step 3, we show that there is aρ such that (13) holds independently of the choice
of ω ∈ Sn−1.

Step 3.We first show that there is aρ >0 such that the first inequality in (13) holds
for all ω. Recall thatω=ω(v)= (v− P)/|v− P| for v ∈ ∂B(r,O). We prove that
the quantity

D(θ, r, v, ω, ε1)=
uθ (v)

|v| −1
− (θL(ω)− ε1)

is continuous inω and positive for larger , for all v ∈ ∂B(r,O). Let ω1 ∈ Sn−1

and let x lie in R2(ω1) ∩ ∂B(r,O), with r > 20; takeω2 close toω1 and let
z lie in R2(ω2)∩ ∂B(r,O). By Remark 4.2,θ |L(ω2)− L(ω1)| is small. Clearly,
max

(
|z−P|, |x−P|

)
≤ r+1. Noting thatzθ = P+θ(z−P) andxθ = P+θ(x−P),

we see that|zθ − xθ | = θ |x− z| ≤ θ(r + 5)α, whereα = cos−1
〈ω1, ω2〉. From (a)

and (c) in Step 1, we see that, for larger ,

θ(r −1)≈max(|xθ | −1, |zθ | −1)≥min(|xθ | −1, |zθ | −1)≈ θ(r −1).

By the Harnack inequality,uθ (z) = u(zθ ) ≥ uθ (x)exp
(
−α(r + 5)/(r − 1)

)
. Thus

uθ (x)≤ uθ (z)e25α/19. By Remark 4.2,uθ (v)= u(vθ )≤ µ(2)(|vθ | −1). Thus (12)
yields

(14)
|uθ (x)−uθ (z)|

|x| −1
≤

sup(uθ (x),uθ (z))

|x| −1
(e25α/19

−1)≤ θµ(2)(e25α/19
−1).

This and Remark 4.2 yield, for someC > 0 independent ofr ,

(15)
∣∣D(θ, r, x, ω1, ε1)− D(θ, r, z, ω2, ε1)

∣∣≤ Cθα

for x, z∈ ∂B(r,O) andr > 20. Fixω1, and letρ be such thatD(θ, r, x, ω1, ε1) >
1
2ε1 for all r ≥ ρ and x ∈ R2(ω1) ∩ ∂B(r,O). By (15), in a fixed smallω-
neighborhood, positivity ofD persists. The conclusion follows by the compactness
of Sn−1.

We now discuss the second inequality in (12). Letx ∈ R2(ω1)∩ ∂B(r,O) and
z∈ R2(ω2)∩ ∂B(r,O) with α small. Clearly

|u(x)−u(z)| ≤max
(
u(x),u(z)

)
e(r+5)α/(|r−1).
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Applying Remark 4.2, Lemma 4.1 and selectingr ≥ ρ to be large, we see that∣∣∣∣(sL(ω1)+ ε2−
su(x)

|x| −1

)
−

(
sL(ω2)+ ε2−

su(z)

|z| −1

)∣∣∣∣
≤ s
|u(x)−u(z)|

|x| −1
+ s|L(ω1)− L(ω2)| ≤ sµ(2)(e2α

−1)+ Ksα.

We again use the compactness ofSn−1.

Step 4.From Step 1,uθ ≥ 0= su on ∂B(1,O). From Step 3, withε1 andε2 as in
Step 2, and for allr ≥ ρ(ε1, ε2), we see thatuθ > su in ∂B(r,O). By comparison,
uθ ≥ su in B(ρ,O) \ B(1,O). This holds in all of�, and for all 1< s< θ . Thus
uθ (x)≥ θu(x) for all x ∈�. �

Next we show that Lemma 4.4 implies thatu is linear along rays throughO.

Lemma 4.5.For everyω ∈ Sn−1, let T(ω) be the ray{O+sω : s≥ 0}, and let P=
O+ω. Letθ > 1, and let u and uθ be as in Lemma 4.4. Then u(x)= L(ω)(|x|−1)
for all x ∈ T(ω)∩�.

Proof. Fix x, y∈ T(ω)∩� with |x−P|< |y−P|, and defineθ = |y−P|/|x−P|.
Theny= P+ θ(x− P)= xθ , and souθ (x)= u(xθ )= u(y). By Lemma 4.4,

u(y)= u(xθ )≥ θu(x)=
|y− P|

|x− P|
u(x), hence

u(y)

|y− P|
≥

u(x)

|x− P|
.

Since|x−P|= |x|−1 and|y−P|= |y|−1, Lemma 4.1(i) implies equality in these
equations. Sincex andy are arbitrary,u(z)= L(ω)(|z| −1) for all z∈ T(ω). �

We set�a = {x ∈ � : u(x) < a} for a > 0 and show, using Lemma 4.5, that
B(1,O)∪�a is convex. Forω ∈ Sn−1(O) andt > 1, setQ= Q(t, ω)= O+ tω.
Define the hyperplaneHt = Ht(ω) = {x : 〈x − Q, ω〉 = 0}, and the half-planes
H+t = H+t (ω) = {x : 〈x− Q, ω〉 > 0} and H−t = H−t (ω) = {x : 〈x− Q, ω〉 < 0}.
Then B(1,O) ⊂ H−t (ω). For a > 0, let t (a) = t (a, ω) = 1+ a/L(ω), and let
Qa = Qa(ω)= O+ t (a)ω.

Lemma 4.6.For a> 0, let S(a)=�a ∪ B(1,O). Then

(i) u(x)≥ L(ω)(〈x, ω〉−1)≥ L(ω)(t −1) for all x ∈ H+t (ω),

(ii) S(a)=
⋂
ω∈Sn−1 H−t (a)(ω) and Ht (a)(ω) is a supporting hyperplane to S(a) at

Qa, and O Qa ⊥ Ht (a)(ω), for all ω ∈ Sn−1. Clearly, S(a) is convex.

Proof. By Lemma 4.5,u(Q) = L(ω)(|Q| − 1) for all ω ∈ Sn−1. Also, Qa lies in
Ht (a)(ω), andu(Qa) = a. To prove part (i), setR(ω) = {O+ sω, s> 0} and let
r ≥ t . Fix x ∈ Hr (ω) ⊂ H+t (ω), and chooseP ∈ R(ω), with |P| large, such that
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|P|−1> |P−x|. Thenx lies in B(|P|−1, P), and by applying monotonicity (2)
along the rayPx, we see that

L(ω)= u(P)/(|P| −1)≤ lim
|P|→∞

u(x)/(|P| −1− |x− P|)= u(x)/(r −1)

for P ∈ R(ω). Sincer = 〈x, ω〉 > t , part (i) follows. We now prove part (ii). Fix
ω. Then, by Lemma 4.5,u(tω)< u(Qa)= a whenever 0≤ t < t (a)= 1+a/L(ω).
If A(a) =

⋃
ω∈Sn−1{tω : 1< t < t (a)}, thenu(x) < a for all x ∈ A(a). We show

that�a = A(a). Clearly, A(a) ⊂ �a, so supposex 6∈ A(a), and setω = x/|x|.
Then x = sω for somes ≥ t (a, ω), and x ∈ Ht (a)(ω) ∪ H+t (a)(ω). By part (i),
u(x)≥ a and henceA(a)=�a. Also A(a)∩ (Ht (a)(ω)∪ H+t (a)(ω))=∅ for all ω,
implying thatA(a)⊂ H−t (A)(ω). As x 6∈ A(a) implies thatx 6∈ H−t (a)(ω) for someω,

A(a)=
⋂
ω

(
H−t (a) \ B(1,O)

)
. By part (i),∂A(a)∩ Ht (a)(ω)= Qa(ω). ThusS(a)

is convex and∂S(a) =
⋃
ω{Qa(ω)} =

⋃
ω{
(
1+ a/L(ω)

)
ω}. Clearly Ht (a) is the

supporting hyperplane at everyQa ∈ ∂S(a). By the definition ofHt (a) it follows
that O Qa(ω)⊥ Ht (a)(ω) for all ω ∈ Sn−1. �

We now show that Lemma 4.6 implies that�a is a ball.

Proof of Theorem 1.2.Let F :R+×Sn−1
→Rn by F(a, ω)= O+(1+a/L(ω))ω.

Then by Lemmas 4.1 and 4.6, fora> 0 fixed, F is a bijective Lipschitz map, and
F(Sn−1)= ∂�a. Thus∂�a is connected andEF(ω)⊥ Ht (a)(ω). Letω1, ω2∈ Sn−1,
then Q1 = Qa(ω1) and Q2 = Qa(ω2) lie on ∂�a. Let5 be the two-dimensional
plane containingO, ω1 andω2, andC be ∂B(1,O) ∩5. Note thatQ1 and Q2

lie in 5. Let τ(s) ∈ ∂B(1,O) ∩5 be a smooth parametrization ofC such that
τ(0) = ω1 and τ(1) = ω2. The curveσ(s) = F(τ (s)) =

(
1+ a/L(τ (s))

)
τ(s)

in 5 ∩ ∂�a is Lipschitz continuous ins, andσ(0) = Q1 andσ(1) = Q2. Let
s0 ∈ [0,1] be a point of differentiability ofσ(s). Call 6(s) = Ht (a)(τ (s)); by
Lemma 4.6,6(s0) is the supporting hyperplane atσ(s0). Furthermore,6(s0) is
perpendicular toσ(s0), andσ(s) ∈ H−t (a)(τ (s0))∩5 for all s. Sinces0 is a point of
differentiability, a simple argument shows thatσ ′(s0) lies in6(s0)∩5, and hence
σ(s0) ⊥ σ

′(s0). Thus |σ(s0)|
′
= 0. Since this holds for almost everys ∈ [0,1],

Lipschitz continuity implies that|Q2| = |σ(1)| = |σ(s)| = |σ(0)| = |Q1|. Thus�a

is a ball andL(ω)=C for all ω ∈ Sn−1. The remainder of the proof follows from
Lemma 4.5. �

5. The infinite strip {0 < xn < 1}

Let � be the infinite strip{x : 0 < xn < 1}, let H(0) = {x : xn = 0}, and let
H(1) = {x : xn = 1}. We assume thatu is ∞-harmonic, thatu ≥ 0 in �, and
that u vanishes continuously onH(0) and H(1). For r > 0, defineD(r ) to be
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{x : |x′|n−1 < r, 0< xn < 1}, wherex′ = (x1, x2, . . . , xn−1) and

|x′|n−1=

√∑n−1
i=1 x2

i .

Set M(r ) = supD(r ) u(x), with the understanding thatM(0) = sup{x′=0}∩� u(x).
We setL(r ) = {x ∈ D(r ) : |x′| = r,0 ≤ xn ≤ 1}, the lateral boundary of the
cylinder D(r ). By the maximum principle,M(r ) is attained only onL(r ). Let
J(r )∈ L(r ) be such thatM(r )=u(J(r )). LetC(r, P) denote the truncated cylinder
{x : |x′− P′|n−1< r, Pn < xn < Pn+2r }. The functionue is the extension ofu to
all of Rn defined as follows. Set

ue(x
′, xn)=

{
u(x′, xn) for 0≤ xn ≤ 1,

−u(x′,−xn) for −1≤ xn ≤ 0,

and extend periodically with period 2. Thenue is∞-harmonic inRn; see [Bhat-
tacharya 2002].

Step 1.We first observe that there exists a universal constantK > 0 such that

(16) min
(
xn(J(r )),1− xn(J(r ))

)
≥ K for all r > 0.

Let T = T(r ) ∈ L(r ) ∩ H(0) and consider the cylinderC(1
2, T) ⊂ �. Since

xn(T)= 0 andu> 0 in C(1
2, T), the boundary Harnack inequality (3) withs= 1

16,
u1= u, u2= xn andz= T + 1

8Een = (T ′,
1
8) yields

(17) M1
u(z)

1/8
≤

u(x)

xn
≤ M2

u(z)

1/8
for all x ∈ C( 1

16, T).

Let P = (T ′, 1
2). Since |z − P|/zn = 3, the Harnack inequality implies that

u(z)e−3
≤ u(P)≤ u(z)e3. Thus (17) with new constantsM1 andM2 yields

(18) M1u(P)≤
u(x)

xn
≤ M2u(P) for all x ∈ C( 1

16, T).

Let E(T) =
{
x : |x − T |n−1 <

1
16, 0 < xn <

1
2

}
; if x ∈ E(T) \ C( 1

16, T) then
|x− P|/xn ≤ 16 and

u(P)e−16
≤ u(x)≤ u(P)e16.

Then (18), with newM1 andM2, implies that

M1u(P)≤
u(x)

xn
≤ M2u(P) for all x ∈ E(T),

sinceC( 1
16, T)⊂ E(T). From this we get

M1u(P)xn(J(r ))≤ M(r )≤ M2u(P)xn(J(r )),
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sinceJ(r ) ∈ L(r )∩ E(J ′(r ),0). Dividing by u(P) we see thatxn(J(r ))≥ 1/M2.
We argue similarly for dist(J(r ), H(1)), and (16) follows. Note that by the Har-
nack inequality,M(r )= u(J(r ))≤ e(r+1)/K u(J(0))= e(r+1)/K M(0). HenceM(r )
cannot grow faster than the exponential rate.

Step 2.We now show thatM(r ) is at least of the orderr c logr , for larger and for
somec> 0. We work withue(x); for r > 0, let T(r ) denote the line throughJ(r )
parallel to thexn-axis. Clearly,

sup
{x:|x′|n−1<r }

ue(x)= M(r ) and inf
{x:|x′|n−1<r }

ue(x)=−M(r ).

Let F(r ) =
(
J ′(r ),2− xn(J(r ))

)
. Thenu(F(r )) = −M(r ), sinceue arises from

the odd reflection ofu aboutxn = 1. Note that|J(r )− F(r )| ≤ 2(1− K ) = δ.
SinceM(2r )−ue(x)≥ 0 in {x : |x′|n−1< 2r }, applying the Harnack inequality to
ue(J(r )) andue(F(r )), we see thatM(2r )−M(r ) ≥ e−δ/r

(
M(2r )+M(r )

)
, and

hence that

(19) M(2r )≥
eδ/r +1

eδ/r −1
M(r ) for r > 0.

We employ iteration noticing that(eδ/r + 1)/(eδ/r − 1) ↑ ∞ asr increases. Let
ξ > 0, selectR= R(ξ) > 0 such that(eδ/r +1)/(eδ/r −1) > ξ for all r > R. Then
(19) implies thatM(2mR) ≥ ξmM(R) and M(r ) ≥ (r/R)logξ/ log 2M(R)/ξ . Also
M(2m+1δ)≥M(2mδ)(e1/2m

+1)/(e1/2m
−1). TakeN large, so thate1/2k

−1≤2/2k

for k ≥ N. Starting an iteration fromN, we get

M(2m+1δ)≥

( m∏
k=N

(
1+

2

e1/2k
−1

))
M(2Nδ)≥

( m∏
k=N

(1+2k)

)
M(2Nδ)

=

( m∏
k=N

2k
)( m∏

k=N

(1+2−k)

)
M(2Nδ)≥ C(N)2m2/2M(2Nδ).

SinceM(r ) is increasing, the right side is of the orderr c logr , for some universal
c> 0.

References

[Aronsson et al. 2004]G. Aronsson, M. G. Crandall, and P. Juutinen, “A tour of the theory of abso-
lutely minimizing functions”,Bull. Amer. Math. Soc.(N.S.) 41:4 (2004), 439–505. MR MR2083637
Zbl 02108961

[Barles and Busca 2001]G. Barles and J. Busca, “Existence and comparison results for fully nonlin-
ear degenerate elliptic equations without zeroth-order term”,Comm. Partial Differential Equations
26:11-12 (2001), 2323–2337. MR 2002k:35078 Zbl 0997.35023



ON THE BEHAVIOUR OF∞-HARMONIC FUNCTIONS 253

[Bhattacharya 2002]T. Bhattacharya, “On the properties of∞-harmonic functions and an applica-
tion to capacitary convex rings”,Electron. J. Diff. Equations101 (2002), 22 pp. MR 2003j:35126
Zbl 1037.35028

[Bhattacharya 2004]T. Bhattacharya, “On the behaviour of∞-harmonic functions near isolated
points”,Nonlinear Anal.58:3-4 (2004), 333–349. MR 2073529 Zbl 1053.31003

[Bhattacharya et al. 1989]T. Bhattacharya, E. DiBenedetto, and J. Manfredi, “Limits asp→∞
of 1pup = f and related extremal problems”,Rend. Sem. Mat. Univ. Politec. Torinospecial issue
(1989), 15–68. MR 93a:35049

[Crandall and Evans 2001]M. G. Crandall and L. C. Evans, “A remark on infinity harmonic func-
tions”, pp. 123–129 inProceedings of the USA-Chile Workshop on Nonlinear Analysis(Viña del
Mar and Valparaiso, 2000), Electron. J. Differ. Equ. Conf.6, Southwest Texas State Univ., San
Marcos, TX, 2001. MR 2001j:35076 Zbl 0964.35061

[Crandall et al. 1992]M. G. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions
of second order partial differential equations”,Bull. Amer. Math. Soc.(N.S.) 27:1 (1992), 1–67.
MR 92j:35050 Zbl 0755.35015

[Crandall et al. 2001]M. G. Crandall, L. C. Evans, and R. F. Gariepy, “Optimal Lipschitz exten-
sions and the infinity Laplacian”,Calc. Var. Partial Differential Equations13:2 (2001), 123–139.
MR 2002h:49048 Zbl 0996.49019

[Jensen 1993]R. Jensen, “Uniqueness of Lipschitz extensions: minimizing the sup norm of the
gradient”,Arch. Rational Mech. Anal.123:1 (1993), 51–74. MR 94g:35063 Zbl 0789.35008

[Lindqvist and Manfredi 1995]P. Lindqvist and J. J. Manfredi, “The Harnack inequality for∞-
harmonic functions”,Electron. J. Diff. Equations5 (1995), 5 pp. MR 96b:35025 Zbl 0818.35033

Received October 21 2003. Revised May 3 2004.

TILAK BHATTACHARYA

DEPARTMENT OFMATHEMATICS

PURDUE UNIVERSITY

WEST LAFAYETTE, IN 47907

tbhatta@math.purdue.edu



PACIFIC JOURNAL OF MATHEMATICS
Vol. 219, No. 2, 2005

TRANSVERSAL HOLOMORPHIC SECTIONS AND
LOCALIZATION OF ANALYTIC TORSIONS

HUITAO FENG AND X IAONAN MA

We prove a Bott-type residue formula twisted by
∧

(V∗) with a holomorphic
vector bundle V, and relate certain analytic torsions on the total manifold
to the analytic torsions on the zero set of a holomorphic section ofV.

Introduction

Beasley and Witten [2003], studying half-linear models, have described a com-
pactification on any Calabi–Yau threefoldY that is a complete intersection in a
compact toric varietyX. In particular, a remarkable cancellation involving the
instanton effect [Beasley and Witten 2003, (1.3)], involving certain determinants
of the∂-operator, was derived directly from a residue theorem. One would like to
understand its implications in mathematics, for example in Gromov–Witten theory.
Bershadsky, Cecotti, Ooguri and Vafa [Bershadsky et al. 1993; 1994] predicted that
the analytic torsion of Ray–Singer will play a role regarding the genus-1 Gromov–
Witten invariant. Thus we naturally try to understand the results about analytic
torsion first.

As an application of [Bismut and Lebeau 1991] and the localization formula
(1–3) in this paper, we were able to relate certain analytic torsions on the total
manifold with the zero set of a holomorphic transversal section ofV, generalizing
[Bismut 2004, Theorem 6.6] and [Zhang n.d.] withV=T X therein. We expect our
formula will be useful for understanding [Beasley and Witten 2003, (1.3)] from a
mathematical point of view.

This paper is organized as follows. In Section 1 we prove a Bott-type residue for-
mula. In Section 2 we get a localization formula for Quillen metrics. In Section 3
we get a localization formula for analytic torsions under extra conditions. In
Section 4, for the reader’s convenience, we write down six intermediate results,
corresponding to [Bismut and Lebeau 1991, Theorems 6.4-6.9].
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1. A Bott-type residue formula

In this section, along the lines of [Bismut 1986, §1], we give a Bott-type residue
formula (1–3) by assuming that the holomorphic section is transversal; compare to
[Beasley and Witten 2003, (2.32), (2.34)].

Let X be a compact complex manifold with dimX = n and letV be a holomor-
phic vector bundle onX with dim V= l . We assume that the line bundles detT X
and detV are holomorphically isomorphic. We fix a holomorphic isomorphism
φ :detV∗'detT∗X, which is clearly unique up to a constant. Thusφ defines a map
from theZ2-graded tensor product

∧
(T∗X) ⊗̂

∧
(V∗) to

∧
(T∗X) ⊗̂

∧max(T∗X)⊂∧
(T∗R X)⊗R C. We can define the integral of an elementα of �(X,

∧
(V∗)), the

set of smooth sections of
∧
(T∗X) ⊗̂

∧
(V∗) on X, by∫

X
α =

∫
X
φ(α).

Let v be a holomorphic section ofV on X. Assume thatv vanishes on a complex
manifoldY ⊂ X. Then∇v|Y : T X|Y→ V|Y mappingU to ∇Uv does not depend
on the choice of a connection∇ on V, and∇Uv|Y = 0 for U ∈ TY. Let N be the
normal bundle toY in X. Assume also that∇v|Y : N→ V|Y is injective, and there
is a holomorphic vector subbundleV1 on Y such that

(1–1) V|Y = V1⊕ Im∇v|Y.

Let PV1 andPIm∇v be the natural projections fromV onto V1 and Im∇v|Y.
Let i (v) be the standard contraction operator acting on

∧
(V∗). A natural ques-

tion, posed in [Beasley and Witten 2003, §2], is how to express
∫

X α using the
local data near the zero setY of v for a (∂X

+ i (v))-closed formα, that is, a form
satisfying(∂X

+ i (v))α = 0.
First we recall an idea due to Bismut [Bismut 1986]; see also [Zhang 1990].

Proposition 1.1.Letα ∈�(X,
∧
(V∗)) be a(∂X

+ i (v))-closed form. Then∫
X
α =

∫
X

e−(∂
X
+i (v))ω/tα for anyω ∈�(X,

∧
(V∗)) and t> 0.

Proof. For anyω ∈�(X,
∧
(V∗))

(1–2)
∫

X
∂Xω =

∫
X
φ(∂Xω)=

∫
X
∂Xφ(ω)=

∫
X

dφ(ω)= 0.

From(∂X
+ i (v))2= 0 and(∂X

+ i (v))α = 0, we have

∂

∂s

∫
X

e−s(∂X
+i (v))ωα =−

∫
X
(∂X
+ i (v))

(
ω e−s(∂X

+i (v))ωα
)
= 0,

and the desired equality follows. �
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Recall that∇v|Y : N→ Im∇v|Y is an isomorphism that induces isomorphisms
of holomorphic line bundlesφN = (det∇v|Y)∗ : det(Im∇v|Y)∗ → detN∗ and
φY = φ|Y/

(
(det∇v|Y)∗

)
: detV∗1→ detT∗Y. These two isomorphisms make the

integral
∫

N along the normal bundleN and
∫

Y well defined.
Let hV be a Hermitian metric onV such thatV1 and Im∇v|Y are orthogonal

on Y. Let gN
1 be a Hermitian metric onN such that∇·v|Y : N → Im∇v|Y is an

isometry. LetRV be the curvature of the holomorphic Hermitian connection∇V

on (V, hV). Let j : Y → X be the natural embedding, and{Yj } j the connected
components ofY. OnY, define

RV
v =−(∇·v)

−1PIm∇vRV( · , j∗·)P
V1· ∈ T∗Y ⊗̂ V∗1⊗EndN.

RV
v is well defined sincePIm∇vRV( j∗·, j∗·)PV1 = 0. Thus, forU ∈ TY, W ∈ V1,

u1,u2 ∈ N,〈
RV
v (U ,W)u1,u2

〉
gN

1
=−

〈
RV(u1,U )W,∇u2v

〉
=
〈
W, RV(u1,U )∇u2v

〉
.

Certainly detN((1+ RV
v )/2π i ) is ∂Y-closed.

The following result verifies a formula of Beasley and Whitney [2003, (2.32),
(2.34)] and generalizes corresponding results in [Zhang 1990], [Liu 1995] and
[Bott 1967].

Theorem 1.2.For any(∂X
+ i (v))-closed formα ∈�(X,

∧
(V∗)),

(1–3)
∫

X
α =

∑
j

∫
Yj

(−1)(l−n)(n−dimYj )α

detN
(
(1+ RV

v )/(−2π i )
) .

Proof. Set
S= 〈 · , v〉hV ∈ C∞(X, V∗).

By Proposition 1.1, for anyt ∈ ]0,+∞[,

(1–4)
∫

X
α =

∫
X

e−
1
2t (∂

X
+i (v))Sα =

∫
X

e−
1
2t (∂

X S+|v|2)α.

Thus, ast→ 0, the integral
∫

X α is asymptotically equal to
∫

U e−
1
2t (∂

X S+|v|2)α for
any neighborhoodU of Y.

Take y ∈ Y. SinceY is a complex submanifold, we can find holomorphic
coordinates{zi }

n
i=1 of a neighborhoodU of y such thaty corresponds to 0 and

{(∂/∂zi ) (0)}ni=m+1 is an orthonormal basis of(N, gN
1 ), and, moreover,

U ∩Y = {p ∈U, zm+1(p)= · · · = zn(p)= 0}.

Let {µk}
l ′
k=1 and{µk}

l
k=l ′+1 be holomorphic frames forV1 and Im∇v|Y onU∩Y,

with
∇

V
∂/∂zk(0)v = µk(0) for l ′+1≤ k≤ l ,
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and for z′ = (z1, . . . , zm), z′′ = (zm+1, . . . , zn), z = (z′, z′′), defineµk(z) by
parallel transport ofµk(z′,0) with respect to∇V along the curveu 7→ (z′,uz′′).
Identify Vz with V(z′,0) by identifyingµk(z) with µk(z′,0). Denote byWy(ε) the
ε-neighborhood ofy in the normal spaceN. Then

(1–5)
∫

Y∩U

∫
Wy(ε)

e−
1
2t (∂

X S+|v|2)α

=

∫
Y∩U

∫
z∈Wy(ε/

√
t)

e−
1
2t (|v(

√
tz)|2+(∂X S)(

√
tz))tn−mα(y,

√
tz).

Definez=
∑

j z j (∂/∂z j ) andz=
∑

j z j (∂/∂z j ) . The tautological vector field
is Z = z+ z. Then, forz∈ Ny,

1

2t
|v(
√

tz)|2=
1

2
|∇

V
z v|

2
+O(
√

t)=
1

2
|z|2+O(

√
t)

and

∂X S=
l∑

k=1

〈
µk,∇

V
·
v
〉
µk.

From now on, setz= (0, z′′) andZ = z+ z. Since∇V
Zµk(0)= 0, we know that

(1–6)
1

2t
∂X S(
√

tz)

=
1

2t

l∑
k=1

〈
µk,∇

V
·
v
〉
(
√

tz)µk(0)

=
1

2t

l∑
k=1

(〈
µk,∇

V
·
v
〉
(0)+

√
t
〈
µk,∇

V
Z∇

V
·
v
〉
(0)

+
t

2

(〈
∇

V
Z∇

V
Zµk,∇

V
·
v
〉
+
〈
µk,∇

V
Z∇

V
Z∇

V
·
v
〉)
(0)+O(t3/2)

)
µk(0).

Because of the factortn−m in (1–5), it should be clear that in the limit, only those
monomials in the vertical form

dzm+1∧ · · · ∧dzn ⊗̂µ
l ′+1
∧ · · · ∧µl

whose weight is exactlytm−n should be kept. Now,

∇
V
Z∇

V
∂/∂z j

v = RV
(

Z,
∂

∂z j

)
v+∇V

∂/∂z j
∇

V
Zv−1[m,n]( j )∇V

∂/∂z j
v,

∇
V
z ∇

V
∂/∂z j

v(0)= RV
(

z,
∂

∂z j

)
v+∇V

∂/∂z j
∇

V
z v = 0,
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where 1[m,n] is the characteristic function of the interval[m,n]. Note that∇V
=

∇
V1⊕∇

Im∇v on Y and that〈
µk,∇

V
z ∇

V
∂/∂z j

v
〉
(0)= 0 for 1≤ j ≤m,1≤ k≤ l ′.

It follows that in the expression

1

2
√

t

〈
µk,∇

V
Z∇

V
·
v
〉
(0)µk(0)

a nonzero contribution can only appear in the term

(1–7)
1

2
√

t

( m∑
j=1

l∑
k=l ′+1

+

n∑
j=m+1

l ′∑
k=1

)〈
µk,∇

V
z ∇

V
∂/∂z j

v
〉
(0)dz j

⊗µk(0).

Similarly, in the last term of (1–6), the only term with a nonzero contribution is

1

4

m∑
j=1

l ′∑
k=1

(〈
∇

V
Z∇

V
Zµk,∇

V
∂/∂z j

v
〉
(0)+

〈
µk,∇

V
Z∇

V
Z∇

V
∂/∂z j

v
〉
(0)
)

dz j
⊗µk(0).

But for 1≤ j ≤ m, both∇V
∂/∂z j

v(0) and∇V
∂/∂z j
∇

V
z ∇

V
z v(0) = ∇

V
∂/∂z j

(RV(z, z)v)(0)
vanish, sincev = 0 onY. Thus, for 1≤ j ≤m,

∇
V
Z∇

V
Z∇

V
∂/∂z j

v(0)= 2RV
(

z,
∂

∂z j

)
∇

V
z v(0)+∇

V
∂/∂z j
∇

V
z ∇

V
z v(0).

By the preceding discussion, ast→ 0, in (1–5), we should replace12t ∂
X S(y,

√
tz)

by the 2-form

1

2

l∑
k=1

〈
µk,∇

V
·
v
〉
(0)µk(0) +

√
t ×expression (1–7)

+
1

2

m∑
j=1

l ′∑
k=1

〈
µk, RV

(
z,

∂

∂z j

)
∇

V
z v+∇

V
∂/∂z j
∇

V
z ∇

V
z v

〉
(0)dz j

⊗µk(0).

SetβY = dz1 · · · dzm∧µ
1(0) · · ·µl ′(0), βN = dzm+1 · · · dzn ∧µ

l ′+1(0) · · ·µl (0),
φ(µ1(0) · · ·µl (0)) = f dz1 · · · dzn. Then

φY(µ
1(0) · · ·µl ′(0))φN(µ

l ′+1(0) · · ·µl (0))= f dz1 · · · dzn.

Thus
φ(βY ∧βN)= (−1)l

′(n−m) f dz1 · · · dzn∧dz1 · · · dzn

= (−1)(l
′
−m)(n−m)φY(βY)φN(βN).

Now, observing that
∫

C
zi e−|z|

2
dz dz = 0 for i > 0 and that∇V

·
v : (N, gN

1 ) →(
Im∇v, hIm∇v

)
is an isometry andl − l ′ = n−m, we find that the limit of (1–4)
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ast→ 0 is the sum overj of

(1–8)
∫

Yj

(−1)(l−n)(n−m) j ∗α
∫

N
exp

(
−

1

2

l∑
k=1

〈
µk,∇

V
·
v
〉
(0)µk(0)

−
1
2

〈
· , PV1 RV(z, j∗·)∇

V
z v
〉
(0)− 1

2|∇
V
z v|

2
)
.

The second integrand in this expression can be rewritten as

exp

(
−

1

2

n−m∑
i=1

dzm+i ∧µ
l ′+i (0)+ 1

2

〈
RV(z, j∗·)P

V1·,∇V
z v
〉
(0)− 1

2|z|
2
)

= exp
(

1
2

〈
(∇Vv)−1RV(z, j∗·)P

V1·, z
〉
−

1
2|z|

2
)(1

2

)l−l ′
dzm+1 dzm+1 · · · dzn dzn.

Thus the expression in (1–8) is equal to∫
Yj

(−1)(l−n)(n−m)α

detN
(
(1+ RV

v )/(−2π i )
) ,

which leads to (1–3). �

2. Localization of Quillen metrics via a transversal section

Let X be a compact complex manifold of dimensionn. Let V andξ be holomorphic
vector bundles onX with dim V = m, and letv be a holomorphic section ofV.
Assume thatv vanishes on a complex manifoldY ⊂ X and satisfies (1–1). Then
we have a complex of holomorphic vector bundles onX,

(2–1) 0→
∧m(V∗)

i (v)
−−→

∧m−1(V∗)
i (v)
−−→ · · ·

i (v)
−−→

∧1(V∗)
i (v)
−−→

∧0(V∗)→ 0.

Let
(
�(X,

∧
(V∗)⊗ ξ), ∂̄X

)
be the Dolbeault complex associated to the holo-

morphic vector bundle
∧
(V∗)⊗ ξ . Let Hv(X,

∧
(V∗)⊗ ξ) be the hypercohomolo-

gies of the bicomplex
(
�(X,

∧
(V∗)⊗ξ), ∂X, i (v)

)
. Let j :Y→ X be the obvious

embedding. Now the pullback mapj ∗ induces naturally a map of complexes

(2–2) j ∗ :
(
�(X,

∧
(V∗)⊗ ξ), ∂X

+ i (v)
)
→
(
�(Y,

∧
(V∗1)⊗ ξ), ∂

Y) .
Theorem 2.1.The map j∗ is a quasi-isomorphism of complexes. In particular, j ∗

induces an isomorphism

(2–3) Hv(X,
∧
(V∗)⊗ ξ)' H(Y,

∧
(V∗1)⊗ ξ).

Proof. In [Feng 2003] there is an analytic proof of this theorem whenV = T X.
There we used the twisted vector bundle

∧
(T∗X) and here

∧
(V∗) takes its place;

the proof works just the same. For an algebraic proof, we can modify the proof of
[Bismut 2004, Theorem 5.1]. �
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Let NX, NX
H be the number operators on

∧
(T∗X),

∧
(V∗) corresponding to

multiplication by p on
∧p(T∗X),

∧p(V∗); do the same replacingX by Y andV∗

by V∗1. Then NX
− NX

H and NY
− NY

H defineZ-gradings on�(X,
∧
(V∗)⊗ ξ)

and�(Y,
∧
(V∗1)⊗ ξ), which in turn induceZ-gradings onHv(X,

∧
(V∗)⊗ ξ) and

H(Y,
∧
(V∗1)⊗ ξ), respectively. The isomorphismj ∗ preserves theseZ-gradings.

From [Bismut and Lebeau 1991, (1.24)], we define the complex linesλv(V
∗)

andλ(V∗1) by

λv(V
∗)=

n⊗
p=−m

(
detHp

v (X,
∧
(V∗)⊗ ξ)

)(−1)p+1

,

λ(V∗1)=

n⊗
p=0

m⊗
q=0

(
detH p(Y,

∧q(V∗1)⊗ ξ)
)(−1)p+q+1

.

By (2–3), we have a canonical isomorphism of complex lines

λv(V
∗)' λ(V∗1).

Let ρ be the nonzero section ofλ(V∗1)
−1
⊗ λv(V

∗) associated with this canonical
isomorphism.

Let gT X be a Kähler metric onT X. We identify N with the bundle orthogonal
to TY in T X|Y. Let gTY andgN be the metrics onTY andN induced bygT X. Let
hξ be a Hermitian metric onξ . Let hV be a metric onV such thatV1 and Im∇v|Y
are orthogonal onY and∇v|Y : N→ Im∇v|Y is an isometry.

Let dvX be the Riemannian volume form on(X, gT X). Let 〈 · , · 〉0 be the met-
ric on

∧
(T∗X) ⊗̂

∧
(V∗)⊗ ξ induced bygT X, hV, hξ . The Hermitian product on

�(X,
∧
(V∗)⊗ ξ) is defined by

(2–4) 〈α, α′〉 =
1

(2π)n

∫
X
〈α, α′〉0 dvX for α, α′ ∈�(X,

∧
(V∗)⊗ ξ).

Let ∂X∗ andv∗∧= i (v)∗ be the adjoint of∂X andi (v) with respect to〈 · , · 〉. Set

V = i (v)+ i (v)∗, DX
= ∂X

+ ∂X∗.

By Hodge theory,

(2–5) Hv(X,
∧
(V∗)⊗ ξ)' Ker(DX

+V).

Denote byP be the operator of orthogonal projection from�(X,
∧
(V∗)⊗ξ) onto

ker(DX
+ V) and setP⊥ = 1− P. Let hHv be theL2-metric onHv(X,

∧
(V∗)⊗

ξ) induced by theL2-product (2–4) via the isomorphism (2–5). Define in the
same way a Hermitian product on�(Y,

∧
(V∗1)⊗ ξ) associated togTY, hV1, hξ .

Let ∂̄Y∗ be the adjoint of̄∂Y, andhH(Y,∧(V∗1)⊗ξ) the correspondingL2-metric on
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H(Y,
∧
(V∗1)⊗ ξ). Set

DY
= ∂Y

+ ∂Y∗.

Let Q be the orthogonal projection operator from�(Y,
∧
(V∗1)⊗ξ) on KerDY, and

Q⊥ = 1− Q. Let | · |λv(V∗) and | · |λ(V∗) be theL2-metrics onλv(V∗) andλ(V∗)
induced byhHv andhH(Y,∧(V∗1)⊗ξ). Following [Bismut and Lebeau 1991, (1.49)],
let

θ X
v (s)=−Trs

(
(NX
− NX

H )((D
X
+V)2)−sP⊥

)
.

Thenθ X
v (s) extends to a meromorphic function ofs∈ C, which is holomorphic at

s= 0.
The Quillen metric‖ · ‖λv(V∗) on the lineλv(V∗) is defined by

‖ · ‖λv(V∗) = | · |λv(V∗) exp

(
−

1

2

∂θ X
v

∂s
(0)

)
.

In the same way, the function

θY(s)=−Trs
(
(NY
− NY

H )(D
Y,2)−sQ⊥

)
extends to a meromorphic function ofs ∈ C, holomorphic ats= 0. The Quillen
metric‖ · ‖λ(V∗1) on the lineλ(V∗1) is defined by

‖ · ‖λ(V∗1)
= | · |λ(V∗1)

exp

(
−

1

2

∂θY

∂s
(0)

)
.

Let ‖ · ‖λ(V∗1)−1⊗λv(V∗) be the Quillen metric onλ(V∗1)
−1
⊗ λv(V

∗) induced by
‖ · ‖λv(V∗) and‖ · ‖λ(V∗1) as in [Bismut and Lebeau 1991, §1e].

The purpose of this section is to give a formula for‖ρ‖2
λ(V∗1)

−1⊗λv(V∗)
. Now we

introduce some notations.
For a holomorphic Hermitian vector bundle(E, hE) on X, we denote by Td(E),

ch(E), cmax(E) the Todd class, Chern character, and top Chern class ofE, and
by Td(E, hE), ch(E, hE), cmax(E, hE) the Chern–Weil representatives of Td(E),
ch(E), cmax(E) with respect to the holomorphic Hermitian connection∇E on
(E, hE).

Let δY be the current of integration onY. By [Bismut 1992, Theorem 3.6],
a currentc̃max(V, hV) on X is well defined by the holomorphic sectionv (which
induces an embeddingv : X→ V), and this current satisfies

(2–6)
∂̄∂

2π i
c̃max(V, h

V)= cmax(V1, h
V1)δY− cmax(V, h

V).

Let T̃d(TY, T X, gT X|Y) be the Bott–Chern current onY associated to the exact
sequence

(2–7) 0→ TY→ T X|Y→ N→ 0
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constructed in [Bismut et al. 1988a, §1f], which satisfies

∂̄∂

2π i
T̃d(TY, T X, gT X|Y)= Td(T X|Y, g

T X|Y)−Td(TY, gTY)Td(N, gN).

Finally, let R(x) be the power series introduced in [Gillet and Soulé 1991], which
is such that ifζ(s) is the Riemann zeta function, then

R(x)=
∑
n≥1
n odd

( n∑
j=1

1

j
ζ(−n)+2

∂ζ

∂s
(−n)

)
xn

n!
.

We identify R with the corresponding additive genus. We also set

ch(
∧
∗(V∗1))=

∑
i

(−1)i ch(
∧i (V∗1)),

and denote by ch(
∧
∗(V∗1), h

∧∗(V∗1)) its Chern–Weil representative.

Theorem 2.2.The Quillen metric‖ρ‖2
λ(V∗1)

−1⊗λv(V∗)
is given by the exponential of

(2–8) −
∫

X
Td(T X,gT X)Td−1(V,hV)c̃max(V,h

V)ch(ξ,hξ )

+

∫
Y

Td−1(N,gN) T̃d(TY,T X|Y,g
T X|Y)ch(

∧
∗(V∗1),h

∧∗(V∗1))ch(ξ,hξ )

−

∫
Y

Td(TY)R(N)ch(
∧
∗(V∗1))ch(ξ).

Proof. Set

(2–9) T(
∧
(V∗), h∧(V

∗))= Td−1(V, hV)c̃max(V, h
V).

By the same argument as in [Bismut et al. 1990, Theorem 3.17], the current

T(
∧
(V∗), h∧(V

∗))

is exactly the current onX associated to (2–1) (evaluated modulo irrelevant∂ or ∂
coboundaries).

