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We construct realizations for the 2-toroidal Lie algebra associated with the
Lie algebra A; using vertex operators based on bosonic fields. In particu-
lar our construction realizes higher-level representations of the 2-toroidal
algebra for any given pair of levels(kp, k1) with kg # 0. We also construct a

smaller module of level(kg, 0) for the toroidal algebra from the Fock space

using certain screening vertex operator, and this later representation gener-
alizes the higher-level construction of the affine Lie algebrglz.

1. Introduction

Toroidal Lie algebras are a natural generalization of the affine Kac—Moody alge-
bras introduced by Moody, Rao and Yokonum\dopdy et al. 1990 Let A =
C[s, s7, t, t71] be the ring of Laurent polynomials in commuting variables. By
definition a 2-toroidal Lie algebra is a perfect central extension of the iterated loop
algebrag ® A, whereg is a finite-dimensional simple Lie algebra over

Let 2a/d A be the Kahler differentials oA modulo the exact forms. The uni-
versal central extension of the iterated loop algebra is given by

T =@A &Q2a/dA

Any 2-toroidal Lie algebra is a homomorphic image of this toroidal Lie algebra.
The center ofT (g) is 2a/d A, which is a infinite-dimensional vector space. The
Laurent polynomial ringA induces a naturat?-gradation o (g). For the center

we haveQa/d A=, 72 %(g)o, Withdim%, =1if o # (0, 0) and 2 ifo = (0, 0).

We denote by andc; the two standard degree-zero central elements in the toroidal
Lie algebral (g). Amodule ofT (g) is called a levelkp, k;) module if the standard
center(cp, €1) acts agko, k1) for some complex numbekg andk;. Here we study

the level{kg, k1) modules forky # 0.
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In various constructions of the affine Lie algeliﬁa the free field represen-
tation is of particular use in its applications. Wakimoi®8g and Feigen and
Frenkel [L989 first gave a general construction for the general case, and later
NemenschanskylP89 gave an invariant form in the special case. Though the two
forms can be interchanged by a nontrivial map, we realized that the later form is
better for our purpose in the toroidal cases. The operators in question have th
form eA(B+C), whereA, B, C are generating functions of the scaled Heisenberg
operators. One of the nice things is that all root generators in the toroidal alge-
bra associated with the Lie algebs& can be represented by this type of vertex
operators. In our construction we have fully used this simplicity and make all
calculations in a uniform manner.

As we mentioned earlier, toroidal algebras are generalizations of finite-dimen-
sional Lie algebras, like affine Lie algebras. This similarity is constantly kept in
mind as we study their structure and representation theory. Some other basic refe
ences related to our work includgg¢rman and Billig 1999Eswara Rao and Moody
1994 Fabbri and Moody 1994 arsson 1999Moody et al. 1990Tan 1999. Our
aim in this paper is to give a higher-level representation for the simplest nontrivial
example: the 2-toroidal Lie algebra. Our construction generalizes previous work
on higher-level representations of the affine Lie algeftsa

In Section 2we define the toroidal Lie algebra and state the MRY-presentation
[Moody et al. 199Dof the toroidal algebra in terms of generators and relations.
The algebra structure is expressed in terms of formal power series identities. W
also state some results in this section to be used lat&edttion 3we start with a
finite-rank lattice with a symmetric bilinear form and define a Fock space and some
vertex operators, which in turn give representations of the toroidal Lie algebra of
type A1, and also a levelky, 0) module withkg # O for the double affine algebra of
type Az. In Section 4we study the structure of the Fock space for the toroidal Lie
algebra by using certain screening vertex operators, thus generalizing the highe
level representation of the affine algelé\r@\to the toroidal Lie algebra.

2. Toroidal Lie algebras
Let sl, be the 3-dimensional simple Lie algebra over the complex numbers and
A=C[s,s 1 t,t71]

the ring of Laurent polynomials in commuting variables. We consider the iterated
loop algebra

g=sb®A.

A toroidal Lie algebra of type\; is a perfect central extension of the iterated loop
algebrag, which is often an infinite-dimensional central extension. @@tbe the
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A-module of differentials with differential mappirdy: A — Qa, such that
d( f1 f2) = (d f]_) fz + fl(d f2) for all f]_, f2 in A.