Now, from the choice of our metrichV, the analogue of [Bismut and Lebeau
1991, Definition 1.21, assumption (A)] is satisfied for the complex (2–1). Then
we verify that as far as local index theoretic computations are concerned, the
situation is exactly the same as in [Bismut and Lebeau 1991]. Because of the
quasi-isomorphism of Theorem 2.1, there are no “small” eigenvalues of the op-
erator D + T V when T → +∞. In Section 3, we write down the intermediate
results corresponding to [Bismut and Lebeau 1991, §6c]. Comparing to [Bismut
and Lebeau 1991, §§6c–6e], the proof of Theorem 2.2 is complete. �
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Remark 2.3. Assume thatY consists only discrete points; thenl ≥ n and the
last two terms of (2–8) are zero. In this case, ifn = l , then (2–1) is a resolution
of j∗(OY) and Theorem 2.2 is a direct consequence of [Bismut and Lebeau 1991,
Theorem 0.1]. By [Bismut 1992, Theorem 3.2, Definition 3.5],c̃max(V, hV) is zero
if l > n+1.

3. L2 metrics on Hv(X,
∧

(V∗)) and localization

We keep the assumptions and notations of Section 2.
Let gT X be a Kähler metric onT X, and letgTY, gN be the metrics onTY, N

induced bygT X. Let hV be a metric onV such thatV1 and Im∇v|Y are orthogonal
on Y and∇v|Y : (N, gN)→ Im∇v|Y is an isometry.

Letφ1 :detV∗1→detT∗Y be a nonzero holomorphic section. LethV
1 be a metric

on V such that onY, V1 and Im∇v|Y are orthogonal and

|φ|detV⊗detT∗X,1= |φ1|detV1⊗detT∗Y,1= 1,

where| · |detV⊗detT∗X,1 and| · |detV1⊗detT∗Y,1 are the norms on the holomorphic line
bundles detV⊗detT∗X and detV1⊗detT∗Y induced byhV

1 andgT X.
We will add a subscript 1 to denote the objects induced byhV

1 . For

β ∈
∧p(T∗X) ⊗̂

∧q(V∗),

we define∗V,1β ∈
∧n−p(T∗X) ⊗̂

∧l−q(V∗) by

〈α, β〉1φ
−1(dvX)= α∧∗V,1β.

It’s useful to write down a local expression for∗V,1. if {wi
}
n
i=1 and{µi

}
l
i=1, are

orthonormal bases ofT∗X and(V∗, hV
1 ), then

dvX = (−1)n(n+1)/2(
√
−1)nw1

∧ · · · ∧wn
⊗̂w1

∧ · · · ∧wn

andφ−1(w1
∧ · · · ∧wn)= f µ1

∧ · · · ∧µl with | f | = 1. If

β = w1
∧ · · · ∧wp

⊗̂µ1
∧ · · · ∧µq,

then

∗V,1β = (−1)(n−p)q+n(n+1)/2(
√
−1)n f wp+1

∧ · · · ∧wn
⊗̂µq+1

∧ · · · ∧µl .

Thus∗V,1∗V,1β= (−1)(p+q)(n+l+1)β, for anyβ ∈
∧p(T∗X)⊗̂

∧q(V∗). Combining
this with (1–2), we find that

∂X∗β = (−1)p+q+1
∗
−1
V,1 ∂

X
∗V,1 β, (i (v))∗β = (−1)p+q+1

∗
−1
V,1 i (v) ∗V,1 β.

Thus the antilinear map∗V,1 is an isometry from
(
Hv(X,

∧
(V∗)), hHv

1

)
to itself.
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The bilinear form

(3–1) α, β ∈Hv(X,
∧
(V∗)) 7→

1

(2π)n

∫
X
α∧β

is nondegenerate; indeed,α ∈ Hv(X,
∧
(V∗)) implies∗V,1α ∈ Hv(X,

∧
(V∗)), so

α 6= 0 implies ∫
X
α∧∗V,1α > 0.

Thus the metric| · |λv(V∗),1 on λv(V∗) only depends on the nondegenerate bilinear
form (3–1) onHv(X,

∧
(V∗)), which is metric-independent.

Recall the definition of det∇v|Y from Section 1. Now,

φ|Y/((det∇v|Y)∗)

φ1

is a holomorphic function onY. SinceY is compact, this function is locally con-
stant. Then we have the following extension of [Bismut 2004, Theorem 5.7].

Theorem 3.1.

(3–2) log
(
|ρ|λ(V∗1)

−1⊗λv(V∗),1
)2
=

∫
Y

Td(TY) ch(
∧
(V∗1)) log

∣∣∣∣φ|Y/((det∇v|Y)∗)

φ1

∣∣∣∣.
Proof. We useφ1 to define the integral

∫
Y γ for γ ∈ H(Y,

∧
(V∗1)). Since

|φ1|detV1⊗detT∗Y,1= 1,

following the same considerations as above, we find that the antilinear operator
∗V1,1 mapsH(Y,

∧
(V∗1)) into itself isometrically. Therefore, to evaluate the left-

hand side of (3–2), we only need to compare the bilinear forms (3–1) with

a,b∈ H(Y,
∧
(V∗1)) 7→

1

(2π)m

∫
Y

a∧b.

Let Av ∈ EndevenH(Y,
∧
(V∗1)) be given by

(3–3) a→
(−1)(l−n)(n−m)a

(2π)n−m detN
(
(1+ RV

v )/(−2π i )
) φ|Y/((det∇v|Y)∗)

φ1
.

Set

detAv =
detAv|Heven(Y,∧(V∗1))

detAv|Hodd(Y,∧(V∗1))
;

then (
|ρ|λ(V∗1)

−1⊗λv(V∗),1
)2
= |detAv|.

Now, Av is a degree-increasing operator inH(Y,
∧
(V∗1)). Therefore it acts like a

triangular matrix whose diagonal part is just multiplication by the locally constant
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function
φ|Y/((det∇v|Y)∗)

φ1
. Using (3–3), we get

detAv =
(φ|Y/((det∇v|Y)∗)

φ1

)χ(Y,∧(V∗1))
.

But χ(Y,
∧
(V∗1))=

∫
Y Td(TY) ch(

∧
(V∗1)); thus we get (3–2). �

Let gN
1 be the metric onN such that∇v|Y : (N, gN

1 )→ (Im(∇v), hIm(∇v)
1 ) is

an isometry. LetT̃d−1(N, gN, gN
1 ) be the Bott–Chern class constructed in [Bismut

et al. 1988a, §1f] such that

∂̄∂

2π i
T̃d−1(N, gN, gN

1 )= Td−1(N, gN
1 )−Td−1(N, gN).

Finally, we can compute the analytic torsion on the total manifold via the zero set
of a transversal sectionv.

Theorem 3.2.If hV1
1 = hV1 on Y, then

(3–4) −
∂θ X
v,1

∂s
(0)+

∂θY

∂s
(0)=−

∫
X

Td(T X, gT X)Td−1(V, hV
1 )c̃max(V, h

V
1 )

+

∫
Y

(
Td−1(N, gN) T̃d

(
TY, T X|Y, g

T X|Y
)

+Td(T X, gT X) T̃d−1(N, gN, gN
1 )
)

ch
(∧
∗(V∗1), h

∧∗(V∗1)
)

−

∫
Y

Td(TY) ch(
∧
∗(V∗1))

(
R(N)+ log

∣∣∣∣φ|Y/((det∇v|Y)∗)

φ1

∣∣∣∣
)
.

Proof. SincehV1
1 =hV1, we have| · |λ(V∗1)=| · |λ(V∗1),1 and‖ · ‖λ(V∗1)=‖ · ‖λ(V∗1),1. Let

c̃h
(∧
(V∗), h∧(V

∗)
1 , h∧(V

∗)
)

be the Bott–Chern class constructed in [Bismut et al.
1988a, §1f], so that

∂̄∂

2π i
c̃h
(∧
(V∗), h∧(V

∗)
1 , h∧(V

∗)
)
= ch

(∧
(V∗), h∧(V

∗)
)
− ch

(∧
(V∗), h∧(V

∗)
1

)
.

Then by the anomaly formula [Bismut et al. 1988b, Theorem 1.23],

log
( ‖ · ‖2λv(V∗)
‖ · ‖

2
λv(V∗),1

)
=

∫
X

Td(T X, gT X) c̃h
(∧
(V∗), h∧(V

∗)
1 , h∧(V

∗)
)
.

By [Bismut et al. 1990, Theorem 2.5],

(3–5) T
(∧
(V∗), h∧(V

∗)
)
−T

(∧
(V∗), h∧(V

∗)
1

)
= ch

(∧
∗(V∗1), h

∧∗(V∗1)
)
T̃d−1(N, gN

1 , g
N)δY− c̃h

(∧
(V∗), h∧(V

∗)
1 , h∧(V

∗)
)
.

By (2–9), Theorems 2.2 and 3.1, and the preceding equations, the proof of Theorem
3.2 is complete. �
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Remark 3.3. If Y consists only of discrete points andn= l , thenφ1 = Id. In this
case letgdetN andgdetN

1 be the metrics on detN = detT X induced bygN andgN
1 .

By Remark 2.3 and Theorem 3.2,

−
∂θ X
v,1

∂s
(0)=−

∫
X

Td(T X, gT X)Td−1(V, hV
1 ) c̃max(V, h

V
1 )

+

∑
p∈Y

(1
2 log(gdetN/gdetN

1 )− log |φ/(det∇v|Y)
∗
|
)
.

Remark 3.4. If V = T X andv is a holomorphic Killing vector field, (3–4) is a
special case of [Bismut 1992, Theorems 6.2 and 7.7]. In this case,hV

1 = gT X,
and onY, we have a holomorphic and orthogonal splittingT X|Y = TY ⊕ N.
Thus T̃d(TY, T X|Y, gT X|Y) = 0. To computeT̃d−1(N, gN, gN

1 ), note thatgN
1 =

gN((∇v)·, (∇v)·), asA= (∇v)∗(∇v) is positive and self-adjoint; thus(A)s is well
defined fors∈[0,1]. TakinggN

s =gN((A)s·, · ), we obtain by [Bismut et al. 1988a,
Theorem 1.30]

T̃d−1(N, gN, gN
1 )=

∫ 1

0

〈
(Td−1)′(N, gN

s ), log A
〉
ds.

But ∇v is holomorphic, so the curvatureRN
s associated to the holomorphic con-

nection on(N, gN
s ) is RN

s = RN for s∈ [0,1]. Thus

(3–6) T̃d−1(N, gN, gN
1 )=

〈
(Td−1)′(N, gN), log A

〉
.

Now

(3–7) Td(T X, gT X) T
(∧
(T∗X), h∧(T

∗X))
= c̃max(T X, gT X)

is an(n−1,n−1)-form on X.
In this case, we get easily the special case of [Bismut 2004, Theorem 4.15]

directly from [Ray and Singer 1973] by using Poincaré duality:

(3–8)
∂θY

∂s
(0)= 0.

From (3–4), (3–6), (3–7), and the vanishing of the constant terms ofR(N) and
Td′

Td (N, g
N)− 1

2, we get

−
∂θ X
v,1

∂s
(0)=

∫
Y

cmax(TY)

(
R(N)−

〈Td′

Td
(N, gN)− 1

2, log A
〉)
= 0.(3–9)
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4. Appendix: six intermediate results

In this section, to help readers understand how to obtain Theorem 2.2, we write
down the corresponding intermediate results from [Bismut and Lebeau 1991, The-
orems 6.4-6.9].

Let ∇∧(V
∗) be the connection on

∧
(V∗) induced by∇V∗ . SetCu = ∇

∧(V∗) +
√

uV. Let B2
T2 and Trs

(
NY

H exp(−B2
T2)
)

be the operator and the generalized trace
associated to the complex (2–7) as in [Bismut and Lebeau 1991, §5]. Let8 be the
homomorphism from

∧even(T∗R X) into itself which toα ∈
∧2p(T∗R X) associates

(2π i )−pα.

Theorem 4.1.For any u0 > 0, there exists C> 0 such that for u≥ u0, T ≥ 1,∣∣∣Trs
(
NX

H e−u(DX
+T V)2)

−Trs
(
(1

2 dim N+ NY
H )e
−uDY,2)∣∣∣≤ C

√
T
,∣∣∣Trs

(
(NX
− NX

H )e
−u(DX

+T V)2)
−Trs

(
(NY
− NY

H )e
−uDY,2)∣∣∣≤ C

√
T
.

Theorem 4.2.Let P̃T be the orthogonal projection operator from�(X,
∧
(V∗)⊗ξ)

to Ker(DX
+T V). There exist c> 0 and C> 0 such that, for any u≥ 1 and T≥ 1,∣∣∣Trs
(
(NX
− NX

H )e
−u(DX

+T V)2)
−Trs

(
(NX
− NX

H )P̃T
)∣∣∣≤ ce−Cu,

Theorem 4.3. There exist C> 0 andγ ∈ ]0,1] such that, for any u∈ ]0,1] and
0≤ T ≤ 1/u,∣∣∣∣Trs

(
NX

H e−(uDX
+T V)2)

−

∫
X

Td(T X, gT X)8Trs
(
NX

H e−C2
T2
)∣∣∣∣≤ C(u(1+ T))γ .

There exists a constant C′ > 0 such that for u∈ ]0,1] and0≤ T ≤ 1,∣∣∣Trs

(
NX

H e−(uDX
+T V)2

)
−Trs

(
NX

H e−(uDX)2
)∣∣∣≤ C′T.

Theorem 4.4.For any T> 0,

lim
u→0

Trs
(
NX

H e−(uDX
+(T/u)V)2)

=

∫
Y
8Trs

(
NY

H e−B2
T2
)

ch
(∧
(V∗1), h

∧(V∗1)
)

ch(ξ, hξ ).

Theorem 4.5. There exist C> 0 and δ ∈ ]0,1] such that, for any u∈ ]0,1] and
T ≥ 1, ∣∣∣Trs

(
NX

H e−(uDX
+(T/u)V)2)

−Trs
(
(1

2 dim N+ NY
H )e
−uDY,2)∣∣∣≤ C

T δ
.

Let | · |2λv(V∗),T be theL2-metric onλv(V∗) induced bygT X, T2hV as in (2–5).
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Theorem 4.6.As T→+∞,

log

(
| · |

2
λv(V∗),T

| · |
2
λv(V∗)

)
=− log |ρ|2

λ(V∗1)
−1⊗λv(V∗)

+Trs
(
(dim N+2NY

H )Q
)

logT +O
( 1

T

)
.
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CONVEXITY OF THE FIGURE EIGHT SOLUTION TO THE
THREE-BODY PROBLEM

TOSHIAKI FUJIWARA AND RICHARD MONTGOMERY

The Newtonian three-body problem with equal masses has a remarkable
solution where the bodies chase each other around a planar curve having
the qualitative shape and symmetries of a figure eight. Here we prove that
each lobe of this curve is convex.

1. Introduction

The figure eight is a recently discovered periodic solution to the Newtonian three-
body problem in which three equal masses traverse a single closed planar curve
in the form of an 8 (Figure 1). See [Moore 1993; Chenciner and Montgomery
2000]. The curve has one self-intersection, the origin, which divides it into two
symmetric lobes. In [Chenciner and Montgomery 2000] it was proved that each
lobe is star-shaped. Here we prove the lobes are convex. (A computer proof based
on interval arithmetic appears in [Kapela and Zgliczyński 2003].)

Theorem 1.Each lobe of the eight solution is a convex curve.

In the final section we describe how the theorem generalizes to prove the con-
vexity of eights for many three-body potentials besides Newton’s.

2. Preliminaries

We present a number of properties of the eight established in [Chenciner and Mont-
gomery 2000] and three assertions relating mechanics and plane geometry. The
convexity proof relies on these properties and assertions.

Center of Mass.Write q1(t),q2(t),q3(t) for the location of the three masses in
the plane at timet . At each timet we haveq1(t)+q2(t)+q3(t)= 0.

MSC2000:70F07.
Keywords: figure-eight, convexity, Newtonian potential.
The authors thank AIM/ARCC for funding a workshop in celestial mechanics where the authors met.
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Symmetry.Write Ry(x, y)= (−x, y) for the reflection about they axis. Then the
eight solution enjoys the following symmetries:(

q1(t),q2(t),q3(t)
)
=
(
Ry
(
q3(t −

1
6T)

)
, Ry

(
q1(t −

1
6T)

)
, Ry

(
q2(t −

1
6T)

))
,(

q1(t),q2(t),q3(t)
)
=
(
−q1(−t),−q3(−t),−q2(−t)

)
.

The right-hand side of these equations defines transformationss andσ on the space
of all T-periodic loops. These transformations generate an action of the dihedral
group

D6= {s, σ | s
6
= 1, σ 2

= 1, sσ = σs−1
},

the symmetry group of a regular hexagon, which is consequently a symmetry group
of the eight.

Invariance unders2
∈ D6 implies that

(
s2(q1,q2,q2)

)
(t)=

(
q1(t),q2(t), q3(t)

)
.

Settingq = q1 this last equation reads

(1) q1(t)= q(t), q2(t)= q
(
t + 1

3T
)
, q3(t)= q

(
t + 2

3T
)
.

A choreographyis a three-body solution satisfying (1). The curveq(t) is the curve
of the eight whose lobes are the subject of Theorem 1.

The D6-invariance of the figure eight implies that it is completely determined
by the three arcsq1

(
[−

1
12T,0]

)
, q2

(
[−

1
12T,0]

)
, q3

(
[−

1
12T,0]

)
swept out by the

three masses over the time interval[− 1
12T,0]. To prove Theorem 1 it is enough

to prove that the curvatures of these three arcs are never zero(with the exception
of the pointq1(0), the self-intersection point of the eight, which is taken to be the
origin).

A configuration(q1,q2,q3) satisfyingq1+ q2+ q3 = 0 is called anEuler con-
figuration if one of theqi vanishes. Then necessarily the other two massesq j ,qk

are of the formζ,−ζ , so that the entire configuration(q1,q2,q3) is collinear with
massi at the origin located at the midpoint of the segment defined by the other two
massesj andk. Upon translating time if necessary, and relabeling the masses, we
can insist that at time 0 the configuration is an Euler configuration with mass 1 at
the origin and 3 in the first quadrant, as indicated in Figure 1. At the initial time
t = − 1

12T the three masses form an isosceles triangle, with mass 2 at the vertex
and lying on the negativex-axis.

The eight minimizes the usual action of mechanics (integral of the kinetic minus
potential energy) among allT-periodic loops enjoyingD6 symmetry. Equivalently
[Chenciner and Montgomery 2000] the path

(
q1(t),q2(t),q3(t)

)
of the eight over

the fundamental time interval
[
−

1
12T,0

]
minimizes the action among all paths

starting at time− 1
12T in an isosceles configuration with 2 being the vertex and

ending at time 0 in an Euler configuration with 1 being the origin. An impor-
tant consequence of minimization, proved in [Chenciner and Montgomery 2000,
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2s

2e

3e

3s

1s

1e

Figure 1. The eight. The labels 1s and 1e represent the location
of mass 1 att =− 1

12T andt = 0, and likewise for 2 and 3.

pp. 896–897], is that there are no times in the fundamental domain besides the
endpoints at which the configuration is either collinear or isosceles. It follows that,
for all t ∈

(
−

1
12T,0

)
,

(2) r13< r12< r23

and

(3) q1∧q2= q2∧q3= q3∧q1 < 0,

wherer i j = |qi −q j | is the distance between massesi and j and we write

(x, y)∧ (u, v)= xv− yu

for planar vectors(x, y) and (u, v). We call equation (2) thedistance ordering
inequality.

Initial and final velocities. At the Euler time,t = 0, the velocities of 2 and 3 are
antiparallel to the velocity of 1 and half its size. See Figure 1. This follows from
the action minimization of the eight. At the isosceles timet =− 1

12T , the velocity
of 2 is vertical, pointing down, and the velocities of 1 and 3 are such that their
tangent lines pass through 2. This follows from the three-tangents theorem and the
angular momentum property, both of which are described below.

Angular momentum and star-shapedness.Write

` j = q j ∧ q̇ j

for the angular momentum of thej -th particle. Action minimization of the eight
implies that its total angular momentum is zero:

`1+ `2+ `3= 0
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1
4T 1

2T 3
4T T

1e 1e

2s

2e

1s 1s3s

3e

Figure 2. `(t) versust .

of the eight. Newton’s equations imply (see [Chenciner and Montgomery 2000,
p. 896])

˙̀3=

(
1

r 3
13

−
1

r 3
23

)
(q1∧q2)

for all time. Upon taking account the distance inequality (2) and (3) we find that
˙̀3 < 0 on the arc 3. Similarly,

˙̀1 > 0, ˙̀2 > 0, ˙̀3 < 0.

We use the notation 1s to indicate body 1 at the starting timet = − 1
12T , etc. By

the symmetry,̀ 1s = `3s = −2`2s < 0. (The inequalities̀ 1s < 0 and`1e = 0 are
consistent witḣ̀ 1> 0.) Also`2s > 0 and ˙̀2> 0 imply `2e=−`3e > 0. (See Figure
2.) Therefore over the interior(− 1

12T,0) of our fundamental domain we have

`1 < 0, `2 > 0, `3 < 0.

More generally, set

`= q∧ q̇

asq varies over the eight. It follows that on the right lobe (x > 0) we have

` < 0 for x > 0.

(See Figure 2.)
A curve in the plane is calledstar-shapedwith respect to the origin if every

ray from the origin intersects the curve at most once. For a smooth curve, this is
equivalent to the assertion that, when written in polar coordinates as(r (t), θ(t)),
the functionθ(t) is strictly monotone and does not vary by more than 2π . Since
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` = r 2θ̇ the star-shapedness of a curve (such as one lobe of the eight) which lies
in the half-planex > 0 is thus equivalent tò 6= 0.

The three-tangents theorem.The following theorem can be found in [Fujiwara
et al. 2003], where it was used to establish the existence of a choreographic three-
body lemniscate for a non-Newtonian potential.

Theorem 2(Three tangents).Let(q1(t),q2(t),q3(t)) be three planar curves whose
total linear and total angular momentum are zero. Then the three instantaneous
tangent lines to these three curves are coincident — they all three intersect in the
same(time-dependent) point or are parallel.

Proof. Fix the timet . Becausėq1+ q̇2+ q̇3 = 0, translating all theqi in the same
fixed direction does not change the condition of having zero angular momentum.
So, without loss of generality, we can choose the origin to be the point of inter-
section of the tangent lines toq1 andq2 at time t . Because the pointq1(t) lies
along the line through the origin in the directionq̇1 we haveq1(t) ∧ q̇1(t) = 0.
Similarly q2(t)∧ q̇2(t) = 0. But the total angular momentum is zero so we must
haveq3(t)∧ q̇3(t)= 0 which asserts that the line tangent to the curve ofq3 at t also
passes through the origin. �

The proof also works for unequal massesm1,m2,m3. Simply use the correct
mass-weighted formulae for linear and angular momentum.

The splitting lemma.We will use the following splitting lemma in several places
in the proof. A line in the plane divides the plane into three pieces: two open
half-planes and the line itself. We say that a point liesstrictly on one sideof the
line if it lies in one of the open half-planes. We say that this linesplits the points
A andB of the plane if the two points lie in opposite open half-planes.

Lemma 1. Let (q1(t),q2(t),q3(t)) be a planar solution to Newton’s three-body
equation with attractive1/r potential. Suppose that at time t∗ the arc qi (t) of mass
i has an inflection point and nonzero speed. Then the tangent linè to this arc at
time t∗ must either(A) split the other two masses qj (t∗) and qk(t∗) or (B) all three
masses must lie on this tangent line.

Proof. Suppose, to the contrary, that either bothq j (t∗) andqk(t∗) lie strictly on one
side of`, or that one lies oǹ while the other lies strictly on one side. According to
Newton’s equations the accelerationq̈i (t∗) is a linear combination ofq j (t∗)−qi (t∗)
andqk(t∗)−qi (t∗) and the coefficients of this linear combination are positive. Thus,
translating` and the configuration of masses back to the origin by subtracting
qi (t∗), we see that this acceleration lies strictly on one side of the line through
0 spanned by the velocitẏqi (t∗). Consequently, the acceleration and velocity of
qi (t) arelinearly independentat t∗. But the condition of being an inflection point
is precisely that the acceleration and velocity be linearly dependent. �
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The same proof works if the Newtonian potential−
∑

i< j mi m j /r i j is replaced
by any potentialV =

∑
i< j f (r i j ), whered f/dr > 0.

A Convexity Proposition.A parametrizationt of a curveC is nondengenerateif
the derivativedC(t)/dt is never zero. A smooth, possibly self-intersecting curve
is calledlocally convexif its curvature never vanishes.

Proposition. Let C be a smooth locally convex planar curve parametrized by a
nondegenerate parameter t. Let `(t) be the tangent to C at C(t). Let m be a line
not intersecting C. Let P(t) be the point of intersection of̀(t) and m. Then P(t)
moves on the line m always in the same direction, for all t such that P(t) is finite.

Proof. We can takem to be they-axis. If C is parametrized by(x(t), y(t)), the
line `(t) is given by

{
(x(t), y(t))+ λ(ẋ(t), ẏ(t)) : λ ∈ R

}
, and it intersectsm at

P(t)= (0, p(t)), where

p=−
x(t) ẏ(t)− y(t) ẋ(t)

ẋ(t)
.

Differentiation and the definition of the curvatureκ yield

dp

dt
=−

v3x

ẋ2
κ,

wherev =
√

ẋ2+ ẏ2 is the curve’s speed. The factorsv, x, κ are never zero by
assumption (in the case ofx becauseC avoidsm); therefore they have constant
sign. Thusdp/dt has constant sign wherever defined. �

3. To each mass its own quadrant

A crucial ingredient in the proof of Theorem 1 is that each mass “stays in its own
quadrant” during the time interval(− 1

12T,0). Initially 3 is in the first quadrant,
1 is in the fourth, and 2 is on thex-axis between the second and third quadrants,
moving into the third. Hence, for a short time interval(− 1

12T,− 1
12T + ε), mass 3

lies in the first quadrant, 1 in the fourth, and 2 in the third.

Lemma 2. Over the time interval(− 1
12T,0) body1 lies in the fourth quadrant,

body2 lies in the third, and body3 lies in the first.

Proof. Suppose one of the masses leaves its initial quadrant before time 0. It must
exit along the boundary of this quadrant. It cannot exit through the origin, as this
would imply an Euler configuration and the only Euler configuration occurs at the
endpoint of the interval.

We argue individually that each mass cannot be the first to exit. Suppose that
2 exits first (perhaps simultaneously with another). It cannot leave crossing the
x-axis, as this would contradict star-shapedness of the lobe it lies on. Neither can
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it exit through they-axis, for then itsx-coordinate would be zero, and, because
collinearity of the three masses is excluded, at least one of 1 and 3 would not be
exiting at the same time and so would have a positivex-coordinate. Thus the sum
of thex-coordinates of the masses would be positive, contradicting that the center
of mass is at the origin.

Mass 1 cannot leave first. For it cannot leave through thex-axis, as this would
again contradict star-shapedness. It cannot leave through they-axis as this would
violate the distance orderingr13< r12< r23 guaranteed by (2). To see this violation,
write the exit point for mass 1 as(0, y1), with y1< 0. Then the other masses must
be at(−x, y2) and(x, y3) with x > 0 (since the configuration cannot be collinear)
andy2< 0, y3> 0. We haver 2

13= x2
+ (y3− y1)

2 andr 2
12= x2

+ (y2− y1)
2. But

y3 > 0, 0> y1, y2, andy1+ y2+ y3= 0, so

y3− y1=−2y1− y2= 2|y1| + |y2|,

while |y2− y1|< |y2|+ |y1|, so that(y3− y1)
2> (y2− y1)

2 andr13> r12, contra-
dicting the distance ordering.

Mass 3 cannot leave first. It cannot exit across thex-axis, for if it did the center
of mass of the system would have a negativey-coordinate. It cannot leave across
the y-axis, for this would contradict star-shapedness. �

4. Proof of Theorem 1

We refer to the arc swept out by massj during the the time interval
[
−

1
12T,0

]
as

arc j , and writeκ j for its curvature. We must show thatκ1 ≤ 0 with κ1 < 0 for
t 6= 0, thatκ2 > 0 and thatκ3 < 0.

Convexity of arc 1.We begin by showing thaẗy1>0 along arc 1. Since each mass
stays in its own quadrant, we havey3− y1 > 0; moreoverr13< r12 by (2). Thus

ÿ1= (y3− y1)/r
3
13+ (y2− y1)/r

3
12

> (y3− y1)/r
3
12+ (y2− y1)/r

3
12

=−3y1/r
3
12> 0.

Next we show thaṫy1 > 0 along the arc. From the fact thatÿ1 > 0, it suffices
to show thatẏ1 > 0 at the initial point of arc 1, the isosceles point. By the three-
tangents theorem and the fact that`1 < 0 it follows that at the isosceles pointq̇1

points fromq1 to the vertexq2, so thatẏ1 > 0.
We have seen that`1< 0 while ˙̀1> 0 along the arc. Combining these inequali-

ties, we see that̀̇1ẏ1−`1ÿ1> 0 holds along the arc. On the other hand, expanding
the angular momentum, we get˙̀1ẏ1−`1ÿ1= (x1ÿ1− y1ẍ1)ẏ1−(x1ẏ1− y1ẋ1)ÿ1=

y1(ẋ1ÿ1− ẏ1ẍ1)= y1v
3
1κ. Thusy1v

3
1κ1> 0. Sincey1< 0, v1> 0 we haveκ1< 0.
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2s

2e

3e

3s

1s

1e

Figure 3. Region for bodies 1 and 3.

Convexity of arc 2.Assume, by way of contradiction, that there exists an inflection
point κ2 = 0 on arc 2. Leta be the last inflection point on arc 2 — the one whose
time t is closest to 0. From the initial conditions att = − 1

12T,0 described above
we also know thatκ2 > 0 at the points 2s and 2e. By continuity,κ2 > 0 near both
of these points. Thenκ2 > 0 on the arc froma to 2e.

We already know that arc 1 is convex (κ1 < 0) and we also know that body
3 moves in the first quadrant. It follows that bodies 1 and 3 must lie within the
shaded region in the Figure 3.

Consider the Gauss map (hodograph) of arc 2. This is the map that assigns to a
point of arc 2 the unit tangent to arc 2,q̇2/|q̇2|, at that point.

By Newton’s equation and the fact thatx1−x2 andx3−x2 are positive we have
ẍ2 > 0 on the entire arc 2. Sincėx2 = 0 at 2s, this implies thatẋ2 > 0 on the
open arc of 2, from 2s to 2e, and so in particulaṙx2 > 0 ata. Sinceκ2 > 0 on the
arc a→ 2e, the vectorq̇2/|q̇2| must approach 2e from the pointa monotonically
counterclockwise. Therefore the pointa lies on the arc between the points 2s and
2e on the right half of the circle as shown in the Gauss map (Figure 4).

2s

2e

a

Figure 4. Gauss map of the unit tangent vectorq̇2/|q̇2|.
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But then the tangent line to arc 2 ata cannot split the points 1 and 3, which,
according to the splitting lemma (Lemma 1), contradicts the assumption thata is
an inflection point.

Thus we have proved that arc 2 has no inflection points, that is,κ2 > 0.

Convexity of arc 3.Assume, by way of contradiction, that there are inflection
points on arc 3. Letb be the first such point, the one for which the timet is closest
to − 1

12T . Then, by the splitting lemma (Lemma 1), the tangent line to arc 3 atb
must split bodies 1 and 2. In order to do that, the line must have passed earlier
through either body 1 or body 2. We argue that both passings are impossible.

The tangent line to arc 3 cannot pass through body 1. For, by the three-tangent
theorem, at the instant this happened, the tangent line from the body 2 would also
pass through the body 1. We have already proved thatκ2>0 on the arc 2. Thus the
tangent line from the body 2 never pass through the body 1 in this interval. (See
Figures 3 and 4.) This is a contradiction.

The tangent line to arc 3 cannot pass through body 2. For if it did, by the
three-tangents theorem (Theorem 2), the tangent line to 1’s curve would also pass
through body 2 at the same instant. To see that this latter passing is impossible,
start by joining the endpoints 2s and 2e of arc 2 by a straight linem (see Figure 5).
Arc 2 lies completely on one side of this line, by convexity.

2s

2e

3e
3s

1s

1e

m

Figure 5. Line m and tangent lines to arc 1 att =− 1
12T andt = 0.
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We now apply the Proposition on page 276 to our situation. At the final points 1e

and 2e, the tangents to 1 and 2 are parallel, so the intersection ofm with 1’s tangent
lies in the massless quadrantx < 0, y > 0. At the initial points the intersection
point of m and arc 1’s tangent is 2s. We claim that for− 1

12T < t < 0 the moving
intersection point of 1’s tangent withm always lies in the empty quadrant. This
follows from the convexity of 1 and 2: the tangent at 1 rotates clockwise, while
m stays fixed. When 1 finally reaches the endpoint 1e its tangent is parallel to
2e’s, which in turn lies ‘earlier’ on the clockface thanm (by 2’s convexity). So 1’s
tangent can never have been tangent tom, and hence the intersection point remains
finite, in the empty quadrant.

Now recall that we are trying to show that the tangent to 1 cannot pass through
point 2. To do so it would have to cross linem between 2s and 2e, which is in the
quadrant of arc 2, and hence it is impossible that this tangent passes through 2.

Therefore, we have proved that there is no inflection point on the arc 3. In other
word,κ3 < 0 on the arc 3.

Putting together the convexity of all three arcs we obtain Theorem 1.

5. Convexity for other potentials

Theorem 1 holds for the figure eight solution of other potentials. Indeed, our proof
only depended on the properties of the eight listed in Section 2 and a monotonicity
property of the Newtonian potential discussed below.

To be precise, we need to define what we mean by an eight. Let

V = V(r12, r23, r31)

be a three-body potential depending only on the interparticle distancesr i j and
invariant under interchange of the masses. Then the symmetry groupD6 of the
eight acts on solutions to the corresponding Newton equation, taking solutions to
solutions, and so we can speak ofD6-invariant solutions.

A planar solution to the Newton’s equation forV is called aneight solutionif

(i) it is invariant under theD6 symmetries,

(ii) on the interior of each fundamental domain
(
m 1

12T, (m+ 1) 1
12T

)
, for m =

0,±1,±2, . . . , the configuration is never collinear and never isosceles, and

(iii) the solution has no collisions.

Such a solution will necessarily be a planar choreography (see (1) on page 272),
and so the three masses travel a single planar curve. Condition (i) implies that the
center of mass is 0 and that the angular momentum is zero. If, in addition, our
potentialV has the form

V =
∑
i< j

f (r i j ),
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where

(iv) d f/dr > 0 (attractive two-body potential) and

(v) g(r ) := r−1d f/dr is a strictly monotone decreasing function ofr ,

then all properties and inequalities used in this paper hold.
Indeed, return to the starting point, the distance ordering inequality (2). At

t = − 1
12T we haver23 = r12, and att = 0 we haver12 = r31 < r23 = 2r12. By

property (ii), the possible distance orderings on the time interval
(
−

1
12T,0

)
are

r31< r12< r23 or r12< r31< r23. Consider the equation for̀̇1,

˙̀1=
(
g(r21)− g(r31)

)
(q2∧q3),

for a monotone decreasing functiong(r ). We have ˙̀1 > 0 for the first ordering
and ˙̀1 < 0 for the second ordering. But, since`1 < 0 at t = − 1

12T and`1 = 0 at
t = 0, the value oḟ̀ 1 must be positive. So we must have the first ordering, namely,
equation (2). Then all equalities and inequalities in this paper hold. Thus:

Theorem 3.Let V be a three-body potential of the form V=
∑

i< j f (r i j ) where f
satisfies(iv) and (v) above, and admitting an eight solution as defined by(i)–(iii)
above. Then each lobe of this eight for V is convex.

The theorem begs the question, do eight solutions exist for any potentials besides
Newton’s? Recall from [Chenciner and Montgomery 2000, pp. 896–897] that if a
solution that satisfies (i) and (ii) is known to minimize the action associated toV
among all paths satisfying (i), and if that solution is not identically collinear, then
automatically the solution satisfies (ii). The power law potentials

Va = (a)
−1(r a

12+ r a
23+ r a

31),

for a≤−2 admit such collision-free action minimizing solutions, and consequently
they admit eight solutions. Moreover, the proof of [Chenciner and Montgomery
2000], specific toa = −1, is based on strict inequalities, and hence is valid for a
range of exponents−1− ε1< a<−1+ ε2 for ε1, ε2 positive numbers. Numerical
evidence presented in [Chenciner et al. 2002] suggests that eights exist for all power
lawsVa, wherea<0. (These eights are dynamically stable only in a neighborhood
of the Newtonian potentiala=−1.)

Corollary. For the power law potentials Va with a≤ −2 or with a in some open
interval about−1, there exist eight solutions and each lobe of these eight solutions
is convex.

6. Unicity

Showing the unicity of the Newtonian eight remains an open problem [Chenciner
2003]. Our work here drastically reduces the candidate eights, and hence the scope
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of nonunicity, to those eights with convex lobes. It might allow a handhold towards
surmounting the unicity problem. If our reader will allow us to fantasize in this
direction, imagine two distinct Newtonian eights, both enjoying (i)D6 symmetry,
(ii) the same period, and (iii) having the same minimum value for the action. Con-
nect these two eights by a family of eights having (i) and (ii), and having convex
lobes. Apply the min-max procedure to extract out of such a family a third eight
that is variationally unstable, meaning that the Hessian of the action there has a
negative direction. Now establish a contradiction between the existence of the
negative mode and the convexity of the lobe of this third eight. Such a program,
or a similar one, could conceivably lead to a proof of unicity of the eight.

Acknowledgments
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Note added in proof

For the power law potentialsVa, Barutello, Ferrario and Terracini [Barutello et al.
2004] have proved existence of eights for alla< 0; see the proof following Propo-
sition (4.15) on p. 19. Montgomery [2004] has proved the uniqueness of the eight
for a=−2.
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BOSONIC REALIZATIONS OF HIGHER-LEVEL TOROIDAL
LIE ALGEBRAS

NAIHUAN JING, KAILASH M ISRA AND SHAOBIN TAN

We construct realizations for the 2-toroidal Lie algebra associated with the
Lie algebra A1 using vertex operators based on bosonic fields. In particu-
lar our construction realizes higher-level representations of the 2-toroidal
algebra for any given pair of levels(k0, k1) with k0 6= 0. We also construct a
smaller module of level(k0, 0) for the toroidal algebra from the Fock space
using certain screening vertex operator, and this later representation gener-
alizes the higher-level construction of the affine Lie algebrâsl2.

1. Introduction

Toroidal Lie algebras are a natural generalization of the affine Kac–Moody alge-
bras introduced by Moody, Rao and Yokonuma [Moody et al. 1990]. LetA =
C[s, s−1, t, t−1

] be the ring of Laurent polynomials in commuting variables. By
definition a 2-toroidal Lie algebra is a perfect central extension of the iterated loop
algebrag⊗ A, whereg is a finite-dimensional simple Lie algebra overC.

Let �A/d A be the Kähler differentials ofA modulo the exact forms. The uni-
versal central extension of the iterated loop algebra is given by

T(g)= (g⊗ A)⊕�A/d A.

Any 2-toroidal Lie algebra is a homomorphic image of this toroidal Lie algebra.
The center ofT(g) is �A/d A, which is a infinite-dimensional vector space. The
Laurent polynomial ringA induces a naturalZ2-gradation onT(g). For the center
we have�A/d A=

⊕
σ∈Z2 Z(g)σ , with dimZσ =1 if σ 6= (0,0) and 2 ifσ = (0,0).

We denote byc0 andc1 the two standard degree-zero central elements in the toroidal
Lie algebraT(g). A module ofT(g) is called a level-(k0, k1)module if the standard
center(c0, c1) acts as(k0, k1) for some complex numbersk0 andk1. Here we study
the level-(k0, k1) modules fork0 6= 0.

MSC2000:17B65, 17B69,
Keywords: toroidal Lie algebra, vertex operator, bosonic realization.
Jing acknowledges the partial support from the NSF and NSA. Misra acknowledges the partial sup-
port from the NSA. Tan was supported by the National Science Foundation of China, No. 10371100.
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In various constructions of the affine Lie algebrâsl2 the free field represen-
tation is of particular use in its applications. Wakimoto [1986] and Feigen and
Frenkel [1988] first gave a general construction for the general case, and later
Nemenschansky [1989] gave an invariant form in the special case. Though the two
forms can be interchanged by a nontrivial map, we realized that the later form is
better for our purpose in the toroidal cases. The operators in question have the
form eA(B+C), whereA, B,C are generating functions of the scaled Heisenberg
operators. One of the nice things is that all root generators in the toroidal alge-
bra associated with the Lie algebrasl2 can be represented by this type of vertex
operators. In our construction we have fully used this simplicity and make all
calculations in a uniform manner.

As we mentioned earlier, toroidal algebras are generalizations of finite-dimen-
sional Lie algebras, like affine Lie algebras. This similarity is constantly kept in
mind as we study their structure and representation theory. Some other basic refer-
ences related to our work include [Berman and Billig 1999; Eswara Rao and Moody
1994; Fabbri and Moody 1994; Larsson 1999; Moody et al. 1990; Tan 1999]. Our
aim in this paper is to give a higher-level representation for the simplest nontrivial
example: the 2-toroidal Lie algebra. Our construction generalizes previous work
on higher-level representations of the affine Lie algebraŝl2.

In Section 2 we define the toroidal Lie algebra and state the MRY-presentation
[Moody et al. 1990] of the toroidal algebra in terms of generators and relations.
The algebra structure is expressed in terms of formal power series identities. We
also state some results in this section to be used later. In Section 3 we start with a
finite-rank lattice with a symmetric bilinear form and define a Fock space and some
vertex operators, which in turn give representations of the toroidal Lie algebra of
type A1, and also a level-(k0,0)module withk0 6=0 for the double affine algebra of
type A1. In Section 4 we study the structure of the Fock space for the toroidal Lie
algebra by using certain screening vertex operators, thus generalizing the higher-
level representation of the affine algebraŝl2 to the toroidal Lie algebra.

2. Toroidal Lie algebras

Let sl2 be the 3-dimensional simple Lie algebra over the complex numbers and

A= C[s, s−1, t, t−1
]

the ring of Laurent polynomials in commuting variables. We consider the iterated
loop algebra

g= sl2⊗ A.

A toroidal Lie algebra of typeA1 is a perfect central extension of the iterated loop
algebrag, which is often an infinite-dimensional central extension. Let�A be the
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A-module of differentials with differential mappingd : A→�A, such that

d( f1 f2)= (d f1) f2+ f1(d f2) for all f1, f2 in A.

Let :�A→�A/d A be the canonical linear map for whichd f = 0 for all f ∈ A.
Endow the vector space

T(A1) := (sl2⊗ A)⊕�A/d A

with the bracket operation defined by

[x⊗ f1, y⊗ f2] = [x, y]⊗ f1 f2+ (x, y) f2d f1,

for x, y ∈ sl2, f1, f2 ∈ A, where( · , · ) is the trace form and�A/d A is central.
From [Moody et al. 1990] we know thatT(A1) is a perfect Lie algebra and is
the universal central extension of the iterated loop algebrasl2⊗ A. Therefore any
toroidal Lie algebra of typeA1 is a homomorphic image ofT(A1). The gradation
of the polynomial ringA gives a naturalZ2-gradation to the toroidal Lie algebra

T(A1) :=
⊕
σ∈Z2

T(A1)σ ,

whereT(A1)σ is spanned byx⊗ sm0tm1, sm0tm1s−1ds andsm0tm1t−1dt for σ =
(m0,m1) ∈ Z2 and x ∈ sl2. The conditiond f = 0 for all f ∈ A implies that
m0sm0tm1s−1ds+m1sm0tm1t−1dt= 0 for all m0,m1∈Z. Therefore the dimension
of T(A1)σ is 4 if σ 6= (0,0) and 5 if σ = (0,0). In particular,T(A1)(0,0) is
spanned byx⊗1 for x ∈ sl2, and central elementss−1ds, t−1dt. We denote these
two degree-zero central elements byc0 andc1.

The most interesting quotient algebra of the toroidal Lie algebraT(A1) is the
double affine algebra denoted byT0(A1), that is, the toroidal Lie algebra of typeA1

with a two-dimensional center. The double affine algebra is the quotient ofT(A1)

modulo all the central elements with degree other than zero. In fact,T0(A1) has
the realization

T0(A1)= (sl2⊗ A)⊕Cc0⊕Cc1

with the Lie product

[x⊗ f1, y⊗ f2] = [x, y]⊗ f1 f2+8( f2∂s f1)c0+8( f2∂t f1)c1

for all x, y ∈ sl2 and f1, f2 ∈ A, where8 is the linear functional onA defined by

8(sktm)=

{
0, if (k,m) 6= (0,0)
1, if (k,m)= (0,0)

for all k,m∈ Z.
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Definition 2.1. If M is a module for a toroidal Lie algebra of typeA1, we callM a
level-(k0, k1) module for some complex numbersk0, k1 if the degree-zero central
elementsc0, c1 act onM as constantsk0, k1.

In this paper we give a concrete construction for a level-(k0, k1) module with
k0 6= 0 for the toroidal Lie algebraT(A1) and for the double affine algebraT0(A1).

Let {x±, h} be the standard basis ofsl2. Also let (ai j )2×2 be the generalized
Cartan matrix of the affine algebraA(1)1 and

Q := Zα0+Zα1

its root lattice. The toroidal Lie algebraT(A1) has a presentation [Moody et al.
1990] with generators/c, αi (k) andxk(±αi ), for k∈Z andi =0,1, and the following
relations, fork,m∈ Z andi, j = 0,1:

(R0)
[
/c, αi (k)

]
= 0=

[
/c, xk(±αi )

]
;

(R1)
[
αi (k), α j (m)

]
= kai j δk+m,0 /c;

(R2)
[
αi (k), xm(±α j )

]
=±ai j xk+m(±α j );

(R3)
[
xk(αi ), xm(−α j )

]
=−δi j

{
αi (k+m)+ kδk+m,0 /c

}
;

(R4)
[
xk(αi ), xm(αi )

]
= 0=

[
xk(−αi ), xm(−αi )

]
;

(adx0(αi ))
3 xm(α j )= 0 if i 6= j ; (adx0(−αi ))

3 xm(−α j )= 0 if i 6= j .

The Lie algebra isomorphismψ between the two presentations ofT(A1) is given by

/c 7→ s−1ds,

xm(±α1) 7→ ±x±⊗ sm,

xm(±α0) 7→ ±x∓⊗ smt±1,

α1(k) 7→ h⊗ sk,

α0(k) 7→ −h⊗ sk
+ skt−1dt.

Therefore, the degree-zero central elements arec0 = /c andc1 = δ(0), where
δ = α0+ α1 is the null root inQ. We will identify the two presentations of the
toroidal Lie algebraT(A1) via this isomorphismψ .

Following [Moody et al. 1990], we introduce aZ× Q-gradation onT(A1) by
assigning deg/c= (0,0), degαi (k)= (k,0), degxk(±αi )= (k,±αi ), with i = 0,1
and k ∈ Z. We denote byTαk the subspace ofT(A1) spanned by the elements
with degree(k, α) for k ∈ Z, α ∈ Q. Then, under the isomorphismψ , we have
ψ−1(skt−1dt)= δ(k) ∈ T0

k andψ−1(skt r s−1ds) ∈ T r δ
k .
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Let z, w, z1, z2, . . . be formal variables. We define formal power series with
coefficients from the toroidal Lie algebraT(A1):

αi (z)=
∑
n∈Z

αi (n)z
−n−1,

x(±αi , z)=
∑
n∈Z

xn(±αi )z
−n−1,

for i = 0,1. Then the Lie algebra structure ofT(A1) can be expressed in terms of
the following power series identities:

(R0′)
[
/c, αi (z)

]
= 0=

[
/c, x(±αi , z)

]
;

(R1′)
[
αi (z), α j (w)

]
= ai j z−1∂wδ(

w
z ) /c;

(R2′)
[
αi (z), x(±α j , w)

]
=±ai j x(±α j , w)z−1δ(wz );

(R3′)
[
x(αi , z), x(−α j , w)

]
=−δi j

{
αi (w)z−1δ(wz )+ z−1∂wδ(

w
z ) /c
}
;

(R4′)
[
x(αi , z), x(αi , w)

]
= 0=

[
x(−αi , z), x(−αi , w)

]
;

(adx(αi , z1))(adx(αi , z2))(adx(αi , z3))x(α j , z4)= 0 if i 6= j ;

(adx(−αi , z1))(adx(−αi , z2))(adx(−αi , z3))x(−α j , z4)= 0 if i 6= j .

Finally, we recall a result from [Moody et al. 1990] that will be used in the next
section.

Proposition 2.2. SupposeL is a Lie algebra overC graded byZ⊗ Q, andφ :
T(A1)→ L is a surjective graded homomorphism of Lie algebras such that

(i) φ is injective on Tαn for all n ∈ Z and real rootα,

(ii) φ(δ(k)) 6= 0 for all k andφ|Cδ(0)+C /c is injective, and

(iii) for all nonzero integers k,m,

φ
(
[xm(α1+ kδ), x0(−α1)] − [x0(α1+ kδ), xm(−α1)]

)
6= 0,

φ
(
[x1(α1+ kδ), x−1(−α1)] − [x−1(α1+ kδ), x1(−α1)]

)
6= 0.

Thenφ is an isomorphism, where xm(±α1+ kδ) := ψ−1(±x±⊗ smtk).

Proposition 2.3. SupposeL is a Lie algebra overC graded byZ⊗ Q, andφ :
T(A1)→ L is a surjective graded homomorphism of Lie algebras such that

(i) φ is injective on Tαn for all n ∈ Z and real rootα,

(ii) φ(δ(k))= 0 for all k 6= 0 andφ|Cδ(0)+C /c is injective, and

(iii) for all nonzero integers k,m,

φ
(
[xm(α1+ kδ), x0(−α1)] − [x0(α1+ kδ), xm(−α1)]

)
= 0,

φ
(
[x1(α1+ kδ), x−1(−α1)] − [x−1(α1+ kδ), x1(−α1)]

)
= 0,
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ThenL is isomorphic to the double affine algebra T0(A1).

Proof. We only need to show that the set of nonzero-degree central elements of the
toroidal Lie algebraT(A1) is in the kernel ofφ. Indeed, under the isomorphismψ
of the toroidal Lie algebras, we see thatδ(k)= ψ−1(skt−1dt) and[

xm(α1+ kδ), x0(−α1)
]
−
[
x0(α1+ kδ), xm(−α1)

]
=−mψ−1(smtks−1ds),[

x1(α1+ kδ), x−1(−α1)
]
−
[
x−1(α1+ kδ), x1(−α1)

]
=−2ψ−1(tks−1ds),

but, from [Moody et al. 1990], the elementssptqs−1ds, spt−1dt ands−1ds for
(p,q)∈Z×(Z\{0}) form a basis of the center for the toroidal Lie algebraT(A1).
The assumption implies that the nonzero-degree central elementsψ−1(sptqs−1ds)
andψ−1(sqt−1dt) are in the kernel of the homomorphismφ for

(p,q) ∈ Z× (Z \ {0}). �

3. Representations of the toroidal algebra

In this section we give two bosonic realizations for the toroidal Lie algebraT(A1).
Let k0 be a fixed complex number withk0 6= 0, and0 a finite rank lattice with a
symmetricC-valuedZ-bilinear form ( · , · ). We extend the form to aC-bilinear
form on the vector spaceH = C⊗Z 0. Let 00 be a fixed integral sublattice of0.
We define

0?0 = {α ∈ H ; (α, 00)⊂ Z}.

Then00⊂ 0
?
0. Let

H= 〈h(n), /c|h ∈ H,n ∈ Z〉,

with H = C⊗Z 0, be the affinization of the vector spaceH , defined with the Lie
product

[α(m), β(n)] =m(α, β)δm+n,0 /c

for m,n ∈ Z, α, β ∈ 0, and/c central. We define the Fock space

V := C[0?0]⊗ S(H−),

whereS(H−) is the symmetric algebra onH− := 〈h(n) | n< 0〉, and

C[0?0] =
⊕
α∈0?0

Ceα

is the group algebra on the additive subgroup0?0 of the vector spaceH . ThenV
has a natural module structure for the Lie algebraH and the group algebraC[0?0]
with the actions defined by making/c act ask0, h(−n) act as multiplication, and
h(n) act as a partial differential operator, forn> 0, h ∈ H , so that

[α(m), β(n)] =mk0(α, β)δm+n,0
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for all α, β ∈ H andm,n∈Z. Moreoverα(0) acts as a partial differential operator
onC[0?0] for which [α(0),eβ]= (α, β)eβ . Thereforeα(0).β= (α, β) for α, β ∈ H .

With a formal variablez, andα, β ∈ H , we define fields

α(z)=
∑
n∈Z

α(n)z−n−1,

α(z)+ =
∑
n<0

α(n)z−n−1,

β(z)= β +β(0) logz−
∑
n6=0

β(n)

n
z−n,

β(z)+ = β −
∑
n<0

β(n)

n
z−n.

It is easy to see that∂zβ(z)= β(z) and∂zβ(z)+ = β(z)+. For

A, B ∈ {α(z), β(z) | α, β ∈ H},

we define〈A, B〉 = [A, B+]. Then it is easy to show (see [Frenkel et al. 1988])
that〈α(z), β(w)〉 = (α, β) log(z−w) for α, β ∈ H , which then implies

〈α(z), β(w)〉 = (α, β)(z−w)−1,

〈α(z), β(w)〉 = −(α, β)(z−w)−1,

〈α(z), β(w)〉 = (α, β)(z−w)−2,

where the formal power series inz andw are understood to be expanded in the
second variablew.

Define the usual normal ordering : : as in [Frenkel et al. 1988]. Then we have
for α ∈ H

:α(z)β(w): = α(z)β(w)−〈α(z), β(w)〉,

and, forα ∈ 00,

:eα(z) : = eαzα(0) exp

(
−

∑
n<0

α(n)

n
z−n

)
exp

(
−

∑
n>0

α(n)

n
z−n

)
.

It is clear that the vertex operators:eα(z) : , for α ∈ 00, can be formally expanded
as a power series inz for which the coefficients are well defined operators acting
on the Fock spaceV .

We will need the following result in the study of the bosonic realizations for the
toroidal Lie algebraT(A1); see [Jing and Lyerly 1999].
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Lemma 3.1. Let Pi (z), Qi (w), for i = 1,2, be fields such that the contractions
〈Pi , Q j 〉 commute with all fields Pi (z), Qi (w). Then

:eP1 P2: :e
Q1 Q2: = :e

P1 P2eQ1 Q2:e
〈P1,Q1〉+ :eP1 P2eQ1 :e〈P1,Q1〉〈P1,Q2〉

+:eP1eQ1 Q2:e
〈P1,Q1〉〈P2,Q1〉+ :e

P1eQ1 :e〈P1,Q1〉(〈P2,Q2〉+ 〈P1,Q2〉〈P2,Q1〉).

Forα, β ∈ 01, we have, from [Frenkel et al. 1988], the identity

:eα(z) : :eβ(w) : = :eα(z)eβ(w) :(z−w)(α,β).

Inductively one can show, forβ1, . . . , βk ∈ 00, the following Wick theorem

:eβ1(z1) : · · · :eβk(zk) : = :eβ1(z1) · · · eβk(zk) :

∏
i< j

(zi − z j )
(βi ,β j ).

Corollary 3.2. For α, β ∈ 00 andγ, τ ∈ H, suppose(α, β)= 0. Then[
:eα(z)γ (z): , :eβ(w)τ(w):

]
= :e(α+β)(z)A(z):z−1δ

(
w

z

)
+B :e(α+β)(z) :z−1∂wδ

(
w

z

)
,

where A= (γ, β)τ − (α, τ )γ − Bβ ∈ H and B= (γ, τ )− (α, τ )(γ, β) ∈ C.

To give our first representation of the toroidal Lie algebraT(A1) we consider
the lattice

0 :=
1

k0
(Za0⊕Za1⊕Zb⊕Zr ),

with a symmetric bilinear form determined by

(b,b)=−2k0, (r, r )= 2(k0+2), (ai ,a j )= k0ai j for i, j = 0,1,

the others being zero. Let00 =
1
k0
(Z(a0− b)+ Z(a1+ b)), which is clearly an

integral sublattice of0. On the corresponding Fock spaceV := C[0?0] ⊗ S(H−),
we define vertex operators

X0(±α1, z)=
1
2 :e
±

1
k0
(a1+b)(z)

(b(z)∓ r (z)):

X0(±α0, z)=
1
2 :e
±

1
k0
(a0−b)(z)

(b(z)± r (z)): ,

whereα0, α1 are the simple roots of the affine Lie algebraA(1)1 .

Theorem 3.3.Let k0 be any nonzero complex number. Then on the Fock space V
we have a representation for the toroidal Lie algebra T(A1). The homomorphism
is given by/c 7→ k0, αi (z) 7→ ai (z), x(±αi , z) 7→ X0(±αi , z), for i = 0,1.

Proof. We first write the vertex operators in the form

X0(±αi , z)=
1
2 :e
±

1
k0
(ai−εi b)(z)(b(z)± εi r (z)): ,
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whereεi = (−1)i for i = 0,1. We will now show that the operatorsai (z) and
X0(±αi , z) satisfy the relations (R0′)–(R4′) of the toroidal Lie algebraT(A1). In
fact, (R0′) and (R1′) are obvious. For (R2′) we have

[ai (z), X0(±α j , w)] =
1
2[ :ai (z): , :e

±
1
k0
(a j−ε j b)(z)(b(z)± ε j r (z)): ]

=
1
2 :e
±

1
k0
(a j−ε j b)(z)A(z):z−1δ

(
w

z

)
,

whereA= (ai ,±
1
k0
(a j − ε j b))(b± ε j r )=±ai j (b± ε j r ). Therefore

[ai (z), X0(±α j , w)] = ±
1
2ai j :e

±
1
k0
(a j−ε j b)(z)(b(z)± ε j r (z)):z

−1δ
(
w

z

)
=±ai j X0(±α j , z)z

−1δ
(
w

z

)
,

which is the required relation. To prove relation (R3′) we have

[X0(αi , z), X0(α j , w)]

=
1
4

[
:e

1
k0
(ai−εi b)(z)(b(z)+ εi r (z)): , :e

−
1
k0
(a j−ε j b)(w)(b(w)− ε j r (w)):

]
=

1
4

(
:e

1
k0
(ai−a j−εi b+ε j b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(ai−a j−εi b+ε j b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B= (b+ εi r,b− ε j r )−
(

ai−εi b
k0

,b− ε j r
)(

b+ εi r,−
a j−ε j b

k0

)
=−2k0−2εi ε j k0,

A=
(
b+ εi r,−

a j−ε j b
k0

)
(b− ε j r )

−

(
ai−εi b

k0
,b− ε j r

)
(b+ εi r )−

(
−2k0−2εi ε j k0

)(
−

a j−ε j b
k0

)
=−2(1+ εi ε j )a j .

Therefore, we get

[X0(αi , z), X0(−α j , w)] = −
1
2(1+ εi ε j )

(
:e

1
k0
(ai−a j−εi b+ε j b)(z)a j (z):z

−1δ
(
w
z

)
+ k0 :e

1
k0
(ai−a j−εi b+ε j b)(z)

:z−1∂wδ
(
w
z

))
=−δi j

(
a j (z)z

−1δ
(
w
z

)
+ k0z−1∂wδ

(
w
z

))
,

as required.
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(R4′) contains two types of relations. We give only the proof for the “positive”
case. The “negative” case can be proved similarly.

[X0(αi , z), X0(α j , w)]

=
1
4

[
:e

1
k0
(ai−εi b)(z)(b(z)+ εi r (z)): , :e

1
k0
(a j−ε j b)(w)(b(w)+ ε j r (w)):

]
=

1

4

(
:e

1
k0
(ai+a j−εi b−ε j b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(ai+a j−εi b−ε j b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B= (b+ εi r,b+ ε j r )−
(

ai−εi b
k0

,b+ ε j r
)(

b+ εi r,
a j−ε j b

k0

)
= 2k0(εi ε j −1),

A=
(
b+ εi r,

a j−ε j b
k0

)
(b+ ε j r )

−

(
ai−εi b

k0
,b+ ε j r

)(
b+ εi r

)
−2k0(εi ε j −1)

(a j−ε j b
k0

)
= 2(1− εi ε j )a j .

Therefore[X0(αi , z), X0(αi , w)] = 0 and, fori 6= j ,

[X0(αi , z), X0(α j , w)]

= :e
1
k0
(ai+a j )(z)a j (z):z

−1δ
(
w

z

)
− k0 :e

1
k0
(ai+a j )(z)

:z−1∂wδ
(
w

z

)
.

Clearly, for i 6= j , the vertex operatorX0(αi , z) commutes with

:e
1
k0
(ai+a j )(z)

: .

Therefore to complete the proof of relation (R4′) we only need to show the identity

(1)
[
X0(αi , z1), [X0(αi , z2), :e

1
k0
(ai+a j )(z3)a j (z3): ]

]
= 0

for i 6= j . Indeed,[
X0(αi , z), :e

1
k0
(ai+a j )(w)a j (w):

]
=

1
2

[
:e

1
k0
(ai−εi b)(z)(b+ εi r )(z): , :e

1
k0
(ai+a j )(w)a j (w):

]
=

1
2

(
:e

1
k0
(2ai+a j−εi b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(2ai+a j−εi b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B= (b+ εi r,a j )−
(

ai−εi b
k0

,a j

)(
b+ εi r,

ai+a j

k0

)
= 0

and

A=
(
b+ εi r,

ai+a j

k0

)
a j −

(
ai−εi b

k0
,a j

)
(b+ εi r )= 2(b+ εi r );
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that is[
X0(αi , z), :e

1
k0
(ai+a j )(w)a j (w):

]
= :e

1
k0
(2ai+a j−εi b)(z)(b+ εi r ):z

−1δ
(
w

z

)
.

Therefore (1) is reduced to the identity[
X0(αi , z), :e

1
k0
(2ai+a j−εi b)(w)(b+ εi r )(w):

]
= 0

for i 6= j . The left side is equal to

1
2

[
:e

1
k0
(ai−εi b)(z)(b+ εi r )(z): , :e

1
k0
(2ai+a j−εi b)(w)(b+ εi r )(w):

]
=

1
2

(
:e

1
k0
(3ai+a j−2εi b)(z)A(z):z−1δ

(
w
z

)
+ B :e

1
k0
(3ai+a j−2εi b)(z)

:z−1∂wδ
(
w
z

))
,

where, by applying Corollary 3.2,

B= (b+ εi r,b+ εi r )−
(

ai−εi b
k0

,b+ εi r
)(

b+ εi r,
2ai+a j−εi b

k0

)
= 0

and

A=
(
b+ εi r,

2ai+a j−εi b
k0

)
(b+ εi r )−

(
ai−εi b

k0
,b+ εi r

)
(b+ εi r )= 0,

giving the desired identity. �

From the construction of the representation for the toroidal Lie algebra given
in the previous theorem, it is easy to see that the operatorsα1(k)+ α0(k) act on
the Fock spaceV trivially for all positive integersk, which in turn implies that
the central elementsψ(δ(k)) act as the zero operator fork > 0. Therefore the
representation is not faithful. Indeed, the quotient spaceV(0) of the Fock space

C[0∗0]⊗ S(H−)

defines a representation for the double affine Lie algebraT0(A1), which is isomor-
phic to the Lie algebraT(A1) modulo all central elements of degree other then
zero (see Section 2).

Corollary 3.4. The vector space V(0) is endowed with a representation of the
double affine Lie algebra T0(A1) with level-(k0,0), under the formula given before
Theorem 3.3.

We will study this module structure again in the next section.

To give a faithful representation of the toroidal Lie algebra, we consider the
rank-six lattice

0 :=
1

k0
(Za0⊕Za1⊕Zb⊕Zc⊕Zd)⊕

1

k0+2
Zr,
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with the symmetric bilinear form determined by

(b,b)=−2k0, (r, r )=2(k0+2), (c,d)=k0, (ai ,a j )=k0ai j for i, j = 0,1,

all others being zero. Then

00 :=
1

k0
Z(a0−b)+

1

k0
Z(a1+b)+

1

k0
Zc

is clearly an integral sublattice of0. Let0?0 be the corresponding additive subgroup
of H = C⊗Z 0, andV the corresponding Fock space.

We also modify the vertex operators from the previous theorem to the form

X(±α1, z)=
1
2 :e
±

1
k0
(a1+b)(z)

(b(z)∓ r (z)): ,

X(±α0, z)=
1
2 :e
±

1
k0
(a0−b+c)(z)

(b(z)± r (z)): .

Theorem 3.5.The coefficient operators of the vertex operators ai (z), X(±αi , z),
for i = 0,1, acting on the Fock space V , generate a Lie algebraL(A1) isomorphic
to the toroidal Lie algebra T(A1), the isomorphism begin given by the linear map
φ defined by

/c 7→ k0,

α1(z) 7→ a1(z),

α0(z) 7→ a0(z)+ c(z),

x(±αi , z) 7→ X(±αi , z) for i = 0,1.

Therefore, on the Fock space V , we have a faithful representation of the toroidal
Lie algebra T(A1).

Proof. We first need to show that the surjective mappingφ defines a Lie algebra
homomorphism fromT(A1) to L(A1). It suffices to show that the vertex operators
ai (z), X(±αi , z) satisfy the corresponding power series identities (R0′)–(R4′). The
argument is just as in the proof of Theorem 3.3, and we omit it for brevity’s sake.

We next use Proposition 2.2 to show that the mappingφ is indeed an injective
homomorphism. Forα = µ1a0+µ2a1+µ3b+µ4c∈ 0?0 with µi ∈

1
k0

Z, let

eα ⊗ λ1(−n1) · · · λk(−nk) ∈ V.

We define aZ× Q-gradation on the Fock spaceV by setting

deg
(
eα ⊗ λ1(−n1) · · · λk(−nk)

)
= (n1+ · · ·+nk, k0µ1α0+ k0µ2α1).

With this gradation, the operatora(n), for a ∈ H , is a homogeneous operator of
degree(−n,0). Moreover, if the vertex operatorX(±αi , z) is formally expanded
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into power series as

X(±αi , z)=
∑
m∈Z

Xm(±αi )z
−m−1,

the coefficient operatorXm(±αi ) is a homogeneous operator of degree(−m,±αi ).
Thus the mapφ is a (Z×Q)-graded Lie algebra homomorphism. To finish the
proof of this theorem, we need only show thatφ satisfies the three conditions of
Proposition 2.2.

Recall the notationxm(±α1+ kδ) = ψ−1(±smtk
⊗ x±), whereδ = α0+ α1 is

the null root inQ. Let

x(α, z)=
∑
m∈Z

xm(α)z
−m−1 for α =±α1+ kδ.

Then it is easy to show thatφ : x(α, z) 7→ X(α, z), whereα =±α1+ kδ, and

X(±α1+ kδ, z)= 1
2 :e
±

1
k0
(a1+b+k(a0+a1)+kc)(z)

(b(z)∓ r (z)): .

Applying Corollary 3.2 again we have[
X(α1+ kδ, z), X(−α1− kδ,w)

]
=−k0z−1∂wδ

(
w

z

)
− (a1+ k(a0+a1)+ kc)(z)z−1δ

(
w

z

)
.

This gives[
Xm(α1+ kδ), X−m(−α1− kδ)

]
=−a1(0)− k(a0+a1)(0)− kc(0)−mk0,

which is clearly a nonzero operator for anym, k∈Z. Thusφ is injective on the one-
dimensional subspaceTαm = Cxm(α) for any real rootα =±α1+kδ andk,m∈ Z.
Moreover,

φ(δ(k))= a0(k)+a1(k)+ c(k)

is also a nonzero operator, andφ is clearly injective onCδ(0)+C /c.
Finally, we need to show that, form, k 6= 0,

(2)

[
Xm(α1+ kδ), X0(−α1)

]
−
[
X0(α1+ kδ), Xm(−α1)

]
6= 0,[

X1(α1+ kδ), X−1(−α1)
]
−
[
X−1(α1+ kδ), X1(−α1)

]
6= 0.

By Corollary 3.2,[
X(α1+ kδ, z), X(−α1, w)

]
+
[
X(−α1, z), X(α1+ kδ,w)

]
=−2k0 :e

1
k0
(ka0+ka1+kc)(z)

:z−1∂wδ
(
w

z

)
+ k :e

1
k0
(ka0+ka1+kc)(z)

(a0(z)+a1(z)+ c(z)):z−1δ
(
w

z

)
,
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which gives[
X(α1+ kδ, z), X0(−α1)

]
−
[
X0(α1+ kδ), X(−α1, z)

]
= k :e

1
k 0(ka0+ka1+kc)(z)(a0(z)+a1(z)+ c(z)): .

To see that the coefficient ofz−m−1 in the expression on the right is nonzero for
m 6= 0, we notice that[
:e

1
k0
(ka0+ka1+kc)(z)

(a0(z)+a1(z)+ c(z)): , :e−
1
k0
(ka0+ka1+kc)(z)d(z):

]
= k0z−1∂wδ

(
w

z

)
.

The coefficient ofz−m−1 on the right-hand side of the previous identity isk0mwm−1,
which is nonzero wheneverm 6= 0. This proves the first line in (2), while the
second can be proved by a similar argument which is omitted here. Thereforeφ is
an isomorphism of Lie algebras. �

Corollary 3.6. For any fixed k1 ∈ Z, define

V(k1)= ek1d+00⊗ S(H−).

Then the vector space V(k1) is endowed with a representation of the toroidal Lie
algebra T(A1) with level-(k0, k1).

4. Module structure

We now define a smaller module from our Fock space representation via the so-
called screening operator. We will only consider the case whenc= 0.

For given j0, j1, l1, l2 ∈ C with j0+ j1 ∈ Zk0
2 , set

v j0, j1,l1,l2 : = ej0
a0
k0 ej1

a1
k0 el1

b
k0 e−l2

r
k0+2 .

We define the Fock spaceF j0, j1,l1,l2 to be the spaceS(H−)v j0, j1,l1,l2. Then the
vertex operatorsX(±αi , z) are well defined onF j0, j1,l1,l2, provided that 2( j1− l1)
and 2( j0+ l1) are integers. It is clear that the vertex operators satisfy

X(±α0, z) : F j0, j1,l1,l2 −→ F j0±1, j1,l1∓1,l2,

X(±α1, z) : F j0, j1,l1,l2 −→ F j0, j1±1,l1±1,l2.

Introduce a screening operatorS0:F j0, j1,l1,l2→ F
j0, j1,l1+

k0
2 ,l2+

k0+2
2

by setting

S(z)= :e
1
2(b(z)−r (z))

: =

∑
n

Snz−n−1.

This is well defined provided thatl1− l2 ∈ Z.
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Proposition 4.1.

{X(α1, z), S(w)} =
∂

∂w

(
:e

1
k0
,(a1+b)(w)+ 1

2(b−r )(w)
:

1

z−w

)
,

{X(−α1, z), S(w)} = 0,

{X(−α0, z), S(w)} = 0,

{X(α0, z), S(w)} =
∂

∂w

(
:e

1
k0
(a0+b)(w)+ 1

2(b−r )(w)
:

1

z−w

)
.

Proof. Let

φ(α1, z)= φ(−α0, z) :=
1
2 :e

1
k0

b(z)
(b(z)− r (z)): ,

φ(α0, z)= φ(−α1, z) :=
1
2 :e
−

1
k0

b(z)
(b(z)+ r (z)):

be the parafermions. It follows from Lemma 3.1 that

φ(α1, z)S(w)

∼
1
2 :e

1
k0

b(z)
(b− r )(z)e

1
2(b−r )(w)

:
1

z−w
+

1
2 :e

1
k0

b(z)+ 1
2(b−r )(w)

:
2

(z−w)2

∼
∂

∂w

(
:e

1
k0

b(w)+ 1
2(b−r )(w)

:
1

z−w

)
. �

Let d be the zero mode ofS(z): d =
∫

S(z)dz. It is easy to check that the
anticommutator{S(z), S(z)} = 0, thusd gives rise to a complex of vector spaces:

· · · −→ F
j0, j1,l1−

k0
2 ,l2−

k0+2
2
−→ F j0, j1,l1,l2 −→

F
j0, j1,l1+

k0
2 ,l2+

k0+2
2
−→ F j0, j1,l1+k0,l2+k0+2−→ · · ·

We can define the restrictedT(A)-submodule using Proposition 4.1. Givenl we
define aT(A)-submodule

Fl =
⊕

j1∈l+Z, j0∈−l+Z

ker
(
d : F j0, j1, j1,l → F

j0, j1, j1+
k0
2 ,l+

k0+2
2

)
.

Theorem 4.2. The operator d commutes or anticommutes with elements of the
toroidal algebra T(A1) and d2

= 0. Moreover we have the long exact sequence

0−→ Fl −→
⊕
j0, j1

F j0, j1, j1,l −→
⊕
j0, j1

F
j0, j1, j1+

k0
2 ,l+

k0+2
2

−→

⊕
j0, j1

F j0, j1, j1+k0,l+k0+2−→ · · · ,

where the maps from
⊕

j0, j1 F j0, j1, j1,l onward are
⊕

d and the summations run
through j0 ∈ −l +Z and j1 ∈ l +Z.
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Proof. We introduce the operatorS?(z)= e−
1
2(b(z)−r (z))

=
∑

n S∗nz−n, and setd? =
S?0. It is easy to see that{S(z), S?(w)} = 1. Hencedd?+d?d= 1, and we already
knew thatd2

= 0. Thus the following long sequence of vector spaces is exact:

0→ kerF j0, j1, j1,l
d→ F j0, j1, j1,l → F

j0, j1, j1+
k0
2 ,l+

k0+2
2
→ F j0, j1, j1+k0,l+k0+2→ · · · .

Taking the direct sum we obtain Theorem 4.2. �

Sincea0(n)+a1(n) acts trivially we can modulo the relation and define

F̃l = Fl/(a0(n)+a1(n);−n ∈ N);

then it is also aT(A1)-module and the results in Proposition 4.1 obviously hold
for the moduleF̃l . If we further moduloa1(0)+ a0(0) we will obtain the Verma
module for the affine Lie algebra generically.

Using the exact sequence we can compute the character for the moduleF̃l as
follows.

Theorem 4.3.The character of the T(A1)-moduleF̃l is given by

ch(F̃l )=

∞∑
s=0

(−1)s
∑

α∈Q e−l r
k0+2+s(

k0+2
2 r+

k0
2 b)eα∏

(e−δ1)
∏
(e−δb)

∏
(e−δr )

where ∏
(x)=

∏
m>0

(1− xm) and Q=
1

k0
(Zα1+Zb). �
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[Fĕıgin and Frenkel’ 1988]B. L. Fĕıgin and È. V. Frenkel’, “A family of representations of affine
Lie algebras”,Uspekhi Mat. Nauk43:5 (1988), 227–228. In Russian; translated inRussian Math.
Surveys43:5 (1988), 221–222. MR 89k:17016 Zbl 0657.17013

[Frenkel et al. 1988]I. Frenkel, J. Lepowsky, and A. Meurman,Vertex operator algebras and the
Monster, Pure and Applied Mathematics134, Academic Press, Boston, 1988. MR MR996026
(90h:17026) Zbl 0674.17001

[Jing and Lyerly 1999]N. Jing and C. M. Lyerly, “Level two vertex representations ofG(1)2 ”, Comm.
Algebra27:9 (1999), 4355–4362. MR 2000g:17035 Zbl 1007.17019

[Larsson 1999]T. A. Larsson, “Lowest-energy representations of non-centrally extended diffeomor-
phism algebras”,Comm. Math. Phys.201:2 (1999), 461–470. MR 2000c:17042 Zbl 0936.17025



BOSONIC REALIZATIONS OF HIGHER-LEVEL TOROIDAL LIE ALGEBRAS 301

[Moody et al. 1990]R. V. Moody, S. E. Rao, and T. Yokonuma, “Toroidal Lie algebras and vertex
representations”,Geom. Dedicata35:1-3 (1990), 283–307. MR 91i:17032 Zbl 0704.17011

[Nemeschansky 1989]D. Nemeschansky, “Feı̆gin–Fuchs representation of̂su(2)k Kac–Moody al-
gebra”,Phys. Lett. B224:1-2 (1989), 121–124. MR 90g:17026

[Tan 1999] S. Tan, “Principal construction of the toroidal Lie algebra of typeA1”, Math. Z.230:4
(1999), 621–657. MR 2001d:17030 Zbl 0932.17028

[Wakimoto 1986] M. Wakimoto, “Fock representations of the affine Lie algebraA(1)1 ”, Comm. Math.
Phys.104:4 (1986), 605–609. MR 87m:17011 Zbl 0587.17009

Received October 2, 2002. Revised March 18, 2004.

NAIHUAN JING

DEPARTMENT OFMATHEMATICS

NORTH CAROLINA STATE UNIVERSITY

RALEIGH , NC 27695
UNITED STATES

FACULTY OF MATHEMATICS

HUBEI UNIVERSITY

WUHAN , HUBEI 430064
CHINA

jing@math.ncsu.edu

KAILASH M ISRA

DEPARTMENT OFMATHEMATICS

NORTH CAROLINA STATE UNIVERSITY

RALEIGH , NC 27695
UNITED STATES

misra@math.ncsu.edu

SHAOBIN TAN

DEPARTMENT OFMATHEMATICS

X IAMEN UNIVERSITY

X IAMEN , FUJIAN 361005
CHINA

tans@jingxian.xmu.edu.cn



PACIFIC JOURNAL OF MATHEMATICS
Vol. 219, No. 2, 2005

THE KERNEL OF Burau (4) ⊗ Z p IS ALL PSEUDO-ANOSOV

SANG JIN LEE AND WON TAEK SONG

The kernel of Burau(4)⊗Z p, the reduced Burau representation with coeffi-
cients inZ p of the 4-braid group B4, consists only of pseudo-Anosov braids.

1. Introduction

Given two pseudo-Anosov homeomorphisms with distinct invariant measured fo-
liations, some powers of their isotopy classes generate a rank two free subgroup
of the mapping class group of the surface [Long 1986]. This construction gives an
example of all pseudo-Anosov subgroup of the mapping class group. A positive
answer is given in [Whittlesey 2000] to the natural question of the existence of all
pseudo-Anosovnormalsubgroups by showing that the Brunnian mapping classes
on a sphere with at least five punctures are neither periodic nor reducible. Not every
Brunniann-braid maps to a Brunnian mapping class on an(n+1)-punctured sphere.
One can however show that a nontrivial Brunniann-braid should be pseudo-Anosov
for n≥ 3, by adapting the arguments in [Whittlesey 2000].

In this note we show that the kernel of Burau(4)⊗Zp, the reduced Burau repre-
sentation with coefficients inZp of the 4-braid groupB4, consists only of pseudo-
Anosov braids. Our result also implies that the kernel of Burau(4), if nontrivial, is
all pseudo-Anosov. By [Cooper and Long 1997; 1998], Burau(4)⊗Zp for p=2,3
is not faithful. It is straightforward to check that there exist non-Brunnian braids in
the kernels, hence giving new examples of all pseudo-Anosov normal subgroups
of B4 that are not contained in the example of Whittlesey.

For the proof, assume that we are given a nontrivial 4-braid that is not pseudo-
Anosov. If it is periodic, it is conjugate to a rigid rotation [Brouwer 1919], whose
Burau action is clearly nontrivial. If it is reducible, then in many ways it is similar to
a 3-braid so that its Burau action is fairly predictable, for which case an automaton
that records the polynomial degrees suffices to prove faithfulness. Our argument is
similar to that of the ping-pong lemma. We construct an automaton whose states
are disjoint subsets ofZp[t, t−1

]
3 and whose arrows are braid actions that map the

subsets into the subsets.

MSC2000:20F36, 57M60.
Keywords: braid group, Burau representation, all pseudo-Anosov.
Lee’s research was supported by the faculty research fund of Konkuk University in 2003.
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For braids with more than four strands, this approach immediately faces obsta-
cles. Since Burau(4)⊗ Z2 is not faithful, the kernel of Burau(5)⊗ Z2 contains
reducible braids. Taking other representations or taking intersection with other
subgroups to get rid of such reducible braids then makes the proof more difficult.

We remark that the present result is a byproduct of working on the faithfulness
question of Burau(4) [Moody 1991; 1993; Long and Paton 1993; Bigelow 1999].

2. No periodic or reducible braids

The n-braid groupBn consists of the mapping classes on then-punctured disk.
The center ofBn is the infinite cyclic group generated by the Dehn twist along
the boundary. A braid is calledperiodic if some of its powers are contained in the
center. A braid is calledreducibleif it is represented by a disk homeomorphism
that fixes a collection of disjoint essential curves. If a braid is neither periodic
nor reducible, the Nielsen–Thurston classification of surface homeomorphisms
[Thurston 1988; Fathi et al. 1979] implies that it is represented by a pseudo-Anosov
homeomorphism. Such a braid is calledpseudo-Anosov. A subgroup ofBn is called
all pseudo-Anosovif its nontrivial elements are all pseudo-Anosov.

Then-braid groupBn has the presentation

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσ j = σ jσi , |i − j | ≥ 2
σiσ jσi = σ jσiσ j , |i − j | = 1

〉
The reduced Burau representation

ρn = Burau(n) : Bn→GLn−1(Z[t, t
−1
])

is defined by the action on the first homology of the cyclic cover of the punctured
disk. For the purpose of this note, it suffices to defineρ4 by the three matrices

ρ4(σ1)=

−t 0 0
1 1 0
0 0 1

 , ρ4(σ2)=

1 t 0
0 −t 0
0 1 1

 , ρ4(σ3)=

1 0 0
0 1 t
0 0 −t

 .
We use the convention thatB4 acts onZ[t, t−1

]
3 from the right. We denote by

v ∗ρ β, or more simply byv ∗ β, the matrix multiplicationvρ(β) for a row vector
v, a representationρ and a braidβ. For example,( f, g, h)∗ρ4σ1= (−t f +g, g, h)
for f, g, h ∈ Z[t, t−1

].