Let—: Qa— Qa/d Abe the canonical linear map for whidf =0 for all f € A.
Endow the vector space

T(AD) =6LOA®Q/AA
with the bracket operation defined by
X® f1,y® fal =[x, yI® f1f2+ (X, y) fad 1,

for X,y € slp, f1, f2 € A, where(-, -) is the trace form an@2a/d A is central.
From [Moody et al. 199pwe know thatT (Az) is a perfect Lie algebra and is
the universal central extension of the iterated loop algebr® A. Therefore any
toroidal Lie algebra of typé\; is a homomorphic image &f (A;). The gradation
of the polynomial ringA gives a natura¥?-gradation to the toroidal Lie algebra

T(A) = EP T (A,

oeZ?

whereT (A1), is spanned by @ s™t™, sMotMs-1ds andsMt™t—1dt for o =
(Mo, M) € Z? andx € slp. The conditiondf = 0 for all f € A implies that
MosMotMs—1ds4+mysmet™t—1dt = 0 for all mg, m; € Z. Therefore the dimension
of T(A1)s is 4 if o # (0,0) and 5 ifo = (0,0). In particular, T (A1)(0,0) iS
spanned bk ® 1 for x € sl,, and central elements1ds, t—1dt. We denote these
two degree-zero central elementsdgyandc;.

The most interesting quotient algebra of the toroidal Lie algdhtra;) is the
double affine algebra denoted Ty A1), that is, the toroidal Lie algebra of typg
with a two-dimensional center. The double affine algebra is the quotiehtAy)
modulo all the central elements with degree other than zero. InTach;) has
the realization

To(A1) = (slhb® A) @ Cco & Ccy
with the Lie product
(X® f1, y® f2l = [X, yI® f1 fo 4+ P (205 f1)co+ P(f20; f1)Cy
for all x, y e sl, and fy, fo € A, where® is the linear functional oA defined by

0, if (k, m) # (0, 0)

kimy _
CI>(St)‘{l, if (k. m) = (0,0)

forallk, me Z.
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Definition 2.1. If M is a module for a toroidal Lie algebra of ty@a, we callM a
level-(kg, k1) module for some complex numbeksg, k; if the degree-zero central
elementsy, ¢, act onM as constantkg, kj.

In this paper we give a concrete construction for a lékglk;) module with
ko # O for the toroidal Lie algebra (A1) and for the double affine algebTa(A;).

Let {x+, h} be the standard basis ef. Also let (aj)>.2 be the generalized
Cartan matrix of the affine algebr” and

Q:=Zog+ Zoq

its root lattice. The toroidal Lie algebr&(A;) has a presentatiorMoody et al.
199Q with generatorg, «; (k) andxx(+«;), forke Z andi =0, 1, and the following
relations, fork, me Z andi, j =0, 1:

(RO) [¢, i (k)] = 0= [¢, xu(Fai)];

(R1) [Oll (K), aj (m)] K& Sk+m,0¢;

(R2) [ (K), Xm(Fe})] = £&j Xicrm(Fej);

(R3) [Xk(@i), Xm(—aj)] = —8ij {ei (k+m) + Kdkim,ot};

(R4) [xx(eti), Xm(@i)] = 0= [Xu(—ai), Xm(—e)];

(adxo(ei))* Xm(erj) = 0if i # j; (adXo(—ei)) Xm(—aj) =0if i # j.
The Lie algebra isomorphisgh between the two presentationsiofA; ) is given by

¢ s~ids,
Xm(Eap) > £XL @™,
Xm(Fa0) > X5 @ sMtE,
a1(k) ~> h®s,
ao(K) — —h ® s+ skt-1dt.

Therefore, the degree-zero central elementscare ¢ andc; = §(0), where
8 = ap + a1 is the null root inQ. We will identify the two presentations of the
toroidal Lie algebral (A1) via this isomorphismy .

Following [Moody et al. 1990) we introduce & x Q-gradation onT (A;) by
assigning deg = (0, 0), dege; (k) = (k, 0), degxk(£aj) = (K, £«j), withi =0, 1
andk € Z. We denote byl the subspace of (A;) spanned by the elements
with degree(k, o) for k € Z, « € Q. Then, under the isomorphisih, we have
Yyt -1dt) = 8(k) € T2 andy ~1(skt"s~1ds) e T°.
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Let z, w, 73, Zp, ... be formal variables. We define formal power series with
coefficients from the toroidal Lie algebfia(A;):

@i ()= ai(mz ",

neZ

X(Fai,2) = ) xn(Fei)z ",

nez

fori =0, 1. Then the Lie algebra structure f A1) can be expressed in terms of
the following power series identities:

(RO) [¢. ai (D] =0=[¢. x(£i, 2)];
(RY) [« (D), aj(w)] = a&jZ 13,8 (2)¢;
(R2) [ (2), x(£aj, w)] = £ajX(Faj, w)z 18 (L);
(R3) [x(ai, 2), x(—aj, w)] = =& {oi (w)Z18(%2) + 210,86 (L)¢} ;
(R4) [x(ai, 2), X(eti, w)| = 0= [X(—ai, 2), X(—ati, w)];
(@dx(ai, z1)) (@dX(evi, 22)) (@dX(eti, Z3)) X(@j, 24) =0 if i # J;
(@dx(—ai, z1)) (@dX(—ai, 22)) (QdX(—ai, Z3))X(—aj, 24) =0 ifi # .

Finally, we recall a result fromMloody et al. 199Dthat will be used in the next
section.

Proposition 2.2. Supposé€? is a Lie algebra ovelC graded byZ @ Q, and¢ :
T(A1) — & is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on F for all n € Z and real root,
(i) ¢(6(k)) #Ofor all k ande|cs0)+c¢ IS injective, and
(iif) for all nonzero integers km,
¢ ([Xm(orr + k&), Xo(—ar1)] — [Xo(e1 4 K8), Xm(—a1)]) # O,
o ([x1 (1 +K8), x_1(—a1)] — [X_1(a1 +k8), X1 (—a1)]) #O0.
Theng is an isomorphism, whergX+a1 + ké) := ¥~ 1(£x5 @ s™tX).

Proposition 2.3. Supposé€? is a Lie algebra overC graded byZ ® Q, and¢ :
T(A1) — & is a surjective graded homomorphism of Lie algebras such that

(i) ¢ isinjective on F for all n € Z and real root,
(i) ¢(8(k)) =0forallk #0andg¢|csoc¢ is injective, and
(iii) for all nonzero integers km,
¢ ([Xm(a1 +K8), Xo(—a1)] — [Xo(a1 4 K8), Xm(—a1)]) =0,
o ([x1(1 +K8), X_1(—a1)] — [X_1(1 +K8), X1 (—1)]) =0,
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Then¥ is isomorphic to the double affine algebra(A;).

Proof. We only need to show that the set of nonzero-degree central elements of thi
toroidal Lie algebrdl (A1) is in the kernel ofp. Indeed, under the isomorphisgn
of the toroidal Lie algebras, we see tligk) =  ~1(skt—1dt) and

[Xm(et1 + k&), Xo(—a1)] — [Xo(atz +K8), Xm(—a1)] = —myr~(sMtks—1ds),
[X1(c1 + k&), X_1(—a1)| — [X_1(e1 + K8), X (—a1)] = =2y L (tks~1ds),

but, from Moody et al. 1990) the elementsPtds—1ds, sPt—1dt ands—1ds for
(p, g) € Z x (Z\ {0}) form a basis of the center for the toroidal Lie algebrad;).
The assumption implies that the nonzero-degree central elemiehtsPtds—1ds)
andy ~1(sdt—-1dt) are in the kernel of the homomorphisprfor

(P, @) € Zx (Z\{0}). O

3. Representations of the toroidal algebra

In this section we give two bosonic realizations for the toroidal Lie alg@ljrs; ).
Let ko be a fixed complex number witky # 0, andI’ a finite rank lattice with a
symmetricC-valuedZ-bilinear form (-, -). We extend the form to &-bilinear
form on the vector spacd = C®; I'. Let T’y be a fixed integral sublattice &f.
We define

I'y={a € H; (o, o) CZ}.
ThenI'g C I'. Let

# = (h(n),¢lhe H,ne 2Z),

with H = C ®z T, be the affinization of the vector spatk defined with the Lie
product
[ (M), B(N)] = M(a, B)dmin,0¢
form,neZ, a, B €T, and¢ central. We define the Fock space
V :=C[I® S(#),
whereS(# ™) is the symmetric algebra ¢ffi~ := (h(n) | n < 0), and
CIrgl = € ce
aely

is the group algebra on the additive subgraifpof the vector spacél. ThenV
has a natural module structure for the Lie algeffrand the group algebr@[I'j]
with the actions defined by makingact askg, h(—n) act as multiplication, and
h(n) act as a patrtial differential operator, for- 0, h € H, so that

[ee(m), B(M)] = mko(er, B)Sm+n,0
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forall «, B € H andm, n € Z. Moreovera (0) acts as a partial differential operator
onCI[I'§] for which [« (0), €] = («, B)€’. Thereforex(0).8 = («, B) for o, B € H.
With a formal variablez, ande, 8 € H, we define fields

(@ =) amz ",

nez
@)y =) amz "
n<0
F@D=p+p0logz— 3 Lo
n#0
=N lB(n) —n
IB(Z)JF:IB_;)TZ .

It is easy to see thak,8(z) = B(2) andd,f(2), = B(2)+. For
A, Be{a(2,B(2)|a B eH),

we define(A, B) = [A, B]. Then it is easy to show (se€renkel et al. 1983

that («(2), B(w)) = (a, B) log(z— w) for «, B € H, which then implies

(@(2), Bw)) = (@, f)z—w) ™,

(@(2), Bw)) = —(a, B)(Z—w) ™,

(@(2), Bw)) = (@, Bz —w) 2,
where the formal power series mandw are understood to be expanded in the
second variablev.