Theorem 1. The kernel of(ρ4⊗ Zp) : B4→ GL3(Zp[t, t−1
]) for p ≥ 2 does not

contain a nontrivial periodic or reducible braid. In particular ifρ4⊗ Zp is not
faithful, its kernel is an all pseudo-Anosov normal subgroup of B4.

The proof will involve several lemmas.

Lemma 2. ρn⊗Zp is faithful for periodic braids.
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Proof. If β ∈ Bn is a periodicn-braid, then it is represented by a rigid rotation on
the punctured disk [Brouwer 1919] so that it is conjugate to(σn−1 · · · σ2σ1)

k or to
(σn−1 · · · σ2σ1σ1)

k for somek ∈ Z. Since det
(
(ρn⊗Zp)(β)

)
= (−t)e(β), where the

exponent sume(β) is k(n− 1) or kn, we see that ifβ is in the kernel ofρn⊗Zp,
thenk= 0 andβ is trivial. �

Let 13 = σ1σ2σ1 ∈ B3 and14 = σ1σ2σ1σ3σ2σ1 ∈ B4 be the square roots of
the generator of the center ofB3 and B4, respectively. For a Laurent polynomial
f (t) =

∑
m amtm, define degf = max{m : am 6= 0}. By convention we define

deg f =−∞ if f = 0.

Lemma 3. ρ3⊗Zp is faithful.

Proof. Let ρ= ρ3⊗Zp be the reduced Burau representation ofB3 with coefficients
in Zp. It is given by the matrices

ρ(σ1)=

(
−t 0

1 1

)
, ρ(σ2)=

(
1 t
0 −t

)
.

Suppose thatρ(β) is trivial for some nontrivial 3-braidβ. By Lemma 2, it is
either reducible or pseudo-Anosov. Ifβ is reducible, it is conjugate to12m

3 σ k
1

for some integersk andm, which is an arbitrary 3-braid with an invariant curve
standardly embedded in the disk enclosing the first two punctures as in Figure 1,
right. Sinceρ(β) is trivial,

ρ(12m
3 σ k

1 )= t3m
(
(−t)k 0
∗ 1

)
must be the identity matrix. Som=0 andk=0 henceβ is trivial, which contradicts
the assumption.

If β is pseudo-Anosov, it is conjugate toP(σ−1
1 , σ2)1

2k
3 whereP is a positive

word on two letters [Murasugi 1974; Song et al. 2002]. By taking inverse or
conjugation by13 if necessary, we can assume thatP(σ−1

1 , σ2) starts withσ2.
In other words,β or β−1 is conjugate toα = σ2Q(σ−1

1 , σ2)1
2k
3 for some positive

word Q. Theρ-actions ofσ−1
1 , σ2 and12

3 on Zp[t, t−1
]
2 are given as follows: for

v = ( f, g) ∈ Zp[t, t−1
]
2,

v ∗σ−1
1 = (−t−1( f − g), g), v ∗σ2= ( f, t ( f − g)) and v ∗12

3= (t
3 f, t3g).

Consider the subsetV0=
{
( f, g)∈Zp[t, t−1

]
2
| deg f < degg

}
. It is easy to check

that V0 is invariant under the action ofσ−1
1 , σ2 and12

3. Let v0 = (1,0). Then
v0 ∗σ2= (1, t) ∈ V0, so thatv0 ∗α = (1, t) ∗Q(σ−1

1 , σ2)1
2k
3 ∈ V0. Sincev0 6∈ V0,

we havev0∗α 6= v0, which contradicts the assumption thatβ is in the kernel ofρ.
�
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Figure 1. Up to homeomorphisms on a 4-punctured disk, there
are only two essential curves.

Proof of Theorem 1.Let ρ = ρ4⊗ Zp be the reduced Burau representation ofB4

with coefficients inZp. Assumeρ(β) is trivial for some nontrivial 4-braidβ ∈ B4.
The braidβ is either reducible or pseudo-Anosov by Lemma 2. We need to show
thatβ is not reducible.

Suppose thatβ is reducible. By taking some power ofβ if necessary, we may
assume thatβ is represented by a homeomorphism that fixes an essential simple
closed curveC. By applying a conjugation by a braid that sendsC to one of the
curves in Figure 1, we assume thatC is one of the two standardly embedded curves
and the homeomorphism representingβ fixesC.

Let C be the curve enclosing the first three punctures as Figure 1, left. Thenβ

can be written asβ =12m
4 W(σ1, σ2) for an integerm and a wordW on two letters.

Observing that theρ-action by a 3-braid leaves the third coordinate invariant, i.e.,
( f, g, h) ∗W(σ1, σ2) = ( f1, g1, h), we have(0,0,1) ∗ β = ( f, g, t4m) for some
f, g ∈ Zp[t, t−1

]. Sinceρ(β) is trivial, we obtainm = 0, which in turn implies
thatβ is in 〈σ1, σ2〉 = B3⊂ B4. The faithfulness ofρ3⊗Zp by Lemma 3 leads to
a contradiction.

Now assume thatC contains the first two punctures as Figure 1, right. The 4-
braids represented by homeomorphisms that fixC form a subgroup ofB4 generated
by σ1, x = σ2σ

2
1σ2 andy= σ3. Sinceσ1 commutes with bothx andy, we write

β = σ k
1 W(x, y)

for an integerk and a wordW on two letters.
By using the relationsxyxy= yxyx, (xyxy)σ 2

1 =1
2
4 and thatxyxycommutes

with x, y andσ1, we rewriteβ into another form by which we will track(0,0,1)∗β.
By replacingx−1 with (yxy)(xyxy)−1 and y−1 with (xyx)(xyxy)−1 and then

collecting (xyxy)±1 to the left, we haveW(x, y) = (xyxy)mP(x, y) for some
integerm and a positive wordP on two letters. We can assume that we have moved
(xyxy) to the left as many as possible so that neitherxyxynor yxyx occurs inP
as a subword. We have

β = σ k
1 (xyxy)mP(x, y)=12m

4 σ k−2m
1 P(x, y).

We claim thatP contains bothx andy as a subword. IfP does not containy,
i.e., P = xl for somel ≥ 0, thenβ = 12m

4 σ k−2m
1 xl

= 12m
4 σ k−2m

1 (σ2σ
2
1σ2)

l fixes
the curve in Figure 1, left. By the previous argumentβ is trivial. If P does not
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containx, i.e., P = yl for somel ≥ 0, thenβ =12m
4 σ k−2m

1 yl . From the equalities

(0,0,1) ∗β = (0,0, (−t)4m+l ), (1,0,0) ∗β = ((−t)4m+(k−2m),0,0),

we deducel =−4m andk=−2m. The exponent sume(β)=12m+(k−2m)+l =
4m should equal zero sinceρ(β) is trivial. Therefore we havem= l = k=0, which
implies thatβ is trivial.

Next, sincex andy both commute withσ1 and12
4, by applying a conjugation we

may assume thatP starts withy and ends withx. In Figure 2, left, we construct an
automaton that accepts a positive word inx, y without any occurrence ofxyxyand
yxyx. Arbitrary paths following the arrows give words accepted by the automaton.
Now we have

β =12m
4 σ k−2m

1 Q(x, y, xy, yx, yxy, xyx)

for some positive wordQ accepted by the automaton in Figure 2, left. Note that
Q starts with one ofy, yxy, yx and ends with one ofx, xyx, yx. In other words,
Q is represented by a path starting at the stateY and ending at the stateX.

We replacexyx by y−1(xyxy), yxyby x−1(xyxy) and then collect all(xyxy)’s
to the left to obtain

β =1
2m1
4 σ

k1
1 Q(x, y, xy, yx, x−1, y−1)

for somek1 andm1.

Consider the subsets ofZp[t, t−1
]
3 given by

VX = {( f, g, h) ∈ Zp[t, t
−1
]
3
| degg> deg f, degg≥ degh},

VY = {( f, g, h) ∈ Zp[t, t
−1
]
3
| degh> deg f, degh> degg}.

y

x

yx xy

xyx

yxy

X

Y

y

x

yx xy

y−1

x−1

X

Y

Figure 2. Left: an automaton that accepts exactly those words not
containingxyxyor yxyx. Right: see next page.
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The ρ-action of each arrow of the automaton in Figure 2, right, is given as
follows. Letv = ( f, g, h) ∈ Zp[t, t−1

]
3 be an arbitrary vector.

v ∗ x =
(
t f + (t2

− t)g+ (1− t)h, t3g+ (1− t2)h, h
)
,

v ∗ y=
(

f, g, tg− th
)
,

v ∗ (xy)=
(
t f + (t2

− t)g+ (1− t)h, t3g+ (1− t2)h, t4g− t3h
)
,

v ∗ (yx)=
(
t f + (t2

− t)h, tg+ (t3
− t)h, tg− th

)
,

v ∗ x−1
=
(
t−1 f + (t−3

− t−2)g+ (t−2
− t−3)h, t−3g+ (t−2

− t−3)h, h
)
,

v ∗ y−1
=
(

f, g, g− t−1h
)
.

Then it is routine to check from these formulae that

VX ∗ x ⊂ VX,

VY ∗ y⊂ VY,

VX ∗ y−1
⊂ VX,

VY ∗ x−1
⊂ VY,

VX ∗ (xy)⊂ VY,

VY ∗ (yx)⊂ VX.

These relations are compatible with the automaton in Figure 2, right. If a path
starts atY and ends atX then theρ-action of its braid word mapsVY into VX. So
we haveVY ∗ Q⊂ VX for Q= Q(x, y, xy, yx, x−1, y−1).

Since(0,0, t4m1) ∈ VY, we have

(0,0,1) ∗β = (0,0,1) ∗12m1
4 σ

k1
1 Q

= (0,0, t4m1) ∗ σ
k1
1 Q

= (0,0, t4m1) ∗ Q,

which lies inVX. Since(0,0,1)∈VY andVX∩VY=∅, the condition(0,0,1)∗β ∈
VX implies thatρ(β) is nontrivial. �

We remark that the group generated byx and y is the Artin group of Coxeter
type B2 and thatxyxy= yxyx is the defining relation of the subgroup generated
by x andy. So the subgroup generated byx, y andσ1 is the direct product of the
infinite cyclic subgroup generated byσ1 and the subgroup generated byx andy.

Figure 3. The braidσ−1
1 σ 3

2σ1σ3σ
−3
2 σ−1

3 , whose fourth power is
in the kernel of Burau(4)⊗Z2.
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Figure 4. A braid in the kernel of Burau(4)⊗Z3.

3. Non-Brunnian elements

Cooper and Long [1997] obtained a presentation of the image ofρ4⊗ Z2. As a
corollary,ρ4⊗Z2 is not faithful. The same authors computed in [Cooper and Long
1998] a presentation of a group containing the image ofρ4⊗Z3 as a finite index
subgroup and gave a nontrivial braid in the kernel explicitly. In this section we
show that the examples of Cooper and Long are not Brunnian.

Let αk = (σ
−1
1 σ k

2σ1σ3σ
−k
2 σ−1

3 )4 for k 6= 0. (See Figure 3 for the expression in
parentheses, withk= 3.) The braidαk comes from the fourth relation of [Cooper
and Long 1997, Theorem 1.4] and is in the kernel ofβ4⊗Z2. αk is not Brunnian
because we obtainσ 4k

1 by forgetting the second and the fourth strands.
Now letα be the braid

σ 2
2σ1σ

−2
2 σ−2

3 σ2σ
−3
1 σ−1

2 σ3σ
−1
2 σ1σ

2
2σ
−2
3 σ−1

1 σ−2
2

· σ1σ
−2
2 σ1σ3σ

−1
2 σ3σ

3
2σ1σ

−1
2 σ3σ

−1
2 σ1σ

−2
2 σ1σ

2
3σ2σ

−1
3 ,

as in Figure 4. It is conjugate to the braid given by [Cooper and Long 1998] as a
nontrivial element of ker Burau(4)⊗Z3. It is easy to see thatα is not Brunnian. If
we forget the fourth strand fromα as Figure 5, we get a nontrivial 3-braid

α′ = σ 2
2σ1σ

−1
2 σ−3

1 σ−1
2 σ 2

1σ
−2
2 σ−2

1 σ 3
2σ
−1
1 σ2σ

−1
1 σ 2

2

= (σ2σ
−1
1 σ2σ

−1
1 σ 2

2 )
31−2

3 .

?

Figure 5. Forgetting the fourth strand.
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ON A SPECIAL CLASS OF FIBRATIONS AND KÄHLER
RIGIDITY

NICKOLAS J. MICHELACAKIS

Let ABn be the class of torsion-free, discrete groups that contain a normal,
at most n-step, nilpotent subgroup of finite index. We give sufficient condi-
tions for the fundamental group of a fibration F → T → B, with base B an
infra-nilmanifold, to belong to ABn. Manifolds of this kind may, for exam-
ple, appear as thin ends of nonpositively curved manifolds. We prove that if,
in addition, we require that T be Kähler, then T possesses a flat Riemannian
metric and the fundamental groupπ1(T ) is necessarily a Bieberbach group.
Further, we prove that a torsion-free, virtually polycyclic group that can be
realised as the fundamental group of a compact, Kähler K(π, 1)-manifold
is necessarily Bieberbach.

1. Introduction

Torsion-free, discrete, cocompact subgroups of the group of affine motions ofRn

were first studied by Bieberbach in 1912, and more recently by Charlap; they are
calledBieberbach groups. They correspond precisely to the fundamental groups
of compact manifolds endowed with a flat Riemannian metric [Charlap 1965], and
such manifolds are finitely covered by flat tori [Bieberbach 1911].

L. Auslander [1960] and Lee and Raymond [1985] turned their attention to
almost-Bieberbach groups, that is, torsion-free, discrete, cocompact subgroups
of GoC, with C a maximal, compact subgroup of AutG for G a simply con-
nected, nilpotent Lie group. They succeeded in generalising much of Bieberbach’s
work. Malcev’s equivalence [1949] shows that torsion-free, finitely generated,
nilpotent groups correspond precisely to the fundamental groups ofnilmanifolds,
that is, compact manifolds of the formM = G/N, whereG is a simply con-
nected, nilpotent Lie group, andN a discrete subgroup. Theorem 3.2 shows that
almost-Bieberbach groups correspond toinfra-nilmanifolds, compact manifolds
of the form G/0 with G as above and0 a discrete subgroup ofGoC, where

MSC2000:primary 22E40; secondary 32Q15, 14R20.
Keywords: affinely flat manifold, (almost)-crystallographic, (almost)-Bieberbach group,

(almost)-torsion-free, (virtually) polycyclic group, nilpotent Lie group, discrete cocompact
subgroups, lattice, Malcev completion, cohomology of groups, complex (Kähler) structure,
group action, group representation, flat Riemannian manifold, (infra)-nilmanifold.
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C is a maximal compact subgroup of AutG. We denote byABn the class of
almost-Bieberbach groups whose maximal, normal, nilpotent subgroup is at most
n-step nilpotent. We shall say that a group0 admits ann-step almost-Bieberbach
structure if and only if0 ∈ ABn and its maximal normal nilpotent subgroup is
n-step nilpotent.

(We know from [Gromov 1981] and [Wolf 1968] that, among finitely generated
groups, virtually nilpotent groups are precisely those groups that have polynomial
growth. For details and precise definitions, see those works or [Tits 1981].)

We employ algebraic methods to study closed manifolds that fibre over infra-
nilmanifolds. If F→ T→ B is such a fibration, whereF, T andB are all acyclic,
the long homotopy exact sequence reduces to a group extension of the form

1−→ π1(F)−→ π1(T)−→ π1(B)−→ 1.

Manifolds of this type appear as thin ends of geometrically finite hyperbolic man-
ifolds, which are an interesting subclass of nonpositively curved manifolds. More
specifically, Apanasov and Xie [1997] proved that if0⊂HnoU (n−1) is a torsion-
free discrete group acting on the Heisenberg groupHn :=Cn−1

×R, the orbit space
Hn/0 is a Heisenberg manifold of zero Euler characteristic and a vector bundle
over a compact manifold. Further, this compact manifold is finitely covered by
a nilmanifold which is either a torus or a torus bundle over a torus. This gener-
alises earlier results on almost flat manifolds concerning lattices inHnoU (n− 1)
[Gromov 1978; Buser and Karcher 1981].

As mentioned above, groups inABn correspond to infra-nilmanifolds. In Sec-
tion 2 we study extensions of the form

1−→ G−→ 0 −→ K −→ 1,

with K ∈ ABn, to provide sufficient conditions under which0 belongs toABn.
In particular, Proposition 2.2 guarantees the existence of an almost-Bieberbach
structure on0 providedG is a normal subgroup of0 in a precise way. Proposition
2.4 does the same providedG lies inABn and the action ofK on G respects some
suitable minimal conditions.

In Section 3 we use the Johnson–Rees characterisation of fundamental groups
of flat, Kähler [Johnson and Rees 1991], and projective [Johnson 1990] mani-
folds, and apply the Benson–Gordon theorem [1988] for the existence of a Kähler
structure on a compact nilmanifold to show, in Theorem 3.3, that the existence of
a Kähler structure on a special fibration as above implies the existence of a flat
Riemann metric onT . In particular, inABn, the classes of fundamental groups
of Kähler and projective manifolds coincide, as shown in Corollary 3.4. Further,
as a consequence of the Lefschetz hyperplane theorem and Bertini’s theorem, this
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is a subclass of the class of fundamental groups of compact, closed, nonsingular
projective surfaces.

Finally, in Section 4, we use a structure theorem concerning virtually polycyclic
groups, proved in [Dekimpe and Igodt 1994], together with the results in [Arapura
and Nori 1999], to prove, in Theorem 4.2, that a torsion-free, virtually polycyclic
group can be realised as the fundamental group of a K(π,1)-compact, Kähler
manifold if and only if it is Bieberbach of a special kind, namely, its operator
homomorphism is essentially complex.

2. Group extensions

A group N is said to benilpotent if its upper central series

1= N0 C N1= Z(N) C N2 C · · · ,

defined byNi+1/Ni = Z(N/Ni ), is finite. If n is the smallest integer such that
Nn=N, thenN is said to ben-step nilpotent. We shall say that a finitely generated,
torsion-free group0 admits an (n-step)almost-Bieberbachgroup structure if it can
be written as an extension of a finitely generated, (n-step) nilpotent groupN by a
finite group8. Notice that, given such a torsion-free, finitely generated, nilpotent
group, its quotientsNi+1/Ni are of a special form, namelyNi+1/Ni

∼= Zi j .

Lemma 2.1.Let0 fit in an extension

0−→ Zm
−→ 0

p
−→ G−→ 1,

where the torsion-free group G has an n-step nilpotent, normal subgroup N of
finite index andZm a trivial N-module. Then0 ∈ABn+1.

Proof. Let G be defined by the extension

1−→ N −→ G−→8−→ 1,

with N n-step nilpotent,8 finite andφ :8→OutN the operator homomorphism.
Consider0 := p−1(N). Then the extension

(2–1) 0−→ Zm
−→ 0

p
−→ N −→ 1

is central, which implies that0 is at most(n+1)-step nilpotent. The proof is
completed by the observation that0= p−1(N)C0 and0/0∼= (0/Zm)/(0/Zm)∼=

G/N ∼=8. Notice that0 is torsion-free since so areZm andG. �

We now turn our attention to the fibre of the fibrationF→ T→ B to prove the
following:
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Proposition 2.2.Let0 be a torsion-free extension

(2–2) 1−→ K −→ 0
p
−→ G−→ 1

of a finitely generated group K by a group G admitting an n-step nilpotent, almost-
Bieberbach structure such thatIm c is finite, where c: 0 → Aut K denotes the
conjugation map. Then0 ∈ABn+1.

Proof. SinceG admits ann-step almost-Bieberbach structure there is a short exact
sequence

1−→ N −→ G−→8−→ 1

whereN is n-step nilpotent,8 is finite, andφ :8→OutN is the operator homo-
morphism. Let0̂ := p−1(N). Then0̂ fits in a short exact sequence

1−→ K −→ 0̂
p
−→ N −→ 1,

where we denote bȳc the restriction of the conjugation mapc : 0→ Aut K to 0̂.
Let 0 := Ker c̄, which is nonempty since0 is infinite. Then the extension

1−→ 0 ∩ K −→ 0 −→ p(0)−→ 1

is central, withp(0)C N, and therefore itself nilpotent. This means that0 ∩ K
is a finitely generated, torsion-free, abelian group and0 is at most(n+1)-step
nilpotent. The proof is completed by observing that the normal subgroup0 of 0̂
has finite index in0̂, since Imc̄ is finite. �

The group AutK , for K a Bieberbach group, is not necessarily finite. For an
example, see [Charlap 1986, p. 219]. It does, then, make sense to check what
happens if the fibre admits ann-step almost-Bieberbach structure. But first:

Proposition 2.3.Let0 be a torsion-free extension

1−→ K −→ 0
p
−→ Zn

−→ 0

of a Bieberbach group K by a free abelian group of rank n, such thatZm
⊆ Z(0),

whereZm is the translation subgroup of K and Z(0) the center of0. Then0 ∈
AB2.

Proof. First observe thatZm C 0, sinceZm
≤ Z(0). We therefore have a short

exact sequence

(2–3) 1−→ K/Zm
−→ 0/Zm p

−→ Zn
−→ 0

whereK/Zm is isomorphic toF , the finite holonomy group ofK . We distinguish
two cases:
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(i) Assume that (2–3) is a central extension. Then chooseQ := (Zn−1
× kZ)CZn

of indexk= |F |, with |F | the exponent ofF . Let0′ := p−1(Q). Then0′ fits in a
short exact sequence

1−→ F −→ 0′
p
−→ Q−→ 0

that splits as a direct product. By construction,0′ = (F × Q)C0/Zm is of finite
index. Letq : 0 → 0/Zm be the identification map. The free abelian groupQ
imbeds as a normal subgroup of0′ C 0/Zm and so also, because Aut(F × Q) =
Aut F×Aut Q, as a normal subgroup of0/Zm. Let 0̃ :=q−1(Q) and0̂ :=q−1(0′);
thenQ∼= 0̃/Zm andF×Q∼= 0̂/Zm. SinceQ≤Zn, it acts onZm in the same way
asZn, namely trivially. So0̃ is 2-step nilpotent normal in0. One can further check
that its index|0/0̃| in 0 is finite, because|0/0̃| = |0/0̂| · |0̂/0̃| = |Zn/Q| · |F |.
This completes the proof in this case.

(ii) Assume that the sequence (2–3) is not central, and letc :0/Zm
→Aut F be the

conjugation map. SinceF is finite and0/Zm infinite, the kernel ofc is nontrivial.
Let 0 := KercC0/Zm, let F := F ∩0, and letQ := p(0). Then the extension

1−→ F −→ 0 −→ Q−→ 0

with Q C Zn (so thatQ ∼= Zρ for someρ ≤ n) belongs to the previous case. The
result now follows, since0 has finite index in0. �

Proposition 2.4.Let0 be a torsion-free extension

(2–4) 1−→ K −→ 0
p
−→ G−→ 1,

where K and G admit m-step and n-step almost-Bieberbach structures, respec-
tively. If Z(L/L i )⊆ Z(0/L i ), where{L i }i is the upper central series of an m-step
nilpotent, normal subgroup L of finite index in K, then0 ∈ABn+m.

Proof. We first check inductively thatL i C0. This is clear fori = 1. Assume it is
true for i and letqi : L→ L/L i be the identification map, where

L i+1= q−1(Z(L/L i )
)
,

so thatL i+1/L i
∼= Z(L/L i ). ThenL i+1/L i C Z(0/L i ) andL i+1 C0. The rest of

the proof also follows by induction, first onm and then onn. The groupG is of
the form

1−→ N −→ G−→8−→ 1,

whereN is n-step nilpotent and8 finite. By letting0̂ := p−1(N)we get a sequence

1−→ K −→ 0̂ −→ N −→ 1.



316 NICKOLAS J. MICHELACAKIS

The casem= n = 1 follows from Proposition 2.3. Assuming the theorem is true
for somem andn= 1, we shall show it is true form+1 andn= 1. If K is of the
form

1−→ L −→ K −→ F −→ 1,

whereL is m-step nilpotent andF finite, considerL1 = Z(L). The conditions of
the theorem ensure thatL1 = Z(L) ∼= Zρ C 0 for some positive integerρ. This
gives a short exact sequence

1−→ K/Zρ −→ 0̂/Zρ −→ Zν −→ 0,

with ν > 0. Then{L i /L1}i is the upper central series ofL/L1 and0̂/Zρ admits an
(n+1)-step almost-Bieberbach structure by the induction hypothesis.0̂ fits into a
central short exact sequence

0−→ Zρ −→ 0̂ −→ 0̂/Zρ −→ 1.

Lemma 2.1 now applies to prove that0̂, and therefore0, admit an(n+2)-step
almost-Bieberbach structure. Now assume the theorem is true for allm and n
up to a certain value. We complete the proof by showing it holds for allm and
n+ 1. If {Ni }i is the upper central series of some(n+1)-step nilpotentN, define
0 := p−1(Nn). Then0 fits in

1−→ K −→ 0 −→ Nn −→ 1

and admits an(n+m)-step almost-Bieberbach structure. Also there is a positive
integerµ such that the sequence

1−→ 0 −→ 0̂ −→ 0/0̂ ∼= Zµ −→ 0

is exact. The induction argument on the fibre implies that0̂ ∈ ABn+m+1, and so
0 ∈ABn+m+1 too. �

3. Almost-Bieberbach groups and Kähler structures

Let AutG denote the group of automorphisms of a simply connected Lie group
G. We shall be concerned with discrete subgroups0 of Aut G that act properly
discontinuously onG.

A group0 is said to becrystallographicif it is a cocompact, discrete subgroup of
RnoO(n)⊂ Aff (Rn), whereO(n) is the maximal compact subgroup of GL(n,R)

and Aff(Rn) is the group of Euclidean motions ofRn. It is a Bieberbachcrys-
tallographic group if it is torsion-free as well. Bieberbach groups are precisely
the fundamental groups of compact, complete Riemannian manifolds that are flat
(locally isometric to Euclidean space), as first proved in [Bieberbach 1911]. An
alternative characterisation of flat Riemannian manifolds is that in such manifolds,
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transition maps can be extended to elements ofRnoO(n). Charlap [1965] classi-
fied these manifolds, up to connection-preserving diffeomorphisms, by associating
to a manifoldM a short exact sequence

1−→3−→ G−→8−→ 1

in which the holonomy group8 of M is finite and3 ∼= Zn is the translation sub-
group of0∼= π1(M), a torsion-free, discrete, cocompact subgroup ofRnoO(n)⊂
Aff (Rn).

More generally, ifG is a simply connected, nilpotent Lie group, we consider
a maximal compact subgroupC ⊆ Aut G. A cocompact, discrete subgroup0 of
G o C is called analmost-crystallographicgroup, and if torsion-free it is called
almost-Bieberbach. The quotientG/0 is called aninfra-nilmanifold, and if0⊆G
it is a nilmanifold.

Most of Bieberbach’s work has been generalised to the nilpotent case in [Aus-
lander 1960] and [Lee and Raymond 1985]:

Theorem 3.1 (Auslander). Let 0 ⊆ Go Aut G be an almost-crystallographic
group, where G is a connected, simply connected, nilpotent Lie group. Then
(0 ∩G)C0 is a cocompact lattice in G, and0/(0 ∩G) is finite.

Parts of the statement of the following theorem can already be found in [Lee
and Raymond 1985]. We simplify the proof.

Theorem 3.2.0 is almost-crystallographic if and only if it is of the form

1−→ N −→ 0 −→8−→ 1,

with N finitely generated, torsion-free, maximal nilpotent, and8 finite.

Proof. If 0 ⊆ Go Aut G is an almost-Bieberbach group, Theorem 3.1 says that
N=0∩G is a maximal nilpotent, normal subgroup of0 of finite index, and finitely
generated because it is a discrete subgroup of the nilpotent groupG. To prove the
converse, given an extension like the one in the statement of the theorem, with
abstract kernelφ : 8→ OutN, consider the extension of the Malcev completion
N of N,

1−→ N−→ S(0)−→8−→ 1,

with abstract kernelψ : 8
φ
→ OutN→ OutN. The claim is that there is exactly

one extension ofN by8, namelyN ↪→Noψ̂8, whereψ̂ :8→ Aut N is a lifting
morphism ofψ .

Since Z(N) is a vector space and8 is finite, H3(8, Z(N)) vanishes and by
[Mac Lane 1963, Theorem 8.7] the abstract kernel[8,N, ψ] has an extension.
Furthermore, [Mac Lane 1963, Theorem 8.8] says that this extension is unique
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because the setH2(8, Z(N)) parametrizing all congruence classes of such exten-
sions is null, for the same reason. So we know that there is precisely one extension
N ↪→0→→8. If we can further show thatψ has a lifting morphism̂ψ :8→Aut N,
then0 ∼=Noψ̂8. To this end, we apply induction on the nilpotency class ofN. If
N is 1-step nilpotent thenN∼= Z(N) and the result is obvious. IfN is c-step nilpo-
tent, consider the inverse image under the natural projectionq : Aut N→ OutN
of the finite groupψ(8). This gives birth to a short exact sequence InnN ↪→

q−1(ψ(8))→→ ψ(8) with InnN ∼= N/Z(N) fulfilling the induction hypothesis.
We can thus find a splitting morphisms :ψ(9)→ q−1(ψ(8)) < Aut N. But now,
s ◦ψ is the lifting we were looking for, completing the proof. We thus have the
commutative diagram

1 −→ N −→ 0 −→ 8 −→ 1

ı
y 

y ∥∥∥
1 −→ N −→ No8 −→ 8 −→ 1

The map , with  (n, g)= (ı(n), g), embeds0 as a discrete, cocompact subgroup
of the disconnected Lie groupS(0), proving the theorem. �

Given a short exact sequenceZ2n ↪→ 0 →→ 8 with operator homomorphism
φ : 8→ Aut Z2n, we sayφ is essentially complexif there is acomplex structure
for the8-moduleZ2n

⊗R, that is, a mapt ∈ EndR[8](Z
2n
⊗R) such thatt2

=−1.
In other words,φ :8→Aut Z2n is essentially complex if Imφ⊆GLC

(
(Z2n
⊗R)t

)
,

with

GLC

(
(Z2n
⊗R)t

)
:= {m∈GLR(Z

2n
⊗R) such thatmt= tm}.

Theorem 3.3.Let0 be the torsion-free extension

1−→ N −→ 0 −→8−→ 1,

where N is a torsion-free, finitely generated maximal nilpotent group and8 is a
finite group. Then there is a compact Kähler K(0,1)-manifold M if and only if
N ∼= Z2n and the operator homomorphismφ :8→ Aut N is essentially complex.

Proof. By Theorem 3.2 there is a connected, simply connected Lie groupG such
that0 is a torsion-free, discrete, cocompact subgroup ofGo Aut G. SinceM is
a K(0,1)-manifold, its universal covering is homeomorphically equivalent toG
and M ∼= G/0. The hypotheses onN say thatG containsN ↪→ 0 as a discrete
cocompact subgroup. Then̂M ∼= G/N is a compact K(N,1)-nilmanifold that
coversM in a finite, unramified way. Because the Kähler condition is local, the
fact thatM admits a Kähler structure implies thatM̂ also admits a Kähler structure.
The Benson–Gordon theorem says that this can happen only ifN ∼= Z2n, forcing
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the finite coverM̂ of M to be holomorphically equivalent to the complex torus
Cn/Z2n. The converse is settled by [Johnson and Rees 1991, Theorem 3.1].�

Let BK be the class of groups that can be realised as fundamental groups of
compact, Kähler manifolds whose underlying Riemannian structure is flat, and
BP ⊆ BK the subclass consisting of groups that can be realised as fundamental
groups of complex projective varieties. LetABK denote the class of groups that
can be realised as fundamental groups of compact nilmanifolds; that is, compact
manifolds of the formG/0, whereG is a simply connected, nilpotent Lie group
and0 a discrete subgroup admitting a Kähler structure, and letABP ⊆ ABK be
the subclass consisting of groups that can be realised as fundamental groups of
complex projective nilvarieties.

Corollary 3.4. (1) ABK ≡BK ≡BP ≡ABP.

(2) Every group inABK is the fundamental group of a smooth, compact, complex
algebraic surface.

Proof. (1) The first equality follows directly from Theorem 3.3 and [Johnson and
Rees 1991, Theorem 3.1]. The second is [Johnson 1990, Corollary 4.3], while the
third stems from the first two together with the inclusionABP ⊆ABK.

(2) If M is a smooth projective manifold, then by Bertini’s theorem there is a
smooth hyperplane sectionM(n−1). By the Lefschetz hyperplane theorem [Milnor
1963],πl (M,M(n−1))=0 for l <n, soM andM(n−1) have isomorphic fundamental
groups ifn≥ 3. �

We now combine Proposition 2.2, Proposition 2.4 and Theorem 3.3:

Theorem 3.5.If the Kähler manifold T is the total space of a fibration F→T→B
over an infra-nilmanifold B with aspherical fibre F and if the short exact sequence

1−→ π1(F)−→ π1(T)−→ π1(B)−→ 1

of their respective fundamental groups satisfies the conditions of either Proposition
2.2 or Proposition 2.4, then T admits a flat Riemannian metric.

4. Virtually polycyclic groups and Kähler rigidity

An affinely flatmanifold is ann-manifold endowed with an atlas whose transition
maps can be extended to elements of Aff(Rn) = RnoGL(n,R). A torsion-free
group0 is virtually polycyclic if it has a subgroup00 of finite index which is
polycyclic, that is, one that admits a finite composition series00 ⊇ 01 ⊇ 02 ⊇

· · · ⊇ 0n = 1 such that0i /0i+1
∼= Z for all i . The numbern is an invariant,

called therankof 0. Groups inABn are obviously virtually polycyclic. Auslander
[1964] has conjectured that the fundamental group of a compact, complete, affinely
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flat manifold has to be virtually polycyclic. Milnor [1977] has shown that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of complete
affinely flat manifolds. On the other hand, Johnson [1976] has proved that torsion-
free, virtually polycyclic groups can be realised as fundamental groups of compact
K(π,1)-manifolds. However, contrary to the Bieberbach case, Benoist [1992] has
given an example of a 10-step nilpotent group of rank 11, proving that it is not
always possible to do both!

If 0 is a virtually polycyclic group, theFitting groupof 0, denoted Fitt(0), is
the unique maximal normal subgroup of0. TheclosureFitt(0) of the Fitting group
of a group0 is the maximal normal subgroup of0 containing Fitt(0) as a normal
subgroup of finite index. The basic property ofFitt(0) is that it leaves the quotient
0/Fitt(0) with no finite, normal subgroup in it — in other words,almost-torsion-
free. In [Dekimpe and Igodt 1994] it is proved that if0 is a finitely generated
virtually nilpotent group then0 is almost-torsion-free if and only ifFitt(0) is
almost-crystallographic.

If N is a torsion-free, finitely generated,c-step nilpotent group, then to any
extension

N ↪→ 0
p
→→ Q

with abstract kernelψ : Q→ OutN we can inductively associatec morphisms
ψi : Q → Aut(Ni+1/Ni ), where Ni+1/Ni = Z(N/Ni ). Now if q ∈ 0 is such
that p(q) has finite order inQ, and〈q, N〉 is nilpotent, thenp(q) ∈

⋂c
1 Kerψi .

Conversely, ifq ∈ 0 is such thatp(q) ∈
⋂c

1 Kerψi , then〈q, N〉 is nilpotent in0.

We shall use the following lemma, which is half of [Dekimpe and Igodt 1994,
Theorem 2.2]. For completeness, we write a proof here.

Lemma 4.1. Let 0 be a virtually polycyclic group. If 0 is almost-torsion-free,
Fitt(0) is torsion-free maximal nilpotent in0.

Proof. Since0 is polycyclic-by-finite, Fitt(0) is finitely generated nilpotent. There-
fore its torsion set is a finite characteristic subgroup of Fitt(0), and thus normal in
0, and hence trivial since0 is almost torsion-free. So,0 fits in an extension

(4–1) 1−→ Fitt(0)−→ 0
p
−→ Q−→ 1

with Fitt(0) torsion-free andQ abelian-by-finite, sayA ↪→Q
j
→→ F . Now letq∈0

be such thatN :=〈q,Fitt(0)〉 is nilpotent, and look atp(N). If p(N)∩A 6= {1} then
p−1(p(N) ∩ A) is normal in0 since(p(N) ∩ A)C A is nilpotent as a subgroup
of N. Thus, p−1(p(N) ∩ A) ⊆ Fitt(0) and p(N) ∩ A = {1}, a contradiction.
We deduce thatp(N) ∼= j (p(N)) ⊆ F , and hence thatp(q) is of finite order in
Q. The discussion preceding the theorem shows thatp(q) ∈

⋂c
1(ψi ) ∩ p(N),

whereψi are the morphisms associated with (4–1), which is a finite group since
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F is finite; thereforeq ∈ Fitt(0). But since0 is almost torsion-free,Fitt(0) is
almost crystallographic and Fitt(Fitt(0))=Fitt(0) is maximal nilpotent inFitt(0),
implying q ∈ Fitt(0), a contradiction. �

Theorem 4.2. Let0 be a torsion-free, virtually polycyclic group. Then0 can be
realised as the fundamental group of a K(π,1) compact, Kähler manifold if and
only if 0 is Bieberbach with essentially complex operator homomorphism.

Proof. The converse is the second half of Theorem 3.3. For the direct statement,
observe that since0 is torsion-free, it is almost-torsion-free. Thus, by Lemma 4.1,
Fitt(0) is torsion-free maximal nilpotent in0, and0 fits in a short exact sequence
of the form

1−→ Fitt(0)−→ 0
p
−→ Q−→ 1,

whereQ is abelian-by-finite. Since0 is Kähler, by [Arapura and Nori 1999], there
exists a nilpotent subgroup1⊆0 of finite index. But1 is necessarily contained in
Fitt(0), so Q is finite, and Theorem 3.3 completes the proof withN = Fitt(0). �

Provided that the Auslander conjecture is true, Theorem 4.2 would immediately
imply:

Conjecture 4.3.If a Kähler manifold T is the total space of a fibration F→T→B
where both the base B and the fibre F are infra-nilmanifolds, then T admits a
Riemann flat structure.
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UPPER BOUNDS FOR THE SPECTRAL RADIUS
OF THE n × n HILBERT MATRIX

PETER OTTE

We derive upper bounds for the spectral radius of then× n Hilbert matrix.
The key idea is to write the Hilbert matrix as integral operator with positive
kernel function and then to use a Wielandt-type min-max principle for the
spectral radius. Choosing special trial functions yields a new bound that
improves the best bound known heretofore.

1. Introduction

The spectral asymptotics of the Hilbert matrix has attracted a lot of interest concern-
ing both the lowest and the largest eigenvalue. Here we shall focus on the spectral
radiusρn of the n× n Hilbert matrix for which we shall prove, particularly, the
bound

(1) ρn ≤ 2wn arcsin
1

wn
with wn := 2

(
(n!)2

(2n)!

)1/2n

, n ∈ N.

This improves, at least for large values ofn, Cassels’ bound, given in (5) below,
which is the best hitherto known. Numerical computations suggest that (1) is ac-
tually better for alln exceptn= 1,2.

We base the proof of (1) upon relating the Hilbert matrix to an integral operator
Hn whose spectral radius can be expressed by a min-max principle for operators
having positive kernel functions:

(2) ρn = inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)

ϕ(x)

whereM is some set of appropriate trial functions. For the sake of completeness
we shall prove (2) without recourse to the general theory. In the matrix case the
above min-max principle is due to Wielandt [1950] and related to the enclosure
result of Collatz [1942]. It has been generalized in many directions; see [Friedland
1990; Marek 1966; Schaefer 1984], for example.

MSC2000:15A42, 15A60, 47G10.
Keywords: Hilbert matrix, Hilbert inequality, spectral radius, Wielandt min-max principle, integral

operator.
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To derive estimates we pickϕ(x) := (1−x)γ in (2), with −1 < γ < 0. We
restrict ourselves to the caseγ = −1

2, for which the calculations are manageable,
and obtain (1).

Hilbert was the first one to investigate spectral properties of the matrix named
after him. In his lectures he showed his double series theorem stating thatρn stays
finite asn→∞; this was first published by Weyl [1908] (see also [Wiener 1910]).
The concrete inequality

(3) ρn ≤ π

is due to Schur [1911]. This is the optimal constant that does not depend on the
dimensionn. However, if we do want the bound to depend onn it is possible to
strengthen (3). Frazer [1946] obtained

(4) ρn ≤ n sin
π

n
for n≥ 2,

by refining a method of Fejér and Riesz [1921], which they used to prove what is
now called the Fejér–Riesz inequality for analytic functions. Equation (4) was later
rediscovered by Hsiang [1957] and Yahya [1965], and was eventually improved by
Cassels [1948] to

(5) ρn ≤ 2 arctan
√

2n.