Define the usual normal ordering : : as Frgénkel et al. 1988 Then we have
fora e H

(Bw): =a()B(w) — («(2), B(w)),

and, fora € I'g,

n<0 n>0

It is clear that the vertex operatore*®@:, for « € I'y, can be formally expanded
as a power series infor which the coefficients are well defined operators acting
on the Fock spac¥.

We will need the following result in the study of the bosonic realizations for the
toroidal Lie algebrdl (A;); see Jing and Lyerly 199p
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Lemma 3.1. Let R(2), Qi (w), for i = 1, 2, be fields such that the contractions
(P, Q) commute with all fieldslz), Q; (w). Then

eP1p,: :teQQ: — el PzteQz:e<P1’Q1> + et P28Q1:e<P1’Q1>(P1, Q2)
+:e7eR1Qq:el™ U (Py, Q) + :ee®: el (P, Q) + (Pr, Q2) (P2 Qu)).

Fora, B € I'1, we have, fromifFrenkel et al. 1988 the identity
@@, ef), — @), (z—w)@P.
Inductively one can show, fg8y, ..., Bk € I'o, the following Wick theorem

P, LB, — . ghi@) | o2 H(Zi _ Zj)(‘Bi”Bj).

i<j

Corollary 3.2. For«, B e Tgandy, t € H, supposéc, 8) = 0. Then
.22 . .aBw) J— -+ (@ ls( W ale+B)(2). -1 w
[:¢@y(2):,: D (w):]=e A@):z75(%)+B:e 77 10,6( %),
where A= (y, )t — (o, 1)y — BB e Hand B=(y, t) — («, T)(y, B) € C.
To give our first representation of the toroidal Lie algebrgd;) we consider
the lattice

1
.= E(Zao@Zal@Zb@Zr),

with a symmetric bilinear form determined by

the others being zero. Lét = %(Z(ao —b) + Z(a; + b)), which is clearly an
integral sublattice of*. On the corresponding Fock spa¢e= C[I'j] ® S(# ™),
we define vertex operators

Xo(tay, 2) = 1:6"% @ PP bz 1 (2)):
Xo(a0, 2) = 1:e6 @ PP () 11 (2):

whereag, a1 are the simple roots of the affine Lie algem%).

Theorem 3.3.Let ky be any nonzero complex number. Then on the Fock space V
we have a representation for the toroidal Lie algebréAL). The homomorphism
is given byt — ko, ¢ (2) — & (2), X(£ai, 2) — Xo(+aj, 2), fori =0, 1.

Proof. We first write the vertex operators in the form

Xo(£ei, 2) = 1:eF6@ PP pz) Lgr(2)):,
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where¢; = (—=1)' for i = 0,1. We will now show that the operatoes(z) and
Xo(£aj, 2) satisfy the relation$R0)—(R4) of the toroidal Lie algebrd (A7). In
fact, (RO) and(RY) are obvious. FofR2) we have

[ (2), Xo(Eaj, w)] = 3[:a(2):, :6 0@ PP (b(2) £ ¢ ;1 (2)):]

1= b
= % gt @ D@ A(2):z7 % (%) ,

whereA= (a, £& (@] —€jb))(b+¢jr) = +a; (b ¢jr). Therefore

L@ —€b®@

[a (2), Xo(aj, w)] = +1a; :6"% (b(2) :I:Ejr(z)):z_18<%)

= &aj Xo(da;, 27 15( %),
which is the required relation. To prove relati(iR3) we have

[Xo(ei, 2), Xo(aj, w)]
= %[:e%(aa — b)(Z)(b(z) +€r(2):, e o @€ b)(w)(b(w) — ejr(w)):]

ko
:%(eko(a‘ a; 6|b+€]b)(Z)A(Z):Z_18(%)+B:eko(al aj EIbJ’_GJb)(Z):Z_lawS(%)),

where, by applyingCorollary 3.2

B=(b+er,b—ejr)— (a‘_Tfib,b—eerb—i—eir, _aj—éjb)
= —2k0—2€i€jk0a
A= (b-’rEiI', _8 _éjb)(b—ﬂr)
_ (a; ;Oeib, b—Ejr)(b+€ir)_ (—Zko—z'fiéiko)(_aj_Tfjb)
=—2(1+¢€j¢€j)aj.

Therefore, we get
1@ _a —ecbie b (2
[Xo(ai . 2). Xo(—Olj ,w) = _%(1+ei6j)(:e%(a4 a; e.b+e;b)(2)aj (2)12715(%)
ke @A aPTED@ 1 5(&))
: . w zZ
= i (@ @2 8(2) +ho7 10,5(2)).

as required.
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(R4) contains two types of relations. We give only the proof for the “positive”
case. The “negative” case can be proved similarly.

[Xo(@i, 2), Xo(@;, w)]
= 1[:66@ PP (b2) -6 @):. 6@ TP (b(w) + i (w):]

1 1 ata —cb—e Db(27) 1 e o h s P
=3 (:eko(a+a, &b EJb)(Z)A(Z):Z_18(%)+ B ek @Tai—6b E‘b)(z):z—lawa(g)),

where, by applyingorollary 3.2

B=(b+er,b+ejr)— (aiioeib,b—i-ejr)(b-i-éir, a,-—qb) = 2ko(ei€j — 1),
A= (b—l—eir, 4 _Ejb)(b—l—ej-r)
_ (ai ;Oéib’ b+ejr)<b+6if) — 2o (ei €] _1)<aj ;;jb)
=2(1—¢€j€j)aq;.

Thereforel Xo(«j, 2), Xo(j, w)] =0 and, fori # j,
[Xo(ai, 2), Xo(aj, w)]
= :e%maj (Z):Z_18<%) — ko:e%mzz_lauﬁ(%)
Clearly, fori # j, the vertex operatoXg(«j, Z) commutes with
e @D

Therefore to complete the proof of relatiiR4’) we only need to show the identity
1) [Xo(ei, 1), [Xo(ai, 22), SG%M(ZS)aj (z3):1]=0
fori # j. Indeed,
[Xo(ai, 2), :e%m(w)aj (w):]

= %[:e%mw(b—i-eir)(z): , :E%M(w)aj (w):]

= 3(se PV D Ay 75 (%) + Brefe PN o0y 5(ny),
where, by applyingCorollary 3.2

B=((+¢r, aj)—(ai ;Oeib,aj)(b—l-eir, ai:oaj>=0

and

A= (b—i—ﬂl’, ai:oaj )aj — (ai ;Oeib,aj>(b+€il‘) =2(b+er);
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that is
[Xo(ai, 2), el A TaNWy, (w):] = :e%m(z)(b+eir):z‘18<%>.
Therefore(1) is reduced to the identity
[Xo(ei. 2), 6 P FH=EDW) (1 41y ()] =0
fori # j. The left side is equal to
%[:eémm(bikeir)(z): , el 28y _eib)(w)(b—i-eir)(w):]
= 3 (1S THEPD A ) 715 (2) 4 Brefe TP 21, 5(n))

where, by applyingCorollary 3.2

B:(b—}-eil‘,b—i—«EN’)—(ai _eib,b—i-éir)(b—{—eil‘, —23i+aj—€ib) =0

ko ko
and
A= <b+6ir, 2ai—i_a—j_éib)(bﬁ-éir) — (ai _Eib, b+6il’>(b+€il’) =0,
ko ko
giving the desired identity. O

From the construction of the representation for the toroidal Lie algebra given
in the previous theorem, it is easy to see that the operatdks + ap(k) act on
the Fock spac®/ trivially for all positive integersk, which in turn implies that
the central elementg (§(k)) act as the zero operator far> 0. Therefore the
representation is not faithful. Indeed, the quotient spa¢® of the Fock space

Cll'ol® S(¥™)

defines a representation for the double affine Lie alg@&bta;), which is isomor-
phic to the Lie algebrd (A;) modulo all central elements of degree other then
zero (seesection 2.

Corollary 3.4. The vector space W) is endowed with a representation of the
double affine Lie algebraglA1) with level(kg, 0), under the formula given before
Theorem 3.3

We will study this module structure again in the next section.

To give a faithful representation of the toroidal Lie algebra, we consider the
rank-six lattice

1
.= %(Zao@Zal@Zb@Zc@Zd)ea Zr,

1
ko + 2
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with the symmetric bilinear form determined by

all others being zero. Then

Fo = = 7(a0—b) + —Z(ag +b) + —7c
0= 17— - —Z (a1 —
ko ko ko
is clearly an integral sublattice 6f. LetI'; be the corresponding additive subgroup
of H=C®zI', andV the corresponding Fock space.
We also modify the vertex operators from the previous theorem to the form

X (£e1, 2) = 1:e6 @D (hz) 21 (2)):,

X(+ag,2) = :e @D () 41 (2)):

Theorem 3.5. The coefficient operators of the vertex operatqiga X (+«;, 2),
fori =0, 1, acting on the Fock space V, generate a Lie algeB(&\;) isomorphic
to the toroidal Lie algebra TA1), the isomorphism begin given by the linear map
¢ defined by
¢ — Ko,
«1(2) — a1(2),
«0(2) — a(2) +¢(2),
X(ai, 2) > X(xai, z) fori =0,1.

Therefore, on the Fock space V, we have a faithful representation of the toroidal
Lie algebra T(Ay).