Finally, it might be instructive to look at the asymptotic expansion ofρn. The first
asymptotic result was obtained by Taussky [1949] by computing the quadratic form
with special trial vectors having componentsck := 1/

√
k; it was

ρn = π +O
( 1

ln n

)
.

The exact asymptotic behaviour

ρn = π −
π5

2 ln2 n
+O

( ln ln n
ln3 n

)
was determined by de Bruijn and Wilf [1962], who compared the matrix operator
with an integral operator whose spectral asymptotics can be derived from general
results of Widom [1958] (see also [Widom 1961]).

2. Estimates for the spectral radius

We start by relating the Hilbert matrix

(6) An :=

( 1
j+k+1

)
j,k=0,...,n−1
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to the integral operatorHn : C[0,1] → C[0,1] having the kernel function

(7) Kn(xy) :=
n−1∑
j=0

(xy) j
=

1− (xy)n

1− xy
.

Forn=∞ this operator was used by Magnus [1950] to study the spectrum of the in-
finite Hilbert matrix. We letHn act onC[0,1] because we want to have sufficiently
many trial functions at hand. As we hoped,Hn has (almost) the same spectrum as
An. In particular, they have the same spectral radius, henceforth denoted byρn.

Lemma 1. Let C[0,1] be equipped with the usual maximum norm. Then Hn :

C[0,1] → C[0,1] is a bounded linear operator. The respective spectra of the
Hilbert matrix An and the integral operator Hn are the same apart from0. Their
common spectral radiusρn can be expressed by

(8) ρn= inf
ϕ∈M

sup
0<x<1

(Hnϕ)(x)

ϕ(x)
, where M:=

{
ϕ ∈ L1

[0,1]
∣∣ ϕ > 0, 1

ϕ
∈C[0,1]

}
.

Proof. It is clear from the definition and (7) thatHn is linear and bounded. Also
(7) shows thatHn hasn-dimensional range spanned by the monomialsxk, for k=
0, . . . ,n− 1, which implies that the spectrum ofHn consists only of eigenvalues.
To eachc∈ Cn we associateϕc ∈ C[0,1] in the natural way:

(9) c= (c0, . . . , cn−1) ∈ Cn
←→ ϕc(x)=

n−1∑
j=0

c j x
j .

The statement on the spectra then follows from

(Hnϕc)(x)=
∫ 1

0

n−1∑
j=0

(xy) j
n−1∑
k=0

ckyk dy

=

n−1∑
j,k=0

ckx j
∫ 1

0
y j+k dy=

n−1∑
j=0

x j
n−1∑
k=0

1

j + k+1
ck.

Note thatHn must have a kernel andAn does not.
To prove Formula (8) we recall from the Perron–Frobenius Theorem that, since

An has positive entries,ρn is an eigenvalue ofAn and hence ofHn. Let v be
the corresponding eigenfunction. Writing down the eigenvalue equation forv and
dividing byϕ ∈ M yields

ρn
v(x)

ϕ(x)
=

∫ 1

0
Kn(xy)

ϕ(y)

ϕ(x)

v(y)

ϕ(y)
dy.
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This shows thatv/ϕ ∈C[0,1] is an eigenfunction of the operatorHn,ϕ with kernel

Kn,ϕ(xy) := Kn(xy)
ϕ(y)

ϕ(x)
,

whenceρn ≤ ρ(Hn,ϕ), the spectral radius ofHn,ϕ. Sinceρ(Hn,ϕ) ≤ ‖Hn,ϕ‖∞ we
conclude that

ρn ≤ ‖Hn,ϕ‖∞ = sup
0<x<1

∫ 1

0
Kn,ϕ(xy)dy

where we have usedϕ(x) > 0, Kn(xy) ≥ 0, and thusKn,ϕ(xy) ≥ 0. To show
equality in (8) we once again invoke the Perron–Frobenius Theorem, according
to which the eigenvector ofAn belonging toρn can be chosen to have positive
components, whence we can, via (9), likewise choose the eigenfunctionv > 0. In
particular,v ∈ M . �

We use Lemma 1 to estimate the spectral radius from above by cleverly choosing
trial functions in (8):

(10) rn(x) :=
(Hnϕ)(x)

ϕ(x)
=

1

ϕ(x)

∫ 1

0

1− (xy)n

1− xy
ϕ(y)dy for n ∈ N.

To get an idea of what theϕ’s should look like we castrn into a form more amenable
to further investigation. The crucial point is to evaluate the integral

Jn(x) :=
∫ 1

0

yn

1− xy
ϕ(y)dy.

We start by differentiating with respect tox:

(11) J ′n(x)=
∫ 1

0

yn+1

(1− xy)2
ϕ(y)dy=

1

x

∫ 1

0

yn

(1− xy)2
ϕ(y)dy−

1

x
Jn(x).

The explicitly written integral on the right can also be produced by integration
by parts, which we perform in such a way thatϕ(1) is omitted because our trial
functions will have a singularity atx = 1:

Jn(x)=

[
(y−1)

yn

1− xy
ϕ(y)

]1

0

−

∫ 1

0
(y−1)

((
nyn−1

1−xy
+

xyn

(1−xy)2

)
ϕ(y)+

yn

1− xy
ϕ′(y)

)
dy

= δnϕ(0)+n Jn−1(x)−n Jn(x)+ (x−1)
∫ 1

0

yn

(1− xy)2
ϕ(y)dy

+ Jn(x)+ J̃n(x),
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with δn := δn,0 the Kronecker delta and

J̃n(x) :=
∫ 1

0

yn

1− xy
(1− y)ϕ′(y)dy.

Hence we can eliminate the integral in question from (11):

(12) J ′n(x)=
1

x(1− x)

(
δnϕ(0)+n Jn−1(x)−n Jn(x)+ J̃n(x)

)
−

1

x
Jn(x).

To eliminate the annoyingJn−1 we observe that

Jn(x)=
∫ 1

0

yn

1− xy
ϕ(y)dy=

1

x
Jn−1(x)−

1

x

∫ 1

0
yn−1ϕ(y)dy,

and therewith (12) becomes

(13) J ′n(x)=
δn

x(1− x)
ϕ(0)−

n+1

x
Jn(x)+

κn

x(1− x)
+

1

x(1− x)
J̃n(x)

where we have put

(14) κ0 := 0, κn := n
∫ 1

0
yn−1ϕ(y)dy for n ∈ N.

We are going to express

(15) 8n(x) :=
xn

ϕ(x)
Jn(x)

by dint of (13) through a differential equation:

8′n(x)=−
ϕ′(x)

ϕ2(x)
xn Jn(x)+

nxn−1

ϕ(x)
Jn(x)+

xn

ϕ(x)
J ′n(x)

=−

(
ϕ′(x)

ϕ(x)
+

1

x

)
8n(x)+

xn−1

(1−x)ϕ(x)
J̃n(x)+

xn−1

(1−x)ϕ(x)
(δnϕ(0)+κn).

At this point we fix our trial functionϕ in such a way that

(16) (1− x)ϕ′(x)=−γ ϕ(x),

that is,ϕ(x)= (1−x)γ with someγ ∈R to be specified later, wherebỹJn becomes
a multiple of Jn, and we arrive at a differential equation for8n:

(17) 8′n(x)=−(γ +1)
1

x
8n(x)+

xn−1

(1− x)1+γ
(δn+ κn) .

This is equivalent to

(x1+γ8n(x))
′
=

xn+γ

(1− x)1+γ
(δn+ κn),
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which we can solve immediately for8n:

(18) 8n(x)=
δn+ κn

x1+γ

∫ x

0

ξn+γ

(1− ξ)1+γ
dξ for n ∈ N0.

In particular, we can now see thatγ must satisfy−1<γ < 0 in order to yield well
defined integrals and to haveϕ ∈ M in (8). We summarize our calculations.

Theorem 2.The spectral radiusρn of the n×n Hilbert matrix An as in(6) can be
estimated by

(19) ρn ≤ inf
0<α<1

sup
0<x<1

1

x1−α

∫ x

0

1− κnξ
n

ξα(1− ξ)1−α
dξ,

where

(20) κn =
n!

(n−α)(n−1−α) · · · (1−α)
for n ∈ N.

Proof. Putα := −γ and use in turn the min-max principle (8) and the definitions
of rn and8n as in (10) and (15), withϕ being chosen according to (16) to obtain

ρn ≤ inf
0<α<1

sup
0<x<1

rn(x)= inf
0<α<1

sup
0<x<1

(
80(x)−8n(x)

)
.

Then (19) follows directly from the representation (18) of8n.
Forϕ as in (16) the integral in (14) is Euler’s beta function. Hence,

κn = nB(n,1−α)=
n0(n)0(1−α)

0(n+1−α)

wherefrom we deduce (20). �

The optimal way to derive bounds onρn would be to determine the maximum
of the functionrn exactly. Unfortunately, this turns out to be rather complicated,
and we content ourselves with narrowing the region where the maximum must lie.

Corollary 3. The spectral radiusρn of the n×n Hilbert matrix An can be estimated
by

(21) ρn ≤ inf
0<α<1

κ(1−α)/n
n

∫ 1/κ1/n
n

0

1

ξα(1− ξ)1−α
dξ,

which in the caseα = 1
2 specializes to

(22) ρn ≤ 2wn arcsin
1

wn
with wn := κ

1/2n
n = 2

(
(n!)2

(2n)!

)1/2n

.
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Proof. When 1− κnξ
n
≤ 0 the functionrn is decreasing, whence the maximum

must lie in the interval[0, x0] for x0 the unique zero of the integrand in (19):

1− κnxn
0 = 0, i.e., x0= 1/κ1/n

n .

We conclude

sup
0<x<1

rn(x)= sup
0<x≤x0

rn(x)≤ sup
0<x≤x0

80(x)=80(x0)

because the8n(x) are nonnegative and80 increases.
Forα = 1

2 thewn are easily obtained from (22) and (20) and the integral in (21)
can be evaluated by the change of variablesξ = s2. �

Finally, we shall check that our estimate (22) is indeed better than (5). Using
some familiar formulae for arctan and arcsin we obtain

arctan
√

2n−wn arcsin
1

wn
= arctan

√
2n−arcsin

1

wn
− (wn−1)arcsin

1

wn

≥ arctan
√

2n−arctan
1√

w2
n−1

−
π

2
(wn−1)

= arctan

√
2n(w2

n−1)−1√
w2

n−1+
√

2n
−
π

2
(wn−1).

Now the asymptotics of the middle binomial coefficient yields

wn ∼ 2

(√
πn

4n

)1/2n

∼ n1/4n asn→∞,

which implies immediately limn→∞wn = 1, and further

n(wn−1)∼ n(n1/4n
−1)= n(e(ln n)/4n

−1)∼ 1
4 ln n asn→∞.

Therefore, for largen,√
2n(w2

n−1)−1√
w2

n−1+
√

2n
≥

1

4

√
2n(w2

n−1)
√

2n
≥

1

4

√
wn−1.

Noting arctanx ≥ cx for small x with some constantc > 0 and using the mono-
tonicity of arctan we conclude

arctan
√

2n−wn arcsin
1

wn
≥

c

4

√
wn−1−

π

2
(wn−1) > 0

for large values ofn. With some care it should be possible to show the statement
for smaller values ofn, too.
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3. Remarks

We suggest some topics that might be worth further investigation.

(1) In order to derive from Theorem 2 a bound that can be computed more or less
explicitly we did not determine in (19) the maximum of the functionrn exactly.
Thus, the first possibility to strengthen (22) is to study the maximum ofrn.

(2) Also for computational reasons we fixed the exponentα= 1
2 in (21). However,

numerical computations suggest thatα= 1
2 is generally not the optimal choice and

that other values ofα give much more accurate estimates. According to a theorem
of Čebyšev the integral in (21) can be evaluated for any 0<α<1 in closed form by
means of elementary functions. It is not clear whether these elementary functions
allow for an efficient minimizing procedure.

(3) A vaguer idea is to pick other trial functions than(1− x)−α. Our method will
work as long as we arrive at a differential equation for8n as in (17).

(4) Since Wielandt’s min-max principle is accompanied by a max-min principle,
one can also think of deriving lower bounds for the spectral radius in which case;
however, completely different trial functions are needed.
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UNRAMIFIED HILBERT MODULAR FORMS,
WITH EXAMPLES RELATING TO ELLIPTIC CURVES

JUDE SOCRATES ANDDAVID WHITEHOUSE

We give a method to explicitly determine the space of unramified Hilbert
cusp forms of weight two, together with the action of Hecke, over a totally
real number field of even degree and narrow class number one. In par-
ticular, one can determine the eigenforms in this space and compute their
Hecke eigenvalues to any reasonable degree. As an application we compute
this space of cusp forms forQ(

√
509), and determine each eigenform in

this space which has rational Hecke eigenvalues. We find that not all of
these forms arise via base change from classical forms. To each such eigen-
form f we attach an elliptic curve with good reduction everywhere whose
L -function agrees with that of f at every place.

1. Introduction

In general, finding unramified cuspidal representations for a given group is a dif-
ficult problem. If one tries to tackle this problem using the trace formula, for
example, one usually needs to shrink the discrete group and hence allow some
ramification. In this paper we are concerned with computing the space of unrami-
fied Hilbert cusp forms for a totally real field of even degree.

Let F be a totally real number field of narrow class number one and of even
degree overQ. In Section 2 we explain how, by results of Jacquet, Langlands and
Shimizu, the construction of the space of Hilbert cusp forms of weight 2 (i.e., of
weight (2, . . . ,2)) and full level for F can be done on the quaternion algebraB
over F that is ramified precisely at the infinite places ofF . In fact the space of
such cusp forms can be identified with a certain space of functions on the set of
equivalence classes of ideals for a maximal order inB.

In Sections 3 and 4 we extend the definition of2-series and Brandt matrices, as
found in [Pizer 1980a], to this case. We show that each simultaneous eigenvector
for the family of modified Brandt matrices corresponds to a Hilbert cusp form that is
an eigenvector for all the Hecke operators. In order to compute the Brandt matrices,
and hence the space of cusp forms, we need to be able to find representatives for
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334 JUDE SOCRATES AND DAVID WHITEHOUSE

all the ideal classes for a maximal order; we outline our strategy to find these
representatives in Section 5.

Next we specialize to the case of a real quadratic field of narrow class number
one. In Section 6, using a result of Pizer, we give an explicit formula for the type
number ofB and the class number of a maximal order inB. In Section 7 we give
defining relations for the quaternion algebraB over a real quadratic fieldQ(

√
m),

and whenm≡ 5 mod 8 we give a maximal order in this algebra.
We now turn to our application to elliptic curves. To any Hilbert modular new-

form f over a totally real fieldF , having weight 2, leveln and rational Hecke
eigenvalues, one expects to be able to attach an elliptic curveE f that is defined
overF , has conductorn and whoseL-function agrees with that off at all places of
F . This is known ifF has odd degree overQ or if the automorphic representation
associated tof belongs to the discrete series at some finite place (see [Blasius
2004, 1.7.1]).

Conjecture 1.1. Let F be a totally real number field of even degree overQ. To
each unramified Hilbert modular eigenformf over F having weight2 and rational
Hecke eigenvalues one can attach an elliptic curve Ef defined over F with good
reduction everywhere, such that the L-functions of Ef and f agree at each place
of F.

When f is the base change of a classical modular form one can sometimes
attach an elliptic curve tof as in Conjecture 1.1; see [Shimura 1971, 7.7]. Also, by
[Blasius 2004], this conjecture is true under the hypothesis of the Hodge conjecture.
In this paper we establish this conjecture forF = Q(

√
509). The reason for this

choice of field is, as we shall see, that there exist eigenforms that do not arise
via base change from GL2(Q), nor are they CM forms sinceh+(F) = 1. To our
knowledge this provides the first verification of this conjecture in the case that not
all forms arise by base change; see [Blasius 2004, 1.7.3].

We now outline the verification of Conjecture 1.1 forF = Q(
√

509). In Sec-
tion 8 we give representatives for the ideal classes inB from which we are able
to compute the Brandt matrices and therefore the eigenvalues of the unramified
eigenforms of weight 2. We find that there are three eigenforms whose Hecke
eigenvalues all lie inQ. In Section 9 we give the equations for the three elliptic
curves overF that are attached to our three eigenforms. These elliptic curves
already exist in the literature [Cremona 1992; Pinch 1982].

In Section 10 we prove Conjecture 1.1 forQ(
√

509). One of our forms is a base
change of a classical form given in [Cremona 1992]. In this case one knows, by
work of Shimura, that an elliptic curve is attached to this form. Now we takef
to be one of the forms that is not a base change fromQ and we takeE to be the
elliptic curve (or its Galois conjugate) defined overF given in [Pinch 1982].
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By work of Taylor, building on work of Carayol and Wiles, and independently
by Blasius and Rogawski, there exists for each rational prime` an `-adic repre-
sentation

σ f ,` :Gal(F/F)→GL2(Q`)

which is unramified outsidè. If p is a prime ofF not dividing ` and Frp is a
Frobenius element atp, we have Trσ f ,`(Frp) = a f (p), the eigenvalue off with
respect to thep-th Hecke operator, and detσ f ,`(Frp) = Np. Similarly, for each
rational primè we have a representation

σE,` :Gal(F/F)→GL2(Q`)

given by the action of Galois on thè-adic Tate module ofE. SinceE has good re-
duction everywhere,σE,` is unramified outsidè and for each primep not dividing
`, we have TrσE,`(Frp)= aE(p) and detσE,`(Frp)= Np.

The verification of Conjecture 1.1 forf will therefore be complete if we can
show, for some primè, that these two representations are equivalent. For this we
take`=2 and use a result of Faltings and Serre proved in [Livné 1987]. We cannot
apply this result directly since it requires the traces of all Frobenius elements to be
even, which is not the case here. So we begin by showing that the extensions ofF
cut out by the kernels of the mod 2 representations obtained from the eigenform
and the elliptic curve are the same. Having identified these extensions, we can
apply the theorem of Faltings and Serre to show that these two representations are
equivalent when restricted to this extension ofF . Using Frobenius reciprocity we
conclude that these representations of Gal(F/F) are equivalent.

This work was begun by the first author in his PhD thesis [Socrates 1993], which
gave a construction of the space of cusp forms for a real quadratic field of narrow
class number one. The cusp formf above and the elliptic curveE were shown
there to have the sameL-factors at all primes generated by a totally positive element
a+bθ with 1≤ a≤ 64, whereθ = 1

2(1+
√

509).
This work was completed by the second author, who extended the methods of

[Socrates 1993] to any totally real field of narrow class number one with even de-
gree overQ, adapted the result of Faltings and Serre, and independently computed
the necessary eigenvalues given in Table 4.

2. Construction of the space of cusp forms

Throughout this paperF will be a totally real number field of narrow class number
one and of even degree overQ. We denote byR the ring of integers inF , by F+

the set of totally positive elements inF , and likewise forR+. We now explain how
one can construct the space of cusp forms forF of weight 2 and full level.
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Let B/F be the unique (up to isomorphism) quaternion algebra that is ramified
only at the infinite places ofF . We now give some definitions.

An R-lattice(or ideal) V in B is a finitely generatedR-submodule ofB such
that V ⊗R F ∼= B. An elementb ∈ B is integral (or an integer) if R[b] is an
R-lattice in B. An order in B is a ringO consisting of integers and containingR
such thatFO = B. A left ideal I for an orderO is an R-lattice for whichOI ⊂ I .
Two left O-ideals I1 and I2 are said to beright equivalentif I1 = I2b for some
b∈ B×. Similarly, two ordersO1 andO2 areof the same typeif O1 = bO2b−1 for
someb∈ B×. The numberH of right equivalence classes of leftO-ideals is called
theclass number ofO and the numberT of type classes of maximal orders ofB is
called thetype number ofB. Both numbers are finite (for any orderO).

We now fix a maximal orderO in B. Let G= B× viewed as an algebraic group
over F . SinceB only ramifies at the infinite places ofF for each finite primep
we have

B⊗F Fp
∼= M2(Fp).

Moreover we can choose these isomorphisms so as to give an isomorphism of
Op = O⊗ Rp with M2(Rp). Clearly each of these isomorphisms gives rise to an
isomorphism ofG(Fp) with GL2(Fp) under whichO×p corresponds to GL2(Rp).

We construct the double coset space

X = MG\G(A
f
F )/G(F),

where A f
F is the ring of finite adèles andMG =

∏
p<∞GL2(Rp) is a maximal

compact open subgroup ofG(A f
F ). We note thatMG, as a subgroup ofG(A f

F ),
depends on the choice ofO and hence so doesX. The setX can be identified
with the right equivalence classes of leftO-ideals in the following way. Given
(xp) ∈ G(A f

F ), consider the open compact subset
∏

p Opxp in B ⊗ A f
F . Taking

the intersection of
∏

p Opxp with B, embedded diagonally inB⊗ A f
F , yields a left

O-ideal. Conversely, given a leftO-ideal I one recovers an element ofG(A f
F ) by

choosing, for each primep, a generator of the principal leftOp-idealOp I .
We denote byS the space

S= { f : X→ C}/{ constant functions onX }.

There is a natural definition of Hecke operators on this space, as follows. Letπp

be a uniformizer forRp and letgp ∈ G(A f
F ) be such that thep-th component ofgp

is (
πp 0
0 1

)
and is the identity otherwise. Since GL2(Rp) is open and compact in GL2(Fp), we
haveMGgpMG =

∐n
i=1 MGgi . A classical result states that we can choose the set
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{gi } to be {(πp

α

0
1

)
: α ∈ R/p

}⋃ {(1
0

0
πp

)}
.

Define, for f ∈ S andh ∈ G(A f
F ),(

Tp( f )
)
(h)=

n∑
i=1

f (gi h).

This gives a well-defined action onS, which is independent of the choices of the
gi and also ofπp.

Let S be theC-vector space of holomorphic Hilbert cusp forms overF of
weight 2 and full level. ThenS is a multiplicity-free direct sum of simultaneous 1-
dimensional Hecke eigenspaces. A similar decomposition holds forS. By [Gelbart
and Jacquet 1979], there is a Hecke-equivariant isomorphism betweenS andS.

Our goal now is to give a method to compute the action of the Hecke operators on
the spaceS. This will be done by constructing Brandt matricesB(ξ) and modified
Brandt matricesB′(ξ), which are families of rational matrices indexed byξ ∈ R+.
These are objects that were first defined overQ and later used to construct cusp
forms for congruence subgroups of SL2(Z).

3. 2-series of an ideal

The notion and construction of a2-series for an ideal in a quaternion algebra is
discussed in several papers, including [Pizer 1976; 1980a; 1980b; Gross 1987].
In this section we extend these definitions to ideals in a totally definite quaternion
algebraB defined overF .

Let J be an ideal in the totally definite quaternion algebraB. Let nr denote
the reduced norm fromB to F . The norm of any nonzero element inB is totally
positive. We denote by nr(J)+ a totally positive generator of nr(J), the fractional
ideal of F generated by the norms of the elements inJ. For anyβ ∈ J we define

NJ(β)= nr(β)/nr(J)+.

We define the2-series ofJ for τ ∈HHom(F,R) by

2J(τ )=
∑
β∈J

exp(τNJ(β))=
∑
ξ∈R+

cξ,J exp(τξ),

wherecξ,J is the number of elementsβ in J with NJ(β)= ξ . This sum converges
since composingNJ with the trace map fromF to Q gives a positive definite
quadratic form onJ as aZ-lattice.

Proposition 3.1.The definition of cξ,J is independent of the choice ofnr(J)+.
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Proof. Any two choices for nr(J)+ will differ by a totally positive unitv. Since
F has narrow class number one,v = u2 for some unitu. Thus multiplication by
u ∈ R× gives a bijection between the set of elements inJ of norm ξ nr(J)+ and
those of normξv nr(J)+. �

We note that ifJ ′ = γ1Jγ2 with γi ∈ B× the2-series ofJ andJ ′ are identical.
The proof in [Pizer 1980a, Proposition 2.17] holds in this case.

Suppose that we are given an idealJ in terms of a basis overR. We give an
effective algorithm to determine thecξ,J . Let {β1, . . . , β4} be a basis forJ over R
and let{ω1, . . . , ωn} be a basis forR overZ. We can writeβ ∈ J uniquely as

β =

4∑
i=1

n∑
j=1

xi j ω jβi

with xi j ∈ Z. ThenNJ(β) is a totally positive element ofR, providedβ 6= 0, and
composingNJ with the trace map fromF to Q gives a positive definite quadratic
form in the{xi j }. Therefore, given a basis of an idealJ and M ∈ R we can use
[Cohen 1993, Algorithm 2.7.7] to computecξ,J for all ξ ∈ R+ with Tr ξ ≤ M .

4. Brandt matrices and eigenforms

Brandt matrices were classically constructed from a complete set of representatives
of left O-ideal classes of an Eichler orderO of B′, a definite quaternion algebra over
Q with Ram(B′) = {∞, p}. For such aB′, [Pizer 1980a; 1980b] show that terms
appearing in a so-called Brandt matrix series are actually modular forms (forQ) of
a given weight and levelp. In this section we extend these definitions to a totally
definite quaternion algebraB defined overF . We then give an adelic construction
of the Brandt matrices and show that each eigenvector for the family of modified
Brandt matrices corresponds to a cusp form.

Let O be a maximal order inB and {I1, . . . , I H } a complete (ordered) set of
representatives of distinct leftO-ideal classes. For eachk let

Or (Ik)= {b∈ B : Ikb⊂ Ik}

denote the right order ofIk; this is another maximal order inB. The inverse ofIk

is defined by

I −1
k = {b∈ B : IkbIk ⊂ Ik}.

Then, for eachk, the elementsI −1
k I1, . . . , I −1

k I H represent the leftOr (Ik)-ideal
classes.

In the notation of Section 3, let

ej = e(I j )= c1,Or (I j ),
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which is simply the number of elements of norm 1 in the orderOr (I j ). We define
bi, j (0)= 1/ej and forξ ∈ R+

bi, j (ξ)=
1

ej
cξ,I −1

j I i
,

which is 1/ej times the number of elements in the leftOr (I j )-ideal I −1
j I i of norm

ξ nr(I i )+/nr(I j )+. Now define theξ -th Brandt matrix forO by

B(ξ,O)= (bi, j (ξ)).

The construction ofB(ξ,O) is well defined up to conjugation by a permutation
matrix. Moreover, ifO′ is another maximal order, the matricesB(ξ,O) andB(ξ,O′)

are conjugate by a permutation matrix independent ofξ . In view of this, we shall
denote byB(ξ)= B(ξ,O) theξ -th Brandt matrix, for some fixed maximal orderO.

The following properties of the Brandt matrices are stated in [Pizer 1980a] and
proved there for quaternion algebras overQ. The proofs carry over for the Brandt
matrices defined above.

Theorem 4.1. (1) ej bi, j (ξ)= ei b j,i (ξ).

(2)
∑H

j=1 bi, j (ξ) is independent of i. Denote this value by b(ξ). Then b(ξ) is the
number of integral leftO ideals of normξ .

(3) The Brandt matrices generate a commutative semisimple ring.

Define theH × H matrix A by

A=


1 e1/e2 e1/e3 . . . e1/eH

1 −1 0 . . . 0
1 0 −1 . . . 0
...

...
...

. . .
...

1 0 0 0 −1

 .
Then forξ ∈ R+ or ξ = 0 we have

AB(ξ)A−1
=


b(ξ) 0 . . . 0

0
... B′(ξ)
0


This is proved in [Pizer 1980a], with the proof carrying over here. The submatrix
B′(ξ) will be called theξ -th modified Brandt matrix.

We now show that each simultaneous eigenvector for the family of modified
Brandt matrices corresponds to a cusp form. Shimizu [1965] constructed a rep-
resentation of the Hecke algebra acting on the space of automorphic forms, and
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in [Hijikata et al. 1989, Chapter 5] it is shown that this can be used to provide
another construction of Brandt matrices. We follow the discussion in this latter
source, simplifying it for the case that we are interested in.

Fix a maximal orderO in B. Let G be the multiplicative groupB×, viewed as an
algebraic group overF . Every leftO-ideal is of the formOã for someã ∈ G(AF ).
Let

U=U(O)= {ũ= (up) ∈ G(AF ) : up ∈ O×p for all p<∞}.

Sinceα̃Uα̃−1 is commensurable withU for all α̃ ∈G(AF ), we can define the usual
Hecke ringR(U,G(AF )); see [Shimura 1971]. Put

U(AF )= {ũ= (up) ∈ I F : up ∈ R×p for all p<∞},

where I F is the group of idèles ofF . For ξ ∈ R+, denote byT (ξ) the element of
R(U,G(AF )) which is the sum of all double cosetsUãU such thatap ∈ Op for all
p<∞ and nr(ã) ∈ ξU(AF ).

Denote byM=M2(O) the space of continuousC-valued functionsf on G(AF ),
satisfying

f (uãb)= f (ã) for all u ∈U, ã ∈ G(AF ), andb∈ G(F).

We define a representation ofR(U,G(AF )) on M as follows. For

UyU ∈ R(U,G(AF )),

let UyU=
⋃

i Uyi be its decomposition into disjoint right cosets. Now write

ρ(UyU) f (ã)=
∑

i

f (yi ã)

and extendρ to R(U,G(AF )) by linearity. It is shown in [Hijikata et al. 1989,
p. 31] that this representation is independent of the choice of a maximal order, in
the sense that, ifO′ is another maximal order, there is an isomorphism between
R(U,G(AF )) and R(U′,G(AF )) preserving the Hecke operatorsT (ξ), and also
an isomorphismM2(O) andM2(O

′), such that the representation ofR(U,G(AF ))

on M2(O) induced by these isomorphisms is equivalent to the original representa-
tion of R(U,G(AF )) on M2(O).

If H is the class number ofO, we have

G(AF )=

H⋃
λ=1

Ux̃λG(F).

Note that theIλ=Ox̃λ give a complete set of representatives of leftO-ideal classes.
Since the elements ofM are determined by their values at thexλ, the map

(1) f 7→ ( f1, . . . , fH )
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gives an isomorphism ofM with CH
= C1⊕ · · · ⊕CH , where eachCi is a copy

of C. We can use the isomorphism (1) to give a matrix representation forρ. For
ξ ∈ R+, let

B(ξ)= (ρi, j (ξ))i, j=1...H ,

where multiplication byρi, j (ξ) : C j → Ci is the composition of the injection of
C j into CH , the inverse of map (1),ρ(UξU), map (1), and the projection ofCH

into Ci . The following is proved in [Hijikata et al. 1989, Proposition 5.1], with the
proof carrying over here.

Proposition 4.2. The definition of B(ξ) yields the same matrix as the Brandt ma-
trices defined above, assuming that we use the same maximal orderO and set of
left O-ideal representatives Iλ.

We shall now make explicit the isomorphism as Hecke modules between the
spaces of Hilbert modular cusp forms andC-valued functions on the finite setX
modulo constant functions, which was mentioned in Section 2. We will follow the
construction of Hida [1988], which is also discussed in [Taylor 1989]. As before,
we shall be interested only in the weight 2, full level case.

Having fixed isomorphisms betweenG(Fp) and GL2(Fp) as in Section 2 we set

U = MG =
∏
p<∞

GL2(Rp),

an open subgroup of the finite part of the adelization ofO. Denote byS(U ) the
space ofC-valued functions onX, the set of right equivalence classes of leftO-
ideals. Via the identification ofX as a double coset space,S(U ) is just the space
M2(O) defined above. The Hecke action onS(U ) is that given in Section 2. Let
inv(U ) be the subspace ofS(U ) consisting of functions of the formf ◦ nr, where
nr is the reduced norm map

nr : G(A f
F )→ I f

F

and f is an appropriateC-valued function onI f
F , the finite idèles ofF . The map

nr, when restricted to the image ofB×, surjects into the totally positive elements
of F (this is the Theorem of Norms in [Vignéras 1980, p. 80]). Hence we can view
inv(U ) as consisting of functions of the form

G(A f
F )

nr
−→ I f

F −→U(Rp)\ I
f
F/F+

∼=
−→ Cl+(F)−→ C,

where Cl+(F) is the ray class group ofF . Since we are assuming thath+(F)= 1,
inv(U ) is the space of constant functions onX.

The Hecke operators certainly fix inv(U ). Thus, in order to examine the Hecke
action on the space of cusp forms, we must decomposeS(U ) into a direct sum of
inv(U ) and a spaceS2(U ) preserved by the Hecke algebra.
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We describe the Hecke action on inv(U ). Let Tp be thep-th Hecke operator
and f the function which is 1 on all elements ofX. In Section 2 we saw the
decomposition of ( ∏

p<∞

GL2(Rp)

)
gp

( ∏
p<∞

GL2(Rp)

)
into disjoint right cosets. Note, though, that in this decomposition we also obtain
exactly the elements inG(AF ) that yield, upon multiplying to the right ofO, the
set of integral leftO-ideals of normp. ThusTp( f ) is the function with constant
value equal to the number of such ideals.

We have seen that the matrixA transforms the Brandt matrices into two blocks
consisting of a 1× 1 cell containingb(ξ) and the modified Brandt matrixB′(ξ).
And in Theorem 4.1 we noted thatb(ξ) is precisely the number of integral left
O-ideals of normξ . Thus we have:

Proposition 4.3.Let {vi } be a basis forCH−1 consisting of eigenvectors for all the
modified Brandt matrices. Then eachvi corresponds to a(normalized) holomor-
phic Hilbert modular eigenformf i of weight2 and full level whose eigenvalue with
respect to thep-th Hecke operator is precisely the eigenvalue ofvi with respect to
B′(π), whereπ is a totally positive generator ofp.

To find a basis ofCH−1 of simultaneous eigenvectors for all the modified Brandt
matrices one computes the matricesB′(ξ), ordered by the trace ofξ , and succes-
sively decomposes the spaceCH−1 into simultaneous eigenspaces until one is left
with one-dimensional eigenspaces.

It is, of course, desirable to know which of these forms do not arise by base
change. Suppose thatF/Q is a cyclic extension with Galois groupG. ThenG acts
on the set of eigenforms via permutation of the primes ofF . And one knows that
a form does not arise by base change from an intermediate field if and only if its
Galois orbit has order equal to the degree of the extensionF/Q. Using this one can
then determine precisely which forms arise via base change once one has found
a basis ofCH−1 of simultaneous eigenvectors of theB′(ξ) using the procedure
described above. In the case thatF/Q is solvable there are added complications
to determining which forms don’t arise by base change coming from the existence
of Galois fixed Hecke characters that do not descend; see [Rajan 2002].

5. Finding type and ideal class representatives

In order to use Proposition 4.3 to compute the space of cusp forms we need to be
able to find representatives for the ideal classes of a maximal orderO in B. In this
section we give a strategy to find these representatives.
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We continue withB, the quaternion algebra overF ramified only at the infinite
places ofF , and we takeO to be a maximal order inB. It is easy to manufacture
ideals ofO when they are of a particular form. Letα ∈ B \ F . ThenK = F(α) is a
quadratic extension ofF contained inB. Let I be an ideal in the ring of integers
S of K . Then J = OI is a left ideal ofO. Moreover we have nr(J) = NK/F (I ),
since 1∈ O. Clearly, if I and I ′ are in the same ideal class inK then J andJ ′ are
in the same leftO-ideal class.

We will now see that to find representatives of leftO-ideal classes it suffices to
consider ideals of the formOI as in the construction above.

Proposition 5.1. Every leftO-ideal class of a maximal orderO contains an ideal
of the formOI , where I is an ideal in a field extension K= F(b) contained inB.

Proof. The leftO-ideal classes are in bijection with

X = MG\G(A
f
F )/G(F),

as stated in Section 2. Since this is a finite set, there is a finite set of primesSsuch
that G(A f

F )= MG B×S G(F), whereBS=
∏

p∈S Bp. Now

i S(B) := {(b, . . . , b) ∈ BS : b∈ B}

is dense inBS; hencei S(B×) is dense inB×S . SinceMG is open inG(A f
F )we have

by strong approximationG(A f
F )= MGi S(B×)G(F). Thus everyβ ∈ G(A f

F ) is of
the formβ = µi S(b)b0 for someµ ∈ MG andb, b0 ∈ B×. Under the local-global
correspondence, then, the leftO-ideal Oβ is in the same class asOi S(b), where
i S(b) can be viewed as a fractional ideal inF(b). �

We now outline the algorithm for finding representatives for leftO-ideal classes.

1. Determine the class numberH . (This can be done; see [Pizer 1973]. We will
make this explicit in the case of a quadratic field in Section 6 below.)

2. Initialize the list of representatives of leftO-ideal classes toL = {O}.

3. Find an elementα ∈ B such that the ring of integers ofK = F[α] is exactly
R[α].

4. Determineh = h(K ) and S= {I1 . . . Ih}, ideal representatives for the class
group ofK ,

OR

Generate a large listS= {I i } of prime ideals ofK .

5. Now, for I i ∈ S, do:

(a) Find a basis forJi = OI i .
(b) Determine ifJi is in the same class as any of the ideals inL obtained so

far. If not, addJ to L, and keep a note ofα and I i .
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6. Stop if H representatives have been found; otherwise resume from Step 3.

We would like to know how to determine if two leftO-ideals belong to different
ideal classes, which is step 5(b) of the algorithm. In Section 3 we saw that the
2-series gives a necessary test for two ideals to be in the same class. We now give
a necessary and sufficient condition for two ideals to be in the same class.

Proposition 5.2. Let I and J be leftO-ideals for an Eichler orderO. Then I
and J belong to the same left ideal class if and only if there is anα ∈ M = J I
(whereJ denotes the conjugate ideal of J) such thatnr(α)= nr(I )nr(J), i.e., with
NM(α)= 1.

This is proved in [Pizer 1980a], with the proof valid for any quaternion algebra
over a number field. To use this proposition we will need to construct a basis for
M , then compute the normalized normNM as in Section 3.

6. Computing T and H

We now specialize to the case of a real quadratic fieldF =Q(
√

m) of narrow class
number one. As is well known, this condition implies that eitherm = 2 or m is
prime and congruent to 1 mod 4. In this section we give an explicit formula for
the type number ofB and the class number of a maximal orderO in B. The most
important tool will be the main theorem in [Pizer 1973], which we restate here:

Theorem 6.1(Pizer).Let F be a totally real number field of degree n overQ, and
let R be its ring of integers. Let B be a positive definite quaternion algebra over
F . Let q1 be the product of the finite primes in F that ramify inB and q2 a finite
product of distinct finite primes of F such that(q1,q2)= 1. Then the type number
Tq1q2 of Eichler orders of level q1q2 in B is

(2) Tq1q2 =
1

2eh(F)

(
M +

1

2

∑
Sa∈C

Eq1q2(Sa)
h(Sa)

w(Sa)

)
,

where

• e is the number of primes dividing q1q2;

• M is Eichler’s mass, given by

M =
2h(F)ζF (2)disc(F)3/2

(2π)2n

∏
p |q1

(N(p)−1)
∏
p |q2

(N(p)+1),

whereζF is the zeta function of F;

• h(Sa) is the ideal class number of locally principalSa-fractional ideals;

• w(Sa) is the index of the group of units of R in the group of units inSa;
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• Eq1q2(Sa)=
∏

p |q1

(
1−

{
Sa

p

})∏
p |q2

(
1+

{
Sa

p

})
;

• C is the collection of all orders defined by the following procedure:

1. Let e1, . . . ,es be a compete set of representatives of UmodU2, where U
are the units of R;

2. let d1, . . . ,dk be a complete set of integral ideal representatives of

E.Fr(F)2 mod(Pr(F)2),

where E is the subgroup ofFr(F) (the divisor group of F) generated by all
thep which divide q1q2, andPr(F) is the subgroup of principal divisors
of Fr(F).

3. Let n1, . . . ,nt be a set of all elements of R such that

(a) (n j )= d j ′ for some j′ with 1≤ j ′ ≤ k, and
(b) (ni ) 6= (n j ) for i 6= j .

4. Consider the collection of all polynomials over R of the form

fµ,ρ,τ (x)= x2
− τx+nµeρ with 1≤ ρ ≤ s and1≤ µ≤ t ,

where

(a) fµ,ρ,τ is irreducible over F,
(b) F[x]/ fµ,ρ,τ (x) cannot be embedded in any F∞i , i = 1, . . . ,n,
(c) psp |τ for all p<∞, where sp =

[1
2vp(nµ)

]
(floor function), and

(d) if vp(nµ) is odd thenpsp+1
|τ .

5. Let a be a root of some fµ,ρ,τ and for each fµ,ρ,τ choose only one root.
Then C= {Sa : Sa is an order of F(a)} such that

(a) R[a] ⊂ Sa, and
(b) if p<∞ then aπ

−sp
p ∈ Sa,p, where sp =

[1
2vp(N(a))

]
.

We now use this theorem of Pizer to derive a more explicit formula for the
algebraB over any real quadratic field of narrow class number one.