Proof. We first need to show that the surjective mappindefines a Lie algebra
homomorphism fronT (A;) to £(A1). It suffices to show that the vertex operators
8 (2), X(+u;, 2) satisfy the corresponding power series identitie@)—R4). The
argument is just as in the proof @heorem 3.3and we omit it for brevity’s sake.
We next useProposition 2.20 show that the mapping is indeed an injective
homomorphism. Fow = 180 + p281 + pab + puac € T with i € 27, let

& ®A1(=ny) -+ Ak(=Nk) € V.
We define & x Q-gradation on the Fock spateby setting
dege” @ A1(—N1) -+ Ak(—NK)) = (N1 + - - - + Nk, Kopaao + Kopeoar).

With this gradation, the operatarnn), for a € H, is a homogeneous operator of
degree(—n, 0). Moreover, if the vertex operatof (+«;, 2) is formally expanded
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into power series as

X(Eei,2) =) Xm(Eai)z ™,
meZ

the coefficient operatoXm (+«;) is a homogeneous operator of degfeen, +«;).
Thus the mapp is a (Zx Q)-graded Lie algebra homomorphism. To finish the
proof of this theorem, we need only show tlfasatisfies the three conditions of
Proposition 2.2

Recall the notationm (a1 + k8) = ¥~ 1(£s™K @ x4), wheres = ag+ a1 is
the null root inQ. Let

X(@,2) = Xm(@)z ™" for o =tay +ks.

meZ

Then it is easy to show thah: x(«, 2) — X(«, 2), wherea = +a1 + ké, and

X (a1 + K8, 2) = e BDH@IaTOD () 2y ).
Applying Corollary 3.2again we have
[X(a1+Kks, 2), X(—a1— ks, w)]
= —koz 10,8( %) — (& +k(ao+an) + ko) @z 5( 2 ).
This gives
[Xm(a1 4 k8), X_m(—a1 —ké)] = —a1(0) — k(@o + a1)(0) — ke(0) — mko,

which is clearly a nonzero operator for amyk € Z. Thusg is injective on the one-
dimensional subspacks = Cxm(«) for any real rootx = £ +ké andk, me Z.
Moreover,

¢ (8(k)) = ag(k) + az(k) + c(k)

is also a nonzero operator, apds clearly injective orCs(0) + C¢.
Finally, we need to show that, fon, k # O,

[ Xm(a1 4 k&), Xo(—a1)] — [Xo(er + k8), Xm(—a1)] # 0,
[X1(o1 +Kk8), X_1(—a1)] — [X_1(a1+k8), X1(—a1)] #0.
By Corollary 3.2

(@)

[X(a1+K8, 2), X(—a1, w)] + [ X(—a1, 2), X(a1+ ks, w)]
L (kag+kai+ko)(2) _—_1 w
2kg:e 4 awa< z)

[
+ kel *HkatkO@ o) Lo (2) +c(2): 2% (%)
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which gives
[X(a1+k8, 2), Xo(—a1) ] — [Xo(a1 +k8), X(—a1,2)]
— k:ekok@KatkI@ (a(7) 4 81(2) + c(2)): .

To see that the coefficient @™ in the expression on the right is nonzero for
m = 0, we notice that

[ . e%(kao+ka1+kC)(2) — g (Kaotkatke)(@) d(2) ]

(a0(2) +a1(2) +¢(2)):, :e
—kazla s( X
= koz aws( Z).
The coefficient oz~™~1 on the right-hand side of the previous identitkignw™ 1,
which is nonzero wheneven # 0. This proves the first line ii2), while the

second can be proved by a similar argument which is omitted here. Thegefore
an isomorphism of Lie algebras. O

Corollary 3.6. For any fixed k € Z, define
V (kp) = €1d+To @ 59 ).
Then the vector space(¥;) is endowed with a representation of the toroidal Lie
algebra T(A1) with level{(kg, k1).
4. Module structure

We now define a smaller module from our Fock space representation via the so
called screening operator. We will only consider the case veherd.
For givenjo, j1, 11,12 € C with jo+ j1 € Z%, set

ind A b r
. jor2 Jips J1x —lort—
Vo, il =€ e e e “kotZ,

We define the Fock spadg, 1,1, to be the spac&(#~)vj, j,1,.1,- Then the
vertex operatorX (i, z) are well defined orFjg j, 1,.1,, provided that 2j; — 1)
and 2 jo+11) are integers. It is clear that the vertex operators satisfy

X(£ao, 2) Fio,lelJz ? F]oil,jl,lﬂlJz’
X(£a1, 2) : Fjg,juinl, = Fjo jit1l1£1,15-

Introduce a screening operaty: Fj; j;.1,.1, = Fjo,jl,l1+%.lz+¥ by setting
_ as0@—T(@). _ -n-1
S(z) = :e2' p=Y Sz "t
n

This is well defined provided thét — 1, € Z.
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Proposition 4.1.