Theorem 6.2.Let m≡1 mod 4be a positive squarefree number greater than5,set
F=Q(

√
m) and let R be the ring of integers in F. Assume that F has narrow class

number one. Let B be the totally definite quaternion algebra which is unramified
at all the finite primes of F. Then the type number T ofB is given by

T =
1

48m

m∑
u=1

( u

m

)
u2
+

1
8 h
(
Q(
√
−m)

)
+

1
6 h
(
Q(
√
−3m)

)
.
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For completeness we note that ifm= 5 the type number ofB is 1; see [Socrates
1993, Theorem 5.2].

Proof of Theorem 6.2.We proceed to determine the quantities in Theorem 6.1. We
haveh(F)= 1. SinceB is unramified at all finite primes,q1= 1 and for maximal
ordersq2= 1. Thuse= 0 and the two products in the definition of Eichler’s mass
M are both empty. Sincem≡ 1 mod 4 we have discF =m and

M =
2ζF (2)m3/2

(2π)4
=

m3/2

8π4
ζF (2).

We shall further simplifyM by explicitly calculatingζF (2). Our method will
be that of [Leopoldt 1958], which uses generalized Bernoulli numbers; see also
[Neukirch 1999, Chapter VII]. Define then-th Bernoulli number,Bn, by

tet

et −1
=

∑
n≥0

Bn
tn

n!
.

For a characterχ mod f , defineBn,χ by

f∑
u=1

χ(u)
teut

e f t −1
=

∑
n≥0

Bn,χ
tn

n!
.

For F =Q(
√

m), with m> 0, define

Bn,F =
∏
χ

Bn,χ ,

where the product runs over the characters modd = |discF | =m that correspond
to characters of Gal(F/Q). Hence this product involves only the trivial character
andχ the Legendre symbol modm. ThusBn,F = BnBn,χ . In [Leopoldt 1958] it
is shown that

ζF (n)=
(2π)2n

√
d Bn,F

4dn(n!)2

if n is a positive even integer. ThusM = 1
48B2,χ , sinceB2=

1
6. Now

B2,χ =
1

m

m∑
u=1

( u

m

)
u2

and hence

M =
1

48m

m∑
u=1

( u

m

)
u2.
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Now we proceed with the rest of the algorithm. The product defining

Eq1q2(Sa)= E1(Sa)

is also empty regardless ofSa, so E1(Sa)= 1. Equation (2) then becomes

T = M +
1

2

∑
Sa∈C

h(Sa)

w(Sa)
.

We now follow the algorithm to find the collectionC.

1. SinceU = 〈−1〉〈u〉, whereu is a fundamental unit ofF andU2
= 〈u2

〉, we get
s= 4, and a set of representatives forU modU2 is given by{±1,±u}.

2. Sinceq1q2 = 1 and Fr(F) = Pr(F), we havek = 1, E = (1) and {(1)} is a
complete set of representatives forE.Fr(F)2 mod Pr(F)2.

3. From step 2, we can taket = 1 andn= n1= 1.

4. We shall call the polynomials obtained in this stepcontributing polynomials, and
denote this set by9. Sinceµ= 1= t andn= n1= 1 we shall use the abbreviation

fρ,τ (x)= x2
− τx+eρ .

Sincevp(n) = 0 for anyvp, we havesp = 0 for every finitep, so condition 4(c) is
always satisfied by anyτ . Condition 4(d) is vacuous. Now we look at condition
4(b). SinceF is totally real this condition requires that the discriminant

1( fρ,τ )= τ
2
−4eρ

of fρ,τ be totally negative. But for anyτ , 1( f−1,τ ) and1( f−u,τ ) are always
positive, sinceu> 0. Hence we need only considerf1,τ and fu,τ . But NF/Q(u)=
−1 tells us thatσ(u) < 0, whereσ is the nontrivial element of Gal(F/Q). So
σ(τ)2−4σ(u) > 0 for anyτ . Thus onlyeρ = 1 remains. We further abbreviate

fτ (x)= x2
− τx+1.

Our problem is therefore to find allτ = a+ bθ ∈ R, whereθ = 1
2(1+

√
m), such

thatτ2
−4< 0 andσ(τ)2−4< 0, i.e., such that

−2< a+bθ,a+b−bθ < 2.

Thus we see that we necessarily need−4<(2θ−1)b<4, which is−4<
√

mb<4.
Hence ifm> 16 thenb= 0 is the only possible value. In this case,τ = a= 0,±1.
Note that these three values yield a contributingfτ . On the other hand, ifm< 16
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the only possible value form is 13 and in this case we must haveb= 0 or±1. But
for b= 1 we must have

−5+
√

13

2
< a<

3−
√

13

2

and there are no such integersa. On the other hand ifb=−1 then we must have

−3+
√

13

2
< a<

5−
√

13

2

and again there are no such integers. Clearly condition 4(a), irreducibility, is sat-
isfied by all the fτ above since the roots are imaginary. We summarize step 4 in
the following result:

Lemma 6.3. Assume the hypotheses in Theorem 6.2. The only contributing poly-
nomials in9 are fτ with τ = 0,±1.

The roots of these polynomials and the fields they generate overQ(
√

m) are shown
below.

τ Rootsaτ , a′τ of fτ F(aτ )

0 ζ4, ζ
3
4 Q(

√
m, ζ4)

1 ζ6, ζ
5
6 Q(

√
m, ζ6)

−1 ζ 2
6 , ζ

3
6 Q(

√
m, ζ6)

5. We proceed to the last step of the algorithm: finding the ordersSa. Condition
5(a) says thatR[aτ ] must be contained inSa. However, we find thatR[aτ ] is the
maximal order ofF(aτ ).

Lemma 6.4.Let m be as in Theorem 6.2, R the ring of integers ofQ(
√

m) and u a
fundamental unit in R.

(1) The ring of integers ofQ(
√

m, ζ4) is R[ζ4] and R[ζ4]
×
= 〈ζ4〉〈u〉.

(2) The ring of integers ofQ(
√

m, ζ6) is R[ζ6] and R[ζ6]
×
= 〈ζ6〉〈u〉.

Proof. (a) Let S denote the ring of integers inK =Q(
√

m, ζ4). Then by [Marcus
1977, Ex. 42, p. 51] we haveS= R[ζ4]. Now letα = ω1+ω2ζ4 ∈ S. We compute

NK/Q(α)= NF/Q(ω1)
2
+ (ωσ1ω2)

2
+ (ω1ω

σ
2 )

2
+ NF/Q(ω2)

2

whereσ is the nontrivial element of Gal(F/Q). We deduce thatα is a unit if and
only if eitherω1 = 0 andNF/Q(ω2) = ±1 or ω2 = 0 andNF/Q(ω1) = ±1. The
result now follows.
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(b) Let S denote the ring of integers inK = Q(
√

m, ζ6). Then by [Marcus 1977,
Ex. 42, p. 51] we haveS= R[ζ6], since 3-m asQ(

√
m) has narrow class number

one. Letα = a+bθ + cζ6+dθζ6 ∈ S, whereθ = 1
2(1+

√
m). We compute

16NK/Q(α)= NF/Q(ω1)
2
+3((ω1ω

σ
2 )

2
+ (ωσ1ω2)

2)+9NF/Q(ω2)
2,

whereω1 = 2a + c+ (2b+ d)θ , ω2 = c+ dθ andσ is the nontrivial element
of Gal(F/Q). Assume thatα ∈ S×. Then we haveNF/Q(ω2) = 0 or ±1. If
NF/Q(ω2) = 0 thenα ∈ R×. Now assume thatNF/Q(ω2) = ±1. In this case
we must haveNF/Q(ω1) = ±1 sinceNF/Q(ω1) ≡ NF/Q(ω2) mod 2 rules out the
possibility thatNF/Q(ω1) =±2. So we can writeω1 =±ur andω2 =±us. Now
α is a unit if and only if

16= 1+3
(
(ω1ω

σ
2 )

2
+ (ωσ1ω2)

2)
+9,

that is, if and only if 2= u2(r−s)
+ u−2(r−s). This is true if and only ifr = s. We

deduce that ifNF/Q(ω2)=±1, thenα is a unit inS if and only if

α =
ω1−ω2

2
+ω2ζ6= ur ζ k

6

with k ∈ {1,2,4,5}. The result follows. �

Lemma 6.5.The set of orders C consists of the rings of integersS of the extensions
F(aτ ) where aτ is a chosen root of a contributing polynomial fτ as determined by
Lemma 6.3.

Proof. Only condition 5(b) needs to be verified. Our computations show that all of
the rootsaτ of fτ are roots of unity andNF(aτ )/F (aτ ) = 1. Thussp = 0 for every
p andaτ ∈ Saτ ,p is always satisfied. �

Hence, equation (2) becomes

T = M +
1

2

∑
Saτ ∈C

h(Saτ )

w(Saτ )
.

We now study the contributions from the biquadratic fieldsQ(
√

m,
√
−1) and

Q(
√

m,
√
−3) to this sum. For this we need the following result of Hasse [1952].

Proposition 6.6. Let m1,m2 be negative squarefree integers and set m0 = m1m2.
For each i we set Fi =Q(

√
mi ),wi the number of roots of unity in Fi , hi the order

of the class group of Fi . Let K =Q(
√

m1,
√

m2), h the order of the class group of
K ,w the number of roots of unity in K and u the fundamental unit in K. Let u0 be
the fundamental unit of F0. Then

h=
w

w1w2
h0h1h2

logu0

log |u|
.
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From this proposition we get:

(1) For Q(
√

m,
√
−1): Let m1 = −1, m2 = −m, m0 = m, K = Q(

√
−1,
√
−m).

Henceh0=1, by hypothesis. It is well known that the class group order ofQ(
√
−1)

is 1, and the only roots of unity are powers of
√
−1, i.e.,h1= 1, w1= 4. Also, the

only roots of unity inQ(
√
−m), with m 6= 1,3, are±1, sow2 = 2. Thenw = 4

andu0= u. Thus we obtainh= 1
2h(
√
−m).

(2) ForQ(
√

m,
√
−3): Let m1=−3,m2=−3m,m0=9m, K =Q(

√
−3,
√
−3m).

Similarly, it is know that the class group order ofQ(
√
−3) is 1, and the only roots

of unity are powers ofζ6, i.e., h1 = 1, w1 = 6. Then,w = 6 andu0 = u. Again
w2= 2 and we obtainh= 1

2h(
√
−3m).

Next, [S× : U ] = 2 and 3, respectively, forQ(
√

m,
√
−1) andQ(

√
m,
√
−3).

We can now finish proving Theorem 6.2. The fieldQ(
√

m,
√
−3) contributes twice

in the sum (forτ = 1,−1), so equation (2) becomes

T = M +
1

2

(
h
(
Q(
√

m,
√
−1)

)
2

+2
h
(
Q(
√

m,
√
−3)

)
3

)
= M + 1

8h
(
Q(
√
−m)

)
+

1
6h
(
Q(
√
−3m)

)
and this completes the proof of Theorem 6.2. �

We can also determineH . Following the proof of Theorem 6.1 given in [Pizer
1973], we see that

(3) Tq1q2 =
1

2eh(F)

(
Hq1q2+

1

2

∑
Sa∈C2

Eq1q2(Sa)
h(Sa)

w(Sa)

)
,

whereC2 = C −C1 andC1 = {Sa ∈ C | (N(a)) = (1)}. That is,a is a root of
fµ,%,τ (x) with (nµ)= (1). From this we have:

Proposition 6.7.Let m be a positive squarefree integer, F =Q(
√

m), with h(F)=
1, and B the unique quaternion algebra withRam(B)= {∞1,∞2}. Then H= T .
Consequently, if I 1, . . . , I H is a complete set of representatives of distinct leftO-
ideal classes for a fixed maximal orderO, then the corresponding right orders
Or (I1), . . . ,Or (I H ) form a complete set of distinct representatives of maximal or-
ders of different types.

Proof. We haveh(F) = 1, q1 = q2 = 1, 2e
= 1 andnµ = n1 = 1 in the algorithm

to find C. ThusC2=∅. Substitute these in (3) to get the result. �
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7. The algebraB and a maximal order O

In this section we obtain defining relations forB, the positive definite quaternion
algebra overF =Q(

√
m) that is ramified precisely at the infinite places ofF . We

also find a basis overR for a maximal orderO in B whenm≡ 5 mod 8.

Definition 7.1. Over a fieldK of characteristic not equal to two, let(a,b) for
a,b∈ K× denote the quaternion algebra overK with basis{1, i, j, k} and relations
k= i j , i 2

= a, j 2
= b andi j =− j i .

Proposition 7.2. Let m 6≡ 1 mod 8be a positive squarefree integer. Then B =
(−1,−1) is the unique quaternion algebra defined overQ(

√
m) that is ramified

precisely at the infinite places ofQ(
√

m).

Proof. It is clear thatB = (−1,−1) is positive definite. We shall show that at
every finite primep of F the algebraBp = B⊗F Fp is the matrix algebra. LetB′

be the quaternion algebra overQ given by B′ = (−1,−1). Then B = B′ ⊗Q F .
As is well known, Ram(B′)= {2,∞}. HenceB is split at every primep of F not
lying above 2. Sincem 6≡ 1 mod 8 there is only one prime inF above 2. But now
Ram(B) has even cardinality and contains the two infinite places ofF and hence
B must be unramified at the prime ofF above 2. �

In the case thatF =Q(
√

m) has narrow class number 1 andm≡ 1 mod 8 one
can takeB′ to be the quaternion algebra overQ ramified precisely at{m,∞}. By
[Pizer 1980a, Proposition 5.1], one hasB′ = (−m,−q) whereq is a prime with
q≡3 mod 4 and

(m
q

)
=−1. The same argument as above shows thatB= B′⊗Q F .

We now give a maximal orderO in B whenm≡ 5 mod 8.

Proposition 7.3. Let m≡ 5 mod 8be a positive squarefree integer. Let F =
Q(
√

m) with ring of integers R= Z[θ ], whereθ = 1
2(1+

√
m). Let B = (−1,−1).

ThenO= R
[
δ1, δ2, j, k

]
is a maximal order inB, whereδ1=

1
2(1+ i + j +k) and

δ2=
1
2(i + θ j + (1+ θ)k).

Proof. It is clear thatO is a full lattice inB. It is simple, but tedious, to check that
O is a ring and that every element ofO is integral. Finally one can check thatO

is maximal by computing its discriminant. For all the details see [Socrates 1993,
Theorem 4.2]. �

8. Cusp form calculations

We now compute the space of cusp forms for the fieldF = Q(
√

509). From
Theorem 6.2 and Proposition 6.7 we compute that the class number forB is 24.
We will give representatives for each of the 24 ideal classes, which will then enable
us to compute the necessary Brandt matrices using the algorithm from Section 3.
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In the algorithm of Section 5, we first find suitableα. Theα that eventually led
us to distinct ideal classes werei together with

α1=
1
2 +5i + 1

2(1+ θ) j +
(
1− 1

2θ
)
k= δ1+9δ2−4θ j − (4+5θ)k(

nr(α1)= 90, k1=−359, h(Q(
√
−359))= 19

)
and

α2=
1
2+ (4−

1
2θ)i +2 j + 1

2(7+ θ)k= δ1+ (7− θ)δ2+ (65−3θ) j + (63−2θ)k(
nr(α2)= 96, k2=−383, h(Q(

√
−383))= 17

)
.

Let K = F(αi ). Note thatR
[√

ki
]

has index 2 in the ring of integers ofK . We
setα′i = 2αi − 1, which satisfiesx2

− ki = 0. SinceF has class number one, we
will be interested only in prime ideals ofF that split in K . If x2

− ki splits into
two distinct factors(x− β1)(x− β2) modulo the prime idealp = (a+ bθ) of F ,
then as an ideal inK

p= (a+bθ, α′i−β1)(a+bθ, α′i−β2)

and it suffices to consider only one of the idealsI on the right, as they belong to
the sameK -ideal class. Moreover we have nr(OI )= (a+bθ).

Since the class number ofO is rather large, we first used the2-series ofOI
for various prime idealsI in the extensionsK = F(αi ) above. We computed the
2-series of these ideals up to 30+ 2θ . Using this method we found 23 of the 24
ideal classes. These ideals, together with the initial coefficients of their2-series,
are listed in the tables below.

After a lengthy search that did not yield another ideal with a distinct2-series,
we switched to using the necessary and sufficient conditions of Proposition 5.2.
Let I be an ideal inS, the ring of integers in someF(αi ). Assume that the initial
coefficients of the2-series ofOI are the same as those of one of the left ideals
above, sayJs. Construct a basis forI ′ = I −1Js and construct

NI ′(α)=91(X)+92(X)θ,

with 91 in Hermite normal form. Proposition 5.2 then says thatOI is actually in
a differentclass asJs if and only if a1,1, the leading term of91, is greater than 1.
(Note that 1+bθ is totally positive if and only ifb= 0). Using this condition, we
quickly determined that we could takeJ24= OI24 with

I24=
(
46+5θ, 334−10i−(1+θ) j+(−2+θ)k

)
a prime ideal inF(α1) dividing 829.

Now that we have concrete representatives of left ideal classes, we are able to
construct explicitly the first few Brandt matricesB(ξ) and the modified Brandt
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matricesB′(ξ) using the algorithm [Cohen 1993, Algorithm 2.7.7] mentioned at
the end of Section 3. This involves computing the2-series of the 300 idealsJ−1

r Js,
r ≥ s, due to the symmetry properties in Theorem 4.1. We also computed the
characteristic polynomials of theB′(ξ) and factored them overQ. We found that
the characteristic polynomial ofB′(19+ θ) has three distinct rational roots and an
irreducible factor of degree 20. Hence, althoughC23 has a basis of eigenvectors
for all theB′(ξ), only three eigenvectors have eigenvalues that are all rational. The
three rational eigenvectors are

v1= (0,0,0,0,1,0,−2,−1,1,1,0,−2,0,0,−3,1,0,0,0,−1,2,0,2),

v2= (0,0,0,0,−1,0,2,1,−1,1,0,2,0,0,−2,−1,0,0,0,1,−2,0,3),

v3= (45,45,25,60,23,40,34,27,18,28,30,19,35,20,31,28,20,
15,25,37,51,40,31).

We let f 1, f 2 and f 3 denote the forms corresponding to the vectorsv1, v2 andv3

by Proposition 4.3. The initial Fourier coefficients of these forms are tabulated in
Table 3. From this table we note thatf 1 = f σ2 , whereσ is the nontrivial element
of Gal(F/Q), while f 3= f σ3 and hencef 3 is the base change of a classical form.
That none of these forms are CM forms follows from the following proposition.

Proposition 8.1.Let f be a Hilbert eigenform of full level for a totally real number
field F of narrow class number one. Then f is not a CM form.

Proof. Recall that f is a CM form if and only if there exists a quadratic character
ε corresponding to an imaginary quadratic extensionK/F such that f = f ⊗ ε.
So suppose we havef = f ⊗ ε for such a characterε. Let π denote the cuspidal
representation of GL2(AF ) corresponding toπ . Then we haveπ ∼= π ⊗ (ε ◦ det).
By a theorem of Labesse and Langlands [1979] we have an equality ofL-series
L(π, s)= L(χ, s) for some grössencharakterχ of K , and it is known that condπ =
NK/F (condχ)disc(K/F). Sinceπ is assumed to be unramified it follows that
K/F is an unramified extension. But this is impossible sinceF has narrow class
number one. �

9. The elliptic curves

In this section we give equations for the elliptic curves that we will show are at-
tached to the formsf 1, f 2 and f 3 of the previous section.

Let E3 be the elliptic curve given by the Weierstrass equation

y2
+ (1+ θ)xy+ (1+ θ)y

= x3
+ (−4051846+343985θ)x+4312534180−366073300θ.
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This curve is found in [Cremona 1992] and is aQ-curve (that is, it is isogenous
to its Galois conjugate). LetE1 denote the elliptic curve given by the Weierstrass
equation

y2
− xy− θy= x3

+ (2+2θ)x2
+ (162+3θ)x+71+34θ.

This elliptic curve is in a table found in [Pinch 1982], among other curves that have
good reduction everywhere over certain quadratic fields. We show below thatE1

is not F-isogenous to its Galois conjugate. This is also noted (without proof) in
[Cremona 1992]. We takeE2 to be the curveEσ1 , whereσ is the nontrivial element
of Gal(F/Q).

Proposition 9.1.The elliptic curve E1 is not isogenous over F to its Galois conju-
gate.

I i K ai +bi θ γi I i | p ∈ Z

I1 F 1
I2 F(α1) 61 −23+46θ −10i − (1+ θ) j + (−2+ θ)k 61
I3 F(α1) 45+4θ 81−10i − (1+ θ) j + (−2+ θ)k 173
I4 F(α1) 149 45−10i − (1+ θ) j + (−2+ θ)k 149
I5 F(α1) 53+5θ 34−10i − (1+ θ) j + (−2+ θ)k 101
I6 F(α1) 79 6−10i − (1+ θ) j + (−2+ θ)k 79
I7 F(α1) 53 −22+44θ −10i − (1+ θ) j + (−2+ θ)k 53
I8 F(α2) 23+2θ 32+ (−8+ θ)i −4 j − (7+ θ)k 67
I9 F(α1) 9+ θ 14−10i − (1+ θ) j + (−2+ θ)k 37
I10 F(α1) 10+ θ 7−10i − (1+ θ) j + (−2+ θ)k 17
I11 F(α1) 184+17θ 22−10i − (1+ θ) j + (−2+ θ)k 281
I12 F(α1) 107+10θ 33−10i − (1+ θ) j + (−2+ θ)k 181
I13 F(α2) 47 −18+36θ + (−8+ θ)i −4 j − (7+ θ)k 47
I14 F(α1) 31 −1+2θ −10i − (1+ θ) j + (−2+ θ)k 31
I15 F(α1) 32+3θ 3−10i − (1+ θ) j + (−2+ θ)k 23
I16 F(α1) 131 54−10i − (1+ θ) j + (−2+ θ)k 131
I17 F(α1) 59 −14+28θ −10i − (1+ θ) j + (−2+ θ)k 59
I18 F(α2) 61 −26+52θ + (−8+ θ)i −4 j − (7+ θ)k 61
I19 F(i ) 31+3θ 34+ i 89
I20 F(α1) 75+7θ 15−10i − (1+ θ) j + (−2+ θ)k 73
I21 F(α1) 13 −3+6θ −10i − (1+ θ) j + (−2+ θ)k 13
I22 F(α1) 157 −6+12θ −10i − (1+ θ) j + (−2+ θ)k 157
I23 F(i ) 11+ θ 2+ i 5

Table 1. Prime idealsI i = (ai +bi θ, γi ), where theOI i have dis-
tinct2-series.
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Proof. If E1 andEσ1 are isogenous, the local factors of theL-series ofE1 andEσ1
will be the same for all primes ofF . Let p= (5,1+ 2θ) denote one of the prime
ideals ofF above 5. We have an isomorphism ofR/p with Z/5 that mapsθ to

1 2 3 4 5 6 7 8 9 10 11 11+θ 12−θ 12

J1 24 24 96 24 144 96 192 24 312 144 288 0 0 96
J2 0 24 0 24 0 96 0 24 0 144 0 0 0 96
J3 0 0 24 0 0 24 0 0 96 0 0 0 0 24
J4, J5 0 0 0 24 0 0 0 24 0 0 0 0 0 96
J6, J7, J8 0 0 0 0 24 0 0 0 0 24 0 0 0 0
J9 0 0 0 0 0 24 0 0 0 0 24 0 0 24
J10 0 0 0 0 0 24 0 0 0 0 0 0 0 48
J11 0 0 0 0 0 0 24 0 0 24 0 0 0 24
J12 0 0 0 0 0 0 24 0 0 24 0 0 0 0
J13, J14 0 0 0 0 0 0 24 0 0 0 48 0 0 0
J15 0 0 0 0 0 0 0 24 24 0 0 0 0 48
J16 0 0 0 0 0 0 0 24 0 24 24 0 0 24
J17 0 0 0 0 0 0 0 24 0 24 48 0 0 0
J18 0 0 0 0 0 0 0 24 0 48 0 0 0 0
J19 0 0 0 0 0 0 0 48 0 0 0 0 0 0
J20 0 0 0 0 0 0 0 0 24 48 48 0 0 0
J21 0 0 0 0 0 0 0 0 48 24 0 0 0 24
J22 0 0 0 0 0 0 0 0 48 0 48 0 0 0
J23 0 0 0 0 0 0 0 0 0 48 48 24 24 48

12+θ 13−θ 13 13+θ 14−θ 14 14+θ 15−θ 15 15+θ

J4, J5 0 0 0 0 0 0 0 0 0 0
J6 0 0 24 0 0 0 0 0 96 0
J7 0 0 0 0 0 24 0 0 144 24
J8 0 0 0 0 0 48 0 0 96 0
J13 0 0 48 0 0 24 48 48 0 0
J14 0 0 24 24 24 48 0 0 24 24

16−θ 16 16+θ 17−θ 17 17+θ 18−θ 18 18+θ

J4 0 24 0 0 48 0 0 24 24
J5 0 48 0 0 0 0 0 0 0

Table 2. Beginning coefficientscξ,Ji of the2-series ofJ1 to J23.
More are given for ideals whose early coefficients agree.
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ξ 3 7 11+θ 12−θ 12+θ 13−θ 13 14+θ 15−θ 15+θ 16−θ

ξ | p 3 7 5 5 29 29 13 83 83 113 113

v1 −4 −6 3 −2 0 10 1 14 9 11 6
v2 −4 −6 −2 3 10 0 1 9 14 6 11
v3 1 9 −2 −2 −5 −5 26 14 14 11 11

Table 3. Eigenvalues for simultaneous rational eigenvectors forB′(ξ).

2 mod 5. Then the equation for the reduced curveẼ1 overZ/5 has affine equation

Ẽ1 : y
2
+4xy+3y= x3

+ x2
+3x+4.

and we compute that̃E1(R/p) has order 8. Similarly, the reduction of the curve
Eσ1 has equation

Ẽσ1 : y
2
+4xy+ y= x3

+4x+2.

and we compute that̃Eσ1 (R/p) has order 3. ThereforeE1 is not isogenous toEσ1 .
�

Finally we check that our curvesE1, E2 andE3 do not possess potential complex
multiplication. We first remark thath+(F)= 1. Our conclusion about these curves
now follows from:

Proposition 9.2.Let K be a totally real number field of narrow class number one.
Let E/K be an elliptic curve that has good reduction everywhere. Then E does
not possess potential complex multiplication.

Proof. SupposeE(C) has CM defined over the fieldQ(
√

n), wheren<0. Consider
the fieldL = K (

√
n). ThenE and its complex multiplications are defined overL.

Consider thè -adic representation given by the action of Galois on the`-adic Tate
module ofE/L

σ` :Gal(Q/L)→GL2(Q`).

We construct another representation

σ
[ρ]
` : Gal(Q/L) → GL2(Q`),

τ 7→ σ`(ρτρ
−1),

whereρ ∈ Gal(Q/K ) is nontrivial when restricted toL. Now, sinceE is actually
defined overK , thisσ` extends to a representationσ̃` of Gal(Q/K ). However,

σ̃`(ρτρ
−1)= σ̃`(ρ)σ̃`(τ )σ̃`(ρ)

−1
= σ̃`(ρ)σ`(τ )σ̃`(ρ)

−1,

and henceσ [ρ]`
∼= σ`.



UNRAMIFIED HILBERT MODULAR FORMS AND ELLIPTIC CURVES 357

SinceE has CM overL, the representationσ` is abelian, soσ` = χ` ⊕ χ ′` for
some charactersχ`, χ ′` of H . It can easily be seen from such a decomposition that,
in the obvious notation,

σ
[ρ]
` = χ

[ρ]
` ⊕χ

′[ρ]
`

as well. Now,χ` corresponds to a weight 1 grössencharakterψ of L, andχ`=χ
[ρ]
`

if and only if ψ(z)= ψ(z) for all z∈ L∗
∞
= C∗. Butψ(z)= z−1 andψ(z)= z−1,

henceψ(z) 6= ψ(z), soχ` 6= χ
[ρ]
` . Thusχ ′` = χ

[ρ]
` , and soσ` = χ`⊕ χ

[ρ]
` , hence

σ̃` = IndG
H (χ`). Since the degree ofχ` is 1, we get the formula

condσ̃` = NL/K (condχ`)disc(L/K )

for the conductor of̃σ`; see [Martinet 1977]. Recall thatE has good reduction
everywhere, so everỹσ` is unramified at all the primes ofK not dividing`. Since
σ̃` is ramified at all the primes which divide cond(σ̃`), we see that disc(L/K )must
be the unit ideal. ThusL is an unramified finite abelian extension ofK . But since
h+(K )= 1 this implies thatK = L which is impossible sincen< 0. �

10. Matching the elliptic curves to the cusp forms

Continuing with the notation of the previous section we haveF =Q(
√

509), R the
ring of integers inF andθ = 1

2(1+
√

509).
We begin by showing that the curveE3 is attached to the formf 3. The curveE3

is equal to the curveA′ that arises from Shimura’s construction [1971, 7.7]. This
curve is constructed from a pair of eigenforms{ f1, f2} in S2(00(509), χ) whereχ
is the quadratic character of(Z/509Z)×. These forms are constructed in [Cremona
1992]. Furthermore we know that

L(E3, s)= L( f1, s)L( f2, s).

The base change off1 to GL2(F) will be a form with rational coefficients of full
level, trivial character and weight 2. Hence we see thatf 3 is the base change of
the form f1 and we have

L(E3, s)= L( f 3, s).

Let E1 be as in Section 9. SinceE1 has good reduction everywhere, the 2-adic
representation on the Tate module ofE1,

σ1 :Gal(F/F)→GL2(Q2),

is unramified outside the prime ideal 2R of F . For each prime idealp of F outside
2R we have

Tr σ1(Frp)= a(E1)p,
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where Frp denotes a Frobenius element atp anda(E1)p denotes thep-th Fourier
coefficient ofE1. Moreover detσ1(Frp)= Np.

Let f 1 denote the unramified cusp form given in Section 8 above. By [Taylor
1989] and [Blasius and Rogawski 1993] there exists a 2-dimensional representation

σ2 :Gal(F/F)→GL2(Q2)

unramified outside the prime ideal 2R of F and such that for each prime idealp of
F outside 2R we have

Tr σ2(Frp)= a( f 1)p

where again Frp denotes a Frobenius element atp and a( f 1)p denotes thep-th
Fourier coefficient off 1. Moreover we have detσ2(Frp)= Np.

To prove thatE1 is attached to the formf 1 we must show that the representations
σ1 andσ2 are equivalent. For this we will use the following result of Faltings and
Serre as stated and proved in [Livné 1987].

Theorem 10.1.Let K be a global field, S a finite set of primes of K, and E a finite
extension ofQ2. Denote the maximal ideal in the ring of integers of E byp and the
compositum of all quadratic extensions of K unramified outside S by KS. Suppose

ρ1, ρ2 :Gal(K/K )→GL2(E)

are continuous representations, unramified outside S, and furthermore satisfying:

1. Tr ρ1≡ Tr ρ2≡ 0 modp anddetρ1≡ detρ2 modp.

2. There exists a set T of primes of K, disjoint from S, for which

• the image of the set{Frt : t ∈ T} in theZ/2Z-vector spaceGal(KS/K ) is
noncubic;
• Tr ρ1(Frt)= Tr ρ2(Frt) anddetρ1(Frt)= detρ2(Frt) for all t ∈ T .

Thenρ1 andρ2 have isomorphic semi-simplifications.

A subsetSof theZ/2Z-vector space Gal(KS/K ) is said to be noncubic if every
homogeneous polynomial of degree three that vanishes onS vanishes on all of
Gal(KS/K ). In particular Gal(KS/K ) is itself noncubic and we will apply this
theorem withT chosen such that the image of{Frt : t ∈ T} in Gal(KS/K ) is the
whole space.

As we can see from Table 3, we cannot apply this result immediately since the
traces of Frobenius are not all even. Therefore for eachi we letσ i denote the mod
2 representations obtained fromσi and letL i denote the extension ofF cut out by
σ i . We begin by showing that we can identify these two extensions.
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Matching L1 and L2. We know thatL1 = F(E1[2]). HenceL1 is the splitting
field of the polynomial

g(x)= 4x3
+ (9+8θ)x2

+ (648+14θ)x+411+137θ

and is anS3-extension ofF unramified outside of 2R. Moreover the quadratic
extension ofF contained inL1 is F(

√
u), whereu= 442+41θ is a fundamental

unit of F .
We now considerL2. We know thatL2 is an extension ofF that is unramified

outside of 2R. Moreover since some of thea( f 1)p’s are odd we know thatL2 is
either a normal cubic extension ofF or else is anS3 extension. By the next lemma
we deduce thatL2/F must be anS3 extension.

Lemma 10.2. There are no normal cubic extensions of F unramified outside of
2R.

Proof. Suppose thatL/F is such an extension. Letf(L/F) denote the conductor
of F . By [Cohen 2000, Corollary 3.5.12] we deduce thatf(L/F) divides 2R. But
now using Pari [Cohen et al. 2004] we compute that the ray class group for the
modulus 2R∞1∞2, where∞i denote the infinite places ofF , is trivial. Therefore
no such extensionL of F exists. �

Let F1 be the unique quadratic extension ofF contained inL2. We let u =
442+ 41θ be the fundamental unit ofF . SinceF1 is unramified outside 2 we
know thatF1 must be one of the fields

F(
√
−1), F(

√
u), F(

√
2), F(

√
−u), F(

√
−2), F(

√
2u) or F(

√
−2u).

Let p be a prime ofF and letP be a prime ofF1 abovep. We note that ifa( f 1)p

is odd thenf (P/p)= 1. We use this criterion to eliminate all the above quadratic
extension ofF except forF(

√
u). Taking p = (11+ θ)R eliminates the fields

F(
√

2), F(
√
−2), F(

√
2u) andF(

√
−2u). While takingp= (15−θ)R eliminates

the fieldsF(
√
−1) andF(

√
−u). Therefore we haveF1= F(

√
u).

Lemma 10.3.There is a unique normal cubic extension of F1 which is unramified
outside of2R1, where R1 denotes the ring of integers in F1.

Proof. We note that 2R1= p2, wherep is the unique prime ofF1 above 2. Suppose
that L/F1 is such an extension. Letf(L/F1) denote the conductor ofL/F1. By
[Cohen 2000, Corollary 3.5.12] we deduce thatf(L/F1) dividesp. Using Pari we
compute that the order of the ray class group for the modulusp∞1∞2, where∞i

denote the real places ofF1, is three, from which we deduce thatL is unique. �

Since bothL1 andL2 containF(
√

u), we deduce thatL1= L2.
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Application of Faltings and Serre.Let K denote a fixed cubic extension ofF
contained inL = L1 = L2. We now apply Theorem 10.1 to the representations
σ1|K andσ2|K . We note that these representations satisfy the conditions of the
theorem.

Now K = F(α), whereα satisfies the equation

ψ2(x)= 4x3
+ (9+8θ)x2

+ (648+14θ)x+411+137θ

over F . Usingθ2
− θ −127= 0 we find thatα satisfies the equation

m(x)= 64x6
+416x5

−10940x4
−30552x3

+550476x2
+560056x−8633740

overQ. In fact we can writeK =Q(β), whereβ satisfies the equation

x6
−25x4

−46x3
+29x2

+66x+20.

Using Pari we find thatK has class number one andO×K
∼= {±1}×Z4 with funda-

mental units given by

u1=
1
34β

5
+

3
17β

4
−

23
34β

3
−

92
17β

2
−

293
34 β −

47
17,

u2=
7

102β
5
−

13
51β

4
−

31
34β

3
+

19
51β

2
+

91
102β +

11
51,

u3=
10
51β

5
−

8
51β

4
−

71
17β

3
−

361
51 β

2
+

79
51β +

199
51 ,

u4=
106
51 β

5
−

44
51β

4
−

875
17 β

3
−

3745
51 β

2
+

4693
51 β +

5047
51 .

Now the ideal 2RK factors asp1p
2
2. A generator forp1 is given by

a1=
4
51β

5
+

7
51β

4
−

42
17β

3
−

277
51 β

2
+

205
51 β +

304
51

and a generator forp2 is given by

a2=
16
51β

5
−

23
51β

4
−

117
17 β

3
−

292
51 β

2
+

667
51 β +

349
51 .

Let KS denote the compositum of all quadratic extensions ofK which are unram-
ified outside ofS= {p1, p2}. ThenKS is the compositum of the fields

K (
√
−1), K (

√
u1), K (

√
u2), K (

√
u3), K (

√
u4), K (

√
a1) andK (

√
a2).

Using Pari we can find a setT of primes inK such that

Gal(KS/K )= {FrP ∈Gal(KS/K ) :P ∈ T}

where FrP denotes the Frobenius element in Gal(KS/K ) at P. Let T0 denote the
primes ofF generated by the elements ofF in the left hand column of Table 4.
Then we can takeT to be the set of primes inK above those inT0.
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ξ = a+bθ p a(p)

3 inert −4
7 inert −6

11+ θ 5 3
12− θ 5 −2
12+ θ 29 0
13− θ 29 10
14+ θ 83 14
15− θ 83 9
15+ θ 113 11
16− θ 113 6
17+ θ 179 0
18− θ 179 25

19 inert −12
20+ θ 293 16
21− θ 293 26
22+ θ 379 −20
23− θ 379 20

23+2θ 67 −7
25−2θ 67 8
25+ θ 523 36
26− θ 523 11

25+2θ 167 22
27−2θ 167 −8
29+ θ 743 44
30− θ 743 −36

31 inert −18
32+ θ 929 40
33− θ 929 10

33+2θ 647 18
35−2θ 647 43
34+ θ 1063 4
35− θ 1063 −1
37+ θ 1279 −20
38− θ 1279 25

37+3θ 337 −28
40−3θ 337 2
39+2θ 1091 60
41−2θ 1091 0

41 inert −18
41+3θ 661 −20
44−3θ 661 −10
45+2θ 1607 42
47−2θ 1607 57
50+ θ 2423 −24
51− θ 2423 −69

51+4θ 773 −24
55−4θ 773 −4
54+ θ 2843 −6
55− θ 2843 −61

ξ = a+bθ p a(p)

54+5θ 11 3
59−5θ 11 −2
55+4θ 1213 −46
59−4θ 1213 34
56+5θ 241 2
61−5θ 241 −8
57+5θ 359 −6
62−5θ 359 9

59 inert −22
60+ θ 3533 6
61− θ 3533 −84
62+ θ 3779 30
63− θ 3779 0

62+3θ 2887 −73
65−3θ 2887 62
65+2θ 3847 82
67−2θ 3847 32
66+5θ 1511 −8
71−5θ 1511 −13
67+3θ 3547 −68
70−3θ 3547 2
68+5θ 1789 −34
73−5θ 1789 −14
69+2θ 4391 130
71−2θ 4391 75
71+3θ 4111 −35
74−3θ 4111 100
71+5θ 2221 −18
76−5θ 2221 −53
74+5θ 2671 −72
79−5θ 2671 −12
76+3θ 4861 70
79−3θ 4861 −30

79 inert −32
79+5θ 3461 −2
84−5θ 3461 −57
79+6θ 2143 24
85−6θ 2143 −56
79+7θ 571 −20
86−7θ 571 10
82+3θ 5827 −28
85−3θ 5827 22
84+ θ 7013 −6
85− θ 7013 −16

85+3θ 6337 78
88−3θ 6337 48
85+6θ 3163 86
91−6θ 3163 −4
91+3θ 7411 −55
94−3θ 7411 100

ξ = a+bθ p a(p)

92+ θ 8429 100
93− θ 8429 −110

95+2θ 8707 −28
97−2θ 8707 182
95+6θ 5023 76
101−6θ 5023 86
95+8θ 1657 28
103−8θ 1657 −22
100+3θ 9157 98
103−3θ 9157 73
101+4θ 8573 66
105−4θ 8573 −79
105+ θ 11003 116
106− θ 11003 36

108+5θ 9029 −54
113−5θ 9029 96
109+ θ 11863 −66
110− θ 11863 24

109+6θ 7963 −16
115−6θ 7963 59
110+3θ 11287 208
113−3θ 11287 178
111+8θ 5081 −30
119−8θ 5081 90
112+5θ 9929 −146
117−5θ 9929 −96
113+5θ 10159 76
118−5θ 10159 56
114+5θ 10391 98
119−5θ 10391 −117
122+ θ 14879 0
123− θ 14879 −75

122+3θ 14107 152
125−3θ 14107 32
124+11θ 1373 34
135−11θ 1373 −6
137+11θ 4909 20
148−11θ 4909 40
139+6θ 15583 −156
145−6θ 15583 4
143+7θ 15227 108
150−7θ 15227 −122
164+7θ 21821 −210
171−7θ 21821 −150
169+11θ 15053 −6
180−11θ 15053 −106
171+10θ 18251 −68
181−10θ 18251 −198
178+5θ 29399 56
183−5θ 29399 96

Table 4. a(p)’s for the elliptic curveE1 and cusp formf 1.
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For eachp ∈ T0 we have computeda(E1)p anda( f 1)p and found that they are
the same. Hence we deduce that for allP ∈ T we have

Tr σ1(FrP)= Tr σ2(FrP).

Thus by Theorem 10.1σ1 andσ2 are isomorphic.

End of Proof. We have proved in the previous subsection thatσ1|K is isomorphic
to σ2|K and therefore thatσ1|L is isomorphic toσ2|L . We note that sinceE1 does
not possess potential complex multiplication by Proposition 9.2 soσ1|L and hence
σ2|L are both irreducible. Then by Frobenius reciprocity we know thatσ1|F1 is
isomorphic toσ2|F1⊗χ for some characterχ of Gal(F/F1) trivial on Gal(F/L).
Let p = (11+ θ)R thena(E1)p is odd andp splits in F1. Let P be a prime ofF1

abovep and let FrP be a Frobenius element atP in Gal(F/F1). Then

Tr(σ1|F1(FrP))= a(E1)p = Tr(σ2|F1(FrP))

and henceχ(FrP) = 1. But sinceP is inert in L we deduce thatχ must be
trivial. Therefore we haveσ1|F1 = σ2|F1. Now using Frobenius reciprocity again
we deduce thatσ1 is isomorphic toσ2⊗δ for some characterδ of Gal(F/F) trivial
on Gal(F/F1). If we takep= (12− θ)R thenp is inert in F1. Now

Tr(σ1(Frp))= a(E1)p = Tr(σ2(Frp))

and henceδ(Frp)= 1. We deduce thatδ is trivial and hence thatσ1= σ2.
Thus we conclude thatE1 is attached to the formf 1. It immediately follows

that the curveE2 is attached to the formf 2. The verification of Conjecture 1.1 for
F =Q(

√
509) is now complete.

Remark. We found after this work was completed that one could use [Skinner
and Wiles 1999, Theorem A] to prove that the curveE1 is modular. Here one
uses that the Galois representation on the 5-adic Tate module ofE1 is residually
reducible. However, our method can, in principle, be used in situations where their
results do not apply. Moreover, our interest in this problem arises from attaching
elliptic curves to unramified Hilbert modular forms, for which one needs to be able
to determine the space of cusp forms. Furthermore, it appears that our method
of computing the space of cusp forms can be extended to higher weight, where
eigenforms with rational Hecke eigenvalues should correspond to certain other
geometric objects.
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INDECOMPOSABILITY OF FREE GROUP FACTORS OVER
NONPRIME SUBFACTORS AND ABELIAN SUBALGEBRAS

MARIUS B. S, TEFAN

We use the free entropy defined by D. Voiculescu to prove that the free group
factors cannot be decomposed as closed linear spans of noncommutative
monomials in elements of nonprime subfactors or abelian∗-subalgebras, if
the degrees of monomials have an upper bound depending on the number of
generators. The resulting estimates for the hyperfinite and abelian dimen-
sions of free group factors settle in the affirmative a conjecture of L. Ge and
S. Popa (for infinitely many generators).

1. Introduction

L. Ge and S. Popa [1998] defined for a given type II1-factorM the two quantities

`h(M)=min{ f ∈ N | ∃ hyperfiniteR1, . . . ,R f ⊂M s.t. spwR1R2 · · ·R f =M},

`a(M)=min{ f ∈ N | ∃ abelianA1, . . . ,A f ⊂M s.t. spwA1A2 · · ·A f =M}

(the min being∞ if M cannot be generated as stated) and conjectured that

`h(L(Fn))= `a(L(Fn))=∞ for n≥ 2,

whereL(Fn) is the type II1-factor associated to the free group withn generators.
We use the concept of free entropy introduced by D. Voiculescu in his break-

through paper [1994] to prove that the conjecture mentioned above is true at least
partially (for n = ∞) that is,`h(L(Fn)), `a(L(Fn)) ≥

[n−2
2

]
+ 1 for 4≤ n ≤ ∞.

Actually, our result is more general and it states that the free group factor withn
generators cannot be asymptotically generated (Definitions 3.2 and 4.2) as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1

or

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1

MSC2000:primary 46L54; secondary 46L35.
Keywords: free entropy, free group factors.
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if the Nω
1 , . . . ,Nω

f (for all ω) are nonprime subfactors, theAω
1 , . . . ,Aω

f are abelian
∗-subalgebras, theZω ⊂L(Fn) are subsets containingp self-adjoint elements, and
f,d ≥ 1 are integers such thatn ≥ p+ 2 f + 1. Note thatL(Fn) admits decom-
positions of this sort if we allowd = ∞, for example ifZω = Z = {1}, f = n,
Nω

1 = N1, . . . , Nω
n = Nn aren distinct copies of the hyperfinite type II1-factor R

andAω
1 =A1, . . . ,Aω

n =An aren distinct copies ofL∞([0,1]) (sinceL(Fn) is both
the free product ofn copies ofR and the free product ofn copies ofL∞([0,1]);
see [Voiculescu et al. 1992]). The indecomposability ofL(Fn) asspwNZN im-
plies the primeness of its finite-index subfactors; more generally, all subfactors of
finite index in the interpolated free group factors of Dykema [1994] and Rădulescu
[1994] are prime [Ştefan 1998]. Indeed, according to V. Jones [1983], ifN is a
subfactor of finite index inM thenM decomposes asNeN, wheree is the Jones
projection. In particular, the indecomposability properties ofL(Fn) over nonprime
subfactors and abelian subalgebras are preserved to its subfactors of finite index.
Recall that the Haagerup approximation property [Haagerup 1978/79] is another
property preserved to the free group subfactors. A first example of a prime II1-
factor (with a nonseparable predual, though) was given by Popa [1983] and then
Ge [1998] proved (with a free entropy estimate) that the free group factorL(Fn) is
prime for alln with 2≤ n<∞, thus answering a question from [Popa 1995].

Our results are based on estimates of free entropy, that is, estimates of volumes
of various sets of matrix approximants (matricial microstates). Voiculescu [1996]
pioneered this technique in his proof of the absence of Cartan subalgebras in the
free group factors. Subsequently, Ge [1997] and Dykema [1997] were able to prove
that the free group factors do not have abelian subalgebras of finite multiplicity.

The paper has four parts. In Section 2 we prove the first estimate of free en-
tropy and recover a result of Voiculescu [1994]: if a free family ofm self-adjoint
noncommutative random variables can be generated by noncommutative power
series by another family ofn self-adjoint noncommutative random variables, then
n ≥ m (Theorem 2.3). However, we show that the assumption of freeness from
[Voiculescu 1994] is not essential and can be dropped. As a consequence, the
number of self-adjoint generators with finite entropy that generate a∗-algebraA

algebraically, is constant. In Section 3 we prove the indecomposability ofL(Fn)

(and of its subfactors of finite index) over nonprime subfactors (Theorem 3.5), and
in Section 4 the indecomposability over abelian subalgebras (Theorem 4.4).

We give next a short account of Voiculescu’s free probability theory [Voiculescu
1990; Voiculescu et al. 1992] and of his original concept of free entropy [Voiculescu
1994; 1996]. A type II1-factorM endowed with its unique normalized, faithful, nor-
mal traceτ is sometimes called aW∗-probability space. The traceτ determines the
2-norm onM by the formula‖x‖2= τ(x∗x)1/2, for all x ∈ M , and the completion
of M with respect to‖·‖2 is denotedL2(M, τ ). An elementx ∈M is a semicircular



INDECOMPOSABILITY OF FREE GROUP FACTORS 367

element if it is self-adjoint and if its distribution is given by the semicircle law:

τ(xk)=
2

π

∫ 1

−1
tk
√

1− t2dt for all k ∈ N.

A family (Ai )i∈I of unital ∗-subalgebras ofM is a free family if the conditions
n ∈ N, i1, . . . , in ∈ I , i1 6= i2 6= · · · 6= in, xk ∈ Aik andτ(xk) = 0 for 1≤ k ≤ n
imply τ(x1x2 · · · xn) = 0. A set{xi }i∈I ⊂M is free if the family(∗-alg{1, xi })i∈I

is free. A free set{xi }i∈I ⊂ M consisting of semicircular elements is called a
semicircular system. IfFn is the free group withn generators (2≤ n ≤ ∞) then
L(Fn) denotes the von Neumann algebra generated by the left regular represen-
tation λ : Fn → B(l 2(Fn)); see [Murray and von Neumann 1943].L(Fn) is a
factor of type II1 — the free group factor onn generators. It has a canonical trace
τ( · )= ( · δe, δe), where{δg}g∈Fn is the standard orthonormal basis inl 2(Fn). Every
L(Fn) is generated as a von Neumann algebra by a semicircular system withn
elements [Voiculescu et al. 1992]. We denote byMsa

k = Msa
k (C) the set ofk× k

self-adjoint complex matrices and byτk its unique normalized trace.τk induces
the 2-norm‖ · ‖2 : Msa

k → R+ and the euclidean norm‖ · ‖e :=
√

k‖ · ‖2. If
B is a measurable subset of anm-dimensional (real) manifold, volm(B) denotes
the Lebesgue measure ofB. The free entropyχ(x1, . . . , xn) of a finite family
of self-adjoint elements was introduced in [Voiculescu 1994], but we will recall
the definition of the modified free entropy [Voiculescu 1996], which is better
suited for applications. For self-adjoint elementsx1, . . . , xn+m ∈ M one defines
first the set of matricial microstates: FixingR, ε > 0 and p, k ∈ N we define
0R(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε) to be the set{
(A1, . . . , An) ∈ (M

sa
k )

n
∣∣ there existAn+1, . . . , An+m ∈Msa

k

such that‖A j ‖ ≤ R and
∣∣τ(xi1 · · · xiq)− τk(Ai1 · · · Aiq)

∣∣< ε
for all q = 1, . . . , p and all j, i1, . . . , iq ∈ {1, . . . ,n+m}

}
.

Next we define

χR(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε) :=

log
(
volnk2(0R(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε))

)
,

χR(x1, . . . , xn : xn+1, . . . , xn+m; p, ε) :=

lim sup
k→∞

( 1

k2
χR(x1, . . . , xn : xn+1, . . . , xn+m; p, k, ε)+

n

2
logk

)
,

χR(x1, . . . , xn : xn+1, . . . , xn+m) :=

inf
{
χR(x1, . . . , xn : xn+1, . . . , xn+m; p, ε)

∣∣ p ∈ N, ε > 0
}
,

χ(x1, . . . , xn : xn+1, . . . , xn+m) := sup
{
χR(x1, . . . , xn : xn+1, . . . , xn+m)

∣∣ R> 0
}
.
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When taking the last sup it suffices to assume 0< R≤ max{‖x1‖, . . . , ‖xn+m‖}

rather than 0< R<∞ [Voiculescu 1994; 1996]. The quantity

χ(x1, . . . , xn : xn+1, . . . , xn+m)

is the free entropy ofx1, . . . , xn in the presence ofxn+1, . . . , xn+m. If m = 0,
it is simply called the free entropy ofx1, . . . , xn and writtenχ(x1, . . . , xn). If
{xn+1, . . . , xn+m} ⊂ {x1, . . . , xn}

′′ we have

χ(x1, . . . , xn : xn+1, . . . , xn+m)= χ(x1, . . . , xn);

see [Voiculescu 1996]. For a single self-adjoint elementx = x∗ ∈M one has:

χ(x)= 3
4 +

1
2 log 2π +

∫ ∫
log |s− t |dµ(s)dµ(t),

whereµ is the distribution ofx; see [Voiculescu 1994]. Ifx1, . . . , xn aren self-
adjoint free elements ofM thenχ(x1, . . . , xn)= χ(x1)+ · · ·+χ(xn) [Voiculescu
1994]. The converse is also true [Voiculescu 1997], provided thatχ(xi ) > −∞

for 1 ≤ i ≤ n. In particular, the free entropy of a finite semicircular system is
finite; hence the free group factorL(Fn) has a system of generators with finite free
entropy for 2≤ n<∞.

2. Noncommutative power series and free entropy

The main result of this section is that if a (not necessarily free) family ofm self-
adjoint noncommutative random variables with finite free entropy can be generated
as noncommutative power series by another family ofn self-adjoint noncommuta-
tive random variables, thenn≥m. In other words, a finite system with finite free
entropy has minimal cardinality among all finite systems of self-adjoint elements
that are equivalent under the noncommutative analytic functional calculus. Thus,
we recover Voiculescu’s result [1994], with the observation that our approach does
not require the assumption of freeness.

We review first a few facts concerning the theory of systems of algebraic equa-
tions [van der Waerden 1949], necessary in the proof of Lemma 2.1. Ifg1, . . . , gn

are forms inn variables, there exists a polynomial (the resolvent) in their coef-
ficients, R(g1, . . . , gn), with the property thatR(g1, . . . , gn) = 0 if and only if
the systemg1(ξ1, . . . , ξn) = · · · = gn(ξ1, . . . , ξn) = 0 has a nontrivial solution. If
h1, . . . , hn−1 aren−1 forms inn variables and

hn(u)(ξ1, . . . , ξn) := u1ξ1+ · · ·+unξn,

thenRu(h1, . . . , hn−1) := R(h1, . . . , hn−1, hn(u)) (theu-resolvent) is either iden-
tically 0, or a form of degree degh1 × · · · × deghn−1 in u = (u1, . . . ,un). In
the first case, the systemh1 = · · · = hn−1 = 0 has infinitely many solutions
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[(ξ1, . . . , ξn)] ∈ PCn−1; in the second, all the solutions[(ξ1, . . . , ξn)] ∈ PCn−1

are given by the factorization ofRu(h1, . . . , hn−1) (and thus, the system admits at
most degh1× · · ·×deghn−1 solutions, as predicted by Bézout’s Theorem).

Let f1, . . . , fn ∈ R[41, . . . , 4n] be n polynomials inn indeterminates, of de-
greesd1, . . . ,dn, respectively. Fora= (a1, . . . ,an) ∈ Rn define

Fi,ai (ξ1, . . . , ξn+1)= ξ
di
n+1

(
fi
( ξ1

ξn+1
, . . . ,

ξn

ξn+1

)
−ai

)
for i = 1, . . . ,n.

Bézout’s Theorem implies that the system of equations

f1(ξ1, . . . , ξn)= a1, . . . , fn(ξ1, . . . , ξn)= an

admits at mostd1 . . . dn solutions(ξ1, . . . , ξn) ∈ Cn if Ru(F1,a1, . . . , Fn,an) 6≡ 0.
Note also that the set

Su( f1, . . . , fn) :=
{
(a1, . . . ,an) ∈ Rn

| Ru(F1,a1, . . . , Fn,an) 6≡ 0
}

is either open and dense inRn, or empty.
We proceed now with Lemma 2.1, which gives an upper bound for the Lebesgue

measure of the intersection of an algebraically parameterized manifold embedded
in Rm with the unit ball ofRm. This lemma will be of further use in estimating the
volumes of various sets of matricial microstates that will appear as sets of points
within a given distance from such manifolds.

Lemma 2.1. For integers n≤ m and polynomials f1, . . . , fm ∈ R[41, . . . , 4n]

define f= ( f1, . . . , fm) : Rn
→ Rm. If the polynomials

det
(
∂ fJ

∂ξ

)
are not identically0 for all multiindices J∈ {(i1, . . . , in) | 1≤ i1 < · · · < in ≤m}
and if Su = Su( f1, . . . , fn) 6=∅, then

(1)
∫

f −1
(

B(0,1)
)
(∑
|J|=n

det2
(
∂ fJ

∂ξ

))1/2

dξ ≤
(m

n

)
·C · voln(B(0,1)),

where C= C(deg f ) = max{deg fi1 × · · · × deg fin | 1≤ i1 < · · · < in ≤ m} and
B(0,1)= Bn(0,1) is the unit ball inRn.

Proof. We consider first the casem= n. Let Sdenote the set of all irregular values
of f , that is,

S= f
(
{ξ ∈ Rn

| rank(d fξ ) < n}
)
.

It suffices to show that (1) holds withf −1
(
B(0,1) \ Sε

)
replacing f −1

(
B(0,1)

)
,

whereSε is an arbitrary open set that containsS∪ (Rn
\ Su). For any

a= (a1, . . . ,an) ∈ Rangef ∩ B(0,1) \ Sε
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the set f −1({a}) has at mostC = deg f1× · · ·× deg fn elements, sayf −1({a})=
{b1, . . . ,bp(a)} for some 1≤ p(a)≤ C. There exist an open ballBa 3 a and open
neighborhoodsVa

1 3 b1, . . . , Va
p(a) 3 bp(a) such thatBa andVa

i are diffeomorphic

via f for 1 ≤ i ≤ p(a) and f −1(Ba) =
⋃p(a)

i=1 Va
i . Since it is compact, we can

cover Rangef ∩B(0,1)\Sε with a finite set of such open ballsBa1, . . . , Bak . This
covering determines a finite partition of Rangef ∩ B(0,1) \ Sε , sayW1, . . . ,Wt .
For each 1≤ j ≤ t choose a unique 1≤ l = l ( j ) ≤ k such thatWj ⊂ Bal and
f −1(Wj )= Tj 1∪ · · ·∪Tj p(al ), whereTj i ⊂ Val

i andWj andTj i are diffeomorphic
via f for all 1≤ i ≤ p(al ). We have∫

f −1
(

B(0,1)\Sε
)
∣∣∣∣det

(
∂ f
∂ξ

)∣∣∣∣dξ = t∑
j=1

∫
f −1(Wj )

∣∣∣∣det
(
∂ f
∂ξ

)∣∣∣∣dξ
=

t∑
j=1

p(al ( j ))∑
i=1

∫
Tj i

∣∣∣∣det
(
∂ f
∂ξ

)∣∣∣∣dξ
=

t∑
j=1

p(al ( j ))∑
i=1

voln(Wj )

≤ C
t∑

j=1

voln(Wj )= C · voln
(
B(0,1) \ Sε

)
.

In the casem> n one has the estimates∫
f −1(B(0,1))

( ∑
|J|=n

det2
(
∂ fJ

∂ξ

))1/2

dξ ≤
∫

f −1(B(0,1))

∑
|J|=n

∣∣∣∣det
(
∂ fJ

∂ξ

)∣∣∣∣dξ
≤

∑
|J|=n

∫
f −1
J (B(0,1))

∣∣∣∣det
(
∂ fJ

∂ξ

)∣∣∣∣dξ
≤

(m
n

)
·C · voln(B(0,1)). �

Lemma 2.1 will be used in the proof of Proposition 2.2. Thek×k matricial mi-
crostates ofx1, . . . , xm are points within euclidean distance 2ω

√
mk from the range

of a polynomial function in the matricial microstates ofy1, . . . , yn provided that
eachxi is within ‖·‖2-distanceω from noncommutative polynomials iny1, . . . , yn.

Proposition 2.2. Let P1, . . . , Pm ∈ C〈Y1, . . . ,Yn〉 be complex polynomials in n
noncommutative self-adjoint variables. Assume that(M, τ ) is a II1-factor and that
{x1, . . . , xm} ⊂M is a finite set of self-adjoint generators ofM. Set

a=max
{
‖x1‖2+1, . . . , ‖xm‖2+1

}
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and d= max{degP1, . . . ,degPm}. If {y1, . . . , yn} ⊂ M is another finite set of
self-adjoint generators ofM with n<m and such that

‖xi − Pi (y1, . . . , yn)‖2 < ω for all i = 1, . . . ,m and someω ∈ (0,a],

then

χ(x1, . . . , xm)≤ C(m,n,a)+ (m−n) logω+n logd,

where C(m,n,a) is a constant that depends only on m, n, a.

Proof. Replacing eachPi by 1
2(Pi + P∗i ) if necessary, we can assume thatPi = P∗i

for i = 1, . . . ,m. Given R> 0, ε > 0 and an integerp≥ 1, consider

(A1, . . . , Am) ∈ 0R(x1, . . . , xm : y1, . . . , yn; p, k, ε).

If p is large enough andε>0 is sufficiently small, one can find matricesB1, . . . , Bn

in Msa
k such that‖B1‖, . . . , ‖Bn‖ ≤ R and

‖Ai − Pi (B1, . . . , Bn)‖2 < ω for i = 1, . . . ,m,

or, equivalently,

‖Ai − Pi (B1, . . . , Bn)‖e< ω
√

k for i = 1, . . . ,m.

With the identificationsg= (g1, . . . , gmk2) : (Msa
k )

n ∼= Rnk2
→ (Msa

k )
m ∼= Rmk2

,

(B1, . . . , Bn)= (ξ1, . . . , ξnk2) ∈ Rnk2
, and

g(B1, . . . , Bn)=
(
P1(B1, . . . , Bn), . . . , Pm(B1, . . . , Bn)

)
,

the previous inequalities imply∥∥(Ai )1≤i≤m− g(ξ1, . . . , ξnk2)
∥∥

e< ω
√

mk.

At the cost of introducing an additional variableξnk2+1 ∈ R, we can assume that
the components ofg aremk2 homogeneous polynomial functions in the variables
ξ1, . . . , ξnk2+1, all having degrees at mostd.

Now let f1, . . . , fmk2 be arbitrary homogeneous polynomial functions inξ1, . . . ,
ξnk2+1, such that degf j = degg j for j = 1, . . . ,mk2. For every multiindexJ =
( j1, . . . , jnk2+1) with 1≤ j1< · · ·< jnk2+1≤mk2, saying thatSu( f j1, . . . , f jnk2+1

)

is empty is equivalent to saying that the coefficients off j1, . . . , f jnk2+1
satisfy a

certain system of algebraic equations. Hence the set

�1=
{

f = ( f1, . . . , fmk2)
∣∣ deg f j = degg j for j = 1, . . . ,mk2,

Su( f j1, . . . , f jnk2+1
) 6=∅ for all J = ( j1, . . . , jnk2+1)

}
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is open and dense in its natural ambient linear space. Similarly, the set

�2=

{
f = ( f1, . . . , fmk2)

∣∣∣ deg f j = degg j for j = 1, . . . ,mk2,

det
(
∂ fJ

∂ξ

)
6≡ 0 for all J = ( j1, . . . , jnk2+1)

}
is also open and dense in the same linear space.

The matrixd fξ has
( mk2

nk2
+1

)
minors of dimension(nk2

+1)×(nk2
+1) and all

these minors have a nontrivial common zero only if a certain system of algebraic
equations in the coefficients off1, . . . , fmk2 has a solution [van der Waerden 1949].
Not all the polynomials appearing in this system are identically equal to 0. It
follows that the set

�3=
{

f = ( f1, . . . , fmk2)
∣∣ deg f j = degg j for j = 1, . . . ,mk2,

rank(d fξ )= nk2
+1 ∀ξ ∈ Rnk2

+1
\ {0}

}
contains a subset that is open and dense in the linear space previously considered.
Therefore there exists an elementf ∈�1∩�2∩�3 such that∥∥ f (ξ1, . . . , ξnk2+1)−g(ξ1, . . . , ξnk2+1)

∥∥
e<ω
√

mk if |ξi |≤ R for 1≤ i ≤nk2
+1;

hence
∥∥(Ai )1≤i≤m− f (ξ1, . . . , ξnk2+1)

∥∥
e < 2ω

√
mk. The function f satisfies the

hypotheses of Lemma 2.1 and its components are homogeneous polynomials. It
has the property that diste

(
(Ai )1≤i≤m, Rangef

)
< 2ω
√

mkand it does not depend
on the system(Ai )1≤i≤m.

We have‖(A1, . . . , Am)‖e≤ a
√

mk (if ε > 0 is small enough); hence the set of
matricial microstates(A1, . . . , Am) of (x1, . . . , xm) such that

diste
(
(A1, . . . , Am), Rangef

)
< 2ω
√

mk

is contained in the(mk2,nk2
+1)-tube of radius 2ω

√
mk around

Rangef ∩ Bmk2

(
0, (a+2ω)

√
mk

)
.

If B is a small ball inRnk2
+1
\ {0} and if VB(2ω

√
mk) denotes the(mk2,nk2

+1)-
tube of radius 2ω

√
mkaround f (B), the formula for volumes of tubes [Weyl 1939]

implies

volmk2

(
VB(2ω

√
mk)

)
= volmk2−nk2−1

(
Bmk2−nk2−1(0,1)

)
·

∑
e even

0≤e≤nk2
+1

(
2ω
√

mk
)e+mk2

−nk2
−1

kB,e

(mk2−nk2+1)(mk2−nk2+3) · · · (mk2−nk2−1+e)
.
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With the notations from [Weyl 1939] one haskB,e=
∫

f (B) Heds and

He=
1

2e(e/2)!

∑
σ∈6e

sgnσ
nk2
+1∑

α1,...,αe=1

H
ασ(1)ασ(2)
α1α2 H

ασ(3)ασ(4)
α3α4 . . . ,

whereHλµ
αβ denotes the Riemann tensor off (B). Assuming without loss of gener-

ality that degf j = d for j = 1, . . . ,mk2, one can verify that eachHλµ
αβ ( f (ξ)) is a

sum of quotients of homogeneous polynomials where all numerators have degree
6(d−1)(nk2

+1)−2d and all denominators have degree 6(d−1)(nk2
+1). Hence

He is a rational function inξ and in the coefficients off (ξ). Due to its intrinsic
nature,He is independent of the embedding of Rangef in Rmk2

+1; in particular it is
invariant under orthogonal transformations inRmk2

+1. Since there exist sufficiently
many polynomialsf (ξ) such that Rangef is flat, this entailsHe = 0 for evene
such that 2≤ e≤ nk2

+ 1. Therefore the volume of the(mk2,nk2
+1)-tube of

radius 2ω
√

mk around f (B) is

volmk2VB(2ω
√

mk)=(volmk2−nk2−1Bmk2−nk2−1(0,1))(2ω
√

mk)mk2
−nk2

−1
∫

f (B)
ds,

and with Lemma 2.1 and the inequality

(2)
1

0
(
1+ nk2

+1
2

) · 1

0
(
1+ mk2

−nk2
−1

2

) ≤ 2mk2/2

0
(
1+ mk2

2

)
we obtain the estimate

volmk20R(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤

( mk2

nk2
+1

)
·C(d) · volnk2+1B(0, (a+2ω)

√
mk)

· volmk2−nk2−1B(0,1) · (2ω
√

mk)mk2
−nk2

−1

=

( mk2

nk2
+1

)
·C(d) ·π (nk2

+1)/2

·
(a+2ω)nk2

+1(mk)(nk2
+1)/2π (mk2

−nk2
−1)/2(2ω)mk2

−nk2
−1(mk)(mk2

−nk2
−1)/2

0
(
1+ nk2

+1
2

)
0
(
1+ mk2

−nk2
−1

2

)
≤

( mk2

nk2
+1

)
·C(d) ·

πmk2/2(mk)mk2/22mk2/2(3a)nk2
+1(2ω)mk2

−nk2
−1

0
(
1+ mk2

2

) .



374 MARIUS B. S, TEFAN

The last inequality implies further

χR(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤
1

k2
log
( mk2

nk2
+1

)
+

1

k2
logC(d)+

m

2
logπ +

(3m
2
−n

)
log 2+n log(3a)

+
m

2
log(mk)+ (m−n) logω−

1

k2
log0

(
1+ mk2

2

)
+

m

2
logk+o(1).

Note that
1

k2
log0

(
1+ mk2

2

)
=

m

2
log

mk2

2e
+o(1),

C(d)≤dnk2
+1 and

1

k2
log
( mk2

nk2
+1

)
=m logm−n logn−(m−n) log(m−n)+o(1);

therefore

χR(x1, . . . , xm : y1, . . . , yn; p, k, ε)

≤m logm−n logn+n logd− (m−n) log(m−n)+
m

2
logπ

+

(3m
2
−n

)
log 2+n log(3a)+

m

2
logm+

m

2
logk+ (m−n) logω

−
m

2
log

m

2e
−m logk+

m

2
logk+o(1)

= C(m,n,a)+ (m−n) logω+n logd+o(1).

By taking the appropriate limits afterk, p, ε, we finally obtain

χR(x1, . . . , xm : y1, . . . , yn)≤ C(m,n,a)+ (m−n) logω+n logd,

and sinceR> 0 is arbitrary,

χ(x1, . . . , xm : y1, . . . , yn)≤ C(m,n,a)+ (m−n) logω+n logd.

Now recall that{x1, . . . , xm} is a system of generators ofM; henceχ(x1, . . . , xm)=

χ(x1, . . . , xm : y1, . . . , yn). �

Let Y1, . . . ,Yn be noncommutative indeterminates and let

P(Y1, . . . ,Yn)=

∞∑
k=0

∑
1≤i1,...,ik≤n

ai1···ikYi1 · · ·Yik

be a noncommutative power series inY1, . . . ,Yn, with complex coefficients. Fol-
lowing [Voiculescu 1994], we say thatR> 0 is a radius of convergence ofP if

∞∑
k=0

∑
1≤i1,...,ik≤n

|ai1···ik |R
k <∞.
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It is well known from the theory of power series that if 0< R0 < R, then

∞∑
k=q+1

∑
1≤i1,...,ik≤n

|ai1···ik |R
k
0 = O

((
R0

R

)q+1
)
.

The next result is basically [Voiculescu 1994, Corollary 6.12], with the obser-
vation that the freeness of{x1, . . . , xm} assumed there has been dropped.

Theorem 2.3.Let x1, . . . , xm and y1, . . . , yn be self-adjoint noncommutative ran-
dom variables in aII1-factor (M, τ ) such that y1, . . . , yn ∈ {x1, . . . , xm}

′′ and
χ(x1, . . . , xm) > −∞. If xi = Pi (y1, . . . , yn) for i = 1, . . . ,m, where the Pi are
noncommutative power series having a common radius of convergence R> b =
max{‖y1‖, . . . , ‖yn‖}, then n≥m.

Proof. Suppose thatm> n. For 1≤ i ≤ m, xi is a noncommutative power series
of y1, . . . , yn, i.e.,

xi =

∞∑
k=0

∑
1≤i1,...,ik≤n

a(i )i1···ik
yi1 · · · yik .

For every integerq ≥ 0, Pi,q(y1, . . . , yn) :=
∑q

k=0

∑
1≤i1,...,ik≤n a(i )i1···ik

yi1 · · · yik is
a noncommutative polynomial of degree at mostq, and

∥∥xi − Pi,q(y1, . . . , yn)
∥∥

2=

∥∥∥∥ ∞∑
k=q+1

∑
1≤i1,...,ik≤n

a(i )i1···ik
yi1 · · · yik

∥∥∥∥
2

≤

∞∑
k=q+1

∑
1≤i1,...,ik≤n

|a(i )i1···ik
|bk
= O

((
b
R

)q+1
)
.

The estimate of free entropy from Proposition 2.2 implies

χ(x1, . . . , xm)≤ C(m,n,a)+ (m−n) log
(

b
R

)q+1
+n logq+O(1)

and lettingq tend to∞, one obtainsχ(x1, . . . , xm)=−∞, a contradiction. �

Let N be a∗-algebra in aW∗-probability space(M, τ ). Suppose thatN is finitely
generated and let{x1, . . . , xm} be a system of self-adjoint generators. Let also
{y1, . . . , yn} be another set of self-adjoint elements that generateN algebraically
as a∗-algebra. In particular, there exist noncommutative polynomials(Pi )1≤i≤m

such thatxi = Pi (y1, . . . , yn) for i = 1, . . . ,≤m. In this context, Corollary 2.4 is
an immediate consequence of Theorem 2.3.

Corollary 2.4. If χ(x1, . . . , xm)>−∞ and∗-alg{y1, . . . , yn}=∗-alg{x1, . . . , xm}

then n≥ m, so any2 systems of self-adjoint elements with finite free entropy that
generateN algebraically as a∗-algebra have the same cardinality.
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Voiculescu [1998] proved that the modified free entropy dimension [Voiculescu
1996] of a finite set of self-adjoint elements that generate algebraically a∗-algebra
N is independent of the set of generators. It is still an open question whether the
free entropy dimension is a von Neumann algebra invariant. Voiculescu [1999]
also showed that sets of generators satisfying sequential commutation in certain
property T factors have modified free entropy dimension≤ 1. L. Ge and J. Shen
([2000]) proved then that the estimateδ0≤1 is true for any set of generators, as long
as the factor has one set of generators satisfying sequential commutation. Recall
from [Voiculescu 1996] the definition of the modified free entropy dimension:

δ0(x1, . . . , xm)=m+ lim sup
ω→0

χ(x1+ωs1, . . . , x1+ωsm : s1, . . . , sm)

|logω|
,

where{s1, . . . , sm} is a semicircular system free from{x1, . . . , xm}. In general one
hasδ0(x1, . . . , xm) ≤m, and also 0≤ δ0(x1, . . . , xm) if {x1, . . . , xm} ⊂ L(Fp) for
somep. Considering two sets{x1, . . . , xm} and {y1, . . . , yn} of self-adjoint ele-
ments that generate algebraically the∗-algebraN and noticing that{y1, . . . , yn} ⊂

{x1+ωs1, . . . , x1+ωsm, s1, . . . , sm}
′′, one has

δ0(x1, . . . , xm)=m+ lim sup
ω→0

χ(x1+ωs1, . . . , x1+ωsm : s1, . . . , sm, y1, . . . , yn)

| logω|

≤m+ lim sup
ω→0

χ(x1+ωs1, . . . , x1+ωsm : y1, . . . , yn)

| logω|
.

Also,
∥∥xi +ωsi − Pi (y1, . . . , yn)

∥∥= ‖ωsi ‖ ≤ ω for i = 1, . . . ,m, and with Propo-
sition 2.2 we obtain

δ0(x1, . . . , xm)≤m+ lim sup
ω→0

C(m,n,a)+ (m−n) logω+n logd

| logω|

≤m+n−m= n,

wherea = max{‖x1‖2 + 1, . . . , ‖xm‖2 + 1, ‖y1‖2 + 1, . . . , ‖yn‖2 + 1} and d =
max{degPi | 1 ≤ i ≤ m}. In particular, if there exists a set{y1, . . . , yn} with
δ0(y1, . . . , yn)= n which generatesN algebraically, then

sup
{
δ0(x1, . . . , xm)

∣∣ ∗-alg{x1, . . . , xm} = N
}
= n.

3. Indecomposability over nonprime subfactors

In this section we prove that the free group factorL(Fn) does not admit an asymp-
totic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1
,
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where (for eachω) Zω ⊂L(Fn) is a subset withp self-adjoint elements,Nω
1 , . . . ,

Nω
f are nonprime subfactors ofL(Fn), the integerd is at least 1, andn≥ p+2 f +1.

A nonprime II1-factor is just a factor isomorphic to the tensor product of two factors
of type II1. For free group subfactors one has the following: ifn≥ p+2 f +2 and
P⊂L(Fn) is a subfactor of finite index, thenP does not admit such an asymptotic
decomposition either. In particular, the hyperfinite dimension ofL(Fn) is at least[n−2

2

]
+ 1 and that ofP is at least

[n−3
2

]
+1. Forn =∞ this settles a conjecture

of Ge and Popa [1998]: the hyperfinite dimension of free group factors is infinite.
The definitions of hyperfinite dimension and of asymptotic decomposition over
nonprime subfactors are given next.

Definition 3.1 [Ge and Popa 1998].If M is a type II1-factor, the hyperfinite di-
mension ofM, denoted̀ h(M), is by definition the smallest positive integerf ∈N

with the property that there exist hyperfinite subalgebrasR1, . . . ,R f ⊂ M such
thatspwR1R2 · · ·R f =M. If there is no such positive integer,`h(M)=+∞.

Definition 3.2. A type II1-factorM admits an asymptotic decomposition over non-
prime subfactors if, for anyn≥ 1, anyx1, . . . , xn ∈M, and anyω > 0, there exist
nonprime subfactorsNω

1 = N1(x1, . . . , xn;ω), . . . , Nω
f = N f (x1, . . . , xn;ω) of M

and also a setZω=Z(x1, . . . , xn;ω)⊂M containingp self-adjoint elements, such
that

dist‖·‖2

(
x j ,

∑
1≤ j1,..., jt+1≤ f

1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1

)
< ω for j = 1, . . . ,n.

In this situation we write

M= lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1
.

If L(Fn) admitted an asymptotic decomposition over nonprime subfactors as in
this definition, the situation described in Proposition 3.4 (withM= L(Fn)) would
take place for arbitraryω > 0, since any II1-factor is generated by its projections
of given trace (12, for example). The following is a result from [Ge 1998, p. 155]
(see also [Kadison and Ringrose 1986, Exercise 12.4.11]); we include a proof for
completeness.

Lemma 3.3.Any typeII1-factorM with separable predual is generated by a count-
able family of projections of given trace.

Proof. Every II1-factor with separable predual is generated by a countable family of
abelian subalgebras, so there exist abelian subalgebrasA1,A2, . . . of M generating
M as a von Neumann algebra. If necessary, one can replace eachAn by a maxi-
mal abelian subalgebra ofM containing it, henceAn can assume to be a maximal
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abelian subalgebra ofM for 1≤ n<∞. Being a maximal abelian subalgebra of a
type II1-factor, eachAn has no atoms and thus it is generated by a countable subset
of projections of given trace. �

Proposition 3.4. Let z1, . . . , zp be self-adjoint elements of aII1-factor M and let

(Nv)1≤v≤ f be a family of subfactors ofM. Assume thatNv =R(v)
1 ∨R(v)

2 'R(v)
1 ⊗

R(v)
2 , whereR(v)

1 ,R(v)
2 are II1-factors, and assume that x1, . . . , xn are self-adjoint

generators ofM. Assume moreover that there exist projections p(v)
1 , . . . , p(v)rv ∈R(v)

2

and q(v)1 , . . . ,q(v)sv ∈ R(v)
1 of trace 1

2 and complex noncommutative polynomials
(φ j )1≤ j≤n of degree at most d(where d≥ 1 is fixed) in the variables(zu)1≤u≤p

such that

(3)

∥∥∥∥x j −φ j

(
(p(v)i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, (zu)1≤u≤p

)∥∥∥∥
2
<ω for j = 1, . . . ,n,

whereω ∈ (0,a] is a given positive number, and such that in all the monomials of
eachφ j the projections p(v)i ,q(v)l and p(w)k ,q(w)s are separated by some zu if v 6=w.
Then

(4) χ(x1, . . . , xn)≤ C(n, p,a,d, f )+ (n− p−2 f ) logω,

where a= max
{
‖x j ‖2+ 1

∣∣ 1 ≤ j ≤ n
}

and C(n, p,a,d, f ) is a constant that
depends only on n, p,a,d, f .

Proof. All variables involved are self-adjoint, so we can assume thatφ j = φ
∗

j for
j = 1, . . . ,n. Fix an integerk0≥ 1 and letR> 0. SupposeMk0(C)

∼=M(v)
1 ⊂R(v)

1

andMk0(C)
∼=M(v)

2 ⊂R(v)
2 , and let{e(v)j l } j,l , { f

(v)
j l } j,l be matrix units forM(v)

1 and
M(v)

2 respectively. If(
(A j )1≤ j≤n, (G

(v)
i )1≤i≤rv

1≤v≤ f
, (H (v)

l ) 1≤l≤sv
1≤v≤ f

, {E(v)j l } j,l ,v, {F
(v)
j l } j,l ,v, (Zu)1≤u≤p

)
is an arbitrary microstate in the set of matricial microstates

0R

(
(x j )1≤ j≤n,(p

(v)
i )1≤i≤rv

1≤v≤ f
,(q(v)l ) 1≤l≤sv

1≤v≤ f
,{e(v)j l } j,l ,v,{ f

(v)
j l } j,l ,v,(zu)1≤u≤p;m,k,ε

)
and if m is large andε is small enough, then∥∥∥A j −φ j

(
(G(v)

i )1≤i≤rv
1≤v≤ f

, (H (v)
l ) 1≤l≤sv

1≤v≤ f
, (Zu)1≤u≤p

)∥∥∥
2
< ω for j = 1, . . . ,n.

Let δ > 0 and writek= k2
0t+w for some integersw, t with 0≤w≤ k2

0−1. If m, ε

are suitably chosen, there existM(v)
1
∼= M̃(v)

1 ⊂Mk(C), M(v)
2
∼= M̃(v)

2 ⊂Mk(C) (not

necessarily unital inclusions) and matrix units{Ẽ(v)j l } j,l ,v ⊂ M̃(v)
1 , {F̃ (v)j l } j,l ,v ⊂ M̃(v)

2
such that∥∥Ẽ(v)j l − E(v)j l

∥∥
2 < δ and

∥∥F̃ (v)j l − F (v)j l

∥∥
2 < δ for j, l = 1, . . . , k0,



INDECOMPOSABILITY OF FREE GROUP FACTORS 379

andM̃(v)
1 ⊂

(
M̃(v)

2

)′
∩Mk(C). The relative commutants of̃M(v)

1 andM̃(v)
2 in Mk(C)

satisfy (
M̃(v)

1

)′
∩Mk(C)∼=

(
Mk0(C)⊗1⊗Mt(C)

)
⊕Mw(C),(

M̃(v)
2

)′
∩Mk(C)∼=

(
1⊗Mk0(C)⊗Mt(C)

)
⊕Mw(C).