0 (@1+b) () +1 (b— D), 1
X(o1, 2), S = — eko — ),
{X(a1,2), S(w)} ™ ( =

{X(=1,2), S(w)} =0

0 L (ag+b) (w)+ 3 (b— D), 1
X(ag, 2), S =— | :eh )
{X(ao, 2), S(w)} ™ ( =

Proof. Let

= igP@

(b(2) —r(2):,

¢ (a1,2) = p(—ag, 2) 1= %
1 b(Z)

¢ (a0, 2) = (-0, 2) 1= (b(2) +1(2)):
be the parafermions. It follows fronnemma 3.1that

¢ (a1, 2)S(w)
1 T 1 2
1..5b@ l(b—r)(w) % Lb@)+3b-1)(w)
~ 5:eko b—r)(z)ez + :eko e
2 ( )@ zZ— (z—w)?

i( Eb)+3b-nw), 1 ) 0
ow ‘z—w

~

Let d be the zero mode 08(z): d = [ S(z)dz It is easy to check that the
anticommutatof S(z), S(z)} = 0, thusd gives rise to a complex of vector spaces:

ko

jo,juli—=F 12— k°+2 I:JO il =™

Fjo,j1,|l+70,|2+k07ff2 > Fio.julitkolatkot2 = =

We can define the restrictéld( A)-submodule usindgProposition 4.1 Givenl we
define aT (A)-submodule

R = @ ker(d : Fiojvjul = FJo LY |+k0+2)
j1€l+2Z, joe—1+2

Theorem 4.2. The operator d commutes or anticommutes with elements of the
toroidal algebra T(A;) and & = 0. Moreover we have the long exact sequence

0— A — D Fioiuit — D Fjp ju o102

Jo.j1 o1
- @ Fio.is j1tkol+kot2 —> =+ »
Jo.j1
where the maps frord®;, ;, Fjo,j,,j,,) onward arepd and the summations run
through pe —l +Zand j €| +Z.
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Proof. We introduce the operat@*(z) = e~ 2(@—1@) — Y, Sz " and sed* =
S Itis easy to see thd6(z), S*(w)} = 1. Hencedd* 4 d*d = 1, and we already
knew thatd? = 0. Thus the following long sequence of vector spaces is exact:

0~ keerO'jl‘jl" d = Fjo.jujut = Fjo,11111+k70s|+k07;2 = Fjo, i, jrtko +ko+2 =+ -

Taking the direct sum we obtaifheorem 4.2 d

Sinceag(n) 4+ a1(n) acts trivially we can modulo the relation and define
R = Fi/(a0(n) +ay(n); —n € N);

then it is also aI (A1)-module and the results iRroposition 4.1obviously hold
for the moduleF,. If we further moduloa; (0) + ag(0) we will obtain the Verma
module for the affine Lie algebra generically.

Using the exact sequence we can compute the character for the nigdage
follows.

Theorem 4.3.The character of the (I'Al)—modulelf| is given by

| _ygkot2. ko
00 Zaeé |k0+2+5( > r+2b)e)t

h(F) =) (-1)°
ch(F) g( ) [Te ) [T(e %) [J(e )

where 1
]_[(x) = ]_[(1— x™ and Q= E(Zaﬁ—lb). O

m>0

References

[Berman and Billig 1999]S. Berman and Y. Billig,’Irreducible representations for toroidal Lie
algebras; J. Algebra221:1 (1999), 188—-231MR 2000k:17004Zbl 0942.17016

[Eswara Rao and Moody 19943. Eswara Rao and R. V. Mood$yertex representations fam-
toroidal Lie algebras and a generalization of the Virasoro algelatnm. Math. Phys1592
(1994), 239-264 MR 94m:17028Zbl 0808.17018

[Fabbri and Moody 1994M. A. Fabbri and R. V. Moody;lrreducible representations of Virasoro-
toroidal Lie algebras"Comm. Math. Physl591 (1994), 1-13.MR 95d:17031Zbl 0796.17024

[Felgin and Frenkel’ 1988B. L. Feigin and E. V. Frenkel’, “A family of representations of affine
Lie algebras” Uspekhi Mat. Nauld3:5 (1988), 227—-228. In Russian; translatedRinssian Math.
Surveyt35 (1988), 221-222MR 89k:17016 Zbl 0657.17013

[Frenkel et al. 1988]l. Frenkel, J. Lepowsky, and A. Meurmaviertex operator algebras and the
Monster Pure and Applied Mathematids34, Academic Press, Boston, 1988/R MR996026
(90h:17026)Zbl 0674.17001