Let

η(v)
(
x, {e(v)j l } j,l

)
:=

1

k0

k0∑
j,l=1

e(v)j l xe(v)l j ∈ C〈X1, . . . , Xk2
0+1〉

be the polynomial ink2
0 + 1 indeterminates that gives the conditional expectation

E
(M(v)

1 )′∩M
:M→ (M(v)

1 )′ ∩M, that is,

E
(M(v)

1 )′∩M
(x)= η(v)

(
x, {e(v)j l } j,l

)
.

ThenG(v,1)
1 := η(v)

(
G(v)

1 , {Ẽ(v)j l } j,l
)
∈
(
M̃(v)

1

)′
∩Mk(C), and since

p(v)1 = E
(M(v)

1 )′∩M
(p(v)1 )= η(v)

(
p(v)1 , {e(v)j l } j,l

)
,

it follows that∣∣τk
(
(G(v,1)

1 )l
)
− τ

(
(p(v)1 )l

)∣∣< δ1 for all l = 1, . . . ,m1

for any givenδ1,m1, provided thatε, δ are small andm is large enough. For
suitablem1, δ1 there exists a projectionP(v,1)1 ∈

(
M̃(v)

1

)′
∩Mk(C) of rank

[ k0t+w
2

]
such that

∥∥P(v,1)1 − G(v,1)
1

∥∥
2 < δ2. Then

∥∥G(v)
1 − P(v,1)1

∥∥
2 ≤

∥∥G(v)
1 − G(v,1)

1

∥∥
2+∥∥G(v,1)

1 − P(v,1)1

∥∥
2< 2δ2, since

∥∥G(v)
1 −G(v,1)

1

∥∥
2< δ2 for convenientm, ε, δ. With

this procedure we can find projections

P(v,1)1 , . . . , P(v,1)rv ∈
(
M̃(v)

1

)′
∩Mk(C) and Q(v,1)

1 , . . . , Q(v,1)
sv ∈

(
M̃(v)

2

)′
∩Mk(C),

all of rank
[ k0t+w

2

]
, such that

∥∥G(v)
i − P(v,1)i

∥∥
2< 2δ2 and

∥∥H (v)
j − Q(v,1)

j

∥∥
2 < 2δ2

for all indicesi, j, v. Moreover,∥∥∥A j−φ j

(
(P(v,1)i )1≤i≤rv

1≤v≤ f
, (Q(v,1)

l ) 1≤l≤sv
1≤v≤ f

, (Zu)1≤u≤p

)∥∥∥
2
<ω for all j =1, . . . ,n

if we choose a sufficiently smallδ2>0. LetG(v)1 (k)⊂
(
M̃(v)

1

)′
∩Mk(C) andG(v)2 (k)⊂(

M̃(v)
2

)′
∩Mk(C) be two fixed copies of the Grassmann manifoldG

(
k0t+w,

[ k0t+w
2

])
of projections inMk0t+w(C) of rank

[ k0t+w
2

]
. There exists a unitaryU (v)

∈ U(k)
such that

U (v)P(v,1)1 U (v)∗, . . . ,U (v)P(v,1)rv U (v)∗
∈ G(v)1 (k),

U (v)Q(v,1)
1 U (v)∗, . . . ,U (v)Q(v,1)

sv U (v)∗
∈ G(v)2 (k).
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The previous inequality becomes∥∥∥A j −φ j

((
U (v)P(v,1)i U (v)∗

)
1≤i≤rv
1≤v≤ f

,
(
U (v)Q(v,1)

l U (v)∗
)

1≤l≤sv
1≤v≤ f

, (Zu)1≤u≤p,(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
2
< ω

for all j = 1, . . . ,n. The euclidean norm onMsa
k induces aU(k0t +w)-invariant

metric on the manifoldG
(
k0t+w,

[
k0t+w

2

])
, and if{Pa}a∈A(k) is a minimalθ -net in

the manifold with respect to this metric, it follows from [Szarek 1982] that|A(k)|≤
(Chk/θ)

gk , whereC is a universal constant,gk=2
[k0t+w

2

]
·
(
k0t+w−

[k0t+w
2

])
is the

dimension ofG
(
k0t+w,

[ k0t+w
2

])
andhk ≤

√
2k is the diameter of the Grassmann

manifold G
(
k0t +w,

[ k0t+w
2

])
in Msa

k . There existα := (a(v)1 , . . . ,a(v)rv )1≤v≤ f and

β := (b(v)1 , . . . ,b(v)sv )1≤v≤ f with entries fromA(k) such that∥∥P(v)
a(v)i

−U (v)P(v,1)i U (v)∗
∥∥

e≤ θ and
∥∥P(v)

b(v)l

−U (v)Q(v,1)
l U (v)∗

∥∥
e≤ θ

for 1≤ i ≤ rv, 1≤ l ≤ sv, 1≤ v ≤ f . In particular, the polynomials(φ j )1≤ j≤n

are Lipschitz functions; hence there exists a constantD = D
(
(φ j )1≤ j≤n, R

)
> 0

(note that|α| = r1+ · · ·+ r f and|β| = s1+ · · ·+ sf ) such that∥∥φ j (V1, . . . ,V|α|+|β|+p+2 f )−φ j (W1, . . . ,W|α|+|β|+p+2 f )
∥∥

e

≤ D
∥∥(V1, . . . ,V|α|+|β|+p+2 f )− (W1, . . . ,W|α|+|β|+p+2 f )

∥∥
e

for all 1≤ j ≤ n and all

V1, . . . ,V|α|+|β|+p+2 f ,W1, . . . ,W|α|+|β|+p+2 f ∈ {V ∈ Mk | ‖V‖ ≤ R}.

We then have∥∥∥A j −φ j

(
(Pa)a∈α, (Pb)b∈β, (Zu)1≤u≤p,

(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
e

< ω
√

k+ D
∥∥∥((U (v)P(v,1)i U (v)∗

)
1≤i≤rv
1≤v≤ f

,
(
U (v)Q(v,1)

l U (v)∗
)

1≤l≤sv
1≤v≤ f

,

(Zu)1≤u≤p,
(
ReU (v), Im U (v)

)
1≤v≤ f

)
−

(
(Pa)a∈α, (Pb)b∈β,(Zu)1≤u≤p,

(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
e

< ω
√

k+ Dθ
√
|α| + |β|

= 2ω
√

k,

if we choose

θ :=
ω

D

√
k

|α| + |β|
.
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DefineFα,β : (Msa
k )

p+2 f
→ (Msa

k )
n by

Fα,β
(
(Wu)1≤u≤p,

(
W(v)

1 ,W(v)
2

)
1≤v≤ f

)
=

(
φ j
(
(Pa)a∈α, (Pb)b∈β, (Wu)1≤u≤p, (W

(v)
1 ,W(v)

2 )1≤v≤ f
))

1≤ j≤n
,

and note that diste
(
(A j )1≤ j≤n,RangeFα,β

)
< 2ω
√

nk. Note also that all the com-
ponents ofFα,β are polynomial functions of degrees at most 3d + 2. Now use
Lemma 2.1 as in the proof of Proposition 2.2 to obtain the estimates

volnk20R

(
(x j )1≤ j≤n : (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v, (zu)1≤u≤p;

m, k, ε
)

≤

((
Chk

θ

)gk
)|α|+|β|

·

( nk2

(p+2 f )k2

)
·C(d)

· vol(p+2 f )k2 B
(
0, (a+2ω)

√
nk
)
· volnk2−(p+2 f )k2 B

(
0,2ω
√

nk
)

=

(
C Dhk

ω

√
|α|+|β|

k

)(|α|+|β|)gk

·

( nk2

(p+2 f )k2

)
·C(d)

·
(πnk)(p+2 f )k2/2(2ω+a)(p+2 f )k2

0
(
1+ (p+2 f )k2

2

) ·
(πnk)(nk2

−(p+2 f )k2)/2(2ω)nk2
−(p+2 f )k2

0
(
1+ nk2

−(p+2 f )k2

2

) .

This estimate, inequality (2) on page 373, and the inequalitieshk≤
√

2k, 0<ω≤a,

gk = 2
[

k0t+w
2

](
k0t +w−

[
k0t+w

2

])
≤ 2k0t+w

2

(
k0t +w− k0t+w

2

)
=
(k0t+w)2

2
=
(k+k0w−w)

2

2k2
0

,

together withC(d)≤ (3d+2)(p+2 f )k2
, imply

volnk20R

(
(x j )1≤ j≤n : (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v, (zu)1≤u≤p;

m, k, ε
)

≤

(
C D
√

2(|α| + |β|)

ω

)(k+k0w−w)
2

2k2
0

(|α|+|β|)

·
2nk2/2(πnk)nk2/2(3a)(p+2f )k2

(2ω)(n−p−2f )k2

0
(
1+ nk2

2

) ( nk2

(p+2 f )k2

)
(3d+2)(p+2f )k2

.
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Therefore

1

k2
χR

(
(x j )1≤ j≤n : (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v,

(zu)1≤u≤p;m, k, ε
)
+

n
2

logk

≤C(n, p,a,d, f )+n logk+
|α| + |β|

2k2
0

(
1+ k0w−w

k

)2
log

C D
√

2(|α| + |β|)

ω

+ (n−p−2 f ) logω− 1
k2 log0

(
1+ nk2

2

)
+

1
k2 log

( nk2

(p+2 f )k2

)
.

Use the asymptotics

1

k2
log

( nk2

(p+2 f )k2

)
= n logn− (p+2 f ) log(p+2 f )− (n− p−2 f ) log(n− p−2 f )+o(1)

and Stirling’s formula

1

k2
log0

(
1+ nk2

2

)
=

n
2

log nk2

2e
+o(1)

to conclude that

(5) χR

(
(x j )1≤ j≤n : (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v,

(zu)1≤u≤p;m, ε
)

≤
|α| + |β|

2k2
0

log(C D
√

2(|α| + |β|))+C(n, p,a,d, f )

+

(
n− p−2 f −

|α| + |β|

2k2
0

)
logω.

The last inequality shows that the free entropy of{x1, . . . , xn} does not exceed
C(n, p,a,d, f )+ (n−p−2 f ) logω, sincek0 is an arbitrary integer,R is an arbi-
trary positive number andx1, . . . , xn generateM . �

3.1. Hyperfinite dimension of free group factors.

Theorem 3.5.If n ≥ p+2 f +1, the free group factorL(Fn) cannot be asymptot-
ically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1
,

where(for eachω) Zω ⊂ L(Fn) contains p self-adjoint elements, Nω
1 , . . . ,Nω

f are
nonprime subfactors ofL(Fn), and d≥ 1 is an integer.
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Proof. Suppose first that∞ > n ≥ p+ 2 f + 1 and consider a semicircular sys-
tem {x1, . . . , xn} that generatesL(Fn) as a von Neumann algebra. If there were a
decomposition as in the theorem, one could find for everyω > 0 noncommutative
polynomials and projections as in Proposition 3.4 satisfying the inequalities (3).
But then the estimate of the free entropy (4) would imply thatχ(x1, . . . , xn)=−∞

asω tends to 0, a contradiction.
If n=∞ thenL(F∞) is generated by an infinite semicircular system{xt }t≥1. If

we fix an integerk ≥ p+ 2 f + 1, we can approximatex1, . . . , xk by polynomials
(φ j )1≤ j≤k as in (3), getting the estimate of the modified free entropy (5) withk
instead ofn. Takingm, 1/ε, R, k0→∞ andω→ 0 in this estimate, one obtains

χ
(
(x j )1≤ j≤k : (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v, (zu)1≤u≤p

)
< χ(x1, . . . , xk),

where(p(v)i )1≤i≤rv,1≤v≤ f , (q(v)l )1≤l≤sv,1≤v≤ f , {e(v)j l } j,l ,v, { f
(v)
j l } j,l ,v, and(zu)1≤u≤p

are as in Proposition 3.4. IfAt denotes the von Neumann algebra{x1, . . . , xt }
′′

andEt the conditional expectation onto it, then(
(x j )1≤ j≤k, (Et(p

(v)
i ))1≤i≤rv

1≤v≤ f
, (Et(q

(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)j l )} j,l ,v, (Et(zu))1≤u≤p

)
t≥1

converges in distribution ast→∞ to(
(x j )1≤ j≤k, (p

(v)
i )1≤i≤rv

1≤v≤ f
, (q(v)l ) 1≤l≤sv

1≤v≤ f
, {e(v)j l } j,l ,v, { f

(v)
j l } j,l ,v, (zu)1≤u≤p

)
.

Therefore

χ
(
(x j )1≤ j≤k : (Et(p

(v)
i ))1≤i≤rv

1≤v≤ f
, (Et(q

(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)j l )} j,l ,v, (Et(zu))1≤u≤p

)
< χ(x1, . . . , xk)

for some large integert > k. But this leads to a contradiction:

χ(x1, . . . , xt)= χ
(
(x j )1≤ j≤t : (Et(p

(v)
i ))1≤i≤rv

1≤v≤ f
, (Et(q

(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)j l )} j,l ,v, (Et(zu))1≤u≤p

)
≤ χ

(
(x j )1≤ j≤k : (Et(p

(v)
i ))1≤i≤rv

1≤v≤ f
, (Et(q

(v)
l )) 1≤l≤sv

1≤v≤ f
, {Et(e

(v)
j l )} j,l ,v,

{Et( f (v)j l )} j,l ,v, (Et(zu))1≤u≤p

)
+χ(xk+1, . . . , xt)

< χ(x1, . . . , xk)+χ(xk+1, . . . , xt)= χ(x1, . . . , xt). �
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Corollary 3.6. If P ⊂ L(Fn) is a subfactor of finite index and if n≥ p+ 2 f + 2,
thenP cannot be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Nω
j1ZωNω

j2Zω · · ·Nω
jt Z

ωNω
jt+1
,

where(for eachω) Zω contains p self-adjoint elements ofP, theNω
1 , . . . ,Nω

f are
nonprime subfactors ofP, and d≥ 1 is an integer.

Proof. SinceP⊂L(Fn) is a subfactor of finite index,L(Fn) can be obtained from
P with the basic construction [Jones 1983; Jones and Sunder 1997]: there exists
a subfactorQ ⊂ P such thatL(Fn) = 〈P,eQ〉, whereeQ is the Jones projection
associated to the inclusionQ⊂P. But 〈P,eQ〉 =PeQP [Jones and Sunder 1997];
henceL(Fn) can be decomposed asPeQP. Now apply Theorem 3.5. �

Corollary 3.7. If n≥ p+2 f+1, the free group factorL(Fn) cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

N j1ZN j2Z · · ·N jt ZN jt+1,

whereZ⊂L(Fn) contains p self-adjoint elements, N1, . . . ,N f are nonprime sub-
factors ofL(Fn), and d≥ 1 is an integer. Moreover, if P⊂L(Fn) is a subfactor of
finite index and if n≥ p+2 f +2, thenP also cannot be decomposed as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

N j1ZN j2Z · · ·N jt ZN jt+1,

for any subsetZ containing p self-adjoint elements ofP, any N1, . . . ,N f non-
prime subfactors ofP, and any integer d≥ 1.

Proof. This follows from Theorem 3.5 and Corollary 3.6, withZω = Z, Nω
1 =N1,

. . . , Nω
f = N f . �

Corollary 3.8 settles a conjecture from [Ge and Popa 1998] in the casen=∞.
Recall that for a type II1-factorM one defines

`h(M)=min{ f ∈ N | ∃ hyperfiniteR1, . . . ,R f ⊂ M s.t. spwR1R2 · · ·R f =M}.

Note that the definition of hyperfinite dimension is given in terms of hyperfinite
subalgebras. If one defined the hyperfinite dimension in terms of hyperfinite sub-
factors instead of hyperfinite subalgebras, the proof of Corollary 3.8 would have
followed immediately from Corollary 3.7. But with Definition 3.1, we need the
asymptotic indecomposability result from Theorem 3.5.

Corollary 3.8. `h(L(Fn))≥
[n−2

2

]
+1 for 4≤ n≤∞.
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Proof. If `h(L(Fn)) ≤
[n−2

2

]
, thenL(Fn) = spwR1R2 · · ·R f for some hyperfi-

nite subalgebrasR1, . . . ,R f and some integerf with n ≥ 2 f + 2. Let m ≥ 1,
y1, . . . , ym ∈L(Fn) andω> 0 be fixed. There exist finite dimensional subalgebras
Bω
v =Bv(y1, . . . , ym;ω)⊂Rv, for 1≤ v ≤ f , such that

dist‖·‖2
(
y j ,Bω

1 Bω
2 · · ·B

ω
f

)
< ω for 1≤ j ≤m.

Each finite dimensional subalgebraBω
v is contained in a copy of the hyperfinite

II1-factor, sayBω
v ⊂Rω

v =Rω
v (y1, . . . , ym;ω)⊂ L(Fn). Consequently,

dist‖·‖2
(
y j ,Rω

1 Rω
2 · · ·R

ω
f

)
< ω for 1≤ j ≤m;

henceL(Fn) admits an asymptotic decomposition of the form

lim
ω→0

‖·‖2 Rω
1 Rω

2 · · ·R
ω
f ,

contradicting Theorem 3.5 sinceRω
1 , . . . ,Rω

f are nonprime andn≥ 2 f +2. �

Corollary 3.9. If P ⊂ L(Fn) is a subfactor of finite index and5 ≤ n ≤ ∞, then
`h(P)≥

[n−3
2

]
+1.

Proof. Follows from Corollary 3.6. �

4. Indecomposability over abelian subalgebras

Another estimate of free entropy is used to prove that the free group factorL(Fn)

does not admit an asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1
,

where (for eachω) theAω
1 , . . . ,Aω

f are abelian subalgebras ofL(Fn), Zω ⊂L(Fn)

is a subset withp self-adjoint elements,d ≥ 1 is an arbitrary integer, andn ≥
p+ 2 f + 1. Similarly, for free group subfactors one has the following: ifn ≥
p+ 2 f + 2 andP ⊂ L(Fn) is a subfactor of finite index, thenP does not admit
such an asymptotic decomposition either. In particular, the abelian dimension of
L(Fn) is≥

[n−2
2

]
+1 and the abelian dimension ofP is≥

[n−3
2

]
+1. Forn=∞ this

proves the second part of Ge and Popa’s conjecture [Ge and Popa 1998]: the abelian
dimension of free group factors is infinite. The definitions of abelian dimension
and asymptotic decomposition over abelian subalgebras are given next.

Definition 4.1 [Ge and Popa 1998].If M is a II1-factor, the abelian dimension ofM,
denoted̀ a(M), is defined as the smallest positive integerf ∈N with the property
that there exist abelian subalgebrasA1, . . . ,A f ⊂M such thatspwA1A2 · · ·A f =

M. If there is no such positive integer,`a(M)=+∞.
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Definition 4.2. A type II1-factor M admits an asymptotic decomposition over
abelian subalgebras if, for anyn ≥ 1, anyx1, . . . , xn ∈ M, and anyω > 0, there
exist abelian∗-subalgebrasAω

1 =A1(x1, . . . , xn;ω), . . . ,Aω
f =A f (x1, . . . , xn;ω)

of M and also a setZω=Z(x1, . . . , xn;ω)⊂M containingp self-adjoint elements,
such that

dist‖·‖2

(
x j ,

∑
1≤ j1,..., jt+1≤ f

1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1

)
< ω for 1≤ j ≤ n.

In this situation we write

M= lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1
.

Proposition 4.3 gives an estimate of the free entropy of a (finite) system of
generators of a II1-factorM that can be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1
.

As in the statement of Proposition 3.4, the approximations in the‖ · ‖2-norm (6)
hold for everyω > 0 if the II1-factor can be decomposed as above.

Proposition 4.3. Let z1, . . . , zp be self-adjoint elements of aII1-factor M and let
(Av)1≤v≤ f be a family of abelian subalgebras ofM. Let x1, . . . , xn be self-adjoint

generators ofM and assume that there exist projections p(v)
1 , . . . , p(v)rv ∈ Av and

complex noncommutative polynomials(φ j )1≤ j≤n of degree at most d(where d≥ 1
is fixed) in the variables(zu)1≤u≤p such that

(6)
∥∥∥x j −φ j

(
(p(v)i )1≤i≤rv

1≤v≤ f
, (zu)1≤u≤p

)∥∥∥
2
< ω for j = 1, . . . ,n,

whereω ∈ (0,a] is a given positive number, and such that in all monomials of
everyφ j the projections p(v)i and p(w)k are separated by some zu if v 6= w. Then

(7) χ(x1, . . . , xn)≤ C(n, p,a,d, f )+ (n−p−2 f ) logω,

where a= max
{
‖x j ‖2 + 1|1 ≤ j ≤ n

}
and C(n, p,a,d, f ) is a constant that

depends only on n, p,a,d, f .

Proof. As in the proof of Proposition 3.4 we can assume thatφ j =φ
∗

j for 1≤ j ≤n,
and fix R> 0. Consider an arbitrary element(

(B j )1≤ j≤n, (P
(v)
i )1≤i≤rv

1≤v≤ f
, (Zu)1≤u≤p

)
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of
0R

(
(x j )1≤ j≤n, (p

(v)
i )1≤i≤rv

1≤v≤ f
, (zu)1≤u≤p;m, k, ε

)
for some large integersm, k and smallε > 0. Possibly after further restricting
m andε, we can find mutually orthogonal projectionsQ(v)

1 , . . . , Q(v)
rv ∈ Msa

k with

rankQ(v)
i =

[
τ(p(v)i )k

]
for i = 1, . . . , rv, such that∥∥∥B j −φ j

(
(Q(v)

i )1≤i≤rv
1≤v≤ f

, (Zu)1≤u≤p

)∥∥∥
2
< ω for all 1≤ j ≤ n.

If S(v)1 , . . . , S(v)r ∈Msa
k are fixed, mutually orthogonal projections with rankS(v)i =[

τ(p(v)i )k
]

for every 1≤ i ≤ rv, then there exists a unitaryU (v)
∈ U(k) such that

Q(v)
i =U (v)∗Si U (v) for every 1≤ i ≤ rv. The previous inequality becomes∥∥∥B j −φ j

(
(S(v)i )1≤i≤rv

1≤v≤ f
, (Zu)1≤u≤p,

(
ReU (v), Im U (v)

)
1≤v≤ f

)∥∥∥
2
< ω,

and all the components ofφ j are polynomials of degrees≤3d+2 in the lastp+2 f
variables. Reasoning as in the last part of the proof of Proposition 3.4 we can easily
obtain now the estimateχ(x1, . . . , xn)≤C(n, p,a,d, f )+(n− p−2 f ) logω. �

Abelian dimension of free group factors.

Theorem 4.4. If n ≥ p+ 2 f + 1, the free group factorL(Fn) does not admit an
asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1
,

where each subsetZω contains p self-adjoint elements, Aω
1 , . . . ,Aω

f ⊂ L(Fn) are
abelian∗-subalgebras and d≥ 1 is an integer.

Proof. Apply Proposition 4.3 in the same manner that Proposition 3.4 was used in
the proof of Theorem 3.5. �

Corollary 4.5. If P ⊂ L(Fn) is a subfactor of finite index and if n≥ p+ 2 f + 2,
thenP cannot be asymptotically decomposed as

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Aω
j1ZωAω

j2Zω · · ·Aω
jt Z

ωAω
jt+1
,

where each subsetZω contains p self-adjoint elements ofP, theAω
1 , . . . ,Aω

f ⊂ P

are abelian∗-subalgebras, and d≥ 1 is an integer.

Proof. This is a direct consequence of Theorem 4.4 and of decompositionL(Fn)=

PeQP (see the proof of Corollary 3.6). �
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Corollary 4.6. If n≥ p+2 f+1, the free group factorL(Fn) cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

A j1ZA j2Z · · ·A jt ZA jt+1,

whereZ ⊂ L(Fn) contains p self-adjoint elements, A1, . . . ,A f are abelian∗-
subalgebras ofL(Fn), and d ≥ 1 is an integer. Moreover, if P ⊂ L(Fn) is a
subfactor of finite index and if n≥ p+2 f +2, thenP also cannot be decomposed
as

spw
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

A j1ZA j2Z · · ·A jt ZA jt+1,

for any subsetZ containing p self-adjoint elements ofP, anyA1, . . . ,A f abelian
∗-subalgebras ofP, and any integer d≥ 1.

Proof. Apply Theorem 4.4 and Corollary 4.5 forZω=Z, Aω
1 =A1, . . . ,Aω

f =A f .
�

Corollary 4.7 settles the second part of the conjecture of Ge and Popa [1998],
in the casen=∞. As a reminder,̀ a(M) is defined as

min
{

f ∈ N | ∃ abelian∗-algebrasA1, . . . ,A f ⊂M s.t. spwA1A2 · · ·A f =M
}

for every type II1-factorM.

Corollary 4.7. `a(L(Fn))≥
[n−2

2

]
+1 for 4≤ n≤∞.

Proof. This follows from the first part of Corollary 4.6 withZ= {1}. �

Corollary 4.8. If P ⊂ L(Fn) is a subfactor of finite index and5 ≤ n ≤ ∞, then
`a(P)≥

[n−3
2

]
+1.

Proof. Apply the second part of Corollary 4.6. �

Remark 4.9.One can combine both indecomposability properties ofL(Fn) into a
single statement: ifn≥ p+2 f +1, the free group factorL(Fn) does not admit an
asymptotic decomposition of the form

lim
ω→0

‖·‖2
∑

1≤ j1,..., jt+1≤ f
1≤t≤d

Mω
j1ZωMω

j2Zω · · ·Mω
jt Z

ωMω
jt+1
,

where each subsetZω containsp self-adjoint elements, eachMω
1 , . . . ,Mω

f ⊂L(Fn)

is either a nonprime subfactor or an abelian∗-subalgebra andd ≥ 1 is an integer.

Acknowledgment

This paper has been circulating in preprint form since July 1999. The author thanks
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STABLE REFLEXIVE SHEAVES
ON SMOOTH PROJECTIVE 3-FOLDS

PETER VERMEIRE

Motivated by Hartshorne’s work on curves in P3, we study the properties
of reflexive rank-2 sheaves on smooth projective threefolds.

1. Introduction

We work over an algebraically closed field of characteristic 0.
There has been a tremendous amount of interest in recent years in the study of

curves on Calabi–Yau threefolds, and especially on the general quintic inP4. In
this note, motivated by Hartshorne’s work [1978; 1980] on curves inP3, we study
the properties of reflexive rank-2 sheaves on smooth projective threefolds.

Some similar results are obtained in [Ballico and Miró-Roig 1997] for Fano
threefolds (and somewhat more generally). The greatest advantage of our results
is the determination of explicit effective bounds for the third Chern class,c3, of a
reflexive sheaf (Theorem 14) and of explicit bounds for vanishing of higher coho-
mology and the existence of global sections (Corollary 13). In Section 3 we write
out these bounds for the case of a smooth threefold hypersurface of degreed.

We refer the reader to [Hartshorne 1980] for basic properties of reflexive sheaves.
Recall the followingSerre correspondencefor reflexive sheaves (the referenced
result is only forP3, but as noted in [Hartshorne 1978, 1.1.1] the general case
follows immediately from the proof):

Theorem 1 [Hartshorne 1980, 4.1].Let X be a smooth projective threefold, M
an invertible sheaf with H1(X,M∗) = H2(X,M∗) = 0. There is a one-to-one
correspondence between

(1) pairs (F , s), whereF is a rank-2 reflexive sheaf on X with
∧2F = M and

s∈ 0(F ) is a section whose zero set has codimension2, and

(2) pairs (Y, ξ), where Y is a closed Cohen–Macaulay curve in X, generically a
local complete intersection, and ξ ∈ 0(Y, ωY ⊗ ω

∗

X ⊗ M∗) is a section that
generates the sheafωY⊗ω

∗

X ⊗M∗ except at finitely many points.

MSC2000:14J60.
Keywords: reflexive sheaves, Serre correspondence, Chern classes.
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Furthermore, c3(F )= 2pa(Y)−2− c2(F )c1(ωX)− c2(F )c1(F ). �

The case whereF is locally free corresponds the curveY being a local complete
intersection. FurthermoreωY⊗ω

∗

X⊗M∗∼=OY, ξ is a nonzero section andc3(F )=

0. In this case we sayY is subcanonical.

Example 2.SupposeX⊂P4 is a smooth hypersurface of degreed, Y⊂ X a smooth
rational curve. ThenY is the zero locus of a section of some rank two vector bundle
V if and only if Y is a line or a plane conic in the embedding given byOX(1). If
Y is a line, then

∧2V = OX(3−d); if Y is a plane conic, then
∧2V = OX(4−d).

Example 3. SupposeX ⊂ P4 is a smooth hypersurface of degreed, Y ⊂ X a
smooth elliptic curve. ThenY is the zero locus of a section of some rank two
vector bundleV with

∧2V = OX(5−d).

Finally, we recall some basic formulae:

Proposition 4. LetF be a coherent sheaf of rank r on a smooth threefold X. Then

χ(X,F )= 1
6c1(F )3− 1

2c1(F )c2(F )− 1
2c1(X)c2(F )+ 1

4c1(X)c1(F )2

+
1
12c1(X)

2c1(F )+ 1
12c2(X)c1(F )+ r

24c1(X)c2(X)+
1
2c3(F ).

Note also that ifF has rank two and L is an invertible sheaf, then

(1) c1(F ⊗ L)= c1(F )+2c1(L),

(2) c2(F ⊗ L)= c2(F )+ c1(L)c1(F )+ c1(L)2,

(3) c3(F ⊗ L)= c3(F ).

2. Stability and Boundedness

Definition 5. Let L be a very ample line bundle on a smooth projective varietyX.
A reflexive coherent sheafF on X is L-semistableif for every coherent subsheaf
F ′ of F with 0< rankF ′ < rankF , we haveµ(F ′, L)≤ µ(F , L), where

µ(F , L)=
c1(F ).[L]dim X−1

(rankF ) [L]dim X
.

If the inequality is strict,F is L-stable. Note that if rankF = 2, it suffices to take
F ′ invertible.

Definition 6. We say that a reflexive sheafF is normalized with respect to Lif
−1 < µ(F , L) ≤ 0. As L is typically fixed, we usually say simply thatF is
normalized. Note that sinceµ(F ⊗ L , L) = µ(F , L)+ 1, there exists, for any
fixed F , a uniquek ∈ Z such thatF ⊗ Lk is normalized with respect toL.

For a fixedX, our goal is to give a bound onc3(F ) in terms ofc1(F ) and
c2(F ). Note that the formula forc3 in Theorem 1 gives:
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Lemma 7. Let X be a smooth threefold, L a very ample line bundle, F a rank two
reflexive sheaf,

∧2F =M a line bundle with H1(M∗)= H2(M∗)=0. If s∈0(F )

is a section whose zero locus is a curve, then

c3(F )≤ d2
−3d− c2(F )c1(ωX)− c2(F )c1(F )

where d= c2(F )c1(L).

Proof. In light of Theorem 1, we need only note that the degree of the curve section
in the embedding given byL is d=c2(F )c1(L). The fact that 2pa(Y)−2≤d2

−3d
is just the bound coming from the degree of a plane curve. �

The idea now is: given a very ample line bundleL, bound the twist ofF by Lr

needed to produce a section, and then use the bound in Lemma 7. First note the
following elementary result:

Lemma 8. LetF be a reflexive sheaf on a smooth projective variety X with a very
ample line bundle L. If either

(1) F is L-stable andµ(F , L)≤ 0 or

(2) F is L-semistable andµ(F , L) < 0

then H0(X,F )= 0.

Proof. Suppose otherwise thatF has a sectionOX → F . Dualizing, we get a
surjectionF ∗→ IY ⊂ OX; dualizing again we have 0→ I ∗Y → F , but I ∗Y is
invertible andH0(X,I ∗Y ) = HomOX (IY,OX) 6= 0. Henceµ(I ∗Y , L) ≥ 0 and the
result follows. �

The main technical result is:

Proposition 9. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let F be a normalized L-semistable rank-2 reflexive
sheaf, and D be a general member of the linear system|L|. Assume that the
general member of the linear system|L⊗OD| is not rational, and that m< 0 is an
integer satisfying

2m< 3µ(2X, L)−2µ(F , L)−2.

Then H0(FD(mD))= 0.

Remark 10. The assumption that the general member of the linear system|L⊗OD|

is not rational can be dropped if we require that

2m< 3µ(2X, L)−2µ(F , L)−4.

As this would impact all further estimates, we have chosen to add the extra hypoth-
esis rather than explicitly keeping track of the two separate cases. The interested
reader will have little trouble altering the bounds in subsequent arguments in cases
where this is of interest (say a threefold quadric hypersurface).
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Proof of Proposition 9.We proceed by contradiction. Letm be the smallest integer,
if one exists, satisfying the inequality and such thatH0(FD(mD)) is nonzero for
the general, hence every, member of|L|. We will showm≥ 0.

Fix a smooth memberD such thatFD is locally free. The proposed section
yields a sequence

0→ OD→FD(mD)→IZ(2mD)⊗
∧2F → 0,

whereZ ⊂ D is zero-dimensional of lengthc2(F (mD)). Choose a smooth curve
C in the system|L D| (i.e., in the class ofD.[L]) with Z∩C empty. Tensoring the
sequence above byOC yields an extension of line bundles.

The class of the extension lies in

Ext1OC

(
OC,OC(−2mD)⊗

∧2F ∗
)
= H1(C,OC(−2mD)⊗

∧2F ∗
)
.

Note thatKC = KX ⊗OC(2D). Now, as the inequality in the hypotheses is easily
seen to be equivalent to

−2m[L]3− c1(F ).[L]2 > KX.[L]
2
+2[L]3= 2g(C)−2

the extension group vanishes, hence

FC(mD)= OC⊕
[
OC(2mD)⊗

∧2F
]

andh0(C,FC(mD))= 1. By minimality ofm, we see also that

h0(D,FD(mD))= 1.

Now blow upX alongC, and considerπ : BlC(X)→ X. We have a morphism
f : BlC(X)→ P1 given by the pencil of divisors in|L| containingC. It is easy
to see that foreveryone of these divisors,h0(FD(mD)) = 1. Then, because
π∗F is reflexive, f∗π∗F (mD) is invertible [Hartshorne 1980, 1.4,1.7]. However,
we know thatH0(FD(mD))→ H0(FC(mD)) is an isomorphism and therefore
f∗π∗F (mD)∼= f∗π∗FC(mD)∼=OP1, where the last isomorphism follows directly
from the splitting ofFC.

Consequently,H0(X,F (mD)) 6= 0 and som≥ 0 by Lemma 8, contradicting
the assumption thatm is negative. �

Corollary 11. With notation and hypotheses as is Proposition 9, if

2k>max
{
0,2+2µ(F , L)−3µ(2X, L)

}
,
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then H2
(
D, KD ⊗F ∗D(kD)

)
= 0 for the general member D. If , furthermore, k is

such that

(6k2
+6k+2)− (6k+3)

(
2µ(F , L)+3µ(2X, L)

)
≥

(
6c2(F )− c1(X)2−3c1(F )2−3c1(F )c1(X)− c2(X)

)
[L]

[L]3
,

then H0
(
D, KD ⊗F ∗D(kD)

)
6= 0.

Proof. We can chooseD smooth and so thatFD is locally free. Then

h2(D, KD ⊗F ∗D(kD)
)
= h0(D,FD(−kD)

)
,

which is zero by Proposition 9.
Because of the vanishing ofH2 above, the second part follows directly from a

computation of the Euler characteristic. �

Corollary 12. With notation and hypotheses as is Proposition 9 there exists a
constantρ depending on c1(F ), c2(F ), c1(L) and ci (2X) such that if r≥ ρ then
H1
(
D, KD ⊗F ∗D(r D)

)
= 0.

Proof. By the previous corollary, there is a constant depending on the above param-
eters such that ifk is larger than that constant, thenKD ⊗F ∗D(kD) has a section.
Choosing thesmallestsuch integerk we have a sequence

0→ OD→ KD ⊗F ∗D(kD)→IZ(2kD)⊗ K 2
D ⊗

∧2F ∗→ 0,

where, as above,Z ⊂ D is zero-dimensional of length

`= c2(FD)−
(
c1(KD)+ kc1(O(D))

)
c1(FD)+

(
c1(KD)+ kc1(O(D))

)2
.

Let α ∈ Z be such thatK 2
X ⊗

∧2F ∗ = Lα. BecauseD is a smooth surface,
H1(D,O(pD)) = 0 for p ≥ 3c1(L)3− 5 (by [Bertram et al. 1991, 1.10], for in-
stance). Further, by the standard uniform regularity result [Mumford 1966, p.103],
H1
(
D,IZ((2k + t)D) ⊗ K 2

D ⊗
∧2F ∗

)
vanishes fort ≥ ` − 2k − α − 2 and

t ≥ 3c1(L)3−7−2k−α.
Consequently,H1

(
D, KD ⊗F ∗D(r D)

)
= 0 for

r ≥max{`− k−α−2, 3c1(L)
3
−7− k−α}. �

Corollary 13. With notation and hypotheses as in Proposition 9, there exists an
integerρ2 depending on c1(F ), c2(F ), c1(L) and ci (2X) such that if r≥ ρ2 then
H0(X, KX ⊗F ∗⊗ Lr ) 6= 0.

Proof. The vanishing ofH1 andH2 on D described in the corollaries above gives
H2(X, KX⊗F ∗⊗Lr )=0. The result now follows by another Euler characteristic
argument (see Proposition 4). �
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Theorem 14. Let X be a smooth projective threefold with very ample line bundle
L and withPicX = ZL. Let F be an L-semistable rank-2 reflexive sheaf. Then
there exists an integer C depending on c1(F ), c2(F ), c1(L) and ci (2X) such that
C ≥ c3(F ).

Proof. As c3(F ) is unaffected by twisting by a line bundle, we may assume that
F is normalized. The preceding results apply and we can take a section ofKX ⊗

F ∗⊗ Lk for somek, bounded as in Corollary 13. We then have an exact sequence

0→ OX→ KX ⊗F ∗⊗ Lk
→IY⊗ K 2

X ⊗ L2k
⊗
∧2F ∗→ 0,

whereY ⊂ X is a curve. Computing Euler characteristics gives

2pa(Y)−2= d1d2+ c3(F )+ c1(ωX)d2,

where
d1= c1(KX ⊗F ∗⊗ Lk)=−c1(F )−2c1(X)+2kc1(L)

and

d2= c2(KX⊗F ∗⊗ Lk)

= c2(F )+c1(F )c1(X)−kc1(F )c1(L)+c1(X)
2
−2kc1(X)c1(L)+k2c1(L)

2.

In the embedding determined byL, the degree of the curveY is preciselyd2c1(L).
This impliesd2c1(L)(d2c1(L)−3)≥ 2pa(Y)−2 and so

d2c1(L)(d2c1(L)−3)−d1d2−d2c1(ωX)≥ c3(F ). �

3. Explicit bounds

Let X be a smooth hypersurface inP4 of degreed > 2, andF a rank twoL-
semistable reflexive sheaf. In this case, we haveKX = OX(d − 5); since L-
semistability is independent of the choice ofL, we takeL = O(1). Note that
[L]3 = d, thatc2(2X) = (10− 5d+ d2)c1(L)2, and thatµ(2X, L) = 1

2(5− d).
Further, ifF is normalized thenµ(F , L) = 0 orµ(F , L) = −1

2. We explicitly
compute the bound in the caseµ(F , L) = 0, the other case being exactly analo-
gous, though a bit more notationally cluttered. For notational convenience we let
S= c2(F )c1(L).

The first bound in Corollary 11 becomes

k>max
{
0, 1

4(3d−11)
}
,

so here it suffices to takek> 0 if d < 5 andk> 1
4(3d−11) if d ≥ 5.

The second bound in Corollary 11 becomes

(6k2
+6k+2)+

(6k+3)(3d−15)

2
−
(6S−35d+15d2

−2d3)

d
> 0;
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hence

k>
−3d2

+13d+
√

11d4−150d3+391d2+48dS

4d
when S≥ 1

48(−11d3
+ 150d2

− 391d), otherwise the second bound in Corollary
11 is unnecessary.

In Corollary 12, note thatKD = OD(d−4) and that the bound forp is irrelevant
since the vanishing holds already forp= 0. The length ofZ is at most

S+d(d−4+ k)2,

so for the vanishingH1
(
D, KD ⊗F ∗D(r D)

)
= 0 we need

2r ≥ S+d(d−4+ k)2−2(d−4).

In Corollary 13, we compute the Euler characteristic ofF ∗(m) and takem≥ r
such thatχ(KX ⊗F ∗(m))− 1

2(c3(F )) > 0. We have

χ(KX ⊗F ∗(m))− 1
2(c3(F ))

=
1
12(2m+d−5)(d3

+2md2
−5d2

−10md+10d+2m2d−6S);

hence we need

m>
−d2
+5d+

√
5d2−d4+12dS

2d
.

As before, this bound is irrelevant unlessS≥ 1
12(d

3
−5d).

For example, in the case of the quintic we obtain

(1) for S≥ 13:

256c3(F ) <
(
320S2

+80S
√

60S−525−4004S−540
√

60S−525+11955
)

×
(
320S2

+80S
√

60S−525−4068S−548
√

60S−525+12339
)
;

(2) for S< 13:

16c3(F ) < (5S2
+184S+1620)(5S2

+180S+1536).
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