[Jing and Lyerly 1999]N. Jing and C. M. Lyerly, “Level two vertex representationﬁ&l)”, Comm.
Algebra27:9 (1999), 4355-4362MR 2000g:17035Zbl 1007.17019

[Larsson 1999]T. A. Larsson, Lowest-energy representations of non-centrally extended diffeomor-
phism algebrag"Comm. Math. Phy201:2 (1999), 461-470MR 2000c:17042Zbl 0936.17025


http://dx.doi.org/10.1006/jabr.1999.7961
http://dx.doi.org/10.1006/jabr.1999.7961
http://www.ams.org/mathscinet-getitem?mr=2000k:17004
http://www.emis.de/cgi-bin/MATH-item?0942.17016
http://projecteuclid.org/getRecord?id=euclid.cmp/1104254598
http://projecteuclid.org/getRecord?id=euclid.cmp/1104254598
http://www.ams.org/mathscinet-getitem?mr=94m:17028
http://www.emis.de/cgi-bin/MATH-item?0808.17018
http://projecteuclid.org/getRecord?id=euclid.cmp/1104254488
http://projecteuclid.org/getRecord?id=euclid.cmp/1104254488
http://www.ams.org/mathscinet-getitem?mr=95d:17031
http://www.emis.de/cgi-bin/MATH-item?0796.17024
http://www.ams.org/mathscinet-getitem?mr=89k:17016
http://www.emis.de/cgi-bin/MATH-item?0657.17013
http://www.ams.org/mathscinet-getitem?mr=MR996026 (90h:17026)
http://www.ams.org/mathscinet-getitem?mr=MR996026 (90h:17026)
http://www.emis.de/cgi-bin/MATH-item?0674.17001
http://www.ams.org/mathscinet-getitem?mr=2000g:17035
http://www.emis.de/cgi-bin/MATH-item?1007.17019
http://dx.doi.org/10.1007/s002200050563
http://dx.doi.org/10.1007/s002200050563
http://www.ams.org/mathscinet-getitem?mr=2000c:17042
http://www.emis.de/cgi-bin/MATH-item?0936.17025

BOSONIC REALIZATIONS OF HIGHER-LEVEL TOROIDAL LIE ALGEBRAS 301

[Moody et al. 1990]R. V. Moody, S. E. Rao, and T. Yokonuma, “Toroidal Lie algebras and vertex
representations’Geom. Dedicat85:1-3 (1990), 283—-307MR 91i:17032 Zbl 0704.17011

[Nemeschansky 1989D. NemeschanskyFeigin—Fuchs representation 8t(2), Kac—Moody al-
gebra’; Phys. Lett. B224:1-2 (1989), 121-124MR 90g:17026

[Tan 1999] S. Tan, “Principal construction of the toroidal Lie algebra of typg, Math. Z.2304
(1999), 621-657 MR 2001d:17030Zbl 0932.17028

[Wakimoto 1986] M. Wakimoto,“Fock representations of the affine Lie algem%)", Comm. Math.
Phys.104:4 (1986), 605-609MR 87m:17011Zbl 0587.17009

Received October 2, 2002. Revised March 18, 2004.

NAIHUAN JING

DEPARTMENT OFMATHEMATICS
NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NC 27695

UNITED STATES

FACULTY OF MATHEMATICS
HUBEI UNIVERSITY
WUHAN, HUBEI 430064
CHINA

jing@math.ncsu.edu

KAILASH MISRA

DEPARTMENT OFMATHEMATICS
NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NC 27695

UNITED STATES

misra@math.ncsu.edu

SHAOBIN TAN

DEPARTMENT OFMATHEMATICS
XIAMEN UNIVERSITY

XIAMEN, FUJIAN 361005
CHINA

tans@jingxian.xmu.edu.cn


http://www.ams.org/mathscinet-getitem?mr=91i:17032
http://www.emis.de/cgi-bin/MATH-item?0704.17011
http://dx.doi.org/10.1016/0370-2693(89)91060-5
http://dx.doi.org/10.1016/0370-2693(89)91060-5
http://www.ams.org/mathscinet-getitem?mr=90g:17026
http://www.ams.org/mathscinet-getitem?mr=2001d:17030
http://www.emis.de/cgi-bin/MATH-item?0932.17028
http://projecteuclid.org/getRecord?id=euclid.cmp/1104115171
http://www.ams.org/mathscinet-getitem?mr=87m:17011
http://www.emis.de/cgi-bin/MATH-item?0587.17009
mailto:jing@math.ncsu.edu
mailto:misra@math.ncsu.edu
mailto:tans@jingxian.xmu.edu.cn

	1. Introduction
	2. Toroidal Lie algebras
	3. Representations of the toroidal algebra
	4. Module structure
	References

